1
|
Chavan T, Kanabar D, Patel K, Laflamme TM, Riyazi M, Spratt DE, Muth A. Structural modification of the propyl linker of cjoc42 in combination with sulfonate ester and triazole replacements for enhanced gankyrin binding and anti-proliferative activity. Bioorg Med Chem 2024; 110:117836. [PMID: 39029437 PMCID: PMC11342405 DOI: 10.1016/j.bmc.2024.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Liver cancer is a complex disease that involves various oncoproteins and the inactivation of tumor suppressor proteins (TSPs). Gankyrin is one such oncoprotein, first identified in human hepatocellular carcinoma, that is known to inactivate multiple TSPs, leading to proliferation and metastasis of tumor cells. Despite this, there has been limited development of small molecule gankyrin binders for the treatment of liver cancer. In this study, we are reporting the structure-based design of gankyrin-binding small molecules which inhibit the proliferation of HuH6 and HepG2 cells while also increasing the levels of certain TSPs, such as Rb and p53. Interestingly the first molecule to exhibit inhibition by 3D structure stabilization is seen. These results suggest a possible mechanism for small-molecule inhibition of gankyrin and demonstrate that gankyrin is a viable therapeutic target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, USA
| | - Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, USA
| | - Kinjal Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, USA
| | - Taylor M Laflamme
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Maryam Riyazi
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, USA.
| |
Collapse
|
2
|
Qin F, Chen G, Yu KN, Yang M, Cao W, Kong P, Peng S, Sun M, Nie L, Han W. Golgi Phosphoprotein 3 Mediates Radiation-Induced Bystander Effect via ERK/EGR1/TNF-α Signal Axis. Antioxidants (Basel) 2022; 11:2172. [PMID: 36358544 PMCID: PMC9686538 DOI: 10.3390/antiox11112172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
The radiation-induced bystander effect (RIBE), an important non-targeted effect of radiation, has been proposed to be associated with irradiation-caused secondary cancers and reproductive damage beyond the irradiation-treated area after radiotherapy. However, the mechanisms for RIBE signal(s) regulation and transduction are not well understood. In the present work, we found that a Golgi protein, GOLPH3, was involved in RIBE transduction. Knocking down GOLPH3 in irradiated cells blocked the generation of the RIBE, whereas re-expression of GOLPH3 in knockdown cells rescued the RIBE. Furthermore, TNF-α was identified as an important intercellular signal molecule in the GOLPH3-mediated RIBE. A novel signal axis, GOLPH3/ERK/EGR1, was discovered to modulate the transcription of TNF-α and determine the level of released TNF-α. Our findings provide new insights into the molecular mechanism of the RIBE and a potential target for RIBE modulation.
Collapse
Affiliation(s)
- Feng Qin
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shengjie Peng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Mingyu Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Lili Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Mukherjee S, Dutta A, Chakraborty A. The interaction of oxidative stress with MAPK, PI3/AKT, NF-κB, and DNA damage kinases influences the fate of γ-radiation-induced bystander cells. Arch Biochem Biophys 2022; 725:109302. [DOI: 10.1016/j.abb.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
4
|
Mukherjee S, Dutta A, Chakraborty A. The cross-talk between Bax, Bcl2, caspases, and DNA damage in bystander HepG2 cells is regulated by γ-radiation dose and time of conditioned media transfer. Apoptosis 2022; 27:184-205. [PMID: 35076828 DOI: 10.1007/s10495-022-01713-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 01/25/2023]
Abstract
Although radiation-induced bystander effects have been broadly explored in various biological systems, the molecular mechanisms and the consequences of different regulatory factors (dose, time, cell type) on bystander responses are not clearly understood. This study investigates the effects of irradiated cell-conditioned media (ICCM) collected at different times post-irradiation on bystander cancer cells regarding DNA damage and apoptosis induction. Human hepatocellular carcinoma HepG2 cells were exposed to γ-ray doses of 2 Gy, 5 Gy, and 8 Gy. In the early and late stages (1 h, 2 h, and 24 h) after irradiation, the ICCM was collected and transferred to unirradiated cells. Compared to control, bystander cells showed an increased level of H2AX phosphorylation, mitochondrial membrane depolarization, and elevation of intrinsic apoptotic pathway mediators such as p53, Bax, cas9, cas-3, and PARP cleavage. These results were confirmed by phosphatidylserine (PS) externalization and scanning electron microscopic observations, suggesting a rise in bystander HepG2 cell apoptosis. Anti-apoptotic Bcl2-level and viability were lower in bystander cells compared to control. The highest effects were observed in 8 Gy γ radiation-induced bystander cells. Even though the bystander effect was persistent at all time points of the study, ICCM at the early time points (1 or 2 h) had the most significant impact on the apoptosis markers in bystander cells. Nevertheless, 24 h ICCM induced the highest increase in H2AX and p53 phosphorylation and Bax levels. The effects of ICCM of irradiated HepG2 cells were additionally studied in normal liver cells BRL-3A to simulate actual radiotherapy conditions. The outcomes suggest that the expression of the signaling mediators in bystander cells is highly dynamic. A cross-talk between those signaling mediators regulates bystander responses depending on the radiation dose and time of incubation post-irradiation.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India.
| | - Anindita Dutta
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| |
Collapse
|
5
|
Carabias P, Espelt MV, Bacigalupo ML, Rojas P, Sarrias L, Rubin A, Saffioti NA, Elola MT, Rossi JP, Wolfenstein-Todel C, Rabinovich GA, Troncoso MF. Galectin-1 confers resistance to doxorubicin in hepatocellular carcinoma cells through modulation of P-glycoprotein expression. Cell Death Dis 2022; 13:79. [PMID: 35075112 PMCID: PMC8786848 DOI: 10.1038/s41419-022-04520-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Galectin-1 (GAL1), a β-galactoside-binding protein abundantly expressed in the tumor microenvironment, has emerged as a key mechanism of chemoresistance developed by different tumors. Although increased expression of GAL1 is a hallmark of hepatocellular carcinoma (HCC) progression, aggressiveness and metastasis, limited information is available on the role of this endogenous lectin in HCC resistance to chemotherapy. Moreover, the precise mechanisms underlying this effect are uncertain. HCC has evolved different mechanisms of resistance to chemotherapy including those involving the P-glycoprotein (P-gp), an ATP-dependent drug efflux pump, which controls intracellular drug concentration. Here, we investigated the molecular mechanism underlying GAL1-mediated chemoresistance in HCC cells, particularly the involvement of P-gp in this effect. Our results show that GAL1 protected HepG2 cells from doxorubicin (DOX)- and sorafenib-induced cell death in vitro. Accordingly, GAL1-overexpressing HepG2 cells generated DOX-resistant tumors in vivo. High expression of GAL1 in HepG2 cells reduced intracellular accumulation of DOX likely by increasing P-gp protein expression rather than altering its membrane localization. GAL1-mediated increase of P-gp expression involved activation of the phosphatidylinositol-3 kinase (PI3K) signaling pathway. Moreover, 'loss-of-function' experiments revealed that P-gp mediates GAL1-driven resistance to DOX, but not to sorafenib, in HepG2 cells. Conversely, in PLC/PRF/5 cells, P-gp protein expression was undetectable and GAL1 did not control resistance to DOX or sorafenib, supporting the critical role of P-gp in mediating GAL1 effects. Collectively, our findings suggest that GAL1 confers chemoresistance in HCC through mechanisms involving modulation of P-gp, thus emphasizing the role of this lectin as a potential therapeutic target in HCC.
Collapse
Grants
- PICT-2014-3216 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- PICT V 2014-3687 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- PICT-2016-1139 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- 20020150100005BA Universidad de Buenos Aires (University of Buenos Aires)
- PIP-11220150100647 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- Sales, Bunge & Born and Lounsbery Foundations. Donations from the Ferioli, Ostry and Caraballo families.
Collapse
Affiliation(s)
- Pablo Carabias
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María V Espelt
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María L Bacigalupo
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Paola Rojas
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Sarrias
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ayelén Rubin
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás A Saffioti
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María T Elola
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Juan P Rossi
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María F Troncoso
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Asadian S, Piryaei A, Gheibi N, Aziz Kalantari B, Reza Davarpanah M, Azad M, Kapustina V, Alikhani M, Moghbeli Nejad S, Keshavarz Alikhani H, Mohamadi M, Shpichka A, Timashev P, Hassan M, Vosough M. Rhenium Perrhenate ( 188ReO 4) Induced Apoptosis and Reduced Cancerous Phenotype in Liver Cancer Cells. Cells 2022; 11:305. [PMID: 35053421 PMCID: PMC8774126 DOI: 10.3390/cells11020305] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Recurrence in hepatocellular carcinoma (HCC) after conventional treatments is a crucial challenge. Despite the promising progress in advanced targeted therapies, HCC is the fourth leading cause of cancer death worldwide. Radionuclide therapy can potentially be a practical targeted approach to address this concern. Rhenium-188 (188Re) is a β-emitting radionuclide used in the clinic to induce apoptosis and inhibit cell proliferation. Although adherent cell cultures are efficient and reliable, appropriate cell-cell and cell-extracellular matrix (ECM) contact is still lacking. Thus, we herein aimed to assess 188Re as a potential therapeutic component for HCC in 2D and 3D models. The death rate in treated Huh7 and HepG2 lines was significantly higher than in untreated control groups using viability assay. After treatment with 188ReO4, Annexin/PI data indicated considerable apoptosis induction in HepG2 cells after 48 h but not Huh7 cells. Quantitative RT-PCR and western blotting data also showed increased apoptosis in response to 188ReO4 treatment. In Huh7 cells, exposure to an effective dose of 188ReO4 led to cell cycle arrest in the G2 phase. Moreover, colony formation assay confirmed post-exposure growth suppression in Huh7 and HepG2 cells. Then, the immunostaining displayed proliferation inhibition in the 188ReO4-treated cells on 3D scaffolds of liver ECM. The PI3-AKT signaling pathway was activated in 3D culture but not in 2D culture. In nude mice, Huh7 cells treated with an effective dose of 188ReO4 lost their tumor formation ability compared to the control group. These findings suggest that 188ReO4 can be a potential new therapeutic agent against HCC through induction of apoptosis and cell cycle arrest and inhibition of tumor formation. This approach can be effectively combined with antibodies and peptides for more selective and personalized therapy.
Collapse
Affiliation(s)
- Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 16123798, Iran;
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 16123798, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Bagher Aziz Kalantari
- Department of Organic Chemistry, Karaj Branch, Islamic Azad University, Karaj 16255879, Iran;
| | | | - Mehdi Azad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Valentina Kapustina
- Department of Internal Medicine N1, Sechenov University, 119991 Moscow, Russia;
| | - Mehdi Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Sahar Moghbeli Nejad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Morteza Mohamadi
- Department of Physical Chemistry, Faculty of Science, University of Tehran, Tehran 17456987, Iran;
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia;
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia;
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden;
- Clinical Research Center, Karolinska University Hospital Huddinge, 141-83 Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden;
- Clinical Research Center, Karolinska University Hospital Huddinge, 141-83 Stockholm, Sweden
| |
Collapse
|
7
|
Hu S, Shao C. Research progress of radiation induced bystander and abscopal effects in normal tissue. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
8
|
Pansare K, Raj Singh S, Chakravarthy V, Gupta N, Hole A, Gera P, Sarin R, Murali Krishna C. Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival. APPLIED SPECTROSCOPY 2020; 74:553-562. [PMID: 32031014 DOI: 10.1177/0003702820908352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Resistance to radiotherapy has been an impediment in the treatment of cancer, and the inability to detect it at an early stage further exacerbates the prognosis. We have assessed the feasibility of Raman spectroscopy as a rapid assay for predicting radiosensitivity of cancer cells in comparison to the conventional biological assays. Cell lines derived from breast adenocarcinoma (MCF7), gingivobuccal squamous cell carcinoma (ITOC-03), and human embryonic kidney (HEK293) were subjected to varying doses of ionizing radiation. Cell viability of irradiated cells was assessed at different time points using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Raman spectroscopy, and colony-forming capability was evaluated by clonogenic assay. Radiosensitivity observed using MTT assay was limited by the finding of similar cell viability in all the three cell lines 24 h post-irradiation. However, cell survival assessed using clonogenic assay and principal component linear discriminant analysis (PC-LDA) classification of Raman spectra showed correlating patterns. Irradiated cells showed loss of nucleic acid features and enhancement of 750 cm-1 peak probably attributing to resonance Raman band of cytochromes in all three cell lines. PC-LDA analysis affirmed MCF7 to be a radioresistant cell line as compared to ITOC-03 and HEK293 to be the most radiosensitive cell line. Raman spectroscopy is shown to be a rapid and alternative assay for identification of radiosensitivity as compared to the gold standard clonogenic assay.
Collapse
Affiliation(s)
- Kshama Pansare
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Saurav Raj Singh
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Venkatavaradhan Chakravarthy
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Neha Gupta
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Arti Hole
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Poonam Gera
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Rajiv Sarin
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Chilakapati Murali Krishna
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
9
|
Demirkıran G, Kalaycı Demir G, Güzeliş C. Coupling of cell fate selection model enhances DNA damage response and may underlie BE phenomenon. IET Syst Biol 2020; 14:96-106. [PMID: 32196468 PMCID: PMC8687165 DOI: 10.1049/iet-syb.2019.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 10/31/2019] [Indexed: 11/20/2022] Open
Abstract
Double-strand break-induced (DSB) cells send signal that induces DSBs in neighbour cells, resulting in the interaction among cells sharing the same medium. Since p53 network gives oscillatory response to DSBs, such interaction among cells could be modelled as an excitatory coupling of p53 network oscillators. This study proposes a plausible coupling model of three-mode two-dimensional oscillators, which models the p53-mediated cell fate selection in globally coupled DSB-induced cells. The coupled model consists of ATM and Wip1 proteins as variables. The coupling mechanism is realised through ATM variable via a mean-field modelling the bystander signal in the intercellular medium. Investigation of the model reveals that the coupling generates more sensitive DNA damage response by affecting cell fate selection. Additionally, the authors search for the cause-effect relationship between coupled p53 network oscillators and bystander effect (BE) endpoints. For this, they search for the possible values of uncertain parameters that may replicate BE experiments' results. At certain parametric regions, there is a correlation between the outcomes of cell fate and endpoints of BE, suggesting that the intercellular coupling of p53 network may manifest itself as the form of observed BEs.
Collapse
Affiliation(s)
- Gökhan Demirkıran
- Electrical and Electronics Engineering, Yaşar University, Selçuk Yaşar Kampüsü, İzmir, Turkey.
| | - Güleser Kalaycı Demir
- Electrical and Electronics Engineering, Dokuz Eylül University, Tınaztepe, İzmir, Turkey
| | - Cüneyt Güzeliş
- Electrical and Electronics Engineering, Yaşar University, Selçuk Yaşar Kampüsü, İzmir, Turkey
| |
Collapse
|
10
|
Fu J, Zhu L, Tu W, Wang X, Pan Y, Bai Y, Dang B, Chen J, Shao C. Macrophage-Mediated Bystander Effects after Different Irradiations through a p53-dependent Pathway. Radiat Res 2019; 193:119-129. [PMID: 31841081 DOI: 10.1667/rr15354.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of this work was to elucidate the mechanisms of bystander effects outside the localized irradiation field and their potential hematological toxicity. In this study, an in vitro multicellular co-culture system was used to investigate the intercellular commutation and related signaling pathways between either irradiated A549 cells or Beas-2B cells and bystander lymphoblast TK6 cells with or without macrophage U937 cells as an intermediator. Results showed that the proliferation ability of bystander TK6 cells was inhibited after co-culture with A549 cells irradiated with γ rays rather than carbon ions. When macrophages were contained in the co-culture system, the cell viability damage to the bystander TK6 cells were further enhanced. However, the proliferation inhibition of bystander TK6 cells after co-culture with irradiated Beas-2B cells was observed only when intermediator macrophages existed in the cell co-culture system. More serious cell injury was detected after carbon-ion irradiation compared with γ-ray irradiation. The p53-relevant apoptosis pathway was activated in both irradiated A549 and Beas-2B cells, each to a different extent. When the p53 pathway of irradiated cells was inhibited by PFT-α, PFTµ or p53 siRNA, the bystander damage to TK6 cells were clearly alleviated. In conclusion, the bystander lymphoblast damage was induced in different cells using different LET radiations. An amplified bystander response was modulated by the intermediator macrophage. The underlying molecular mechanisms of these bystander effects were dependent on the activation of p53 and its relevant apoptosis pathway in the irradiated cells. These results suggest that the bystander and macrophage-mediated bystander effects contribute to the common acute side effect of lymphocytopenia after local irradiation.
Collapse
Affiliation(s)
- Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, 200433, China.,Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Lin Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Xiangdong Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Dong C, Tu W, He M, Fu J, Kobayashi A, Konishi T, Shao C. Role of Endoplasmic Reticulum and Mitochondrion in Proton Microbeam Radiation-Induced Bystander Effect. Radiat Res 2019; 193:63-72. [PMID: 31714866 DOI: 10.1667/rr15469.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that mitochondria and the endoplasmic reticulum (ER) play important roles in radiation response, but their functions in radiation-induced bystander effect (RIBE) are largely unclear. In this study, we found that when a small portion of cells in a population of human lung fibroblast MRC-5 cells were precisely irradiated through either the nuclei or cytoplasm with counted microbeam protons, the yield of micronuclei (MN) and the levels of intracellular reactive oxygen species (ROS) in nonirradiated cells neighboring irradiated cells were significantly increased. Mito/ER-tracker staining demonstrated that the mitochondria were clearly activated after nuclear irradiation and ER mass approached a higher level after cytoplasmic irradiation. Moreover, the radiation-induced ROS was diminished by rotenone, an inhibitor of mitochondria activation, but it was not influenced by siRNA interference of BiP, an ER regulation protein. While for nuclear irradiation, rotenone-enhanced radiation-induced ER expression, and BiP siRNA eliminated radiation-induced activation of mitochondria, these phenomena were not observed for cytoplasmic irradiation. Bystander MN was reduced by rotenone but enhanced by BiP siRNA. When the cells were treated with both rotenone and BiP siRNA, the MN yield was reduced for nuclear irradiation but was enhanced for cytoplasmic irradiation. Our results suggest that the organelles of mitochondria and ER have different roles in RIBE with respect to nuclear and cytoplasmic irradiation, and the function of ER is a prerequisite for mitochondrial activation.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Wenzhi Tu
- The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Alisa Kobayashi
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences
| | - Teruaki Konishi
- Department of Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba 263-8555, Japan
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Heeran AB, Berrigan HP, O'Sullivan J. The Radiation-Induced Bystander Effect (RIBE) and its Connections with the Hallmarks of Cancer. Radiat Res 2019; 192:668-679. [PMID: 31618121 DOI: 10.1667/rr15489.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Radiation therapy is one of the pillars of cancer treatment, with approximately one half of all cancer patients receiving it as part of their standard of care. Emerging evidence indicates that the biological effects of radiation are not limited to targeted cells. The radiation-induced bystander effect (RIBE) refers to the plethora of biological phenomena occurring in nonirradiated cells as a result of signal transmission from an irradiated cell. Experimental evidence has linked RIBE to numerous hallmarks of cancer including resisting cell death, tumor immune evasion, genomic instability, deregulated cellular energetics, tumor-promoting inflammation and sustained proliferative signaling as well as enhanced radioresistance, thus highlighting the potential role of RIBE events in patient treatment response. The mechanisms underlying RIBE events in vivo are poorly understood. However, elucidating the molecular mechanisms involved in their manifestation may reveal novel therapeutic targets to improve radiation response in cancer patients.
Collapse
Affiliation(s)
- Aisling B Heeran
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Helen P Berrigan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
13
|
Ni J, Bucci J, Malouf D, Knox M, Graham P, Li Y. Exosomes in Cancer Radioresistance. Front Oncol 2019; 9:869. [PMID: 31555599 PMCID: PMC6742697 DOI: 10.3389/fonc.2019.00869] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Radiation is a mainstay of cancer therapy. Radioresistance is a significant challenge in the treatment of locally advanced, recurrent and metastatic cancers. The mechanisms of radioresistance are complicated and still not completely understood. Exosomes are 40–150 nm vesicles released by cancer cells that contain pathogenic components, such as proteins, mRNAs, DNA fragments, non-coding RNAs, and lipids. Exosomes play a critical role in cancer progression, including cell-cell communication, tumor-stromal interactions, activation of signaling pathways, and immunomodulation. Emerging data indicate that radiation-derived exosomes increase tumor burden, decrease survival, cause radiation-induced bystander effects and promote radioresistance. In addition, radiation can change the contents of exosomes, which allows exosomes to be used as a prognostic and predictive biomarker to monitor radiation response. Therefore, understanding the roles and mechanisms of exosomes in radiation response may shed light on how exosomes play a role in radioresistance and open a new way in radiotherapy and translational medicine. In this review, we discuss recent advances in radiation-induced exosome changes in components, focus on the roles of exosome in radiation-induced bystander effect in cancer and emphasize the importance of exosomes in cancer progression and radioresistance for developing novel therapy.
Collapse
Affiliation(s)
- Jie Ni
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - David Malouf
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,Department of Urology, St. George Hospital, Sydney, NSW, Australia
| | - Matthew Knox
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Tu W, Dong C, Fu J, Pan Y, Kobayashi A, Furusawa Y, Konishi T, Shao C. Both irradiated and bystander effects link with DNA repair capacity and the linear energy transfer. Life Sci 2019; 222:228-234. [PMID: 30858123 DOI: 10.1016/j.lfs.2019.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/21/2023]
Abstract
AIMS In comparison with a low linear energy transfer (LET) radiation, a high-LET radiation induces more complex DNA damage. This study wonders whether radiation-induced bystander effect (RIBE) is dependent of LET. MATERIALS AND METHODS Chinese hamster ovary CHO-9 cells and its subline EM-C11 cells (SSB repair deficient) and XR-C1 cells (DSB repair deficient) were irradiated by γ-rays, α-particles, or carbon ions with different LETs of 13, 30 and 70 keV/μm. Cell proliferation, cell death, DNA damage, cell cycle distribution and some protein expressions were measured with the cell counting kit-8 (CCK-8), colony formation, micronuclei (MN), flow cytometry and western blot, respectively. KEY FINDINGS A series of cell responses were induced by these radiations in a LET-dependent manner, including proliferation inhibition, cell death, MN induction, G2/M phase arrest and the expression of γH2AX protein. These cell injuries were also depended on DNA repair capacity, and XR-C1 cells were the most sensitive to each radiation. Furthermore, when the cells were treated with the conditioned medium (CM) collected from irradiated CHO-9 cells, the MN induction and cell death response in the bystander cells of EM-C11 or XR-C1 increased along with LET of irradiation, and the bystander damage was easier to be induced in EM-C11 and XR-C1 cells than that in CHO-9 cells. SIGNIFICANCE Both cellular DNA repair capacity and the LET value of radiation could deeply influence damage extents of not only the irradiated cells but also the bystander cells.
Collapse
Affiliation(s)
- Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China; The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Alisa Kobayashi
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba 263-8555, Japan
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Mukherjee S, Chakraborty A. Radiation-induced bystander phenomenon: insight and implications in radiotherapy. Int J Radiat Biol 2019; 95:243-263. [PMID: 30496010 DOI: 10.1080/09553002.2019.1547440] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sharmi Mukherjee
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| | - Anindita Chakraborty
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| |
Collapse
|
16
|
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome 2018; 29:843-865. [PMID: 30178305 PMCID: PMC6267675 DOI: 10.1007/s00335-018-9777-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
Abstract
Radiation is an important component of cancer treatment with more than half of all patients receive radiotherapy during their cancer experience. While the impact of radiation on tumour morphology is routinely examined in the pre-clinical and clinical setting, the impact of radiation on the tumour microenvironment and more specifically the inflammatory/immune response is less well characterised. Inflammation is a key contributor to short- and long-term cancer eradication, with significant tumour and normal tissue consequences. Therefore, the role of radiation in modulating the inflammatory response is highly topical given the current wave of targeted and immuno-therapeutic treatments for cancer. This review provides a general overview of how radiation modulates the inflammatory and immune response—(i) how radiation induces the inflammatory/immune system, (ii) the cellular changes that take place, (iii) how radiation dose delivery affects the immune response, and (iv) a discussion on research directions to improve patient survival, reduce side effects, improve quality of life, and reduce financial costs in the immediate future. Harnessing the benefits of radiation on the immune response will enhance its maximal therapeutic benefit and reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia. .,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia. .,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia.,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michael Back
- Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Tom Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Connie I Diakos
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
17
|
Yuan D, Xu J, Wang J, Pan Y, Fu J, Bai Y, Zhang J, Shao C. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget 2017; 7:32707-22. [PMID: 27129166 PMCID: PMC5078045 DOI: 10.18632/oncotarget.9017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/09/2016] [Indexed: 12/21/2022] Open
Abstract
MiRNAs in the circulation have been demonstrated to be a type of signaling molecule involved in intercellular communication but little is known about their role in regulating radiosensitivity. This study aims to investigate the effects of extracellular miRNAs induced by ionizing radiation (IR) on cell proliferation and radiosensitivity. The miRNAs in the conditioned medium (CM) from irradiated and non-irradiated A549 lung cancer cells were compared using a microarray assay and the profiles of 21 miRNAs up and down-regulated by radiation were confirmed by qRT-PCR. One of these miRNAs, miR-1246, was especially abundant outside the cells and had a much higher level compared with that inside of cells. The expressions of miR-1246 in both A549 and H446 cells increased along with irradiation dose and the time post-irradiation. By labeling exosomes and miR-1246 with different fluorescence dyes, it was found that the extracellular miR-1246 could shuttle from its donor cells to other recipient cells by a non-exosome associated pathway. Moreover, the treatments of cells with miR-1246 mimic or its antisense inhibitor showed that the extracellular miR-1246 could enhance the proliferation and radioresistance of lung cancer cells. A luciferase reporter-gene transfer experiment demonstrated that the death receptor 5 (DR5) was the direct target of miR-1246, and the kinetics of DR5 expression was opposite to that of miR-1246 in the irradiated cells. Our results show that the oncogene-like extracellular miR-1246 could act as a signaling messenger between irradiated and non-irradiated cells, more importantly, it contributes to cell radioresistance by directly suppressing the DR5 gene.
Collapse
Affiliation(s)
- Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jinping Xu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Juan Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Liu K, Zhao X, Gu J, Wu J, Zhang H, Li Y. Effects of 12C6+ heavy ion beam irradiation on the p53 signaling pathway in HepG2 liver cancer cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:989-998. [PMID: 29036263 DOI: 10.1093/abbs/gmx096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
The heavy ion beam is considered to be the ideal source for radiotherapy. The p53 tumor suppressor gene senses DNA damage and transducts intracellular apoptosis signals. Previous reports showed that the heavy ion beam can trigger complex forms of damage to cellular DNA, leading to cell cycle arrest and apoptosis of HepG2 human liver cancer cells; however, the mechanisms remains unclear fully. In order to explore whether the intrinsic or extrinsic pathway participates this process, HepG2 cells were treated with 12C6+ HIB irradiation at doses of 0 (control), 1, 2, 4, and 6 Gy with various methods employed to understand relevant mechanisms, such as detection of apoptosis, cell cycle, and Fas expression by flow cytometry, analysis of apoptotic morphology by electron microscopy and laser scanning confocal microscopy, and screening differentially expressed genes relating to p53 signaling pathway by PCR-array assay following with any genes confirmed by western blot analysis. This study showed that 12C6+ heavy ion beam irradiation at a dose of 6 Gy leads to endogenous DNA double-strand damage, G2/M cell cycle arrest, and apoptosis of human HepG2 cells via synergistic effect of the extrinsic and intrinsic pathways. Differentially expressed genes in the p53 signaling pathway related to DNA damage repair, apoptosis, cycle regulation, metastasis, deterioration and radioresistance were also discovered. Consequently, the expressions of Fas, TP53BP2, TP53AIP1, and CASP9 were confirmed upregulated after 12C6+ HIB irradiation treatment. In conclusion, this study demonstrated the mechanisms of inhibition and apoptosis induced by 12C6+ heavy ion beam irradiation on HepG2 cancer cells is mediated by initiation of the biological function of p53 signaling pathway including extrinsic and intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Kai Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xinke Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jing Gu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jianjun Wu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hong Zhang
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Department of Heavy Ion Irradiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yingdong Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Department of Heavy Ion Irradiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
19
|
Thompson HF, Butterworth KT, McMahon SJ, Ghita M, Hounsell AR, Prise KM. The Impact of Hypoxia on Out-of-Field Cell Survival after Exposure to Modulated Radiation Fields. Radiat Res 2017; 188:636-644. [PMID: 29019742 DOI: 10.1667/rr14836.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Advanced radiotherapy techniques such as intensity modulated radiation therapy achieve highly conformal dose distributions within target tumor volumes through the sequential delivery of multiple spatially and temporally modulated radiation fields and have been shown to influence radiobiological response. The goals of this study were to determine the effect of hypoxia on the cell survival responses of different cell models (H460, DU145, A549, MDA231 and FADU) to modulated fields and to characterize the time dependency of signaling under oxic conditions, following reoxygenation and after prolonged hypoxia. Hypoxia was induced by incubating cells at 95% nitrogen and 5% carbon dioxide for 4 h prior to irradiation. The out-of-field response in MDA231 cells was oxygen dependent and therefore selected for co-culture studies to determine the signaling kinetics at different time intervals after irradiation under oxic and hypoxic conditions. Under both oxic and hypoxic conditions, significant increases in cell survival were observed in-field with significant decreases in survival observed out-of-field (P < 0.05), which were dependent on intercellular communication. The in-field response of MDA231 cells showed no significant time dependency up to 24 h postirradiation, while out-of-field survival decreased significantly during the first 6 h postirradiation (P < 0.05). While in-field responses were oxygen dependent, out-of-field effects were observed to be independent of oxygen, with similar or greater cell killing under hypoxic conditions. This study provides further understanding of intercellular signaling under hypoxic conditions and highlights the need for further refinement of established radiobiological models for future applications in advanced radiotherapies.
Collapse
Affiliation(s)
- Hannah F Thompson
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Karl T Butterworth
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Stephen J McMahon
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Mihaela Ghita
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Alan R Hounsell
- b Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast, Northern Ireland, United Kingdom
| | - Kevin M Prise
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| |
Collapse
|
20
|
Abstract
The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science.
Collapse
Affiliation(s)
- Humaira Aziz Sawal
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad
| | - Kashif Asghar
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Matthias Bureik
- Health Science Platform, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Nasir Jalal
- Health Science Platform, Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Chen X, Wang P, Guo F, Wang X, Wang J, Xu J, Yuan D, Zhang J, Shao C. Autophagy enhanced the radioresistance of non-small cell lung cancer by regulating ROS level under hypoxia condition. Int J Radiat Biol 2017; 93:764-770. [PMID: 28463025 DOI: 10.1080/09553002.2017.1325025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Tumor resistance towards radiation has been a big obstacle in the poor prognosis of lung cancer. It has been reported that hypoxia and autophagy partly contribute to this resistance. However, there is controversy over whether autophagy plays a positive role in cancer therapy or not. We aim to find out the specific mechanism of radiation resistance. MATERIALS AND METHODS A549 cells were treated with conditioned medium (CM) under 12 h hypoxia or normoxia before irradiation, followed by the measurement of clonogenic survival, reactive oxygen species (ROS), signal of mitochondria and autophagy flux. In some experiments, the A549 cells were respectively transfected with LC3 small interfering RNA (siRNA), or treated with Earle's Balanced Salt Solution (EBSS). RESULTS We found that hypoxia enhanced cell radioresistance by increasing the induction of autophagy. And after hypoxia stress, the number of mitochondria was reduced but the cellular ROS level was enhanced. It was significant that autophagy may enhance cell radioresistance by reducing ROS during hypoxic treatment. CONCLUSIONS We elucidated the possible mechanisms of autophagy in regulating cancer cell death or survival. These results supply a new opinion about the intrinsic factor of radioresistance of hypoxia tumors.
Collapse
Affiliation(s)
- Xiaoyan Chen
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Ping Wang
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Fei Guo
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Xiangdong Wang
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Juan Wang
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Jinping Xu
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Dexiao Yuan
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Jianghong Zhang
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Chunlin Shao
- a Institute of Radiation Medicine , Fudan University , Shanghai , China
| |
Collapse
|
22
|
Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020155. [PMID: 28178195 PMCID: PMC5334709 DOI: 10.3390/ijerph14020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/19/2017] [Accepted: 01/31/2017] [Indexed: 01/29/2023]
Abstract
Background: To investigate the effects of S-phase kinase protein 2 (SKP2) expression on the radiation induced bystander effect (RIBE) in esophageal cancer (EC) cells. Materials and Methods: Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN), and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. Results: We found a significant negative correlation between SKP2 expression and MN frequency (p < 0.05) induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. Conclusions: These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage.
Collapse
|
23
|
Rosa S, Connolly C, Schettino G, Butterworth KT, Prise KM. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol 2017; 8:2. [PMID: 28217176 PMCID: PMC5288470 DOI: 10.1186/s12645-017-0026-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/20/2017] [Indexed: 12/31/2022] Open
Abstract
There has been growing interest in the use of nanomaterials for a range of biomedical applications over the last number of years. In particular, gold nanoparticles (GNPs) possess a number of unique properties that make them ideal candidates as radiosensitizers on the basis of their strong photoelectric absorption coefficient and ease of synthesis. However, despite promising preclinical evidence in vitro supported by a limited amount of in vivo experiments, along with advances in mechanistic understanding, GNPs have not yet translated into the clinic. This may be due to disparity between predicted levels of radiosensitization based on physical action, observed biological response and an incomplete mechanistic understanding, alongside current experimental limitations. This paper provides a review of the current state of the field, highlighting the potential underlying biological mechanisms in GNP radiosensitization and examining the barriers to clinical translation.
Collapse
Affiliation(s)
- Soraia Rosa
- Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland, UK
| | - Chris Connolly
- Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland, UK
- National Physical Laboratory, Teddington, London, TW11 0LW UK
| | | | - Karl T. Butterworth
- Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland, UK
| | - Kevin M. Prise
- Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland, UK
| |
Collapse
|
24
|
Le M, Mothersill CE, Seymour CB, Rainbow AJ, McNeill FE. An Observed Effect of p53 Status on the Bystander Response to Radiation-Induced Cellular Photon Emission. Radiat Res 2017; 187:169-185. [PMID: 28118118 DOI: 10.1667/rr14342.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, we investigated the potential influence of p53 on ultraviolet (UV) signal generation and response of bystander cells to the UV signals generated by beta-irradiated cells. Five cell lines of various p53 status (HaCaT, mutated; SW48, wild-type; HT29, mutated; HCT116+/+, wild-type; HCT116-/-, null) were irradiated with beta particles from tritium. Signal generation (photon emission at 340 ± 5 nm) was quantified from irradiated cells using a photomultiplier tube. Bystander response (clonogenic survival) was assessed by placing reporter cell flasks directly superior to irradiated signal-emitting cells. All cell lines emitted significant quantities of UV after tritium exposure. The magnitudes of HaCaT and HT29 photon emission at 340 nm were similar to each other while they were significantly different from the stronger signals emitted from SW48, HCT116+/+ and HCT116-/- cells. In regard to the bystander responses, HaCaT, HCT116+/+ and SW48 cells demonstrated significant reductions in survival as a result of exposure to emission signals. HCT116-/- and HT29 cells did not exhibit any changes in survival and thus were considered to be lacking the mechanisms or functions required to elicit a response. The survival response was found not to correlate with the observed signal strength for all experimental permutations; this may be attributed to varying emission spectra from cell line to cell line or differences in response sensitivity. Overall, these results suggest that the UV-mediated bystander response is influenced by the p53 status of the cell line. Wild-type p53 cells (HCT116+/+ and SW48) demonstrated significant responses to UV signals whereas the p53-null cell line (HCT116-/-) lacked any response. The two mutated p53 cell lines exhibited contrasting responses, which may be explained by unique modulation of functions by different point mutations. The reduced response (cell death) exhibited by p53-mutated cells compared to p53 wild-type cells suggests a possible role of the assessed p53 mutations in radiation-induced cancer susceptibility and reduced efficacy of radiation-directed therapy.
Collapse
Affiliation(s)
- M Le
- a Radiation Sciences Graduate Program and Departments of
| | | | | | | | - F E McNeill
- c Physics and Astronomy, McMaster University, Hamilton Ontario, L8S 4L8, Canada
| |
Collapse
|
25
|
Huaying S, Dong Y, Chihong Z, Xiaoqian Q, Danying W, Jianguo F. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells. Med Sci Monit 2016; 22:5041-5048. [PMID: 28002389 PMCID: PMC5198751 DOI: 10.12659/msm.901605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. Material/Methods A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. Results Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. Conclusions KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.
Collapse
Affiliation(s)
- Sheng Huaying
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Yao Dong
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Zhu Chihong
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Qian Xiaoqian
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Wan Danying
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Feng Jianguo
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland).,Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
26
|
Protective effect of mild endoplasmic reticulum stress on radiation-induced bystander effects in hepatocyte cells. Sci Rep 2016; 6:38832. [PMID: 27958308 PMCID: PMC5153638 DOI: 10.1038/srep38832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the defense and self-protective mechanisms of bystander normal cells are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 cells under either normoxia or hypoxia, where the ratio of the yield of bystander MN induction to the yield of radiation-induced MN formation under hypoxia was much higher than that of normoxia. Nonetheless, thapsigargin induced endoplasmic reticulum (ER) stress and dramatically suppressed this bystander response manifested as the decrease of MN and apoptosis inductions. Meanwhile, the interference of BiP gene, a major ER chaperone, amplified the detrimental RIBE. More precisely, thapsigargin provoked ER sensor of PERK to initiate an instantaneous and moderate ER stress thus defensed the hazard form RIBE, while BiP depletion lead to persistently destroyed homeostasis of ER and exacerbated cell injury. These findings provide new insights that the mild ER stress through BiP-PERK-p-eIF2α signaling pathway has a profound role in protecting cellular damage from RIBE and hence may decrease the potential secondary cancer risk after cancer radiotherapy.
Collapse
|
27
|
Fu J, Jiang M, Zhang M, Zhang J, Wang Y, Xiang S, Xu X, Ye Q, Song H. MiR-495 functions as an adjuvant to radiation therapy by reducing the radiation-induced bystander effect. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1026-1033. [PMID: 27697751 DOI: 10.1093/abbs/gmw098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/21/2016] [Indexed: 01/07/2023] Open
Abstract
The radiation-induced bystander effect (RIBE) is an important factor in tumor radiation therapy because it may increase the probability of normal cellular injury and the likelihood of secondary cancers after radiotherapy. Here, we identified the role of miR-495 in alleviating RIBEs during radiotherapy. Luciferase reporter assay results confirmed that miR-495 regulated endothelial nitric oxide synthase (eNOS) by targeting the Sp1 3'-untranslated region. Consequently, after radiation, tumor cells expressed less eNOS and Sp1 than controls. In vitro cell irradiation data based on flow-cytometric analysis and enzymed linked immunosorbent assay confirmed that nitric oxide (NO) and its downstream product transforming growth factor β1 (TGF-β1) were critical signaling factors contributing to RIBEs. Fewer normal LO2 liver cells were injured and fewer micronuclei were observed when treated with the medium of the miR-495 overexpressing HepG2 and ZR75-1 tumor cells. Accordingly, treatment with the miR-495 antagomir led to higher NO and TGF-β1 levels and more injured LO2 cells. In vivo experiments indicated that local irradiation of tumors overexpressing miR-495 produced fewer necrotic foci in non-irradiated liver tissue compared with controls. miR-495 was upregulated in clinical cancer tissues compared with adjacent non-cancerous tissues, and radiation significantly reduced the expression level of miR-495 in carcinoma cell lines. In summary, miR-495 may have promise as an adjuvant for tumor radiation therapy to decrease RIBEs involving the Sp1/eNOS pathway.
Collapse
Affiliation(s)
- Jie Fu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Mengmeng Jiang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng Zhang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Zhang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yu Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shensi Xiang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Haifeng Song
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
28
|
Tu W, Dong C, Konishi T, Kobayashi A, Furusawa Y, Uchihori Y, Xie Y, Dang B, Li W, Shao C. G(2)-M phase-correlative bystander effects are co-mediated by DNA-PKcs and ATM after carbon ion irradiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 795:1-6. [PMID: 26774662 DOI: 10.1016/j.mrgentox.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Accumulated evidence has shown that radiation-induced bystander effect (RIBE) may have significant implications to the efficiency of radiotherapy. Although cellular radiosensitivity relies on cell cycle status, it is largely unknown how about the relationship between RIBE and cell cycle distribution, much less the underlying mechanism. In the present study, the lung cancer A549 cells were synchronized into different cell cycle phases of G1, S and G2/M and irradiated with high linear energy transfer (LET) carbon ions. By treating nonirradiated cells with the conditioned medium from these irradiated cells, it was found that the G2-M phase cells had the largest contribution to RIBE. Meanwhile, the activity of DNA-PKcs but not ATM was increased in the synchronized G2-M phase cells in spite of both of them were activated in the asynchronous cells after carbon ion irradiation. When the G2-M phased cells were transferred with DNA-PKcs siRNA and ATM siRNA individually or treated with an inhibitor of either DNA-PKcs or ATM before carbon ion irradiation, the RIBE was effectively diminished. These results provide new evidence linking cell cycle to bystander responses and demonstrate that DNA-PKcs and ATM are two associated factors in co-regulating G2-M phase-related bystander effects.
Collapse
Affiliation(s)
- Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Teruaki Konishi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Alisa Kobayashi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Yukio Uchihori
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China; Central Laboratory of Renji Hospital, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
p31comet-Induced Cell Death Is Mediated by Binding and Inactivation of Mad2. PLoS One 2015; 10:e0141523. [PMID: 26544187 PMCID: PMC4636321 DOI: 10.1371/journal.pone.0141523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/10/2015] [Indexed: 11/20/2022] Open
Abstract
Mad2, a key component of the spindle checkpoint, is closely associated with chromosomal instability and poor prognosis in cancer. p31comet is a Mad2-interacting protein that serves as a spindle checkpoint silencer at mitosis. In this study, we showed that p31comet-induced apoptosis and senescence occur via counteraction of Mad2 activity. Upon retroviral transduction of p31comet, the majority of human cancer cell lines tested lost the ability to form colonies in a low-density seeding assay. Cancer cells with p31comet overexpression underwent distinct apoptosis and/or senescence, irrespective of p53 status, confirming the cytotoxicity of p31comet. Interestingly, both cytotoxic and Mad2 binding activities were eliminated upon deletion of the C-terminal 30 amino acids of p31comet. Point mutation or deletion of the region affecting Mad2 binding additionally abolished cytotoxic activity. Consistently, wild-type Mad2 interacting with p31comet, but not its non-binding mutant, inhibited cell death, indicating that the mechanism of p31comet-induced cell death involves Mad2 inactivation. Our results clearly suggest that the regions of p31comet affecting interactions with Mad2, including the C-terminus, are essential for induction of cell death. The finding that p31comet-induced cell death is mediated by interactions with Mad2 that lead to its inactivation is potentially applicable in anticancer therapy.
Collapse
|
30
|
Lee YR, Park SY. P53 expression in hepatocellular carcinoma: influence on the radiotherapeutic response of the hepatocellular carcinoma. Clin Mol Hepatol 2015; 21:230-1. [PMID: 26526818 PMCID: PMC4612283 DOI: 10.3350/cmh.2015.21.3.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/27/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yu Rim Lee
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Soo Young Park
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
31
|
Gomes AR, Abrantes AM, Brito AF, Laranjo M, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Botelho MF, Tralhão JG. Influence of P53 on the radiotherapy response of hepatocellular carcinoma. Clin Mol Hepatol 2015; 21:257-67. [PMID: 26527121 PMCID: PMC4612287 DOI: 10.3350/cmh.2015.21.3.257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/13/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
Background/Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines. Methods Western blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle. Results The P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase. Conclusions These results suggest that P53 plays a key role in the radiotherapy response of HCC.
Collapse
Affiliation(s)
- Ana R Gomes
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal
| | - Ana M Abrantes
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Ana F Brito
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Mafalda Laranjo
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - João E Casalta-Lopes
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal
| | - Ana C Gonçalves
- Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; CNC.IBILI, University of Coimbra, Coimbra, Portugal. ; Applied Molecular Biology and Hematology Group, Faculty of Medicine of University of Coimbra, Coimbra, Portugal
| | - Ana B Sarmento-Ribeiro
- Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; CNC.IBILI, University of Coimbra, Coimbra, Portugal. ; Applied Molecular Biology and Hematology Group, Faculty of Medicine of University of Coimbra, Coimbra, Portugal
| | - Maria F Botelho
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - José G Tralhão
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal. ; Surgical Department A, CHUC, Coimbra, Portugal
| |
Collapse
|
32
|
Butterworth KT, McMahon SJ, McKee JC, Patel G, Ghita M, Cole AJ, McGarry CK, O'Sullivan JM, Hounsell AR, Prise KM. Time and Cell Type Dependency of Survival Responses in Co-cultured Tumor and Fibroblast Cells after Exposure to Modulated Radiation Fields. Radiat Res 2015; 183:656-64. [DOI: 10.1667/rr13992.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Dong C, He M, Tu W, Konishi T, Liu W, Xie Y, Dang B, Li W, Uchihori Y, Hei TK, Shao C. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation. Cancer Lett 2015; 363:92-100. [PMID: 25896631 DOI: 10.1016/j.canlet.2015.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022]
Abstract
The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Teruaki Konishi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Weili Liu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Yukio Uchihori
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
34
|
Tomita M, Maeda M. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses. JOURNAL OF RADIATION RESEARCH 2015; 56:205-19. [PMID: 25361549 PMCID: PMC4380047 DOI: 10.1093/jrr/rru099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 06/01/2023]
Abstract
Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| | - Munetoshi Maeda
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan Proton Medical Research Group, Research and Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-shi, Fukui 914-0192, Japan
| |
Collapse
|
35
|
Jaiswal H, Lindqvist A. Bystander communication and cell cycle decisions after DNA damage. Front Genet 2015; 6:63. [PMID: 25774166 PMCID: PMC4343024 DOI: 10.3389/fgene.2015.00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/08/2015] [Indexed: 01/07/2023] Open
Abstract
The DNA damage response (DDR) has two main goals, to repair the damaged DNA and to communicate the presence of damaged DNA. This communication allows the adaptation of cellular behavior to minimize the risk associated with DNA damage. In particular, cell cycle progression must be adapted after a DNA-damaging insult, and cells either pause or terminally exit the cell cycle during a DDR. As cells can accumulate mutations after a DDR due to error-prone DNA repair, terminal cell cycle exit may prevent malignant transformation. The tumor suppressor p53 plays a key role in promoting terminal cell cycle exit. Interestingly, p53 has been implicated in communication of a stress response to surrounding cells, known as the bystander response. Recently, surrounding cells have also been shown to affect the damaged cell, suggesting the presence of intercellular feedback loops. How such feedback may affect terminal cell cycle exit remains unclear, but its presence calls for caution in evaluating cellular outcome without controlling the cellular surrounding. In addition, such feedback may contribute to how the cellular environment affects malignant transformation after DNA damage.
Collapse
Affiliation(s)
- Himjyot Jaiswal
- Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
36
|
Wang X, Zhang J, Fu J, Wang J, Ye S, Liu W, Shao C. Role of ROS-mediated autophagy in radiation-induced bystander effect of hepatoma cells. Int J Radiat Biol 2015; 91:452-8. [PMID: 25651038 DOI: 10.3109/09553002.2015.1012308] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Autophagy plays a crucial role in cellular response to ionizing radiation, but it is unclear whether autophagy can modulate radiation-induced bystander effect (RIBE). Here, we investigated the relationship between bystander damage and autophagy in human hepatoma cells of HepG2. MATERIALS AND METHODS HepG2 cells were treated with conditioned medium (CM) collected from 3 Gy γ-rays irradiated hepatoma HepG2 cells for 4, 12, or 24 h, followed by the measurement of micronuclei (MN), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and protein expressions of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 in the bystander HepG2 cells. In some experiments, the bystander HepG2 cells were respectively transfected with LC3 small interfering RNA (siRNA), Beclin-1 siRNA or treated with 1% dimethyl sulfoxide (DMSO). RESULTS Additional MN and mitochondrial dysfunction coupled with ROS were induced in the bystander cells. The expressions of protein markers of autophagy, LC3-II/LC3-I and Beclin-1, increased in the bystander cells. The inductions of bystander MN and overexpressions of LC3 and Beclin-1 were significantly diminished by DMSO. However, when the bystander cells were transfected with LC3 siRNA or Beclin-1 siRNA, the yield of bystander MN was significantly enhanced. CONCLUSION The elevated ROS have bi-functions in balancing the bystander effects. One is to cause MN and the other is to induce protective autophagy.
Collapse
Affiliation(s)
- Xiangdong Wang
- Institute of Radiation Medicine, Fudan University , Shanghai , China
| | | | | | | | | | | | | |
Collapse
|
37
|
Xie Y, Tu W, Zhang J, He M, Ye S, Dong C, Shao C. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation. Mutat Res 2015; 772:23-29. [PMID: 25772107 DOI: 10.1016/j.mrfmmm.2014.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved.
Collapse
Affiliation(s)
- Yuexia Xie
- Institute of Radiation Medicine, Fudan University, Shanghai, China; Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Shuang Ye
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Li L, Tan Y, Chen X, Xu Z, Yang S, Ren F, Guo H, Wang X, Chen Y, Li G, Wang H. MDM4 overexpressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53. PLoS One 2014; 9:e113088. [PMID: 25405759 PMCID: PMC4236138 DOI: 10.1371/journal.pone.0113088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia patients with complex karyotype (CK-AML) account for approximately 10–15% of adult AML cases, and are often associated with a poor prognosis. Except for about 70% of CK-AML patients with biallelic inactivation of TP53, the leukemogenic mechanism in the nearly 30% of CK-AML patients with wild-type TP53 has remained elusive. In this study, 15 cases with complex karyotype and wild-type TP53 were screened out of 140 de novo AML patients and the expression levels of MDM4, a main negative regulator of p53-signaling pathway, were detected. We ruled out mutations in genes associated with a poor prognosis of CK-AML, including RUNX1 or FLT3-ITD. The mRNA expression levels of the full-length of MDM4 (MDM4FL) and short isoform MDM4 (MDM4S) were elevated in CK-AML relative to normal karyotype AML (NK-AML) patients. We also explored the impact of MDM4 overexpression on the cell cycle, cell proliferation and the spindle checkpoint of HepG2 cells, which is a human cancer cell line with normal MDM4 and TP53 expression. The mitotic index and the expression of p21, BubR1 and Securin were all reduced following Nocodazole treatment. Moreover, karyotype analysis showed that MDM4 overexpression might lead to aneuploidy or polyploidy. These results suggest that MDM4 overexpression is related to CK-AML with wild-type TP53 and might play a pathogenic role by inhibiting p53-signal pathway.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
- Department of biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yanhong Tan
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiuhua Chen
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Zhifang Xu
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Siyao Yang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Fanggang Ren
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Haixiu Guo
- Department of biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiaojuan Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yi Chen
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Guoxia Li
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Hongwei Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
- * E-mail:
| |
Collapse
|
39
|
Xiao L, Liu W, Li J, Xie Y, He M, Fu J, Jin W, Shao C. Irradiated U937 cells trigger inflammatory bystander responses in human umbilical vein endothelial cells through the p38 pathway. Radiat Res 2014; 182:111-21. [PMID: 24960416 DOI: 10.1667/rr13736.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effects are a well-known phenomenon that are observed when treating cancer and other diseases after radiotherapy, and even after occupational exposure to radiation. However, little is known about the crosstalk between irradiated macrophages and endothelial cells that line the circulatory system, which may play a role in the development of atherosclerosis. In the current study, we found that the expression of inducible nitric oxide synthase (iNOS) and the intracellular level of nitric oxide (NO) in gamma-irradiated U937 macrophage cells were significantly increased. When human umbilical vein endothelial cells (HUVECs) were co-cultured with gamma-irradiated U937 cells, additional micronuclei (MN) and apoptosis were induced so that the plating efficiency of the bystander HUVECs decreased and P38 was overexpressed in the bystander HUVECs cells. In addition, the contents of vascular cell adhesion molecule 1 (VCAM-1) and the activities of matrix metalloproteinase-9 (MMP-9) in the culture medium of bystander HUVECs were increased. Furthermore, during cell co-culture the adhesive ability of irradiated U937 cells to the bystander HUVECs increased. When U937 cells were treated with 500 μM S-methylisothiourea sulfate (SMT) (iNOS inhibitor) before irradiation, and HUVECs were treated with 10 μM SB203580 (p38 inhibitor) before cell co-culture or treated with 20 μM c-PTIO (NO scavenger) in the co-culture medium, the bystander micronuclei and the amounts of VCAM-1 and MMP-9 in the medium of bystander HUVECs were diminished, and the ability of irradiated U937 cells adhering to HUVECs was also reduced, while the plating efficiency of bystander HUVECs partially recovered. These results demonstrated that irradiated U937 cells appear to release nitric oxide and thereby further trigger apoptosis and inflammatory responses in the bystander HUVECs through a p38-dependent pathway.
Collapse
Affiliation(s)
- Linlin Xiao
- a Institute of Radiation Medicine, Fudan University, Shanghai 200032, China; and
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway. Biochem Biophys Res Commun 2014; 447:388-93. [PMID: 24746471 DOI: 10.1016/j.bbrc.2014.03.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1-2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1-2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.
Collapse
|
41
|
He M, Dong C, Konishi T, Tu W, Liu W, Shiomi N, Kobayashi A, Uchihori Y, Furusawa Y, Hei TK, Dang B, Shao C. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:53-59. [PMID: 26432589 DOI: 10.1016/j.lssr.2014.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 06/05/2023]
Abstract
High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66(Shc) activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Teruaki Konishi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Weili Liu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Naoko Shiomi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Alisa Kobayashi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Yukio Uchihori
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Heavy-Ion Radiobiology Research Group, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
42
|
He M, Dong C, Xie Y, Li J, Yuan D, Bai Y, Shao C. Reciprocal bystander effect between α-irradiated macrophage and hepatocyte is mediated by cAMP through a membrane signaling pathway. Mutat Res 2014; 763-764:1-9. [PMID: 24657252 DOI: 10.1016/j.mrfmmm.2014.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/21/2014] [Accepted: 03/07/2014] [Indexed: 02/04/2023]
Abstract
Irradiated cells can induce biological effects on vicinal non-irradiated bystander cells, meanwhile the bystander cells may rescue the irradiated cells through a feedback signal stress. To elucidate the nature of this reciprocal effect, we examined the interaction between α-irradiated human macrophage cells U937 and its bystander HL-7702 hepatocyte cells using a cell co-culture system. Results showed that after 6h of cell co-culture, mitochondria depolarization corresponding to apoptosis was significantly induced in the HL-7702 cells, but the formation of micronuclei in the irradiated U937 cells was markedly decreased compared to that without cell co-culture treatment. This reciprocal effect was not observed when the cell membrane signaling pathway was blocked by filipin that inhibited cAMP transmission from bystander cells to irradiated cells. After treatment of cells with exogenous cAMP, forskolin (an activator of cAMP) or KH-7 (an inhibitor of cAMP), respectively, it was confirmed that cAMP communication from bystander cells to targeted cells could mitigate radiation damage in U739 cells, and this cAMP insufficiency in the bystander cells contributed to the enhancement of bystander apoptosis. Moreover, the bystander apoptosis in HL-7702 cells was aggravated by cAMP inhibition but it could not be evoked when p53 of HL-7702 cells was knocked down no matter of forskolin and KH-7 treatment. In conclusion, this study disclosed that cAMP could be released from bystander HL-7702 cells and compensated to α-irradiated U937 cells through a membrane signaling pathway and this cAMP communication played a profound role in regulating the reciprocal bystander effects.
Collapse
Affiliation(s)
- Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Jitao Li
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
43
|
Ghasemi R, Ghaffari SH, Momeny M, Pirouzpanah S, Yousefi M, Malehmir M, Alimoghaddam K, Ghavamzadeh A. Multitargeting and antimetastatic potentials of silibinin in human HepG-2 and PLC/PRF/5 hepatoma cells. Nutr Cancer 2013; 65:590-9. [PMID: 23659451 DOI: 10.1080/01635581.2013.770043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common sort of primary liver malignancy with poor prognosis. This study aimed at examining the effects of silibinin (a putative antimetastatic agent) on some transcriptional markers mechanistically related to HCC recurrence and metastasis in HepG-2 [hepatitis B virus (HBV)-negative and P53 intact) and PLC/PRF/5 (HBV-positive and P53 mutated) cells. The expression of 27 genes in response to silibinin was evaluated by real-time RT-PCR. The MMP gelatinolytic assay and microculture tetrazolium test (MTT) were tested. Silibinin was capable of suppressing the transcriptional levels of ANGPT2, ATP6L, CAP2, CCR6, CCR7, CLDN-10, cortactin, CXCR4, GLI2, HK2, ID1, KIAA0101, mortalin, PAK1, RHOA, SPINK1, and STMN1 as well as the enzymatic activity of MMP-2 but promoted the transcripts of CREB3L3, DDX3X, and PROX1 in both cells. Some significant differences between the cells in response to silibinin were detected that might be related to the differences of the cells in terms of HBV infection and/or P53 mutation, suggesting the possible influence of silibinin on HCC through biological functions of these 2 prognostic factors. In conclusion, our findings suggest that silibinin could potentially function as a multitargeting antimetastatic agent and might provide new insights for HCC therapy particularly for HBV-related and/or P53-mutated HCCs.
Collapse
Affiliation(s)
- Reza Ghasemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shen B, He PJ, Shao CL. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion. PLoS One 2013; 8:e84610. [PMID: 24367681 PMCID: PMC3868658 DOI: 10.1371/journal.pone.0084610] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/ time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5‘-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.
Collapse
Affiliation(s)
- Bo Shen
- Institute of Radiation Medicine, Fudan University, Shanghai, China
- * E-mail: (C-LS); (BS)
| | - Pei-Jie He
- Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chun-Lin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
- * E-mail: (C-LS); (BS)
| |
Collapse
|
45
|
Campa A, Balduzzi M, Dini V, Esposito G, Tabocchini MA. The complex interactions between radiation induced non-targeted effects and cancer. Cancer Lett 2013; 356:126-36. [PMID: 24139968 DOI: 10.1016/j.canlet.2013.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023]
Abstract
Radiation induced non-targeted effects have been widely investigated in the last two decades for their potential impact on low dose radiation risk. In this paper we will give an overview of the most relevant aspects related to these effects, starting from the definition of the low dose scenarios. We will underline the role of radiation quality, both in terms of mechanisms of interaction with the biological matter and for the importance of charged particles as powerful tools for low dose effects investigation. We will focus on cell communication, representing a common feature of non-targeted effects, giving also an overview of cancer models that have explicitly considered such effects.
Collapse
Affiliation(s)
- Alessandro Campa
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Balduzzi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy; Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Valentina Dini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Antonella Tabocchini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy.
| |
Collapse
|
46
|
He M, Dong C, Ren R, Yuan D, Xie Y, Pan Y, Shao C. Radiation enhances the invasiveness of irradiated and nonirradiated bystander hepatoma cells through a VEGF-MMP2 pathway initiated by p53. Radiat Res 2013; 180:389-97. [PMID: 24059678 DOI: 10.1667/rr3355.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent evidence has shown that irradiation can promote the invasiveness of hepatocellular carcinoma cells and have an impact on the invasive behavior of nonirradiated surrounding cancer cells, which may enhance overall tumor aggressiveness. However, the role of the TP53 tumor suppressor gene in the invasion of irradiated hepatoma cells and their nonirradiated bystanders remain largely unknown. In the present study, we found that irradiation increased the invasiveness of human hepatoma HepG2 cells, and pretreatment of the cells with SU1498 (an inhibitor of vascular endothelial growth factor receptor 2, VEGFR2) and GM6001 (an inhibitor of matrix metalloproteinases 2, MMP2) demonstrated that radiation-enhanced invasiveness is associated with the interplay between MMP2 and VEGF signaling. In addition, while radiation-induced expression and phosphorylation of p53, inhibition of p53 function with pifithrin-α or transfection of cells with p53 siRNA significantly reduced the activation of both MMP2 and VEGF and resulted in a reduction of radiation-induced invasiveness. Interestingly, we also found that the invasiveness of the nonirradiated bystander cells was also elevated after co-culturing with irradiated cells and that bystander invasive potential was regulated paracrine in a manner by MMP2 and VEGF from the irradiated cells through a p53-dependent mechanism. Taken together, our data demonstrate that radiation-induced up-regulation of p53 is responsible for the promotion of VEGF-MMP2 pathway involved in the enhancement of invasiveness of both irradiated and bystander hepatoma cells.
Collapse
Affiliation(s)
- Mingyuan He
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Ye S, Yuan D, Xie Y, Pan Y, Shao C. Role of DNA methylation in long-term low-dose γ-rays induced adaptive response in human B lymphoblast cells. Int J Radiat Biol 2013; 89:898-906. [PMID: 23692433 DOI: 10.3109/09553002.2013.806832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE With widespread use of ionizing radiation, more attention has been attracted to low-dose radiation (LDR); however, the mechanisms of long-term LDR-induced bio-effects are unclear. Here, we applied human B lymphoblast cell line HMy2.CIR to monitor the effects of long-term LDR and the potential involvement of DNA methylation. MATERIALS AND METHODS HMy2.CIR cells were irradiated with 0.032 Gy γ-rays three times per week for 1-4 weeks. Some of these primed cells were further challenged with 2 Gy γ-rays. Cell proliferation, micronuclei formation, gene expression of DNA methyltransferases (DNMT), levels of global genomic DNA methylation and protein expression of methyl CpG binding protein 2 (MeCP2) and heterochromatin protein-1 (HP1) were measured. RESULTS Long-term LDR enhanced cell proliferation and clonogenicity and triggered a cellular adaptive response (AR). Furthermore, global genomic DNA methylation was increased in HMy2.CIR cells after long-term LDR, accompanied with an increase of gene expression of DNMT1 and protein expression of MeCP2 and HP1. After treatment with 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, the long-term LDR-induced global genomic DNA hypermethylation was decreased and the AR was eliminated. CONCLUSION Global genomic DNA hypermethylation accompanied with increases of DNMT1 and MeCP2 expression and heterochromatin formation might be involved in long-term LDR-induced adaptive response.
Collapse
Affiliation(s)
- Shuang Ye
- Institute of Radiation Medicine, Fudan University , Shanghai , P. R. China
| | | | | | | | | |
Collapse
|
48
|
Li J, He M, Shen B, Yuan D, Shao C. Alpha particle-induced bystander effect is mediated by ROS via a p53-dependent SCO2 pathway in hepatoma cells. Int J Radiat Biol 2013; 89:1028-34. [PMID: 23786650 DOI: 10.3109/09553002.2013.817706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE The radiation-induced bystander effect (RIBE) has important implications for the efficiency of radiotherapy but the underlying role of cellular metabolism is widely unknown. The roles of synthesis of cytochrome c oxidase 2 (SCO2), a key effector for respiratory chain, and related signaling factors in α-particle-induced bystander damage were currently investigated in a liver cell co-culture system. MATERIALS AND METHODS Human hepatoma cells of HepG2 with wild-type p53 (wtp53) and Hep3B (p53 null) were irradiated with 0.4 Gy of α-particles and co-cultured with non-irradiated normal liver cells HL-7702 for 6 h, then the incidence of micronucleus (MN) in the bystander HL-7702 cells was analyzed. The expressions of total P53, phospho-P53 (p-P53), SCO2, and reactive oxygen species (ROS) in the irradiated hepatoma cells were detected. In some experiments, the hepatoma cells were respectively treated with p53 siRNA, SCO2 siRNA, or dimethyl sulfoxide (DMSO) before irradiation. RESULTS Bystander damage in HL-7702 cells was induced by α-irradiated HepG2 cells but not by α-irradiated Hep3B cells, and this bystander effect was diminished when the irradiated HepG2 cells were pretreated with p53 siRNA, SCO2 siRNA, or DMSO. Meanwhile, the expressions of p-P53 protein and SCO2 mRNA, the activity of SCO2 protein, and intracellular ROS were all increased in the irradiated HepG2 cells but not Hep3B cells and these expressions were eliminated by p53 siRNA treatment. Moreover, the radiation-enhanced expressions of SCO2 and ROS were inhibited by SCO2 siRNA. CONCLUSION α-particle-induced bystander effect was regulated by p53 and its downstream SCO2 in the irradiated hepatoma cells, and ROS generation could be an early event for triggering this bystander response.
Collapse
Affiliation(s)
- Jitao Li
- Institute of Radiation Medicine, Fudan University , Shanghai , P. R. China
| | | | | | | | | |
Collapse
|
49
|
Kim JK, Jackson TL. Mechanisms that enhance sustainability of p53 pulses. PLoS One 2013; 8:e65242. [PMID: 23755198 PMCID: PMC3670918 DOI: 10.1371/journal.pone.0065242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 protein shows various dynamic responses depending on the types and extent of cellular stresses. In particular, in response to DNA damage induced by γ-irradiation, cells generate a series of p53 pulses. Recent research has shown the importance of sustaining repeated p53 pulses for recovery from DNA damage. However, far too little attention has been paid to understanding how cells can sustain p53 pulses given the complexities of genetic heterogeneity and intrinsic noise. Here, we explore potential molecular mechanisms that enhance the sustainability of p53 pulses by developing a new mathematical model of the p53 regulatory system. This model can reproduce many experimental results that describe the dynamics of p53 pulses. By simulating the model both deterministically and stochastically, we found three potential mechanisms that improve the sustainability of p53 pulses: 1) the recently identified positive feedback loop between p53 and Rorα allows cells to sustain p53 pulses with high amplitude over a wide range of conditions, 2) intrinsic noise can often prevent the dampening of p53 pulses even after mutations, and 3) coupling of p53 pulses in neighboring cells via cytochrome-c significantly reduces the chance of failure in sustaining p53 pulses in the presence of heterogeneity among cells. Finally, in light of these results, we propose testable experiments that can reveal important mechanisms underlying p53 dynamics.
Collapse
Affiliation(s)
- Jae Kyoung Kim
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Trachette L. Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
50
|
Cun Y, Dai N, Xiong C, Li M, Sui J, Qian C, Li Z, Wang D. Silencing of APE1 enhances sensitivity of human hepatocellular carcinoma cells to radiotherapy in vitro and in a xenograft model. PLoS One 2013; 8:e55313. [PMID: 23418439 PMCID: PMC3572126 DOI: 10.1371/journal.pone.0055313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023] Open
Abstract
Resistance to radiotherapy is a key limitation for the treatment of human hepatocellular carcinoma (HCC). To overcome this problem, we investigated the correlation between radioresistance and the human apurinic/apyrimidinic endonuclease (APE1), a bifunctional protein, which plays an important role in DNA repair and redox regulation activity of transcription factors. In the present study, we examined the radiosensitivity profiles of three human HCC cell lines, HepG2, Hep3B, and MHCC97L, using the adenoviral vector Ad5/F35-mediated APE1 siRNA (Ad5/F35-siAPE1). The p53 mutant cell lines MHCC97L showed radioresistance, compared with HepG2 and Hep3B cells. APE1 was strongly expressed in MHCC97L cells and was induced by irradiation in a dose-dependent manner, and Ad5/F35-siAPE1 effectively inhibited irradiation-induced APE1 and p53 expression. Moreover, silencing of APE1 significantly potentiated the growth inhibition and apoptosis induction by irradiation in all tested human HCC cell lines. In addition, Ad5/F35-siAPE1 significantly enhanced inhibition of tumor growth and potentiated cell apoptosis by irradiation both in HepG2 and MHCC97L xenografts. In conclusion, down regulation of APE1 could enhance sensitivity of human HCC cells to radiotherapy in vitro and in vivo.
Collapse
Affiliation(s)
- Yanping Cun
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengjie Xiong
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jiangdong Sui
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Zheng Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|