1
|
Bhatia V, Esmati L, Bhullar RP. Regulation of Ras p21 and RalA GTPases activity by quinine in mammary epithelial cells. Mol Cell Biochem 2024; 479:567-577. [PMID: 37131040 DOI: 10.1007/s11010-023-04725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Quinine, a bitter compound, can act as an agonist to activate the family of bitter taste G protein-coupled receptor family of proteins. Previous work from our laboratory has demonstrated that quinine causes activation of RalA, a Ras p21-related small G protein. Ral proteins can be activated directly or indirectly through an alternative pathway that requires Ras p21 activation resulting in the recruitment of RalGDS, a guanine nucleotide exchange factor for Ral. Using normal mammary epithelial (MCF-10A) and non-invasive mammary epithelial (MCF-7) cell lines, we investigated the effect of quinine in regulating Ras p21 and RalA activity. Results showed that in the presence of quinine, Ras p21 is activated in both MCF-10A and MCF-7 cells; however, RalA was inhibited in MCF-10A cells, and no effect was observed in the case of MCF-7 cells. MAP kinase, a downstream effector for Ras p21, was activated in both MCF-10A and MCF-7 cells. Western blot analysis confirmed the expression of RalGDS in MCF-10A cells and MCF-7 cells. The expression of RalGDS was higher in MCF-10A cells in comparison to the MCF-7 cells. Although RalGDS was detected in MCF-10A and MCF-7 cells, it did not result in RalA activation upon Ras p21 activation with quinine suggesting that the Ras p21-RalGDS-RalA pathway is not active in the MCF-10A cells. The inhibition of RalA activity in MCF-10A cells due to quinine could be as a result of a direct effect of this bitter compound on RalA. Protein modeling and ligand docking analysis demonstrated that quinine can interact with RalA through the R79 amino acid, which is located in the switch II region loop of the RalA protein. It is possible that quinine causes a conformational change that results in the inhibition of RalA activation even though RalGDS is present in the cell. More studies are needed to elucidate the mechanism(s) that regulate Ral activity in mammary epithelial cells.
Collapse
Affiliation(s)
- Vikram Bhatia
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, R3E 3P4, Canada
| | - Laya Esmati
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
| | - Rajinder P Bhullar
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
| |
Collapse
|
2
|
Landgraf A, Yeh IJ, Ghozayel MK, Bum-Erdene K, Gonzalez-Gutierrez G, Meroueh SO. Exploring Covalent Bond Formation at Tyr-82 for Inhibition of Ral GTPase Activation. ChemMedChem 2023; 18:e202300272. [PMID: 37269475 PMCID: PMC10529880 DOI: 10.1002/cmdc.202300272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Ral RAS GTPases are directly activated by KRAS through a trimeric complex with a guanine exchange factor. Ral is considered undruggable and lacks an accessible cysteine for covalent drug development. Previously we had reported an aryl sulfonyl fluoride fragment that formed a covalent bond at Tyr-82 on Ral and created a deep and well-defined pocket. Here, we explore this pocket further through design and synthesis of several fragment derivatives. The fragment core is modified by introducing tetrahydronaphthalene or benzodioxane rings to enhance affinity and stability of the sulfonyl fluoride reactive group. The deep pocket in the Switch II region is also explored by modifying the aromatic ring of the fragment that is ensconced into the pocket. Compounds 19 (SOF-658) and 26 (SOF-648) formed a single robust adduct specifically at Tyr-82, inhibited Ral GTPase exchange in buffer and in mammalian cells, and blocked invasion of pancreatic ductal adenocarcinoma cancer cells. Compound 19 (SOF-658) was stable in buffer, mouse, and human microsomes suggesting that further optimization could lead to small molecules to probe Ral activity in tumor models.
Collapse
Affiliation(s)
- Alexander Landgraf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - I-Ju Yeh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mona K. Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Samy O. Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
3
|
Cao M, Li X, Trinh DA, Yoshimachi S, Goto K, Sakata N, Ishida M, Ohtsuka H, Unno M, Wang Y, Shirakawa R, Horiuchi H. Ral GTPase promotes metastasis of pancreatic ductal adenocarcinoma via elevation of TGF-β1 production. J Biol Chem 2023; 299:104754. [PMID: 37116704 DOI: 10.1016/j.jbc.2023.104754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), caused by activating mutations in K-Ras, is an aggressive malignancy due to its early invasion and metastasis. Ral GTPases are activated downstream of Ras and play a crucial role in the development and progression of PDAC. However, the underlying mechanisms remain unclear. In this study, we investigated the mechanism of Ral-induced invasion and metastasis of PDAC cells using RalGAPβ-deficient PDAC cells with highly activated Ral GTPases. Array analysis and enzyme-linked immunosorbent assays revealed increased expression and secretion of TGF-β1 in RalGAPβ-deficient PDAC cells compared to control cells. Blockade of TGF-β1 signaling suppressed RalGAPβ deficiency-enhanced migration and invasion in vitro and metastasis in vivo to levels similar to controls. Phosphorylation of c-Jun N-terminal kinase (JNK), a repressor of TGF-β1 expression, was decreased by RalGAPβ deficiency. These results indicate that Ral contributes to invasion and metastasis of PDAC cells by elevating autocrine TGF-β1 signaling at least in part by decreasing JNK activity.
Collapse
Affiliation(s)
- Mingxin Cao
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China; School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xinming Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Duc-Anh Trinh
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Shingo Yoshimachi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Goto
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Natsumi Sakata
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Masaharu Ishida
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Yuxia Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
4
|
Wang C, Dai J, Qin N, Fan J, Ma H, Chen C, An M, Zhang J, Yan C, Gu Y, Xie Y, He Y, Jiang Y, Zhu M, Song C, Jiang T, Liu J, Zhou J, Wang N, Hua T, Liang S, Wang L, Xu J, Yin R, Chen L, Xu L, Jin G, Lin D, Hu Z, Shen H. Analyses of rare predisposing variants of lung cancer in 6,004 whole genomes in Chinese. Cancer Cell 2022; 40:1223-1239.e6. [PMID: 36113475 DOI: 10.1016/j.ccell.2022.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
We present the largest whole-genome sequencing (WGS) study of non-small cell lung cancer (NSCLC) to date among 6,004 individuals of Chinese ancestry, coupled with 23,049 individuals genotyped by SNP array. We construct a high-quality haplotype reference panel for imputation and identify 20 common and low-frequency loci (minor allele frequency [MAF] ≥ 0.5%), including five loci that have never been reported before. For rare loss-of-function (LoF) variants (MAF < 0.5%), we identify BRCA2 and 18 other cancer predisposition genes that affect 5.29% of individuals with NSCLC, and 98.91% (181 of 183) of LoF variants have not been linked previously to NSCLC risk. Promoter variants of BRCA2 also have a substantial effect on NSCLC risk, and their prevalence is comparable with BRCA2 LoF variants. The associations are validated in an independent case-control study including 4,410 individuals and a prospective cohort study including 23,826 individuals. Our findings not only provide a high-quality reference panel for future array-based association studies but depict the whole picture of rare pathogenic variants for NSCLC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Juncheng Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Na Qin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jingyi Fan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Congcong Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingxing An
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiwang Yan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yayun Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanlin He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ci Song
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jia Liu
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jun Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Nanxi Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Hua
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuang Liang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lu Wang
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jing Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Guangfu Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
5
|
Antitumor Effects of Ral-GTPases Downregulation in Glioblastoma. Int J Mol Sci 2022; 23:ijms23158199. [PMID: 35897776 PMCID: PMC9330696 DOI: 10.3390/ijms23158199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor in the central nervous system in adults. This neoplasia shows a high capacity of growth and spreading to the surrounding brain tissue, hindering its complete surgical resection. Therefore, the finding of new antitumor therapies for GBM treatment is a priority. We have previously described that cyclin D1-CDK4 promotes GBM dissemination through the activation of the small GTPases RalA and RalB. In this paper, we show that RalB GTPase is upregulated in primary GBM cells. We found that the downregulation of Ral GTPases, mainly RalB, prevents the proliferation of primary GBM cells and triggers a senescence-like response. Moreover, downregulation of RalA and RalB reduces the viability of GBM cells growing as tumorspheres, suggesting a possible role of these GTPases in the survival of GBM stem cells. By using mouse subcutaneous xenografts, we have corroborated the role of RalB in GBM growth in vivo. Finally, we have observed that the knockdown of RalB also inhibits cell growth in temozolomide-resistant GBM cells. Overall, our work shows that GBM cells are especially sensitive to Ral-GTPase availability. Therefore, we propose that the inactivation of Ral-GTPases may be a reliable therapeutic approach to prevent GBM progression and recurrence.
Collapse
|
6
|
Tian L, Zhao L, Sze KM, Kam CS, Ming VS, Wang X, Zhang VX, Ho DW, Cheung T, Chan L, Ng IO. Dysregulation of RalA signaling through dual regulatory mechanisms exerts its oncogenic functions in hepatocellular carcinoma. Hepatology 2022; 76:48-65. [PMID: 34767674 PMCID: PMC9299834 DOI: 10.1002/hep.32236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Ras-like (Ral) small guanosine triphosphatases (GTPases), RalA and RalB, are proto-oncogenes directly downstream of Ras and cycle between the active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms. RalGTPase-activating protein (RalGAP) complex exerts a negative regulation. Currently, the role of Ral up-regulation in cancers remains unclear. We aimed to examine the clinical significance, functional implications, and underlying mechanisms of RalA signaling in HCC. APPROACH AND RESULTS Our in-house and The Cancer Genome Atlas RNA sequencing data and quantitative PCR data revealed significant up-regulation of RalA in patients' HCCs. Up-regulation of RalA was associated with more aggressive tumor behavior and poorer prognosis. Consistently, knockdown of RalA in HCC cells attenuated cell proliferation and migration in vitro and tumorigenicity and metastasis in vivo. We found that RalA up-regulation was driven by copy number gain and uncovered that SP1 and ETS proto-oncogene 2 transcription factor cotranscriptionally drove RalA expression. On the other hand, RalGAPA2 knockdown increased the RalA activity and promoted intrahepatic and extrahepatic metastasis in vivo. Consistently, we observed significant RalGAPA2 down-regulation in patients' HCCs. Intriguingly, HCC tumors showing simultaneous down-regulation of RalGAPA2 and up-regulation of RalA displayed a significant association with more aggressive tumor behavior in terms of more frequent venous invasion, more advanced tumor stage, and poorer overall survival. Of note, Ral inhibition by a Ral-specific inhibitor RBC8 suppressed the oncogenic functions in a dose-dependent manner and sensitized HCC cells to sorafenib treatment, with an underlying enhanced inhibition of mammalian target of rapamycin signaling. CONCLUSIONS Our results provide biological insight that dysregulation of RalA signaling through dual regulatory mechanisms supports its oncogenic functions in HCC. Targeting RalA may serve as a potential alternative therapeutic approach alone or in combination with currently available therapy.
Collapse
Affiliation(s)
- Lu Tian
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Luqing Zhao
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong,Present address:
Department of PathologyXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Karen Man‐Fong Sze
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Charles Shing Kam
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Vanessa Sheung‐In Ming
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Xia Wang
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Vanilla Xin Zhang
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Daniel Wai‐Hung Ho
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Tan‐To Cheung
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong,Department of SurgeryThe University of Hong KongHong Kong
| | - Lo‐Kong Chan
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| |
Collapse
|
7
|
Richardson DS, Spehar JM, Han DT, Chakravarthy PA, Sizemore ST. The RAL Enigma: Distinct Roles of RALA and RALB in Cancer. Cells 2022; 11:cells11101645. [PMID: 35626682 PMCID: PMC9139244 DOI: 10.3390/cells11101645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
RALA and RALB are highly homologous small G proteins belonging to the RAS superfamily. Like other small GTPases, the RALs are molecular switches that can be toggled between inactive GDP-bound and active GTP-bound states to regulate diverse and critical cellular functions such as vesicle trafficking, filopodia formation, mitochondrial fission, and cytokinesis. The RAL paralogs are activated and inactivated by a shared set of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) and utilize similar sets of downstream effectors. In addition to their important roles in normal cell biology, the RALs are known to be critical mediators of cancer cell survival, invasion, migration, and metastasis. However, despite their substantial similarities, the RALs often display striking functional disparities in cancer. RALA and RALB can have redundant, unique, or even antagonistic functions depending on cancer type. The molecular basis for these discrepancies remains an important unanswered question in the field of cancer biology. In this review we examine the functions of the RAL paralogs in normal cellular physiology and cancer biology with special consideration provided to situations where the roles of RALA and RALB are non-redundant.
Collapse
|
8
|
Bum-Erdene K, Ghozayel MK, Xu D, Meroueh SO. Covalent Fragment Screening Identifies Rgl2 RalGEF Cysteine for Targeted Covalent Inhibition of Ral GTPase Activation. ChemMedChem 2022; 17:e202100750. [PMID: 35061330 PMCID: PMC9070689 DOI: 10.1002/cmdc.202100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Ral GTPases belong to the RAS superfamily, and they are directly activated by K-RAS. The RalGEF pathway is one of the three major K-RAS signaling pathways. Ral GTPases do not possess a cysteine nucleophile to develop a covalent inhibitor following the strategy that led to a K-RAS G12C therapeutic agent. However, several cysteine amino acids exist on the surface of guanine exchange factors that activate Ral GTPases, such as Rgl2. Here, we screen a library of cysteine electrophile fragments to determine if covalent bond formation at one of the Rgl2 surface cysteines could inhibit Ral GTPase activation. We found several chloroacetamide and acrylamide fragments that inhibited Ral GTPase exchange by Rgl2. Site-directed mutagenesis showed that covalent bond formation at Cys-284, but not other cysteines, leads to inhibition of Ral activation by Rgl2. Follow-up time- and concentration-dependent studies of derivatives identified by substructure search of commercial libraries further confirmed Cys-284 as the reaction site and identified the indoline fragments as the most promising series for further development. Cys-284 is located outside of the Ral ⋅ Rgl2 interface on a loop that has several residues that come in direct contact with Ral GTPases. Our allosteric covalent fragment inhibitors provide a starting point for the development of small-molecule covalent inhibitors to probe Ral GTPases in animal models.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4021, Indianapolis, IN, 46202, USA
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4021, Indianapolis, IN, 46202, USA
| | - David Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4021, Indianapolis, IN, 46202, USA
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4021, Indianapolis, IN, 46202, USA
| |
Collapse
|
9
|
Liu S, Shi C, Wang X, Ma X, Gao P. Low expression of RalGAPs associates with the poorer overall survival of head and neck squamous cell carcinoma. Transl Cancer Res 2022; 10:5085-5094. [PMID: 35116360 PMCID: PMC8799020 DOI: 10.21037/tcr-21-1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
Background The role of Ral and RalGAPs on the progression of head and neck squamous cell carcinoma (HNSC) remains unclear. Methods The predesigned siRNAs against RalGAPs were transfected into cells to evaluate the effect on RalA activation. The Data from TCGA and GTEx were combined to analyze the pan-cancer gene expression of RalA and RalGAPs in cancer and adjacent normal tissues. Kaplan-Meier analysis was used to assess the predictive value of RalA and RalGAPs expression on the overall survival of patients with HNSC. Methylation-specific PCR in vitro and next-generation bisulfite sequencing in vivo were used to evaluate the association between DNA methylation and the down-regulation of RalGAPs. Results RalGAPs negatively regulated RalA activation. HNSC patients with low level of RalGAPα2 had worse overall survival. The promoter of RalGAPα2 was widely methylated in comparison to RalGAPα1 and the DNA methylation level of RalGAPα2 promoter was increased in HNSC tissues and associated with the presence of neck lymph node metastasis. Conclusions RalA and RalGAPs could act as a specific predictor to assess the prognosis of HNSC. DNA methylation might be a potential mechanism that downregulated the RalGAPα2 expression.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Congyu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Pan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
D’Aloia A, Arrigoni E, Costa B, Berruti G, Martegani E, Sacco E, Ceriani M. RalGPS2 Interacts with Akt and PDK1 Promoting Tunneling Nanotubes Formation in Bladder Cancer and Kidney Cells Microenvironment. Cancers (Basel) 2021; 13:cancers13246330. [PMID: 34944949 PMCID: PMC8699646 DOI: 10.3390/cancers13246330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Cell-to-cell communication in the tumor microenvironment is a crucial process to orchestrate the different components of the tumoral infrastructure. Among the mechanisms of cellular interplay in cancer cells, tunneling nanotubes (TNTs) are dynamic connections that play an important role. The mechanism of the formation of TNTs among cells and the molecules involved in the process remain to be elucidated. In this study, we analyze several bladder cancer cell lines, representative of tumors at different stages and grades. We demonstrate that TNTs are formed only by mid or high-stage cell lines that show muscle-invasive properties and that they actively transport mitochondria and proteins. The formation of TNTs is triggered by stressful conditions and starts with the assembly of a specific multimolecular complex. In this study, we characterize some of the protein components of the TNTs complex, as they are potential novel molecular targets for future therapies aimed at counteracting tumor progression. Abstract RalGPS2 is a Ras-independent Guanine Nucleotide Exchange Factor for RalA GTPase that is involved in several cellular processes, including cytoskeletal organization. Previously, we demonstrated that RalGPS2 also plays a role in the formation of tunneling nanotubes (TNTs) in bladder cancer 5637 cells. In particular, TNTs are a novel mechanism of cell–cell communication in the tumor microenvironment, playing a central role in cancer progression and metastasis formation. However, the molecular mechanisms involved in TNTs formation still need to be fully elucidated. Here we demonstrate that mid and high-stage bladder cancer cell lines have functional TNTs, which can transfer mitochondria. Moreover, using confocal fluorescence time-lapse microscopy, we show in 5637 cells that TNTs mediate the trafficking of RalA protein and transmembrane MHC class III protein leukocyte-specific transcript 1 (LST1). Furthermore, we show that RalGPS2 is essential for nanotubes generation, and stress conditions boost its expression both in 5637 and HEK293 cell lines. Finally, we prove that RalGPS2 interacts with Akt and PDK1, in addition to LST1 and RalA, leading to the formation of a complex that promotes nanotubes formation. In conclusion, our findings suggest that in the tumor microenvironment, RalGPS2 orchestrates the assembly of multimolecular complexes that drive the formation of TNTs.
Collapse
Affiliation(s)
- Alessia D’Aloia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Edoardo Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Barbara Costa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
| | - Giovanna Berruti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Michela Ceriani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (A.D.); (E.A.); (B.C.); (E.M.); (E.S.)
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
- Correspondence: ; Tel.: +39-0264483544
| |
Collapse
|
11
|
Yoshimachi S, Shirakawa R, Cao M, Trinh DA, Gao P, Sakata N, Miyazaki K, Goto K, Miura T, Ariake K, Maeda S, Masuda K, Ishida M, Ohtsuka H, Unno M, Horiuchi H. Ral GTPase-activating protein regulates the malignancy of pancreatic ductal adenocarcinoma. Cancer Sci 2021; 112:3064-3073. [PMID: 34009715 PMCID: PMC8353909 DOI: 10.1111/cas.14970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
The small GTPases RalA and RalB are members of the Ras family and activated downstream of Ras. Ral proteins are found in GTP-bound active and GDP-bound inactive forms. The activation process is executed by guanine nucleotide exchange factors, while inactivation is mediated by GTPase-activating proteins (GAPs). RalGAPs are complexes that consist of a catalytic α1 or α2 subunit together with a common β subunit. Several reports implicate the importance of Ral in pancreatic ductal adenocarcinoma (PDAC). However, there are few reports on the relationship between levels of RalGAP expression and malignancy in PDAC. We generated RalGAPβ-deficient PDAC cells by CRISPR-Cas9 genome editing to investigate how increased Ral activity affects malignant phenotypes of PDAC cells. RalGAPβ-deficient PDAC cells exhibited several-fold higher Ral activity relative to control cells. They had a high migratory and invasive capacity. The RalGAPβ-deficient cells grew more rapidly than control cells when injected subcutaneously into nude mice. When injected into the spleen, the RalGAPβ-deficient cells formed larger splenic tumors with more liver metastases, and unlike controls, they disseminated into the abdominal cavity. These results indicate that RalGAPβ deficiency in PDAC cells contributes to high activities of RalA and RalB, leading to enhanced cell migration and invasion in vitro, and tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Shingo Yoshimachi
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Mingxin Cao
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Duc Anh Trinh
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Pan Gao
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency DentistryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Natsumi Sakata
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Kento Miyazaki
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kota Goto
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Takayuki Miura
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kyohei Ariake
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Shimpei Maeda
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kunihiro Masuda
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Masaharu Ishida
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hideo Ohtsuka
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Michiaki Unno
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|
12
|
Parallel Rap1>RalGEF>Ral and Ras signals sculpt the C. elegans nervous system. Dev Biol 2021; 477:37-48. [PMID: 33991533 DOI: 10.1016/j.ydbio.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Ras is the most commonly mutated oncogene in humans and uses three oncogenic effectors: Raf, PI3K, and RalGEF activation of Ral. Understanding the importance of RalGEF>Ral signaling in cancer is hampered by the paucity of knowledge about their function in animal development, particularly in cell movements. We found that mutations that disrupt function of RalGEF or Ral enhance migration phenotypes of mutants for genes with established roles in cell migration. We used as a model the migration of the canal associated neurons (CANs), and validated our results in HSN cell migration, neurite guidance, and general animal locomotion. These functions of RalGEF and Ral are specific to their control of Ral signaling output rather than other published functions of these proteins. In this capacity Ral functions cell autonomously as a permissive developmental signal. In contrast, we observed Ras, the canonical activator of RalGEF>Ral signaling in cancer, to function as an instructive signal. Furthermore, we unexpectedly identified a function for the close Ras relative, Rap1, consistent with activation of RalGEF>Ral. These studies define functions of RalGEF>Ral, Rap1 and Ras signaling in morphogenetic processes that fashion the nervous system. We have also defined a model for studying how small GTPases partner with downstream effectors. Taken together, this analysis defines novel molecules and relationships in signaling networks that control cell movements during development of the nervous system.
Collapse
|
13
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
14
|
The interaction between MALAT1 target, miR-143-3p, and RALGAPA2 is affected by functional SNP rs3827693 in breast cancer. Hum Cell 2020; 33:1229-1239. [PMID: 32880825 DOI: 10.1007/s13577-020-00422-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
A higher expression of MALAT1 has been reported in breast cancer. However, more studies are needed to decipher the mechanisms by which this lncRNA imposes its oncogenic effects. In this study, blood and tissue samples were taken from healthy normal and breast cancer subjects. qPCR was used to analyze the gene expression. HRM-PCR method was carried out to genotype the selected samples. Computational analysis was recruited to find novel targets of MALAT1 and miR-143-3p. The data analyses revealed that MALAT1 was up-regulated in breast cancer and could be a distinctive factor to diagnose cancer. The expression of MALAT1 was inversely correlated with miR-143-3p expression in the studied clinical samples. The down-regulation of miR-143-3p was proven in the clinical tumor samples as compared to the healthy controls. A negative correlation of miR-143-3p with its putative target, RALGAPA2 was observed. A functional SNP rs3827693 located within the 3'UTR region of RALGAPA2 mRNA was validated in this study to associate with breast cancer risk. The rs3827693 allele G significantly decreased the breast cancer incidence and augmented the negative correlation between RALGAPA2 and miR-143-3p, presumably through strengthening the interaction between these two transcripts. This study proposed MALAT1 miR-143-3p and miR-143-3p RALGAPA2 axis in breast cancer, whereby the latter can be altered by the clinically functional SNP rs3827693.
Collapse
|
15
|
Beel S, Kolloch L, Apken LH, Jürgens L, Bolle A, Sudhof N, Ghosh S, Wardelmann E, Meisterernst M, Steinestel K, Oeckinghaus A. κB-Ras and Ral GTPases regulate acinar to ductal metaplasia during pancreatic adenocarcinoma development and pancreatitis. Nat Commun 2020; 11:3409. [PMID: 32641778 PMCID: PMC7343838 DOI: 10.1038/s41467-020-17226-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with high mortality and therapy resistance. Here, we show that low expression of κB-Ras GTPases is frequently detected in PDAC and correlates with higher histologic grade. In a model of KRasG12D-driven PDAC, loss of κB-Ras accelerates tumour development and shortens median survival. κB-Ras deficiency promotes acinar-to-ductal metaplasia (ADM) during tumour initiation as well as tumour progression through intrinsic effects on proliferation and invasion. κB-Ras proteins are also required for acinar regeneration after pancreatitis, demonstrating a general role in control of plasticity. Molecularly, upregulation of Ral GTPase activity and Sox9 expression underlies the observed phenotypes, identifying a previously unrecognized function of Ral signalling in ADM. Our results provide evidence for a tumour suppressive role of κB-Ras proteins and highlight low κB-Ras levels and consequent loss of Ral control as risk factors, thus emphasizing the necessity for therapeutic options that allow interference with Ral-driven signalling. The molecular mechanisms of acinar-to-ductal metaplasia (ADM) in the course of pancreatitis and cancer development are unclear. Here, the authors show that loss of κB-Ras and consequent Ral activation promotes tumour initiation and progression through persistent ADM and enhanced cell proliferation
Collapse
Affiliation(s)
- Stephanie Beel
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Lina Kolloch
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Lisa H Apken
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Lara Jürgens
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Andrea Bolle
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Nadine Sudhof
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, Faculty of Medicine, University Münster, Münster, Germany
| | - Michael Meisterernst
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Konrad Steinestel
- Gerhard-Domagk-Institute of Pathology, Faculty of Medicine, University Münster, Münster, Germany.,Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany.
| |
Collapse
|
16
|
Bioinformatics analysis of the genes involved in the extension of prostate cancer to adjacent lymph nodes by supervised and unsupervised machine learning methods: The role of SPAG1 and PLEKHF2. Genomics 2020; 112:3871-3882. [PMID: 32619574 DOI: 10.1016/j.ygeno.2020.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The present study aimed to identify the genes associated with the involvement of adjunct lymph nodes of patients with prostate cancer (PCa) and to provide valuable information for the identification of potential diagnostic biomarkers and pathological genes in PCa metastasis. The most important candidate genes were identified through several machine learning approaches including K-means clustering, neural network, Naïve Bayesian classifications and PCA with or without downsampling. In total, 21 genes associated with lymph nodes involvement were identified. Among them, nine genes have been identified in metastatic prostate cancer, six have been found in the other metastatic cancers and four in other local cancers. The amplification of the candidate genes was evaluated in the other PCa datasets. Besides, we identified a validated set of genes involved in the PCa metastasis. The amplification of SPAG1 and PLEKHF2 genes were associated with decreased survival in patients with PCa.
Collapse
|
17
|
Uegaki M, Kita Y, Shirakawa R, Teramoto Y, Kamiyama Y, Saito R, Yoshikawa T, Sakamoto H, Goto T, Akamatsu S, Yamasaki T, Inoue T, Suzuki A, Horiuchi H, Ogawa O, Kobayashi T. Downregulation of RalGTPase-activating protein promotes invasion of prostatic epithelial cells and progression from intraepithelial neoplasia to cancer during prostate carcinogenesis. Carcinogenesis 2020; 40:1535-1544. [PMID: 31058283 DOI: 10.1093/carcin/bgz082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022] Open
Abstract
RalGTPase-activating protein (RalGAP) is an important negative regulator of small GTPases RalA/B that mediates various oncogenic signaling pathways in various cancers. Although the Ral pathway has been implicated in prostate cancer (PCa) development and progression, the significance of RalGAP in PCa has been largely unknown. We examined RalGAPα2 expression using immunohistochemistry on two independent tissue microarray sets. Both datasets demonstrated that the expression of RalGAPα2 was significantly downregulated in PCa tissues compared to adjacent benign prostatic epithelia. Silencing of RalGAPα2 by short hairpin RNA enhanced migration and invasion abilities of benign and malignant prostate epithelial cell lines without affecting cell proliferation. Exogenous expression of wild-type RalGAP, but not the GTPase-activating protein activity-deficient mutant of RalGAP, suppressed migration and invasion of multiple PCa cell lines and was phenocopied by pharmacological inhibition of RalA/B. Loss of Ralgapa2 promoted local microscopic invasion of prostatic intraepithelial neoplasia without affecting tumor growth in a Pten-deficient mouse model for prostate tumorigenesis. Our findings demonstrate the functional significance of RalGAP downregulation to promote invasion ability, which is a property necessary for prostate carcinogenesis. Thus, loss of RalGAP function has a distinct role in promoting progression from prostatic intraepithelial neoplasia to invasive adenocarcinoma.
Collapse
Affiliation(s)
- Masayuki Uegaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yuki Teramoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Kamiyama
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Yoshikawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromasa Sakamoto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshinari Yamasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Schut CH, Farzan A, Fraser RS, Ainslie-Garcia MH, Friendship RM, Lillie BN. Identification of single-nucleotide variants associated with susceptibility to Salmonella in pigs using a genome-wide association approach. BMC Vet Res 2020; 16:138. [PMID: 32414370 PMCID: PMC7227190 DOI: 10.1186/s12917-020-02344-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica serovars are a major cause of foodborne illness and have a substantial impact on global human health. In Canada, Salmonella is commonly found on swine farms and the increasing concern about drug use and antimicrobial resistance associated with Salmonella has promoted research into alternative control methods, including selecting for pig genotypes associated with resistance to Salmonella. The objective of this study was to identify single-nucleotide variants in the pig genome associated with Salmonella susceptibility using a genome-wide association approach. Repeated blood and fecal samples were collected from 809 pigs in 14 groups on farms and tonsils and lymph nodes were collected at slaughter. Sera were analyzed for Salmonella IgG antibodies by ELISA and feces and tissues were cultured for Salmonella. Pig DNA was genotyped using a custom 54 K single-nucleotide variant oligo array and logistic mixed-models used to identify SNVs associated with IgG seropositivity, shedding, and tissue colonization. RESULTS Variants in/near PTPRJ (p = 0.0000066), ST6GALNAC3 (p = 0.0000099), and DCDC2C (n = 3, p < 0.0000086) were associated with susceptibility to Salmonella, while variants near AKAP12 (n = 3, p < 0.0000358) and in RALGAPA2 (p = 0.0000760) may be associated with susceptibility. CONCLUSIONS Further study of the variants and genes identified may improve our understanding of neutrophil recruitment, intracellular killing of bacteria, and/or susceptibility to Salmonella and may help future efforts to reduce Salmonella on-farm through genetic approaches.
Collapse
Affiliation(s)
- Corinne H Schut
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Russell S Fraser
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Present address: Department of Pathology and Microbiology, Atlantic Veterinary College, University of PEI, Charlottetown, Prince Edward Island, Canada
| | | | - Robert M Friendship
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
19
|
Masuda N, Murakami K, Kita Y, Hamada A, Kamada M, Teramoto Y, Sakatani T, Matsumoto K, Sano T, Saito R, Okuno Y, Ogawa O, Kobayashi T. Trp53 Mutation in Keratin 5 (Krt5)-Expressing Basal Cells Facilitates the Development of Basal Squamous-Like Invasive Bladder Cancer in the Chemical Carcinogenesis of Mouse Bladder. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1752-1762. [PMID: 32339497 DOI: 10.1016/j.ajpath.2020.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 01/08/2023]
Abstract
The biological processes of urothelial carcinogenesis are not fully understood, particularly regarding the relationship between specific genetic events, cell of origin, and molecular subtypes of subsequent tumors. N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced mouse bladder cancer is widely accepted as a useful model that recapitulates the pathway of human bladder tumorigenesis from dysplasia to invasive cancer via carcinoma in situ. However, the long and variable time of tumorigenesis often hinders efficient preclinical or translational research. We hypothesized that Trp53 mutation in specific types of urothelial cells facilitates efficient development of clinically relevant bladder cancer. Using lineage tracing, we showed that Trp53 mutation in Krt5-expressing cells resulted in more efficient tumorigenesis of mouse muscle-invasive bladder cancer (MIBC) with squamous differentiation compared with Trp53 mutation in Upk2-expressing cells, or wild-type or hemizygous Trp53 in the entire urothelium. Mouse MIBC that developed at 24 weeks of BBN treatment showed morphologic and genetic similarities to the basal squamous subtypes of human MIBC, irrespective of pre-induction of Trp53 mutation or whether the cell of origin was Krt5- or Upk2-expressing cells. Our findings suggest that intermediate cells as well as basal cells also can give rise to basal-like MIBC, with pre-induction of Trp53 mutation accelerating MIBC. Thus, in BBN chemical carcinogenesis, pre-induction of Trp53 mutation in basal cells facilitates efficient modeling of the basal squamous subtype of human MIBC.
Collapse
Affiliation(s)
- Norihiko Masuda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Murakami
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Hamada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Teramoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Sakatani
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiyu Matsumoto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Sano
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
The Combination of CD147 and MMP-9 Serum Levels Is Identified as Novel Chemotherapy Response Markers of Advanced Non-Small-Cell Lung Cancer. DISEASE MARKERS 2020; 2020:8085053. [PMID: 32377273 PMCID: PMC7196144 DOI: 10.1155/2020/8085053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/26/2022]
Abstract
To evaluate the correlation between the changes in serum concentrations of cluster of differentiation-147 (scCD147) and chemotherapy outcome in patients with NSCLC and evaluate the combination of scCD147 with serum matrix metalloproteinase-9 (scMMP-9) levels in the prediction of chemotherapy response, eighty-two patients with advanced LC were enrolled. Newly diagnosed cases were treated with platinum-based chemotherapy. We measured scCD147 protein levels in LC cases by ELISA and used receiver operating characteristic (ROC) curves to analyze the results. Four time points were chosen to examine the association between the changes in scCD147 and chemotherapy outcome: before chemotherapy and 21 days after the start of the first, second, and fourth chemotherapy cycles. We assessed the combination of scCD147 and scMMP-9 serum levels in predicting the chemotherapy response. scCD147 was higher in LC cases than that in healthy volunteers (HVs). scCD147 was associated with distant metastases and TNM stage. scCD147 and scMMP-9 appeared to be independent predictive factors for chemotherapy outcomes after the first and second chemotherapy cycles for patients with NSCLC. Multivariable analysis also demonstrated that variations in scCD147 and scMMP-9 could be independent factors for monitoring chemotherapy outcome for patients with NSCLC. Furthermore, when scCD147 and scMMP-9 are combined into a new risk model, it has a markedly better prediction of chemotherapy outcomes than each protein alone. scCD147 and MMP-9 are potential predictive biomarkers for efficacy, and their combination significantly improves the predictive power for chemotherapy response in patients with NSCLC.
Collapse
|
21
|
Small-molecule covalent bond formation at tyrosine creates a binding site and inhibits activation of Ral GTPases. Proc Natl Acad Sci U S A 2020; 117:7131-7139. [PMID: 32179690 DOI: 10.1073/pnas.1913654117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ral (Ras-like) GTPases are directly activated by oncogenic Ras GTPases. Mutant K-Ras (G12C) has enabled the development of covalent K-Ras inhibitors currently in clinical trials. However, Ral, and the overwhelming majority of mutant oncogenic K-Ras, are devoid of a druggable pocket and lack an accessible cysteine for the development of a covalent inhibitor. Here, we report that covalent bond formation by an aryl sulfonyl fluoride electrophile at a tyrosine residue (Tyr-82) inhibits guanine exchange factor Rgl2-mediated nucleotide exchange of Ral GTPase. A high-resolution 1.18-Å X-ray cocrystal structure shows that the compound binds to a well-defined binding site in RalA as a result of a switch II loop conformational change. The structure, along with additional high-resolution crystal structures of several analogs in complex with RalA, confirm the importance of key hydrogen bond anchors between compound sulfone oxygen atoms and Ral backbone nitrogen atoms. Our discovery of a pocket with features found on known druggable sites and covalent modification of a bystander tyrosine residue present in Ral and Ras GTPases provide a strategy that could lead to therapeutic agent targeting oncogenic Ras mutants that are devoid of a cysteine nucleophile.
Collapse
|
22
|
Duong T, Rasmussen NR, Ballato E, Mote FS, Reiner DJ. The Rheb-TORC1 signaling axis functions as a developmental checkpoint. Development 2020; 147:dev.181727. [PMID: 32041790 DOI: 10.1242/dev.181727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
In many eukaryotes, the small GTPase Rheb functions as a switch to toggle activity of TOR complex 1 (TORC1) between anabolism and catabolism, thus controlling lifespan, development and autophagy. Our CRISPR-generated, fluorescently tagged endogenous Caenorhabditis elegans RHEB-1 and DAF-15/Raptor are expressed ubiquitously and localize to lysosomes. LET-363/TOR and DAF-15/Raptor are required for development beyond the third larval stage (L3). We observed that deletion of RHEB-1 similarly conferred L3 arrest. Unexpectedly, robust RNAi-mediated depletion of TORC1 components caused arrest at stages prior to L3. Accordingly, conditional depletion of endogenous DAF-15/Raptor in the soma revealed that TORC1 is required at each stage of the life cycle to progress to the next stage. Reversal of DAF-15 depletion permits arrested animals to recover to continue development. Our results are consistent with TORC1 functioning as a developmental checkpoint that governs the decision of the animal to progress through development.
Collapse
Affiliation(s)
- Tam Duong
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Neal R Rasmussen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Elliot Ballato
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - F Sefakor Mote
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - David J Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
23
|
Wagner M, Skorobogatko Y, Pode-Shakked B, Powell CM, Alhaddad B, Seibt A, Barel O, Heimer G, Hoffmann C, Demmer LA, Perilla-Young Y, Remke M, Wieczorek D, Navaratnarajah T, Lichtner P, Klee D, Shamseldin HE, Al Mutairi F, Mayatepek E, Strom T, Meitinger T, Alkuraya FS, Anikster Y, Saltiel AR, Distelmaier F. Bi-allelic Variants in RALGAPA1 Cause Profound Neurodevelopmental Disability, Muscular Hypotonia, Infantile Spasms, and Feeding Abnormalities. Am J Hum Genet 2020; 106:246-255. [PMID: 32004447 DOI: 10.1016/j.ajhg.2020.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms . Dysplasia of corpus callosum with focal thinning of the posterior part and characteristic facial features appeared to be unifying findings. RalGAPA1 was absent in the fibroblasts derived from two affected individuals suggesting a loss-of-function effect of the RALGAPA1 variants. Consequently, RalA activity was increased in these cell lines, which is in keeping with the idea that RalGAPA1 deficiency causes a constitutive activation of RalA. Additionally, levels of RalGAPB, a scaffolding subunit of the RalGAP complex, were dramatically reduced, indicating a dysfunctional RalGAP complex. Moreover, RalGAPA1 deficiency clearly increased cell-surface levels of lipid raft components in detached fibroblasts, which might indicate that anchorage-dependence of cell growth signaling is disturbed. Our findings indicate that the dysregulation of the RalA pathway has an important impact on neuronal function and brain development. In light of the partially overlapping phenotype between RALA- and RALGAPA1-associated diseases, it appears likely that dysregulation of the RalA signaling pathway leads to a distinct group of genetic syndromes that we suggest could be named RALopathies.
Collapse
|
24
|
Trinh DA, Shirakawa R, Kimura T, Sakata N, Goto K, Horiuchi H. Inhibitor of Growth 4 (ING4) is a positive regulator of rRNA synthesis. Sci Rep 2019; 9:17235. [PMID: 31754246 PMCID: PMC6872537 DOI: 10.1038/s41598-019-53767-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/30/2019] [Indexed: 01/29/2023] Open
Abstract
Ribosome biogenesis is essential for maintaining basic cellular activities although its mechanism is not fully understood. Inhibitor of growth 4 (ING4) is a member of ING family while its cellular functions remain controversial. Here, we identified several nucleolar proteins as novel ING4 interacting proteins. ING4 localized in the nucleus with strong accumulation in the nucleolus through its plant homeodomain, which is known to interact with histone trimethylated H3K4, commonly present in the promoter of active genes. ING4 deficient cells exhibited slower proliferation and the alteration in nucleolar structure with reduced rRNA transcription, which was rescued by exogenous expression of GFP-ING4 to the similar levels of wild type cells. In the ING4 deficient cells, histone H3K9 acetylation and the key rRNA transcription factor UBF at the promoter of rDNA were reduced, both of which were also recovered by exogenous GFP-ING4 expression. Thus, ING4 could positively regulate rRNA transcription through modulation of histone modifications at the rDNA promoter.
Collapse
Affiliation(s)
- Duc-Anh Trinh
- Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Japan.,Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomohiro Kimura
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Natsumi Sakata
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kota Goto
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hisanori Horiuchi
- Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Japan. .,Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| |
Collapse
|
25
|
Down-regulation of RalGTPase-Activating Protein Promotes Colitis-Associated Cancer via NLRP3 Inflammasome Activation. Cell Mol Gastroenterol Hepatol 2019; 9:277-293. [PMID: 31622786 PMCID: PMC6957823 DOI: 10.1016/j.jcmgh.2019.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Ral guanosine triphosphatase-activating protein α2 (RalGAPα2) is the major catalytic subunit of the negative regulators of the small guanosine triphosphatase Ral, a member of the Ras subfamily. Ral regulates tumorigenesis and invasion/metastasis of some cancers; however, the role of Ral in colitis-associated cancer (CAC) has not been investigated. We aimed to elucidate the role of Ral in the mechanism of CAC. METHODS We used wild-type (WT) mice and RalGAPα2 knockout (KO) mice that showed Ral activation, and bone marrow chimeric mice were generated as follows: WT to WT, WT to RalGAPα2 KO, RalGAPα2 KO to WT, and RalGAPα2 KO to RalGAPα2 KO mice. CAC was induced in these mice by intraperitoneal injection of azoxymethane followed by dextran sulfate sodium intake. Intestinal epithelial cells were isolated from colon tissues, and we performed complementary DNA microarray analysis. Cytokine expression in normal colon tissues and CAC was analyzed by quantitative polymerase chain reaction. RESULTS Bone marrow chimeric mice showed that immune cell function between WT mice and RalGAPα2 KO mice was not significantly different in the CAC mechanism. RalGAPα2 KO mice had a significantly larger tumor number and size and a significantly higher proportion of tumors invading the submucosa than WT mice. Higher expression levels of matrix metalloproteinase-9 and matrix metalloproteinase-13 were observed in RalGAPα2 KO mice than in WT mice. The expression levels of interleukin 1β, NLRP3, apoptosis associated speck-like protein containing a CARD, and caspase-1 were apparently increased in the tumors of RalGAPα2 KO mice compared with WT mice. NLRP3 inhibitor reduced the number of invasive tumors. CONCLUSIONS Ral activation participates in the mechanism of CAC development via NLRP3 inflammasome activation.
Collapse
|
26
|
Faithful preclinical mouse models for better translation to bedside in the field of immuno-oncology. Int J Clin Oncol 2019; 25:831-841. [PMID: 31407168 DOI: 10.1007/s10147-019-01520-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
Abstract
The success of immunotherapy using immune checkpoint inhibitors has changed the practice of cancer treatment tremendously. However, there are still many clinical challenges, such as drug resistance, predictive biomarker development, exploration of combination therapies, and prediction of immune-related adverse events in preclinical settings. To overcome these problems, it is essential to establish faithful preclinical mouse models that recapitulate the clinical features, molecular genetics, biological heterogeneity, and immune microenvironment of human cancers. Here we review the advantages and disadvantages of current preclinical mouse models, including syngeneic murine tumor cell lines, autochthonous tumor models, cancer cell line-derived xenografts, patient-derived-xenografts, and various kinds of immunologically humanized mice. We discuss how these models should be characterized and applied in preclinical settings, and how we should prepare preclinical studies for successful translation from bench to bedside.
Collapse
|
27
|
Gao P, Liu S, Yoshida R, Shi C, Yoshimachi S, Sakata N, Goto K, Kimura T, Shirakawa R, Nakayama H, Sakata J, Kawashiri S, Kato K, Wang X, Horiuchi H. Ral GTPase Activation by Downregulation of RalGAP Enhances Oral Squamous Cell Carcinoma Progression. J Dent Res 2019; 98:1011-1019. [PMID: 31329042 DOI: 10.1177/0022034519860828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ral small GTPases, consisting of RalA and RalB, are members of the Ras family. Their activity is upregulated by RalGEFs. Since several RalGEFs are downstream effectors of Ras, Ral is activated by the oncogenic mutant Ras. Ral is negatively regulated by RalGAP complexes that consist of a catalytic α1 or α2 subunit and its common partner β subunit and similarly regulate the activity of RalA as well as RalB in vitro. Ral plays an important role in the formation and progression of pancreatic and lung cancers. However, the involvement of Ral in oral squamous cell carcinoma (OSCC) is unclear. In this study, we investigated OSCC by focusing on Ral. OSCC cell lines with high Ral activation exhibited higher motility. We showed that knockdown of RalGAPβ increased the activation level of RalA and promoted the migration and invasion of HSC-2 OSCC cells in vitro. In contrast, overexpression of wild-type RalGAPα2 in TSU OSCC cells attenuated the activation level of RalA and inhibited cell migration and invasion. Real-time quantitative polymerase chain reaction analysis of samples from patients with OSCC showed that RalGAPα2 was downregulated in oral cancer tissues as compared with normal epithelia. Among patients with OSCC, those with a lower expression of RalGAPα2 showed a worse overall survival rate. A comparison of DNA methylation and histone modifications of the RalGAPα2 gene in OSCC cell lines suggested that crosstalk among DNA methylation, histone H4Ac, and H3K27me2 was involved in the downregulation of RalGAPα2. Thus, activation of Ral GTPase by downregulation of RalGAP expression via a potential epigenetic mechanism may enhance OSCC progression.
Collapse
Affiliation(s)
- P. Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - S. Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R. Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - C.Y. Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S. Yoshimachi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - N. Sakata
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - K. Goto
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - T. Kimura
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
- Current affiliation: Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - R. Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - H. Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - J. Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - S. Kawashiri
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - K. Kato
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - X.Y. Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H. Horiuchi
- Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
28
|
Zago G, Veith I, Singh MK, Fuhrmann L, De Beco S, Remorino A, Takaoka S, Palmeri M, Berger F, Brandon N, El Marjou A, Vincent-Salomon A, Camonis J, Coppey M, Parrini MC. RalB directly triggers invasion downstream Ras by mobilizing the Wave complex. eLife 2018; 7:40474. [PMID: 30320548 PMCID: PMC6226288 DOI: 10.7554/elife.40474] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
The two Ral GTPases, RalA and RalB, have crucial roles downstream Ras oncoproteins in human cancers; in particular, RalB is involved in invasion and metastasis. However, therapies targeting Ral signalling are not available yet. By a novel optogenetic approach, we found that light-controlled activation of Ral at plasma-membrane promotes the recruitment of the Wave Regulatory Complex (WRC) via its effector exocyst, with consequent induction of protrusions and invasion. We show that active Ras signals to RalB via two RalGEFs (Guanine nucleotide Exchange Factors), RGL1 and RGL2, to foster invasiveness; RalB contribution appears to be more important than that of MAPK and PI3K pathways. Moreover, on the clinical side, we uncovered a potential role of RalB in human breast cancers by determining that RalB expression at protein level increases in a manner consistent with progression toward metastasis. This work highlights the Ras-RGL1/2-RalB-exocyst-WRC axis as appealing target for novel anticancer strategies. Cancers develop when cells in the body divide rapidly in an uncontroled manner. It is generally possible to cure cancers that remain contained within a small area. However, if the tumor cells start to move, the cancer may spread in the body and become life threatening. Currently, most of the anti-cancer treatments act to reduce the multiplication of these cells, but not their ability to migrate. A signal protein called Ras stimulates human cells to grow and move around. In healthy cells, the activity of Ras is tightly controled to ensure cells only divide and migrate at particular times, but in roughly 30% of all human cancers, Ras is abnormally active. Ras switches on another protein, named RalB, which is also involved in inappropriate cell migration. Yet, it is not clear how RalB is capable to help Ras trigger the migration of cells. Zago et al. used an approach called optogenetics to specifically activate the RalB protein in human cells using a laser that produces blue light. When activated, the light-controlled RalB started abnormal cell migration; this was used to dissect which molecules and mechanisms were involved in the process. Taken together, the experiments showed that, first, Ras ‘turns on’ RalB by changing the location of two proteins that control RalB. Then, the activated RalB regulates the exocyst, a group of proteins that travel within the cell. In turn, the exocyst recruits another group of proteins, named the Wave complex, which is part of the molecular motor required for cells to migrate. Zago et al. also found that, in patients, the RalB protein was present at abnormally high levels in samples of breast cancer cells that had migrated to another part of the body. Overall, these findings indicate that the role of RalB protein in human cancers is larger than previously thought, and they highlight a new pathway that could be a target for new anti-cancer drugs.
Collapse
Affiliation(s)
- Giulia Zago
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| | - Irina Veith
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| | - Manish Kumar Singh
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| | - Laetitia Fuhrmann
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,Department of Pathology, Institut Curie, Paris, France
| | - Simon De Beco
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,LOCCO Group, UMR168, Paris, France
| | - Amanda Remorino
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,LOCCO Group, UMR168, Paris, France
| | - Saori Takaoka
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| | - Marjorie Palmeri
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| | - Frédérique Berger
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,Department of Biostatistics, Institut Curie, Paris, France
| | - Nathalie Brandon
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| | - Ahmed El Marjou
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,Protein Expression and Purification Core Facility, Paris, France
| | - Anne Vincent-Salomon
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,Department of Pathology, Institut Curie, Paris, France
| | - Jacques Camonis
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| | - Mathieu Coppey
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,LOCCO Group, UMR168, Paris, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| |
Collapse
|
29
|
Shin H, Kaplan REW, Duong T, Fakieh R, Reiner DJ. Ral Signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans Cell Fate Patterning. Cell Rep 2018; 24:2669-2681.e5. [PMID: 30184501 PMCID: PMC6484852 DOI: 10.1016/j.celrep.2018.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
C. elegans vulval precursor cell (VPC) fates are patterned by an epidermal growth factor (EGF) gradient. High-dose EGF induces 1° VPC fate, and lower dose EGF contributes to 2° fate in support of LIN-12/Notch. We previously showed that the EGF 2°-promoting signal is mediated by LET-60/Ras switching effectors, from the canonical Raf-MEK-ERK mitogen-activated protein (MAP) kinase cascade that promotes 1° fate to the non-canonical RalGEF-Ral that promotes 2° fate. Of oncogenic Ras effectors, RalGEF-Ral is by far the least well understood. We use genetic analysis to identify an effector cascade downstream of C. elegans RAL-1/Ral, starting with an established Ral binding partner, Exo84 of the exocyst complex. Additionally, RAL-1 signals through GCK-2, a citron-N-terminal-homology-domain-containing MAP4 kinase, and PMK-1/p38 MAP kinase cascade to promote 2° fate. Our study delineates a Ral-dependent developmental signaling cascade in vivo, thus providing the mechanism by which lower EGF dose is transduced.
Collapse
Affiliation(s)
- Hanna Shin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Rebecca E W Kaplan
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tam Duong
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Razan Fakieh
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - David J Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
30
|
Abstract
More than a hundred proteins comprise the RAS superfamily of small GTPases. This family can be divided into RAS, RHO, RAB, RAN, ARF, and RAD subfamilies, with each shown to play distinct roles in human cells in both health and disease. The RAS subfamily has a well-established role in human cancer with the three genes, HRAS, KRAS, and NRAS being the commonly mutated in tumors. These RAS mutations, most often functionally activating, are especially common in pancreatic, lung, and colorectal cancers. Efforts to inhibit RAS and related GTPases have produced inhibitors targeting the downstream effectors of RAS signaling, including inhibitors of the RAF-mitogen-activated protein kinase/extracellular signal-related kinase (ERK)-ERK kinase pathway and the phosphoinositide-3-kinase-AKT-mTOR kinase pathway. A third effector arm of RAS signaling, mediated by RAL (RAS like) has emerged in recent years as a critical driver of RAS oncogenic signaling and has not been targeted until recently. RAL belongs to the RAS branch of the RAS superfamily and shares a high structural similarity with RAS. In human cells, there are two genes, RALA and RALB, both of which have been shown to play roles in the proliferation, survival, and metastasis of a variety of human cancers, including lung, colon, pancreatic, prostate, skin, and bladder cancers. In this review, we summarize the latest knowledge of RAL in the context of human cancer and the recent advancements in the development of cancer therapeutics targeting RAL small GTPases.
Collapse
Affiliation(s)
- Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (C.Y.); Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado (D.T.); and University of Colorado Comprehensive Cancer Center, Aurora, Colorado (D.T.)
| | - Dan Theodorescu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (C.Y.); Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado (D.T.); and University of Colorado Comprehensive Cancer Center, Aurora, Colorado (D.T.)
| |
Collapse
|
31
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Kanemoto K, Fukuta K, Kawai N, Tozawa K, Ochiai M, Okamoto K, Ohnami S, Sakamoto H, Yoshida T, Kanai Y, Katoh M, Yasui T, Kohri K, Kakizoe T, Nakagama H. Genomic Landscape of Experimental Bladder Cancer in Rodents and Its Application to Human Bladder Cancer: Gene Amplification and Potential Overexpression of Cyp2a5/CYP2A6 Are Associated with the Invasive Phenotype. PLoS One 2016; 11:e0167374. [PMID: 27902773 PMCID: PMC5130269 DOI: 10.1371/journal.pone.0167374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/30/2016] [Indexed: 11/23/2022] Open
Abstract
Non-muscle invasive (superficial) bladder cancer is a low-grade malignancy with good prognosis, while muscle invasive (invasive) bladder cancer is a high-grade malignancy with poor prognosis. N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) induces superficial bladder cancers with papillary morphology in rats and invasive bladder cancers with infiltrating phenotype in mice. In this study, we analyzed genomic landscapes of rodent BBN-induced bladder cancers using array-based comparative genomic hybridization (array CGH). While no significant copy number alterations were detected in superficial bladder tumors in rats, copy number gains in chromosomal regions 2D-E1, 7qA3, 9F2, and 11C-D were detected in invasive bladder tumors in mice. Amplification of representative genes located on 2D-E1 and 7qA3 chromosomal regions was confirmed by quantitative PCR. Cyp2a22 and Cyp2a5 genes but not Cyp2g1, Cyp2a12, and Rab4b genes on mouse chromosome 7qA3 were amplified in invasive bladder cancers. Although the human ortholog gene of Cyp2a22 has not been confirmed, the mouse Cyp2a5 gene is the ortholog of the human CYP2A6 gene located in chromosomal region 19q13.2, and CYP2A6 was identified by database search as one of the closest human homolog to mouse Cyp2a22. Considering a possibility that this region may be related to mouse 7qA3, we analyzed CYP2A6 copy number and expression in human bladder cancer using cell lines and resected tumor specimens. Although only one of eight cell lines showed more than one copy increase of the CYP2A6 gene, CYP2A6 amplification was detected in six out of 18 primary bladder tumors where it was associated with the invasive phenotype. Immunohistochemical analyses of 118 primary bladder tumors revealed that CYP2A6 protein expression was also higher in invasive tumors, especially in those of the scattered type. Together, these findings indicate that the amplification and overexpression of the CYP2A6 gene are characteristic of human bladder cancers with increased malignancy and that CYP2A6 can be a candidate prognostic biomarker in this type of cancer.
Collapse
Affiliation(s)
- Kazuhiro Kanemoto
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuhiro Fukuta
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyasu Kawai
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keiichi Tozawa
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masako Ochiai
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tokyo, Japan
| | - Sumiko Ohnami
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Yasui
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kenjiro Kohri
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tadao Kakizoe
- National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Nakagama
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
33
|
Kobayashi T. Understanding the biology of urothelial cancer metastasis. Asian J Urol 2016; 3:211-222. [PMID: 29264189 PMCID: PMC5730871 DOI: 10.1016/j.ajur.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Management of unresectable urothelial cancer (UC) has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT) and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.
Collapse
|
34
|
Kodama T, Bard-Chapeau EA, Newberg JY, Kodama M, Rangel R, Yoshihara K, Ward JM, Jenkins NA, Copeland NG. Two-Step Forward Genetic Screen in Mice Identifies Ral GTPase-Activating Proteins as Suppressors of Hepatocellular Carcinoma. Gastroenterology 2016; 151:324-337.e12. [PMID: 27178121 DOI: 10.1053/j.gastro.2016.04.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS High-throughput sequencing technologies have identified thousands of infrequently mutated genes in hepatocellular carcinomas (HCCs). However, high intratumor and intertumor heterogeneity, combined with large numbers of passenger mutations, have made it difficult to identify driver mutations that contribute to the development of HCC. We combined transposon mutagenesis with a high-throughput screen of a small-hairpin RNA (shRNA) library to identify genes and pathways that contribute to HCC development. METHODS Sleeping beauty transposons were mobilized in livers of transgenic mice predisposed to develop hepatocellular adenoma and HCC owing to expression of the hepatitis B virus surface antigen. This whole-genome mutagenesis technique was used to generate an unbiased catalogue of candidate cancer genes (CCGs). Pooled shRNA libraries targeting 250 selected CCGs then were introduced into immortalized mouse liver cells and the cells were monitored for their tumor-forming ability after injection into nude mice. RESULTS Transposon-mediated mutagenesis identified 1917 high-confident CCGs and highlighted the importance of Ras signaling in the development of HCC. Subsequent pooled shRNA library screening of 250 selected CCGs validated 27 HCC tumor-suppressor genes. Individual shRNA knockdown of 4 of these genes (Acaa2, Hbs1l, Ralgapa2, and Ubr2) increased the proliferation of multiple human HCC cell lines in culture and accelerated the formation of xenograft tumors in nude mice. The ability of Ralgapa2 to promote HCC cell proliferation and tumor formation required its inhibition of Rala and Ralb. Dual inhibition of Ras signaling via Ral and Raf, using a combination of small-molecule inhibitor RBC8 and sorafenib, reduced the proliferation of HCC cells in culture and completely inhibited their growth as xenograft tumors in nude mice. CONCLUSIONS In a 2-step forward genetic screen in mice, we identified members of the Ral guanosine triphosphatase-activating protein pathway and other proteins as suppressors of HCC cell proliferation and tumor growth. These proteins might serve as therapeutic targets for liver cancer.
Collapse
Affiliation(s)
- Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Emilie A Bard-Chapeau
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Michiko Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jerrold M Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
35
|
Thomas JC, Cooper JM, Clayton NS, Wang C, White MA, Abell C, Owen D, Mott HR. Inhibition of Ral GTPases Using a Stapled Peptide Approach. J Biol Chem 2016; 291:18310-25. [PMID: 27334922 DOI: 10.1074/jbc.m116.720243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/31/2023] Open
Abstract
Aberrant Ras signaling drives numerous cancers, and drugs to inhibit this are urgently required. This compelling clinical need combined with recent innovations in drug discovery including the advent of biologic therapeutic agents, has propelled Ras back to the forefront of targeting efforts. Activated Ras has proved extremely difficult to target directly, and the focus has moved to the main downstream Ras-signaling pathways. In particular, the Ras-Raf and Ras-PI3K pathways have provided conspicuous enzyme therapeutic targets that were more accessible to conventional drug-discovery strategies. The Ras-RalGEF-Ral pathway is a more difficult challenge for traditional medicinal development, and there have, therefore, been few inhibitors reported that disrupt this axis. We have used our structure of a Ral-effector complex as a basis for the design and characterization of α-helical-stapled peptides that bind selectively to active, GTP-bound Ral proteins and that compete with downstream effector proteins. The peptides have been thoroughly characterized biophysically. Crucially, the lead peptide enters cells and is biologically active, inhibiting isoform-specific RalB-driven cellular processes. This, therefore, provides a starting point for therapeutic inhibition of the Ras-RalGEF-Ral pathway.
Collapse
Affiliation(s)
- Jemima C Thomas
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jonathan M Cooper
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9039
| | - Natasha S Clayton
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Chensu Wang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9039
| | - Michael A White
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9039
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Darerca Owen
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom,
| | - Helen R Mott
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom,
| |
Collapse
|
36
|
Pawar A, Meier JA, Dasgupta A, Diwanji N, Deshpande N, Saxena K, Buwa N, Inchanalkar S, Schwartz MA, Balasubramanian N. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling. Cell Signal 2016; 28:1225-1236. [PMID: 27269287 PMCID: PMC4973806 DOI: 10.1016/j.cellsig.2016.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/01/2022]
Abstract
Integrin dependent regulation of growth factor signalling confers anchorage dependence that is deregulated in cancers. Downstream of integrins and oncogenic Ras the small GTPase Ral is a vital mediator of adhesion dependent trafficking and signalling. This study identifies a novel regulatory crosstalk between Ral and Arf6 that controls Ral function in cells. In re-adherent mouse fibroblasts (MEFs) integrin dependent activation of RalA drives Arf6 activation. Independent of adhesion constitutively active RalA and RalB could both however activate Arf6. This is further conserved in oncogenic H-Ras containing bladder cancer T24 cells, which express anchorage independent active Ral that supports Arf6 activation. Arf6 mediates active Ral-exocyst dependent delivery of raft microdomains to the plasma membrane that supports anchorage independent growth signalling. Accordingly in T24 cells the RalB-Arf6 crosstalk is seen to preferentially regulate anchorage independent Erk signalling. Active Ral we further find uses a Ral-RalBP1-ARNO-Arf6 pathway to mediate Arf6 activation. This study hence identifies Arf6, through this regulatory crosstalk, to be a key downstream mediator of Ral isoform function along adhesion dependent pathways in normal and cancer cells. Ral mediates Arf6 activation downstream of integrins and oncogenic Ras. Arf6 mediates Ral-exocyst dependent delivery of raft microdomains. Active Ral supports anchorage independent Arf6 activation in bladder cancer T24 cells. Ral-Arf6 crosstalk in T24 cells regulates anchorage independent Erk signalling. A Ral-RalBP1-ARNO-Arf6 pathway mediates the Ral-Arf6 crosstalk.
Collapse
Affiliation(s)
- Archana Pawar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Jeremy A Meier
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, United States
| | - Anwesha Dasgupta
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Neha Diwanji
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Neha Deshpande
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Kritika Saxena
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Natasha Buwa
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Siddhi Inchanalkar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Martin Alexander Schwartz
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, United States; Yale Cardiovascular Research Center, 300 George Street, 7th Floor, New Haven, CT 06511, United States
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India.
| |
Collapse
|
37
|
Jin H, Yu Y, Hu Y, Lu C, Li J, Gu J, Zhang L, Huang H, Zhang D, Wu XR, Gao J, Huang C. Divergent behaviors and underlying mechanisms of cell migration and invasion in non-metastatic T24 and its metastatic derivative T24T bladder cancer cell lines. Oncotarget 2016; 6:522-36. [PMID: 25402510 PMCID: PMC4381612 DOI: 10.18632/oncotarget.2680] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/04/2014] [Indexed: 01/24/2023] Open
Abstract
Previous studies on cancer cell invasion were primarily focused on its migration because these two events were often considered biologically equivalent. Here we found that T24T cells exhibited higher invasion but lower migration abilities than T24 cells. Expression of Rho-GDPases was much lower and expression of SOD2 was much higher in T24T cells than those in T24 cells. Indeed, knockdown of SOD2 in T24T cells can reverse the cell migration but without affecting cell invasion. We also found that SOD2 inhibited the JNK/c-Jun cascade, and the inhibition of c-Jun activation by ectopic expression of TAM67 impaired Rho-GDPases expression and cell migration in T24T shSOD2 cells. Further, we found that Sp1 can upregulate SOD2 transcription in T24T cells. Importantly, matrix metalloproteinase-2 (MMP-2) was overexpressed in T24T and participated in increasing its invasion, and MMP-2 overexpression was mediated by increasing nuclear transport of nucleolin, which enhanced mmp-2 mRNA stability. Taken together, our study unravels an inverse relationship between cell migration and invasion in human bladder cancer T24T cells and suggests a novel mechanism underlying the divergent roles of SOD2 and MMP-2 in regulating metastatic behaviors of human bladder T24T in cell migration and invasion.
Collapse
Affiliation(s)
- Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Young Hu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Chris Lu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liping Zhang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, USA. Veterans Affairs New York Harbor Healthcare System Manhattan Campus, New York, NY, USA
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
38
|
Zhang P, Wang X. Suppression of SIPA-1 expression may reduce bladder cancer invasion and metastasis via the downregulation of E-cadherin and ZO-1. Exp Ther Med 2015; 11:213-217. [PMID: 26889242 DOI: 10.3892/etm.2015.2891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 06/05/2015] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the capacity of signal-induced proliferation-associated protein 1 (SIPA-1) to regulate bladder cancer cell invasion and metastasis. BIU-87 and T24 cells were transfected with the SIPA gene and SIPA short hairpin (sh)RNA, respectively. Western blot analysis was conducted to analyze the expression levels of SIPA-1, Ras-related protein 1 (Rap1), Rap1 guanosine triphosphate (Rap1GTP), E-cadherin and zona occludens-1 (ZO-1). Cell motility and invasion were evaluated in vitro using wound and Transwell assays. Transfected cells were inoculated into the pelvic region of BALB/c nude mice, and the number of resulting tumors was recorded after 6 weeks. Western blot analysis revealed that expression levels of E-cadherin and ZO-1 were reduced in the cells with enhanced levels of SIPA-1. By contrast, the levels of E-cadherin and ZO-1 were elevated in the cells in which SIPA-1 was knocked down. In comparison with untransfected cells, the cells with reduced levels of SIPA-1 exhibited reduced wound closure and fewer cells crossed the chamber in the Transwell experiment, whereas the cells with enhanced levels of SIPA-1 exhibited increased migration and invasion In vivo, an increased tumor count was obtained in the mice with elevated levels of SIPA-1. Therefore, the results of the present study indicate that SIPA-1 is able to regulate bladder cancer cell metastasis and invasion by reducing the expression of E-cadherin and ZO-1.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Urology, Yichang Central People's Hospital, The First Clinical Medical College, China Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
39
|
An EP4 antagonist ONO-AE3-208 suppresses cell invasion, migration, and metastasis of prostate cancer. Cell Biochem Biophys 2015; 70:521-7. [PMID: 24744183 DOI: 10.1007/s12013-014-9951-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
EP4 is one of the prostaglandin E2 receptors, which is the most common prostanoid and is associated with inflammatory disease and cancer. We previously reported that over-expression of EP4 was one of the mechanisms responsible for progression to castration-resistant prostate cancer, and an EP4 antagonist ONO-AE3-208 in vivo suppressed the castration-resistant progression regulating the activation of androgen receptor. The aim of this study was to analyze the association of EP4 with prostate cancer metastasis and the efficacy of ONO-AE3-208 for suppressing the metastasis. The expression levels of EP4 mRNA were evaluated in prostate cancer cell lines, LNCaP, and PC3. EP4 over-expressing LNCaP was established, and their cell invasiveness was compared with the control LNCaP (LNCaP/mock). The in vitro cell proliferation, invasion, and migration of these cells were examined under different concentrations of ONO-AE3-208. An in vivo bone metastatic mouse model was constructed by inoculating luciferase expressing PC3 cells into left ventricle of nude mice. Their bone metastasis was observed by bioluminescent imaging with or without ONO-AE3-208 administration. The EP4 mRNA expression levels were higher in PC3 than in LNCaP, and EP4 over-expression of LNCaP cells enhanced their cell invasiveness. The in vitro cell invasion and migration were suppressed by ONO-AE3-208 in a dose-dependent manner without affecting cell proliferation. The in vivo bone metastasis of PC3 was also suppressed by ONO-AE3-208 treatment. EP4 expression levels were correlated with prostate cancer cell invasiveness and EP4 specific antagonist ONO-AE3-208 suppressed cell invasion, migration, and bone metastasis, indicating that it is a potential novel therapeutic modality for the treatment of metastatic prostate cancer.
Collapse
|
40
|
Yeh CC, Hsu CH, Shao YY, Ho WC, Tsai MH, Feng WC, Chow LP. Integrated Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Quantitative Proteomic Analysis Identifies Galectin-1 as a Potential Biomarker for Predicting Sorafenib Resistance in Liver Cancer. Mol Cell Proteomics 2015; 14:1527-45. [PMID: 25850433 DOI: 10.1074/mcp.m114.046417] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 01/06/2023] Open
Abstract
Sorafenib has become the standard therapy for patients with advanced hepatocellular carcinoma (HCC). Unfortunately, most patients eventually develop acquired resistance. Therefore, it is important to identify potential biomarkers that could predict the efficacy of sorafenib. To identify target proteins associated with the development of sorafenib resistance, we applied stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomic approach to analyze differences in protein expression levels between parental HuH-7 and sorafenib-acquired resistance HuH-7 (HuH-7(R)) cells in vitro, combined with an isobaric tags for relative and absolute quantitation (iTRAQ) quantitative analysis of HuH-7 and HuH-7(R) tumors in vivo. In total, 2,450 quantified proteins were identified in common in SILAC and iTRAQ experiments, with 81 showing increased expression (>2.0-fold) with sorafenib resistance and 75 showing decreased expression (<0.5-fold). In silico analyses of these differentially expressed proteins predicted that 10 proteins were related to cancer with involvements in cell adhesion, migration, and invasion. Knockdown of one of these candidate proteins, galectin-1, decreased cell proliferation and metastasis in HuH-7(R) cells and restored sensitivity to sorafenib. We verified galectin-1 as a predictive marker of sorafenib resistance and a downstream target of the AKT/mTOR/HIF-1α signaling pathway. In addition, increased galectin-1 expression in HCC patients' serum was associated with poor tumor control and low response rate. We also found that a high serum galectin-1 level was an independent factor associated with poor progression-free survival and overall survival. In conclusion, these results suggest that galectin-1 is a possible biomarker for predicting the response of HCC patients to treatment with sorafenib. As such, it may assist in the stratification of HCC and help direct personalized therapy.
Collapse
Affiliation(s)
- Chao-Chi Yeh
- From the ‡Graduate Institute of Biochemistry and Molecular Biology
| | - Chih-Hung Hsu
- §Graduate Institute of Oncology, College of Medicine, ‖Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Yun Shao
- §Graduate Institute of Oncology, College of Medicine, ‖Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ching Ho
- From the ‡Graduate Institute of Biochemistry and Molecular Biology
| | - Mong-Hsun Tsai
- ¶Institute of Biotechnology, National Taiwan University and
| | - Wen-Chi Feng
- From the ‡Graduate Institute of Biochemistry and Molecular Biology
| | - Lu-Ping Chow
- From the ‡Graduate Institute of Biochemistry and Molecular Biology,
| |
Collapse
|
41
|
Shirakawa R, Horiuchi H. Ral GTPases: crucial mediators of exocytosis and tumourigenesis. J Biochem 2015; 157:285-99. [DOI: 10.1093/jb/mvv029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/07/2015] [Indexed: 11/12/2022] Open
|
42
|
Mathow D, Chessa F, Rabionet M, Kaden S, Jennemann R, Sandhoff R, Gröne HJ, Feuerborn A. Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism. EMBO Rep 2015; 16:321-31. [PMID: 25643708 DOI: 10.15252/embr.201439333] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study proposes that the transcription factor Zeb1 modulates epithelial cell adhesion by diverting glycosphingolipid metabolism. Zeb1 promotes expression of a-series glycosphingolipids via regulating expression of GM3 synthase (St3gal5), which mechanistically involves Zeb1 binding to the St3gal5 promoter as well as suppressing microRNA-mediated repression of St3gal5. Functionally, the repression of St3gal5 suffices to elevate intercellular adhesion and expression of distinct junction-associated proteins, reminiscent of knockdown of Zeb1. Conversely, overexpressing St3gal5 sensitizes cells towards TGF-β1-induced disruption of cell-cell interaction and partially antagonizes elevation of intercellular adhesion imposed by Zeb1 knockdown. These results highlight a direct connection of glycosphingolipid metabolism and epithelial cell adhesion via Zeb1.
Collapse
Affiliation(s)
- Daniel Mathow
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federica Chessa
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mariona Rabionet
- Department of Cellular and Molecular Pathology, Lipid Pathobiochemistry Group German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sylvia Kaden
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, Lipid Pathobiochemistry Group German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany h.-
| | - Alexander Feuerborn
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany Sir William Dunn School of Pathology, University of Oxford, Oxford, UK h.-
| |
Collapse
|
43
|
Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 2015; 15:25-41. [PMID: 25533674 DOI: 10.1038/nrc3817] [Citation(s) in RCA: 889] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urothelial carcinoma of the bladder comprises two long-recognized disease entities with distinct molecular features and clinical outcome. Low-grade non-muscle-invasive tumours recur frequently but rarely progress to muscle invasion, whereas muscle-invasive tumours are usually diagnosed de novo and frequently metastasize. Recent genome-wide expression and sequencing studies identify genes and pathways that are key drivers of urothelial cancer and reveal a more complex picture with multiple molecular subclasses that traverse conventional grade and stage groupings. This improved understanding of molecular features, disease pathogenesis and heterogeneity provides new opportunities for prognostic application, disease monitoring and personalized therapy.
Collapse
Affiliation(s)
- Margaret A Knowles
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Carolyn D Hurst
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| |
Collapse
|
44
|
Yaoita N, Shirakawa R, Fukumoto Y, Sugimura K, Miyata S, Miura Y, Nochioka K, Miura M, Tatebe S, Aoki T, Yamamoto S, Satoh K, Kimura T, Shimokawa H, Horiuchi H. Platelets Are Highly Activated in Patients of Chronic Thromboembolic Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2014; 34:2486-94. [DOI: 10.1161/atvbaha.114.304404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective—
Chronic thromboembolic pulmonary hypertension (CTEPH) is a fatal disease that is distinct from pulmonary arterial hypertension (PAH). Although CTEPH is characterized by obstruction of major pulmonary artery because of chronic thrombus, it remains unclear whether CTEPH is associated with prothrombotic condition.
Approach and Results—
In addition to conventional markers, GTP-bound levels of Rap1, RhoA, RalA, Rac1, and Ras in platelets, which are implicated for platelet activation, were measured in patients without pulmonary hypertension (non-PH, n=15), patients with PAH (n=19), and patients with CTEPH (n=25). Furthermore, the responsiveness to ex vivo thrombin stimulation was also evaluated. The ratios of the P-selectin positive platelets in the non-PH patients, patients with PAH, and patients with CTEPH were 1.40% (median and interquartile range, 0.83–1.82), 2.40% (1.80–3.39), and 2.63% (1.90–8.22), respectively (non-PH versus CTEPH,
P
<0.01). The activated GPIIb/IIIa-positive platelets were 6.01% (1.34–7.87), 11.39% (5.69–20.86), and 9.74% (7.83–24.01), respectively (non-PH versus CTEPH,
P
=0.01). GTP-bound RhoA was 1.79% (0.94–2.83), 4.03% (2.01–5.14), and 2.01% (1.22–2.48), respectively (non-PH versus PAH,
P
=0.04), and GTP-bound RalA was 1.58% (1.08–2.11), 3.02% (2.03–3.54), and 2.64% (1.42–4.28), respectively (non-PH versus PAH,
P
=0.023; non-PH versus CTEPH,
P
=0.048). In contrast, Rac1, Rap1, or Ras was not activated in any groups. The platelets of patients with CTEPH exhibited hyperresponsiveness to ex vivo thrombin stimulation compared with those of non-PH patients when evaluated for the surface markers. Either D-dimer or fibrin degradation product level was not increased in patients with CTEPH.
Conclusions—
These results provide the first direct evidence that platelets of patients with CTEPH are highly activated and exhibit hyperresponsiveness to thrombin stimulation.
Collapse
Affiliation(s)
- Nobuhiro Yaoita
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Ryutaro Shirakawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Yoshihiro Fukumoto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Koichiro Sugimura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Yutaka Miura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Kotaro Nochioka
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Masanobu Miura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Shunsuke Tatebe
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Tatsuo Aoki
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Saori Yamamoto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Tomohiro Kimura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| | - Hisanori Horiuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.Y., Y.F., K.S., S.M., Y.M., K.N., M.M., S.T., T.A., S.Y., K.S., H.S.); and Department of Molecular and Cellular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (R.S., T.K., H.H.)
| |
Collapse
|
45
|
Gentry LR, Martin TD, Reiner DJ, Der CJ. Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2976-2988. [PMID: 25219551 DOI: 10.1016/j.bbamcr.2014.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/26/2023]
Abstract
Since their discovery in 1986, Ral (Ras-like) GTPases have emerged as critical regulators of diverse cellular functions. Ral-selective guanine nucleotide exchange factors (RalGEFs) function as downstream effectors of the Ras oncoprotein, and the RalGEF-Ral signaling network comprises the third best characterized effector of Ras-dependent human oncogenesis. Because of this, Ral GTPases as well as their effectors are being explored as possible therapeutic targets in the treatment of RAS mutant cancer. The two Ral isoforms, RalA and RalB, interact with a variety of downstream effectors and have been found to play key and distinct roles in both normal and neoplastic cell physiology including regulation of vesicular trafficking, migration and invasion, tumor formation, metastasis, and gene expression. In this review we provide an overview of Ral biochemistry and biology, and we highlight recent discoveries.
Collapse
Affiliation(s)
- Leanna R Gentry
- University of North Carolina at Chapel Hill, Department of Pharmacology, Chapel Hill, NC, USA
| | | | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Department of Pharmacology, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-Bleyer Y, Kühn LI, Gruber CW, Lienhard GE, Ghosh S. κB-Ras proteins regulate both NF-κB-dependent inflammation and Ral-dependent proliferation. Cell Rep 2014; 8:1793-1807. [PMID: 25220458 DOI: 10.1016/j.celrep.2014.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/19/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023] Open
Abstract
The transformation of cells generally involves multiple genetic lesions that undermine control of both cell death and proliferation. We now report that κB-Ras proteins act as regulators of NF-κB and Ral pathways, which control inflammation/cell death and proliferation, respectively. Cells lacking κB-Ras therefore not only show increased NF-κB activity, which results in increased expression of inflammatory mediators, but also exhibit elevated Ral activity, which leads to enhanced anchorage-independent proliferation (AIP). κB-Ras deficiency consequently leads to significantly increased tumor growth that can be dampened by inhibiting either Ral or NF-κB pathways, revealing the unique tumor-suppressive potential of κB-Ras proteins. Remarkably, numerous human tumors show reduced levels of κB-Ras, and increasing the level of κB-Ras in these tumor cells impairs their ability to undergo AIP, thereby implicating κB-Ras proteins in human disease.
Collapse
Affiliation(s)
- Andrea Oeckinghaus
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Thomas S Postler
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ping Rao
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Heike Schmitt
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Verena Schmitt
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lars I Kühn
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gustav E Lienhard
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
47
|
Personnic N, Lakisic G, Gouin E, Rousseau A, Gautreau A, Cossart P, Bierne H. A role for Ral GTPase-activating protein subunit β in mitotic regulation. FEBS J 2014; 281:2977-89. [PMID: 24814574 DOI: 10.1111/febs.12836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/05/2023]
Abstract
Ral proteins are small GTPases that play critical roles in normal physiology and in oncogenesis. There is little information on the GTPase-activating proteins (GAPs) that downregulate their activity. Here, we provide evidence that the noncatalytic β subunit of RalGAPα1/2 β complexes is involved in mitotic control. RalGAPβ localizes to the Golgi and nucleus during interphase, and relocalizes to the mitotic spindle and cytokinetic intercellular bridge during mitosis. Depletion of RalGAPβ causes chromosome misalignment and decreases the amount of mitotic cyclin B1, disturbing the metaphase-to-anaphase transition. Overexpression of RalGAPβ interferes with cell division, leading to binucleation and multinucleation, and cell death. We propose that RalGAPβ plays an essential role in the sequential progression of mitosis by controlling the spatial and temporal activation of Ral GTPases in the spindle assembly checkpoint (SAC) and cytokinesis. Deregulation of RalGAPβ might cause genomic instability, leading to human carcinogenesis.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institut Pasteur, Unité des interactions Bactéries cellules, Paris, France; Inserm, U604, Paris, France; INRA, USC2020, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Ral GTPases in tumorigenesis: emerging from the shadows. Exp Cell Res 2013; 319:2337-42. [PMID: 23830877 DOI: 10.1016/j.yexcr.2013.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 01/03/2023]
Abstract
Oncogenic Ras proteins rely on a series of key effector pathways to drive the physiological changes that lead to tumorigenic growth. Of these effector pathways, the RalGEF pathway, which activates the two Ras-related GTPases RalA and RalB, remains the most poorly understood. This review will focus on key developments in our understanding of Ral biology, and will speculate on how aberrant activation of the multiple diverse Ral effector proteins might collectively contribute to oncogenic transformation and other aspects of tumor progression.
Collapse
|
49
|
Nishikawa N, Kanematsu A, Negoro H, Imamura M, Sugino Y, Okinami T, Yoshimura K, Hashitani H, Ogawa O. PTHrP is endogenous relaxant for spontaneous smooth muscle contraction in urinary bladder of female rat. Endocrinology 2013; 154:2058-68. [PMID: 23546599 DOI: 10.1210/en.2012-2142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acute bladder distension causes various morphologic and functional changes, in part through altered gene expression. We aimed to investigate the physiologic role of PTHrP, which is up-regulated in an acute bladder distension model in female rats. In the control Empty group, bladders were kept empty for 6 hours, and in the Distension group, bladders were kept distended for 3 hours after an artificial storing-voiding cycle for 3 hours. In the Distention group bladder, up-regulation of transcripts was noted for 3 genes reported to be up-regulated by stretch in the cultured bladder smooth muscle cells in vitro. Further transcriptome analysis by microarray identified PTHrP as the 22nd highest gene up-regulated in Distension group bladder, among more than 27,000 genes. Localization of PTHrP and its functional receptor, PTH/PTHrP receptor 1 (PTH1R), were analyzed in the untreated rat bladders and cultured bladder cells using real-time RT-PCR and immunoblotting, which revealed that PTH1R and PTHrP were more predominantly expressed in smooth muscle than in urothelium. Exogenous PTHrP peptide (1-34) increased intracellular cAMP level in cultured bladder smooth muscle cells. In organ bath study using bladder strips, the PTHrP peptide caused a marked reduction in the amplitude of spontaneous contraction but caused only modest suppression for carbachol-induced contraction. In in vivo functional study by cystometrogram, the PTHrP peptide decreased voiding pressure and increased bladder compliance. Thus, PTHrP is a potent endogenous relaxant of bladder contraction, and autocrine or paracrine mechanism of the PTHrP-PTH1R axis is a physiologically relevant pathway functioning in the bladder.
Collapse
MESH Headings
- Animals
- Carbachol/pharmacology
- Cells, Cultured
- Cholinergic Agonists/pharmacology
- Cyclic AMP/metabolism
- Female
- Gene Expression Profiling
- Immunoblotting
- In Vitro Techniques
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotide Array Sequence Analysis
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Parathyroid Hormone-Related Protein/physiology
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Urinary Bladder/metabolism
- Urinary Bladder/physiopathology
- Urinary Retention/genetics
- Urinary Retention/metabolism
- Urinary Retention/physiopathology
Collapse
Affiliation(s)
- Nobuyuki Nishikawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|