1
|
Racaud-Sultan C, Vergnolle N. GSK3β, a Master Kinase in the Regulation of Adult Stem Cell Behavior. Cells 2021; 10:cells10020225. [PMID: 33498808 PMCID: PMC7911451 DOI: 10.3390/cells10020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
In adult stem cells, Glycogen Synthase Kinase 3β (GSK3β) is at the crossroad of signaling pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3β activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs). Downstream of the integrin α5β1 or PAR2 activation, a molecular complex is organized around the scaffolding proteins RACK1 and β-arrestin-2 respectively, containing the phosphatase PP2A responsible for GSK3β activation. As a consequence, a quiescent stem cell phenotype is established with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3β has been found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR2 activation, whereas formers were protected from cytotoxicity through α5β1 engagement. However, a prolonged activation of GSK3β promoted a defect in epithelial regeneration and a resistance to chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK3β-dependent cellular functions. GSK3β activity is a key marker for inflammatory and cancer diseases allowing adjusted therapy to sex, age and metabolic status of patients.
Collapse
|
2
|
Wu J, Xiao Y, Sun J, Sun H, Chen H, Zhu Y, Fu H, Yu C, E W, Lai S, Ma L, Li J, Fei L, Jiang M, Wang J, Ye F, Wang R, Zhou Z, Zhang G, Zhang T, Ding Q, Wang Z, Hao S, Liu L, Zheng W, He J, Huang W, Wang Y, Xie J, Li T, Cheng T, Han X, Huang H, Guo G. A single-cell survey of cellular hierarchy in acute myeloid leukemia. J Hematol Oncol 2020; 13:128. [PMID: 32977829 PMCID: PMC7517826 DOI: 10.1186/s13045-020-00941-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes. Methods Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells. Results From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic “cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape. Conclusions We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.
Collapse
Affiliation(s)
- Junqing Wu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guodong Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tingyue Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Ding
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Zou Wang
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Sheng Hao
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weijia Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yungui Wang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tiefeng Li
- Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Cheng
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300000, China.,Alliance for Atlas of Blood Cells, Tianjin, China
| | - Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - He Huang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Daniel AR, Lee CL, Oh P, Luo L, Ma Y, Kirsch DG. Inhibiting Glycogen Synthase Kinase-3 Mitigates the Hematopoietic Acute Radiation Syndrome in a Sex- and Strain-dependent Manner in Mice. HEALTH PHYSICS 2020; 119:315-321. [PMID: 32175929 PMCID: PMC7398824 DOI: 10.1097/hp.0000000000001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Radiation and Nuclear Countermeasures Program at the National Institute of Allergy and Infectious Diseases (NIAID) mandated that medical countermeasures for treating Acute Radiation Syndrome (ARS) must have efficacy when administered at least 24 h after radiation exposure. At this time point, many cells within key target tissues, such as the hematopoietic system and the gastrointestinal (GI) tract, will already be dead. Therefore, drugs that promote the regeneration of surviving cells may improve outcomes. The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) regulates stem and progenitor cell self-renewal and regeneration in the hematopoietic and GI compartments. We tested inhibition of GSK-3β by SB216763 24 h after total body irradiation (TBI) and sub-total body irradiation (SBI). Here, we show that subcutaneous administration of SB216763 promotes the regeneration of surviving hematopoietic stem/progenitor cells (HSPCs), including myeloid progenitor cells, and improves survival of C57Bl/6 male mice when administered 24 h after TBI. However, these results were not recapitulated in female C57Bl/6 animals, suggesting a sex difference in GSK-3β signaling in HSPCs. Subcutaneous administration of SB216763 in male mice stimulated activation of Sox2 transcription but failed to induce Sox2 transcription in female C57Bl/6 mice. Using TCF/lef-GFP reporter mice, we examined Wnt signaling in HSPCs of irradiated male and female mice treated with SB216763. GSK-3 inhibition elevated Wnt reporter activity in HSPCs isolated from male but not female mice. SB216763 did not mitigate hematopoietic ARS in males or females of a second strain of wild-type mice, C3H. In addition, administration of SB216763 did not mitigate hematopoietic ARS beyond the currently available standard approved therapy of ciprofloxacin and granulocyte-colony stimulating factor (G-CSF) in male C57Bl/6 mice. Further, SB216763 did not mitigate GI-ARS after SBI in C57Bl/6 male mice. The lack of efficacy in both sexes and multiple strains of mice indicate that SB216763 is not suitable for further drug development as a mitigator of ARS. Our studies demonstrate that activation of Wnt signaling in HSPCs promotes hematopoietic regeneration following radiation exposure, and targeting this pathway downstream of GSK-3β may mitigate ARS in a sex- and strain-independent manner.
Collapse
Affiliation(s)
- Andrea R. Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Patrick Oh
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
4
|
Trostnikov MV, Veselkina ER, Krementsova AV, Boldyrev SV, Roshina NV, Pasyukova EG. Modulated Expression of the Protein Kinase GSK3 in Motor and Dopaminergic Neurons Increases Female Lifespan in Drosophila melanogaster. Front Genet 2020; 11:668. [PMID: 32695143 PMCID: PMC7339944 DOI: 10.3389/fgene.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Most eukaryotic genes express multiple transcripts and proteins, and a sophisticated gene expression strategy plays a crucial role in ensuring the cell-specificity of genetic information and the correctness of phenotypes. The Drosophila melanogaster gene shaggy encodes several isoforms of the conserved glycogen synthase kinase 3 (GSK3), which is vitally important for multiple biological processes. To characterize the phenotypic effects of differential shaggy expression, we explored how the multidirectional modulation of the expression of the main GSK3 isoform, Shaggy-PB, in different tissues and cells affects lifespan. To this end, we used lines with transgenic constructs that encode mutant variants of the protein. The effect of shaggy misexpression on lifespan depended on the direction of the presumed change in GSK3 activity and the type of tissue/cell. The modulation of GSK3 activity in motor and dopaminergic neurons improved female lifespan but caused seemingly negative changes in the structural (mitochondrial depletion; neuronal loss) and functional (perturbed locomotion) properties of the nervous system, indicating the importance of analyzing the relationship between lifespan and healthspan in invertebrate models. Our findings provide new insights into the molecular and cellular bases of lifespan extension, demonstrating that the fine-tuning of transcript-specific shaggy expression in individual groups of neurons is sufficient to provide a sex-specific increase in survival and slow aging.
Collapse
Affiliation(s)
- Mikhail V Trostnikov
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina R Veselkina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Krementsova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions, N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Boldyrev
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Roshina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020; 9:cells9061388. [PMID: 32503133 PMCID: PMC7349761 DOI: 10.3390/cells9061388] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase (GSK)3β is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3β is normally active in cells and negative regulation of GSK3β activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3β contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial–mesenchymal transition, deregulated GSK3β also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3β inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3β inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3β as a hallmark property of cancer and highlight the beneficial effects of GSK3β inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3β in the treatment of cancer is also discussed at length.
Collapse
|
6
|
Mastelaro de Rezende M, Ferreira AT, Paredes-Gamero EJ. Leukemia stem cell immunophenotyping tool for diagnostic, prognosis, and therapeutics. J Cell Physiol 2019; 235:4989-4998. [PMID: 31709540 DOI: 10.1002/jcp.29394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
The existence of cancer stem cells is debatable in numerous solid tumors, yet in leukemia, there is compelling evidence of this cell population. Leukemic stem cells (LSCs) are altered cells in which accumulating genetic and/or epigenetic alterations occur, resulting in the transition between the normal, preleukemic, and leukemic status. These cells do not follow the normal differentiation program; they are arrested in a primitive state but with high proliferation potential, generating undifferentiated blast accumulation and a lack of a mature cell population. The identification of LSCs might guide stem cell biology research and provide key points of distinction between these cells and their normal counterparts. The identification and characterization of the main features of LSCs can be useful as tools for diagnosis and treatment. In this context, the aim of the present review was to connect immunophenotype data in the main types of leukemia to further guide technical improvements.
Collapse
Affiliation(s)
| | - Alice T Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Division - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
7
|
Noguerol J, Roustan PJ, N'Taye M, Delcombel L, Rolland C, Guiraud L, Sagnat D, Edir A, Bonnart C, Denadai-Souza A, Deraison C, Vergnolle N, Racaud-Sultan C. Sexual dimorphism in PAR 2-dependent regulation of primitive colonic cells. Biol Sex Differ 2019; 10:47. [PMID: 31492202 PMCID: PMC6731565 DOI: 10.1186/s13293-019-0262-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Sexual dimorphism in biological responses is a critical knowledge for therapeutic proposals. However, gender differences in intestinal stem cell physiology have been poorly studied. Given the important role of the protease-activated receptor PAR2 in the control of colon epithelial primitive cells and cell cycle genes, we have performed a sex-based comparison of its expression and of the effects of PAR2 activation or knockout on cell proliferation and survival functions. METHODS Epithelial primitive cells isolated from colons from male and female mice were cultured as colonoids, and their number and size were measured. PAR2 activation was triggered by the addition of SLIGRL agonist peptide in the culture medium. PAR2-deficient mice were used to study the impact of PAR2 expression on colon epithelial cell culture and gene expression. RESULTS Colonoids from female mice were more abundant and larger compared to males, and these differences were further increased after PAR2 activation by specific PAR2 agonist peptide. The proliferation of male epithelial cells was lower compared to females but was specifically increased in PAR2 knockout male cells. PAR2 expression was higher in male colon cells compared to females and controlled the gene expression and activation of key negative signals of the primitive cell proliferation. This PAR2-dependent brake on the proliferation of male colon primitive cells was correlated with stress resistance. CONCLUSIONS Altogether, these data demonstrate that there is a sexual dimorphism in the PAR2-dependent regulation of primitive cells of the colon crypt.
Collapse
Affiliation(s)
- Julie Noguerol
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Pierre-Jean Roustan
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Mikael N'Taye
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Léo Delcombel
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Laura Guiraud
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Anissa Edir
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Alexandre Denadai-Souza
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Claire Racaud-Sultan
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France.
| |
Collapse
|
8
|
Sun LL, Yang SL, Sun H, Li WD, Duan SR. Molecular differences in Alzheimer's disease between male and female patients determined by integrative network analysis. J Cell Mol Med 2018; 23:47-58. [PMID: 30394676 PMCID: PMC6307813 DOI: 10.1111/jcmm.13852] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/28/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease and the most common cause of dementia among the elderly. There has been increasing recognition of sex differences in AD prevalence, clinical manifestation, disease course and prognosis. However, there have been few studies on the molecular mechanism underlying these differences. To address this issue, we carried out global gene expression and integrative network analyses based on expression profiles (GSE84422) across 17 cortical regions of 125 individuals with AD. There were few genes that were differentially expressed across the 17 regions between the two sexes, with only four (encoding glutamate metabotropic receptor 2, oestrogen‐related receptor beta, kinesin family member 26B, and aspartoacylase) that were differentially expressed in three regions. A pan‐cortical brain region co‐expression network analysis identified pathways and genes (eg, glycogen synthase kinase 3β) that were significantly associated with clinical characteristics of AD (such as neurofibrillary score) in males only. Similarity analyses between region‐specific networks indicated that male patients exhibited greater variability, especially in the superior parietal lobule, dorsolateral prefrontal cortex and occipital visual cortex. A network module analysis revealed an association between clinical traits and crosstalk of sex‐specific modules. An examination of temporal and spatial patterns of sex differences in AD showed that molecular networks were more conserved in females than in males in different cortical regions and at different AD stages. These findings provide insight into critical molecular pathways governing sex differences in AD pathology.
Collapse
Affiliation(s)
- Lin-Lin Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Song-Lin Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei-Da Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu-Rong Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Kornblau SM, Ruvolo PP, Wang RY, Battula VL, Shpall EJ, Ruvolo VR, McQueen T, Qui Y, Zeng Z, Pierce S, Jacamo R, Yoo SY, Le PM, Sun J, Hail N, Konopleva M, Andreeff M. Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival. Haematologica 2018; 103:810-821. [PMID: 29545342 PMCID: PMC5927978 DOI: 10.3324/haematol.2017.172429] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSC) support acute myeloid leukemia (AML) cell survival in the bone marrow (BM) microenvironment. Protein expression profiles of AML-derived MSC are unknown. Reverse phase protein array analysis was performed to compare expression of 151 proteins from AML-MSC (n=106) with MSC from healthy donors (n=71). Protein expression differed significantly between the two groups with 19 proteins over-expressed in leukemia stromal cells and 9 over-expressed in normal stromal cells. Unbiased hierarchical clustering analysis of the samples using these 28 proteins revealed three protein constellations whose variation in expression defined four MSC protein expression signatures: Class 1, Class 2, Class 3, and Class 4. These cell populations appear to have clinical relevance. Specifically, patients with Class 3 cells have longer survival and remission duration compared to other groups. Comparison of leukemia MSC at first diagnosis with those obtained at salvage (i.e. relapse/refractory) showed differential expression of 9 proteins reflecting a shift toward osteogenic differentiation. Leukemia MSC are more senescent compared to their normal counterparts, possibly due to the overexpressed p53/p21 axis as confirmed by high β-galactosidase staining. In addition, overexpression of BCL-XL in leukemia MSC might give survival advantage under conditions of senescence or stress and overexpressed galectin-3 exerts profound immunosuppression. Together, our findings suggest that the identification of specific populations of MSC in AML patients may be an important determinant of therapeutic response.
Collapse
Affiliation(s)
- Steven M Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Peter P Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Rui-Yu Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Vivian R Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Teresa McQueen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - YiHua Qui
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Zhihong Zeng
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Sherry Pierce
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Rodrigo Jacamo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Suk-Young Yoo
- Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Phuong M Le
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Jeffrey Sun
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Numsen Hail
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| |
Collapse
|
10
|
Hardy WR, Moldovan NI, Moldovan L, Livak KJ, Datta K, Goswami C, Corselli M, Traktuev DO, Murray IR, Péault B, March K. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells. Stem Cells 2017; 35:1273-1289. [DOI: 10.1002/stem.2599] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- W. Reef Hardy
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- Department of Medicine; University of Indiana; Indianapolis Indiana USA
| | | | - Leni Moldovan
- Department of Ophthalmology; IUPUI; Indianapolis Indiana USA
| | | | - Krishna Datta
- Fluidigm Corporation; South San Francisco California USA
| | - Chirayu Goswami
- Thomas Jefferson University Hospitals; Philadelphia Pennsylvania USA
| | - Mirko Corselli
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- BD Biosciences; San Diego California
| | | | - Iain R. Murray
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- MRC Centre for Regenerative Medicine, University of Edinburgh; Scotland United Kingdom
| | - Bruno Péault
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- MRC Centre for Regenerative Medicine, University of Edinburgh; Scotland United Kingdom
| | - Keith March
- Department of Medicine; University of Indiana; Indianapolis Indiana USA
| |
Collapse
|
11
|
Grabinski T, Kanaan NM. Novel Non-phosphorylated Serine 9/21 GSK3β/α Antibodies: Expanding the Tools for Studying GSK3 Regulation. Front Mol Neurosci 2016; 9:123. [PMID: 27909397 PMCID: PMC5112268 DOI: 10.3389/fnmol.2016.00123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) β and α are serine/threonine kinases involved in many biological processes. A primary mechanism of GSK3 activity regulation is phosphorylation of N-terminal serine (S) residues (S9 in GSK3β, S21 in GSK3α). Phosphorylation is inhibitory to GSK3 kinase activity because the phosphorylated N-terminus acts as a competitive inhibitor for primed substrates. Despite widespread interest in GSK3 across most fields of biology, the research community does not have reagents that specifically react with nonphosphoS9/21 GSK3β/α (the so-called "active" form). Here, we describe two novel monoclonal antibodies that specifically react with nonphosphoS9/21 GSK3β/α in multiple species (human, mouse, and rat). One of the antibodies is specific for nonphospho-S9 GSK3β (clone 12B2) and one for nonphospho-S9/21 GSK3β/α (clone 15C2). These reagents were validated for specificity and reactivity in several biochemical and immunochemical assays, and they show linear detection of nonphosphoS GSK3. Finally, these reagents provide significant advantages in studying GSK3β regulation. We used both antibodies to study the regulation of S9 phosphorylation by Akt and protein phosphatases. We used 12B2 (due to its specificity for GSK3β) and to demonstrate that protein phosphatase inhibition reduces nonphospho-S9 GSK3β levels and lowers kinase activity within cells. The ability to use the same reagent across biochemical, immunohistological and kinase activity assays provides a powerful approach for studying serine-dependent regulation of GSK3β/α.
Collapse
Affiliation(s)
- Tessa Grabinski
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand RapidsMI, USA
| | - Nicholas M. Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand RapidsMI, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand RapidsMI, USA
| |
Collapse
|
12
|
Nasri I, Bonnet D, Zwarycz B, d'Aldebert E, Khou S, Mezghani-Jarraya R, Quaranta M, Rolland C, Bonnart C, Mas E, Ferrand A, Cenac N, Magness S, Van Landeghem L, Vergnolle N, Racaud-Sultan C. PAR2-dependent activation of GSK3β regulates the survival of colon stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 2016; 311:G221-36. [PMID: 27313176 PMCID: PMC5007290 DOI: 10.1152/ajpgi.00328.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/16/2016] [Indexed: 01/31/2023]
Abstract
Protease-activated receptors PAR1 and PAR2 play an important role in the control of epithelial cell proliferation and migration. However, the survival of normal and tumor intestinal stem/progenitor cells promoted by proinflammatory mediators may be critical in oncogenesis. The glycogen synthase kinase-3β (GSK3β) pathway is overactivated in colon cancer cells and promotes their survival and drug resistance. We thus aimed to determine PAR1 and PAR2 effects on normal and tumor intestinal stem/progenitor cells and whether they involved GSK3β. First, PAR1 and PAR2 were identified in colon stem/progenitor cells by immunofluorescence. In three-dimensional cultures of murine crypt units or single tumor Caco-2 cells, PAR2 activation decreased numbers and size of normal or cancerous spheroids, and PAR2-deficient spheroids showed increased proliferation, indicating that PAR2 represses proliferation. PAR2-stimulated normal cells were more resistant to stress (serum starvation or spheroid passaging), suggesting prosurvival effects of PAR2 Accordingly, active caspase-3 was strongly increased in PAR2-deficient normal spheroids. PAR2 but not PAR1 triggered GSK3β activation through serine-9 dephosphorylation in normal and tumor cells. The PAR2-triggered GSK3β activation implicates an arrestin/PP2A/GSK3β complex that is dependent on the Rho kinase activity. Loss of PAR2 was associated with high levels of GSK3β nonactive form, strengthening the role of PAR2 in GSK3β activation. GSK3 pharmacological inhibition impaired the survival of PAR2-stimulated spheroids and serum-starved cells. Altogether our data identify PAR2/GSK3β as a novel pathway that plays a critical role in the regulation of stem/progenitor cell survival and proliferation in normal colon crypts and colon cancer.
Collapse
Affiliation(s)
- Imen Nasri
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France; ,2Laboratoire de Chimie des Substances Naturelles, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia;
| | - Delphine Bonnet
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France; ,3Service de Médecine Interne, Fédération Digestive, Centre Hospitalier Universitaire Purpan, Toulouse, France;
| | - Bailey Zwarycz
- 4Departments of Medicine and Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;
| | - Emilie d'Aldebert
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| | - Sokchea Khou
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| | - Raoudha Mezghani-Jarraya
- 2Laboratoire de Chimie des Substances Naturelles, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia;
| | - Muriel Quaranta
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| | - Corinne Rolland
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| | - Chrystelle Bonnart
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| | - Emmanuel Mas
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France; ,5Service de Gastroentérologie, Hépatologie et Nutrition, Hôpital des Enfants, Toulouse, France; and
| | - Audrey Ferrand
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| | - Nicolas Cenac
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| | - Scott Magness
- 4Departments of Medicine and Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;
| | - Laurianne Van Landeghem
- 6Institut National de la Santé et de la Recherche Médicale U913, Université de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Nathalie Vergnolle
- 1Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| | - Claire Racaud-Sultan
- Institut de Recherche en Santé Digestive, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France;
| |
Collapse
|
13
|
Zhang D, Wang Q, Zhu T, Cao J, Zhang X, Wang J, Wang X, Li Y, Shen B, Zhang J. RACK1 promotes the proliferation of THP1 acute myeloid leukemia cells. Mol Cell Biochem 2013; 384:197-202. [PMID: 24000012 DOI: 10.1007/s11010-013-1798-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/23/2013] [Indexed: 12/19/2022]
Abstract
The receptor for activated C kinase 1 (RACK1), an adaptor protein implicated in the regulation of multiple signaling pathways, has been reported to contribute to the survival of leukemic progenitor cells by enhancing the activity of glycogen synthase kinase 3β (GSK3β). However, it remains unknown whether RACK1 also contributes to the oncogenic growth of acute myeloid leukemia (AML) cells. Here, we report that transient or stable silencing of endogenous RACK1 expression by RACK1 short hairpin RNAs (shRNAs) led to impaired proliferation of THP1 AML cells without inducing terminal differentiation. Further exploration revealed that RACK1 loss-of-function resulted in reduced GSK3β activity. GSK3β shRNA treatment showed similar effects to RACK1 loss-of-function. Our data collectively suggest that RACK1 contributes to THP1 cell proliferation through, at least partially, enhancing GSK3β activity. Thus, targeting RACK1 may have some important therapeutic implications in the treatment of AML.
Collapse
Affiliation(s)
- Dalin Zhang
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410078, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
GPER mediates cardiotropic effects in spontaneously hypertensive rat hearts. PLoS One 2013; 8:e69322. [PMID: 23950890 PMCID: PMC3739764 DOI: 10.1371/journal.pone.0069322] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/12/2013] [Indexed: 01/17/2023] Open
Abstract
Estrogens promote beneficial effects in the cardiovascular system mainly through the estrogen receptor (ER)α and ERβ, which act as ligand-gated transcription factors. Recently, the G protein-coupled estrogen receptor (GPER) has been implicated in the estrogenic signaling in diverse tissues, including the cardiovascular system. In this study, we demonstrate that left ventricles of male Spontaneously Hypertensive Rats (SHR) express higher levels of GPER compared to normotensive Wistar Kyoto (WKY) rats. In addition, we show that the selective GPER agonist G-1 induces negative inotropic and lusitropic effects to a higher extent in isolated and Langendorff perfused hearts of male SHR compared to WKY rats. These cardiotropic effects elicited by G-1 involved the GPER/eNOS transduction signaling, as determined by using the GPER antagonist G15 and the eNOS inhibitor L-NIO. Similarly, the G-1 induced activation of ERK1/2, AKT, GSK3β, c-Jun and eNOS was abrogated by G15, while L-NIO prevented only the eNOS phosphorylation. In hypoxic Langendorff perfused WKY rat heart preparations, we also found an increased expression of GPER along with that of the hypoxic mediator HIF-1α and the fibrotic marker CTGF. Interestingly, G15 and L-NIO prevented the ability of G-1 to down-regulate the expression of both HIF-1α and CTGF, which were found expressed to a higher extent in SHR compared to WKY rat hearts. Collectively, the present study provides novel data into the potential role played by GPER in hypertensive disease on the basis of its involvement in myocardial inotropism and lusitropism as well as the expression of the apoptotic HIF-1α and fibrotic CTGF factors. Hence, GPER may be considered as a useful target in the treatment of some cardiac dysfunctions associated with stressful conditions like the essential hypertension.
Collapse
|
15
|
Retinoid differentiation therapy for common types of acute myeloid leukemia. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:939021. [PMID: 23213553 PMCID: PMC3504222 DOI: 10.1155/2012/939021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/05/2012] [Indexed: 11/25/2022]
Abstract
Many cancers arise in a tissue stem cell, and cell differentiation is impaired resulting in an accumulation of immature cells. The introduction of all-trans retinoic acid (ATRA) in 1987 to treat acute promyelocytic leukemia (APL), a rare subtype of acute myeloid leukemia (AML), pioneered a new approach to obtain remission in malignancies by restoring the terminal maturation of leukemia cells resulting in these cells having a limited lifespan. Differentiation therapy also offers the prospect of a less aggressive treatment by virtue of attenuated growth of leukemia cells coupled to limited damage to normal cells. The success of ATRA in differentiation therapy of APL is well known. However, ATRA does not work in non-APL AML. Here we examine some of the molecular pathways towards new retinoid-based differentiation therapy of non-APL AML. Prospects include modulation of the epigenetic status of ATRA-insensitive AML cells, agents that influence intracellular signalling events that are provoked by ATRA, and the use of novel synthetic retinoids.
Collapse
|
16
|
Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Ménesi D, Puskás LG, Juhász G. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy 2012; 8:1124-35. [PMID: 22562043 PMCID: PMC3429548 DOI: 10.4161/auto.20069] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.
Collapse
Affiliation(s)
- Balázs Erdi
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|