1
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
2
|
Zhang M, Zhao Y, Liu X, Ruan X, Wang P, Liu L, Wang D, Dong W, Yang C, Xue Y. Pseudogene MAPK6P4-encoded functional peptide promotes glioblastoma vasculogenic mimicry development. Commun Biol 2023; 6:1059. [PMID: 37853052 PMCID: PMC10584926 DOI: 10.1038/s42003-023-05438-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Glioma is the most common primary malignancy of the central nervous system. Glioblastoma (GBM) has the highest degree of malignancy among the gliomas and the strongest resistance to chemotherapy and radiotherapy. Vasculogenic mimicry (VM) provides tumor cells with a blood supply independent of endothelial cells and greatly restricts the therapeutic effect of anti-angiogenic tumor therapy for glioma patients. Vascular endothelial growth factor receptor 2 (VEGFR2) and vascular endothelial cadherin (VE-cadherin) are currently recognized molecular markers of VM in tumors. In the present study, we show that pseudogene MAPK6P4 deficiency represses VEGFR2 and VE-cadherin protein expression levels, as well as inhibits the proliferation, migration, invasion, and VM development of GBM cells. The MAPK6P4-encoded functional peptide P4-135aa phosphorylates KLF15 at the S238 site, promoting KLF15 protein stability and nuclear entry to promote GBM VM formation. KLF15 was further confirmed as a transcriptional activator of LDHA, where LDHA binds and promotes VEGFR2 and VE-cadherin lactylation, thereby increasing their protein expression. Finally, we used orthotopic and subcutaneous xenografted nude mouse models of GBM to verify the inhibitory effect of the above factors on GBM VM development. In summary, this study may represent new targets for the comprehensive treatment of glioma.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China
| | - Yubo Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China.
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China.
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
3
|
Vaidya M, Smith J, Field M, Sugaya K. Analysis of regulatory sequences in exosomal DNA of NANOGP8. PLoS One 2023; 18:e0280959. [PMID: 36696426 PMCID: PMC9876286 DOI: 10.1371/journal.pone.0280959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Exosomes participate in intercellular communication by transporting functionally active molecules. Such cargo from the original cells comprising proteins, micro-RNA, mRNA, single-stranded (ssDNA) and double-stranded DNA (dsDNA) molecules pleiotropically transforms the target cells. Although cancer cells secrete exosomes carrying a significant level of DNA capable of modulating oncogene expression in a recipient cell, the regulatory mechanism is unknown. We have previously reported that cancer cells produce exosomes containing NANOGP8 DNA. NANOGP8 is an oncogenic paralog of embryonic stem cell transcription factor NANOG and does not express in cells since it is a pseudogene. However, in this study, we evaluated NANOGP8 expression in glioblastoma multiforme (GBM) tissue from a surgically removed brain tumor of a patient. Significantly higher NANOGP8 transcription was observed in GBM cancer stem cells (CSCs) than in GBM cancer cells or neural stem cells (NSCs), despite identical sequences of NANOGP8-upstream genomic region in all the cell lines. This finding suggests that upstream genomic sequences of NANOGP8 may have environment-dependent promoter activity. We also found that the regulatory sequences upstream of exosomal NANOGP8 GBM DNA contain multiple core promoter elements, transcription factor binding sites, and segments of human viruses known for their oncogenic role. The exosomal sequence of NANOGP8-upstream GBM DNA is different from corresponding genomic sequences in CSCs, cancer cells, and NSCs as well as from the sequences reported by NCBI. These sequence dissimilarities suggest that exosomal NANOGP8 GBM DNA may not be a part of the genomic DNA. Exosomes possibly acquire this DNA from other sources where it is synthesized by an unknown mechanism. The significance of exosome-bestowed regulatory elements in the transcription of promoter-less retrogene such as NANOGP8 remains to be determined.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
- AdventHealth Cancer Institute, Orlando, FL, United States of America
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
- * E-mail:
| |
Collapse
|
4
|
Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M, Baghbanzadeh A, Baradaran B. Nanog, as a key cancer stem cell marker in tumor progression. Gene X 2022; 827:146448. [PMID: 35337852 DOI: 10.1016/j.gene.2022.146448] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of malignant cells that induce tumor onset and development. CSCs share similar features with normal stem cells in the case of self-renewal and differentiation. They also contribute to chemoresistance and metastasis of cancer cells, leading to therapeutic failure. To identify CSCs, multiple cell surface markers have been characterized, including Nanog, which is found at high levels in different cancers. Recent studies have revealed that Nanog upregulation has a substantial association with the advanced stages and poor prognosis of malignancies, playing a pivotal role through tumorigenesis of multiple human cancers, including leukemia, liver, colorectal, prostate, ovarian, lung, head and neck, brain, pancreatic, gastric and breast cancers. Nanog through different signaling pathways, like JAK/STAT and Wnt/β-catenin pathways, induces stemness, self-renewal, metastasis, invasiveness, and chemoresistance of cancer cells. Some of these signaling pathways are common in various types of cancers, but some have been found in one or two cancers. Therefore, this review aimed to focus on the function of Nanog in multiple cancers based on recent studies surveying the suitable approaches to target Nanog and inhibit CSCs residing in tumors to gain favorable results from cancer treatments.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Sui Y, Hu W, Zhang W, Li D, Zhu H, You Q, Zhu R, Yi Q, Tang T, Gao L, Zhu S, Yang T. Insights into homeobox B9: a propeller for metastasis in dormant prostate cancer progenitor cells. Br J Cancer 2021; 125:1003-1015. [PMID: 34247196 PMCID: PMC8476533 DOI: 10.1038/s41416-021-01482-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastasis is the major cause of treatment failure and cancer-related deaths in prostate cancer (PCa) patients. Our previous study demonstrated that a CD44+ subpopulation isolated from PCa cells or tumours possesses both stem cell properties and metastatic potential, serving as metastatic prostate cancer stem cells (mPCSCs) in PCa metastasis. However, the underlying mechanisms remain unknown. METHODS In this study, we established PCa models via the orthotopic and subcutaneous implantation of different human PCa cancer cell lines, and compared the metastatic efficacy, after which process function analysis of target genes was pinpointed. RESULTS Several novel differentially expressed genes (DEGs) between orthotopic and ectopic tumours were identified. Among them, human homeobox B9 (HOXB9) transcription factor was found to be essential for PCa metastasis, as evidenced by the diminished number of lung metastatic foci derived from orthotopic implantation with HOXB9-deficient CWR22 cells, compared with the control. In addition, HOXB9 protein expression was upregulated in PCa tissues, compared with paracancer and benign prostate hyperplasia tissues. It was also positively correlated with Gleason scores. Gain- and loss-of-function assays showed that HOXB9 altered the expression of various tumour metastasis- and cancer stem cell (CSC) growth-related genes in a transforming growth factor beta (TGFβ)-dependent manner. Moreover, HOXB9 was overexpressed in an ALDH+CD44+CXCR4+CD24+ subpopulation of PCa cells that exhibited enhanced TGFβ-dependent tumorigenic and metastatic abilities, compared with other isogenic PCa cells. This suggests that HOXB9 may contribute to PCa tumorigenesis and metastasis via TGFβ signalling. Of note, ALDH+CD44+CXCR4+CD24+-PCa cells exhibited resistance to castration and antiandrogen therapy and were present in human PCa tissues. CONCLUSION Taken together, our study identified HOXB9 as a critical regulator of metastatic mPCSC behaviour. This occurs through altering the expression of a panel of CSC growth- and invasion/metastasis-related genes via TGFβ signalling. Thus, targeting HOXB9 is a potential novel therapeutic PCa treatment strategy.
Collapse
Affiliation(s)
- Yi Sui
- grid.412615.5Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Hu
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Wei Zhang
- grid.488206.00000 0004 4912 1751Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dejian Li
- grid.477929.6Department of Othopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hongbo Zhu
- grid.477929.6Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qinghua You
- grid.477929.6Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Rujian Zhu
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qingtong Yi
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tao Tang
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lili Gao
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shengjuan Zhu
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tao Yang
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
6
|
A Restriction Endonuclease-Based Assay to Distinguish NANOGP8 Retrogene from Parental NANOG. Methods Mol Biol 2021. [PMID: 34165720 DOI: 10.1007/978-1-0716-1503-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
NANOG is an embryonic transcription factor, which gets reexpressed in cancer stem or tumor initiating cells. NANOGP8, a retrogene belonging to the NANOG family, is predominantly expressed in cancer cells and shows very high similarity with NANOG both at the nucleotide and at the protein level. The high similarity makes it extremely challenging to distinguish between these two transcription factors. Here we describe a highly efficient restriction endonuclease-based assay, which is performed on cDNA and allows to distinguish NANOGP8 from NANOG. This assay is critical to understand the specific role of NANOGP8 in cancer stemness, which in turn helps to unravel the therapeutic potential of targeting this undruggable transcription factor through gene therapy, for treatment of various cancers.
Collapse
|
7
|
Arai H, Millstein J, Loupakis F, Stintzing S, Wang J, Battaglin F, Kawanishi N, Jayachandran P, Soni S, Zhang W, Mumenthaler SM, Cremolini C, Heinemann V, Falcone A, Lenz HJ. Germ line polymorphisms of genes involved in pluripotency transcription factors predict efficacy of cetuximab in metastatic colorectal cancer. Eur J Cancer 2021; 150:133-142. [PMID: 33901792 PMCID: PMC12047410 DOI: 10.1016/j.ejca.2021.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are primarily maintained by a network of pluripotency transcription factors (PTFs). Given a close relationship of CSC regulation with epidermal growth factor receptor and vascular endothelial growth factor signalling, we investigated whether single-nucleotide polymorphisms (SNPs) in PTF genes are related to the efficacy of cetuximab and/or bevacizumab in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Genomic and clinical data from three independent clinical trial cohorts were tested: cetuximab cohort (FOLFIRI/cetuximab arm in FIRE-3, n = 129), bevacizumab cohort 1 (FOLFIRI/bevacizumab arm in FIRE-3, n = 107) and bevacizumab cohort 2 (FOLFIRI/bevacizumab arm in TRIBE, n = 215). Genomic DNA extracted from blood samples was genotyped, and ten SNPs were tested for association with clinical outcomes. RESULTS In the cetuximab cohort, four SNPs were significantly associated with progression-free survival in univariate analysis: NANOG rs11055767 (any A allele vs C/C, hazard ratio [HR] = 0.62, 95% confidence interval [CI] = 0.42-0.94, p = 0.02), NANOG rs10744044 (any A allele vs G/G, HR = 0.59, 95% CI = 0.39-0.90, p = 0.01), NANOGP8 rs2168958 (any C allele vs A/A, HR = 2.12, 95% CI = 1.36-3.29, p < 0.001) and NANOGP8 rs2279066 (any C allele vs T/T, HR = 1.80, 95% CI = 1.06-1.68, p = 0.03). Multivariate analysis confirmed the significant associations for NANOGP8 rs2168958 and NANOGP8 rs2279066. In either bevacizumab cohort, no significant associations were observed in univariate analysis. CONCLUSIONS Germ line polymorphisms in the PTF genes could be predictive markers for cetuximab in mCRC.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fotios Loupakis
- Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology, and Tumour Immunology (CCM), Charité - Universitaetsmedizin, Berlin, Germany
| | - Jingyuan Wang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Priya Jayachandran
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Chiara Cremolini
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, Pisa, Italy
| | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Translational Medicine, Division of Medical Oncology, University of Pisa, Pisa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
8
|
Sui Y, Zhang W, Zhu R, Gao L, Cao T, Chen C, Gong M, Zhu H, Tang T, Yu B, Yang T. Roles of NANOGP8 in cancer metastasis and cancer stem cell invasion during development of castration-resistant prostate cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:45. [PMID: 33553338 PMCID: PMC7859782 DOI: 10.21037/atm-20-1638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Prostate cancer (PCa) is one of the most common types of cancer and the emerging resistance to androgen deprivation therapy in PCa aggravates disease progression. In this study, we examined the potential pro-tumorigenic functions of NANOGP8 in prostate cancer development. Methods Quantitative RT-PCR confirmed higher NANOGP8 expression in androgen independent tumors, as well as a recurrent prostate tumor in patient samples. We then established a novel two-way inducible NANOGP8-short hairpin RNA experimental system, in which the NANOGP8 expression was transiently induced by adding doxycycline in the diet of NOD/SCID mice. Results The knockdown of NANOGP8 inhibited implanted tumor growth and the progression of castration-resistant PCa. NANOGP8-deficient PCa cells lost their cancer stem cell and gene expression programs. To further investigate the functions of NANOGP8 in PCa stem cells, real-time cell tracking was used to monitor the cell division modes and differentiation patterns of NANOGP8+ cells. The expression level of NANOGP8 markedly influenced the cell division mode of NANOGP8+ PCa cells and was strongly correlated with their pluripotency, reflected by robust telomerase activity and longer telomere length. NANOGP8 expression was also associated with the metastatic capacity of PCa cells. Conclusions Based on these findings, we propose that NANOGP8 could serve as an effective therapeutic target for the treatment of PCa.
Collapse
Affiliation(s)
- Yi Sui
- Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Zhang
- Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lili Gao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chuhong Chen
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Min Gong
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hongbo Zhu
- Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tao Tang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
9
|
Kashyap T, Nath N, Mishra P, Jha A, Nagini S, Mishra R. Pluripotency transcription factor Nanog and its association with overall oral squamous cell carcinoma progression, cisplatin-resistance, invasion and stemness acquisition. Head Neck 2020; 42:3282-3294. [PMID: 32710593 DOI: 10.1002/hed.26373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cisplatin-resistant oral squamous cell carcinoma (OSCC) cells acquire stem-like characteristics and are difficult to treat. Nanog is a transcription factor and needed for maintenance of pluripotency, but its transcription-promoting role in OSCC progression and cisplatin resistance is poorly understood. METHODS Here, 110 fresh human tissue specimens of various stages, including invasive (N1-3 )/chemoradiation-resistant OSCC samples, cisplatin-resistant (CisR-SCC-4/-9) OSCC cells/parental cells, photochemical ECGC, and siRNA (Nanog) were used. RESULTS Nanog overexpression was associated with overall progression, chemoresistance, and invasion of OSCC. Nanog recruitment to c-Myc, Slug, E-cadherin, and Oct-4 gene promoter was observed. Positive correlation of Nanog protein expression with c-Myc, Slug, cyclin D1, MMP-2/-9, and Oct-4 and negative correlation with E-cadherin gene expression were found. Knockdown of Nanog and treatment of epicatechin-3-gallate reversed cisplatin resistance and diminished invasion/migration potential. CONCLUSION Nanog directly participated in the regulation of Slug, E-cadherin, Oct-4, and c-Myc genes, causing cisplatin resistance/recurrence of OSCC.
Collapse
Affiliation(s)
- Tanushree Kashyap
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Nidhi Nath
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Prajna Mishra
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Arpita Jha
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
10
|
Yu Z, Dmitrieva NI, Walts AD, Jin H, Liu Y, Ping X, Ferrante EA, Qiu L, Holland SM, Freeman AF, Chen G, Boehm M. STAT3 modulates reprogramming efficiency of human somatic cells; insights from autosomal dominant Hyper IgE syndrome caused by STAT3 mutations. Biol Open 2020; 9:bio052662. [PMID: 32580970 PMCID: PMC7502598 DOI: 10.1242/bio.052662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cell (iPSC) technology has opened exciting opportunities for stem-cell-based therapy. However, its wide adoption is precluded by several challenges including low reprogramming efficiency and potential for malignant transformation. Better understanding of the molecular mechanisms of the changes that cells undergo during reprograming is needed to improve iPSCs generation efficiency and to increase confidence for their clinical use safety. Here, we find that dominant negative mutations in STAT3 in patients with autosomal-dominant hyper IgE (Job's) syndrome (AD-HIES) result in greatly reduced reprograming efficiency of primary skin fibroblasts derived from skin biopsies. Analysis of normal skin fibroblasts revealed upregulation and phosphorylation of endogenous signal transducer and activator of transcription 3 (STAT3) and its binding to the NANOG promoter following transduction with OKSM factors. This coincided with upregulation of NANOG and appearance of cells expressing pluripotency markers. Upregulation of NANOG and number of pluripotent cells were greatly reduced throughout the reprograming process of AD-HIES fibroblasts that was restored by over-expression of functional STAT3. NANOGP8, the human-specific NANOG retrogene that is often expressed in human cancers, was also induced during reprogramming, to very low but detectable levels, in a STAT3-dependent manner. Our study revealed the critical role of endogenous STAT3 in facilitating reprogramming of human somatic cells.
Collapse
Affiliation(s)
- Zhen Yu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia I Dmitrieva
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avram D Walts
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Jin
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yangtengyu Liu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xianfeng Ping
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisa A Ferrante
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Guibin Chen
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manfred Boehm
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Alemohammad H, Asadzadeh Z, Motafakker Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S, Baradaran B. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci 2020; 260:118337. [PMID: 32841661 DOI: 10.1016/j.lfs.2020.118337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a small part of cancer cells inside the tumor that have similar characteristics to normal stem cells. CSCs stimulate tumor initiation and progression in a variety of cancers. Several transcription factors such as NANOG, SOX2, and OCT4 maintain the characteristics of CSCs and their upregulation is seen in many malignancies resulting in increased metastasis, invasion, and recurrence. Among these factors, NANOG plays an important role in regulating the self-renewal and pluripotency of CSCs and the clinical significance of NANOG has been suggested as a marker of CSCs in many cancers. The up and down-regulation of NANOG is associated with several important signaling pathways, including JAK/STAT, Wnt/β-catenin, Notch, TGF-β, Hedgehog, and several microRNAs (miRNAs). In this review, we will investigate the function of NANOG in CSCs and the molecular mechanism of its regulation by signaling pathways and miRNAs. We will also investigate targeting NANOG with different techniques, which is a promising treatment strategy for cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Nappi A, Di Cicco E, Miro C, Cicatiello AG, Sagliocchi S, Mancino G, Ambrosio R, Luongo C, Di Girolamo D, De Stefano MA, Porcelli T, Stornaiuolo M, Dentice M. The NANOG Transcription Factor Induces Type 2 Deiodinase Expression and Regulates the Intracellular Activation of Thyroid Hormone in Keratinocyte Carcinomas. Cancers (Basel) 2020; 12:cancers12030715. [PMID: 32197405 PMCID: PMC7140064 DOI: 10.3390/cancers12030715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 deiodinase (D2), the principal activator of thyroid hormone (TH) signaling in target tissues, is expressed in cutaneous squamous cell carcinomas (SCCs) during late tumorigenesis, and its repression attenuates the invasiveness and metastatic spread of SCC. Although D2 plays multiple roles in cancer progression, nothing is known about the mechanisms regulating D2 in cancer. To address this issue, we investigated putative upstream regulators of D2 in keratinocyte carcinomas. We found that the expression of D2 in SCC cells is positively regulated by the NANOG transcription factor, whose expression, besides being causally linked to embryonic stemness, is associated with many human cancers. We also found that NANOG binds to the D2 promoter and enhances D2 transcription. Notably, blockage of D2 activity reduced NANOG-induced cell migration as well as the expression of key genes involved in epithelial-mesenchymal transition in SCC cells. In conclusion, our study reveals a link among endogenous endocrine regulators of cancer, thyroid hormone and its activating enzyme, and the NANOG regulator of cancer biology. These findings could provide the basis for the development of TH inhibitors as context-dependent anti-tumor agents.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Giuseppina Mancino
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | | | - Cristina Luongo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Daniela Di Girolamo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Tommaso Porcelli
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy;
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
13
|
NANOG/NANOGP8 Localizes at the Centrosome and is Spatiotemporally Associated with Centriole Maturation. Cells 2020; 9:cells9030692. [PMID: 32168958 PMCID: PMC7140602 DOI: 10.3390/cells9030692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
NANOG is a transcription factor involved in the regulation of pluripotency and stemness. The functional paralog of NANOG, NANOGP8, differs from NANOG in only three amino acids and exhibits similar reprogramming activity. Given the transcriptional regulatory role played by NANOG, the nuclear localization of NANOG/NANOGP8 has primarily been considered to date. In this study, we investigated the intriguing extranuclear localization of NANOG and demonstrated that a substantial pool of NANOG/NANOGP8 is localized at the centrosome. Using double immunofluorescence, the colocalization of NANOG protein with pericentrin was identified by two independent anti-NANOG antibodies among 11 tumor and non-tumor cell lines. The validity of these observations was confirmed by transient expression of GFP-tagged NANOG, which also colocalized with pericentrin. Mass spectrometry of the anti-NANOG immunoprecipitated samples verified the antibody specificity and revealed the expression of both NANOG and NANOGP8, which was further confirmed by real-time PCR. Using cell fractionation, we show that a considerable amount of NANOG protein is present in the cytoplasm of RD and NTERA-2 cells. Importantly, cytoplasmic NANOG was unevenly distributed at the centrosome pair during the cell cycle and colocalized with the distal region of the mother centriole, and its presence was markedly associated with centriole maturation. Along with the finding that the centrosomal localization of NANOG/NANOGP8 was detected in various tumor and non-tumor cell types, these results provide the first evidence suggesting a common centrosome-specific role of NANOG.
Collapse
|
14
|
Park SW, Do HJ, Choi W, Kim JH. Fli-1 promotes proliferation and upregulates NANOGP8 expression in T-lymphocyte leukemia cells. Biochimie 2019; 168:1-9. [PMID: 31626853 DOI: 10.1016/j.biochi.2019.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/10/2019] [Indexed: 11/27/2022]
Abstract
Friend leukemia integration 1 (Fli-1) is a member of the E26 transformation-specific (ETS) transcription factor family. Fli-1 regulates normal hematopoiesis and vasculogenesis, and its aberrant expression underlies virus-induced leukemias and various types of human cancers. NANOGP8, a retro-pseudogene of stem cell mediator NANOG, is expressed predominantly in cancer cells and plays a role in tumorigenesis. In this study, we demonstrate that Fli-1 expression enhances human acute T-cell leukemia Jurkat cell proliferation and that Fli-1 acts as a transcriptional activator of NANOGP8 expression in these cells. NANOGP8 and Fli-1 are highly expressed in Jurkat cells, whereas NANOG was undetectable at both the RNA and protein levels. Moreover, the expression of endogenous NANOGP8 was significantly influenced by gain of function and loss of function of Fli-1. Promoter-reporter assays showed that NANOGP8 transcription was significantly upregulated by dose-dependent Fli-1 overexpression. A series of deletion mutagenesis of NANOGP8 promoter sequence revealed that NANOGP8 promoter activity was tightly regulated and found the minimal promoter region sufficient to activate NANOGP8 transcription mediated by Fli-1. Moreover, site-directed mutagenesis of the putative binding site abolished both NANOGP8 full-length and minimal promoter activities. Binding assays revealed that Fli-1 directly interacts with the potent binding site in NANOG promoter region. Taken together, our data demonstrate that Fli-1 is a novel upstream transcriptional activator of NANOGP8 and provide the molecular details of Fli-1-mediated NANOGP8 gene expression. Ultimately, these findings may contribute to understanding the expanded regulatory mechanisms of oncogenic NANOGP8 and ETS family transcription factors in leukemogenesis.
Collapse
Affiliation(s)
- Sung-Won Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Hyun-Jin Do
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Wonbin Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Jae-Hwan Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea.
| |
Collapse
|
15
|
Sneha S, Nagare RP, Manasa P, Vasudevan S, Shabna A, Ganesan TS. Analysis of Human Stem Cell Transcription Factors. Cell Reprogram 2019; 21:171-180. [DOI: 10.1089/cell.2019.0005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Smarakan Sneha
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Rohit P. Nagare
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Pacharia Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Aboo Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Trivadi Sundaram Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| |
Collapse
|
16
|
Fan W, Yang X, Huang F, Tong X, Zhu L, Wang S. Identification of CD206 as a potential biomarker of cancer stem-like cells and therapeutic agent in liver cancer. Oncol Lett 2019; 18:3218-3226. [PMID: 31452799 PMCID: PMC6704291 DOI: 10.3892/ol.2019.10673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
The mannose receptor (CD206) functions in endocytosis and phagocytosis, and plays an important role in immune homeostasis. Tumor-associated macrophages express high level of CD206 and are thought to contribute to cancer progression through tumor immunosuppression, metastasis and angiogenesis. However, the significance of CD206 in the pathology of liver cancer has not been investigated. The present study evaluated the clinical significance of CD206 in the progression and prognosis of liver cancer in pathological tissues from 327 patients. Increased CD206 expression was observed in liver cancer samples compared with healthy adjacent liver tissue (42.8 vs. 62.4%; P<0.05). CD206 expression was significantly associated with tumor size (P=0.009) and metastasis (P=0.041). The recurrence free survival rate of patients with CD206-positive liver cancer was significantly decreased compared with patients with CD206-negative liver cancer (P=0.003). A Cox regression model revealed that liver cancer survival was independently associated with tumor size, metastasis and α-fetoprotein value. The results further revealed that CD206 expression in cancer stem cell (CSC)-like cells was comparable to other internationally recognized biomarkers. Additionally, when CD206 expression was silenced in the liver cancer cell lines HepG2 and PLC/PRF/5 using a short hairpin RNA approach, migration and invasion of the cells significantly decreased compared with controls (P<0.01). CD206 expression in liver cancer significantly influences distant metastasis and spread, resulting in poor patient prognosis. Furthermore, CD206 may be a potential biomarker in CSC-like cells to predict the occurrence of liver cancer.
Collapse
Affiliation(s)
- Weimin Fan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiangmin Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Lifen Zhu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
17
|
Kuciak M, Mas C, Borges I, Sánchez-Gómez P, Ruiz i Altaba A. Chimeric NANOG repressors inhibit glioblastoma growth in vivo in a context-dependent manner. Sci Rep 2019; 9:3891. [PMID: 30846719 PMCID: PMC6405761 DOI: 10.1038/s41598-019-39473-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Targeting stemness promises new therapeutic strategies against highly invasive tumors. While a number of approaches are being tested, inhibiting the core transcription regulatory network of cancer stem cells is an attractive yet challenging possibility. Here we have aimed to provide the proof of principle for a strategy, previously used in developmental studies, to directly repress the targets of a salient stemness and pluripotency factor: NANOG. In doing so we expected to inhibit the expression of so far unknown mediators of pro-tumorigenic NANOG function. We chose NANOG since previous work showed the essential requirement for NANOG activity for human glioblastoma (GBM) growth in orthotopic xenografts, and it is apparently absent from many adult human tissues thus likely minimizing unwanted effects on normal cells. NANOG repressor chimeras, which we name NANEPs, bear the DNA-binding specificity of NANOG through its homeodomain (HD), and this is linked to transposable human repressor domains. We show that in vitro and in vivo, NANEP5, our most active NANEP with a HES1 repressor domain, mimics knock-down (kd) of NANOG function in GBM cells. Competition orthotopic xenografts also reveal the effectiveness of NANEP5 in a brain tumor context, as well as the specificity of NANEP activity through the abrogation of its function via the introduction of specific mutations in the HD. The transcriptomes of cells expressing NANEP5 reveal multiple potential mediators of pro-tumorigenic NANEP/NANOG action including intercellular signaling components. The present results encourage further studies on the regulation of context-dependent NANEP abundance and function, and the development of NANEP-based anti-cancer therapies.
Collapse
Affiliation(s)
- Monika Kuciak
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | - Christophe Mas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
- Oncotheis Sàrl. 18 chemin des Aulx, CH-1228 Plan-Les-Ouates, Geneva, Switzerland
| | - Isabel Borges
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | | | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland.
| |
Collapse
|
18
|
Differential sequences of exosomal NANOG DNA as a potential diagnostic cancer marker. PLoS One 2018; 13:e0197782. [PMID: 29787607 PMCID: PMC5963750 DOI: 10.1371/journal.pone.0197782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
NANOG has been demonstrated to play an essential role in the maintenance of embryonic stem cells, and its pseudogene, NANOGP8, is suggested to promote the cancer stem cell phenotype. As the roles of these genes are intimately involved with glioblastoma multiforme progression and exosomes are critical in intercellular communication, we conducted a detailed analysis of the association of the NANOG gene family with exosomes to identify diagnostic markers for cancer. Exosomes were precipitated from conditioned culture media from various cell lines, and NANOG gene fragments were directly amplified without DNA isolation using multiple primer sets. The use of the enzymes AlwNI and SmaI with restriction fragment length polymorphism analysis functioned to distinguish NANOGP8 from other NANOG family members. Collectively, results suggest that the NANOG DNA associated with exosomes is not full length and that mixed populations of the NANOG gene family exist. Furthermore, sequence analysis of exosomal DNA amplified with a NANOGP8 specific primer set frequently showed an insertion of a 22 bp sequence into the 3’ UTR. The occurrence rate of this insertion was significantly higher in exosomal DNA clones from cancer cells as compared to normal cells. We have detected mixed populations of NANOG DNA associated with exosomes and have identified preferential modulations in the sequences from cancer samples. Our findings, coupled with the properties of exosomes, may allow for the detection of traditionally inaccessible cancers (i.e. GBM) through minimally invasive techniques. Further analysis of exosomal DNA sequences of NANOG and other embryonic stemness genes (OCT3/4, SOX2, etc.) may establish a robust collection of exosome based diagnostic markers, and further elucidate the mechanisms of cancer formation, progression, and metastasis.
Collapse
|
19
|
Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun 2018; 9:903. [PMID: 29500430 PMCID: PMC5834625 DOI: 10.1038/s41467-018-03311-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/02/2018] [Indexed: 01/23/2023] Open
Abstract
Proteogenomics enable the discovery of novel peptides (from unannotated genomic protein-coding loci) and single amino acid variant peptides (derived from single-nucleotide polymorphisms and mutations). Increasing the reliability of these identifications is crucial to ensure their usefulness for genome annotation and potential application as neoantigens in cancer immunotherapy. We here present integrated proteogenomics analysis workflow (IPAW), which combines peptide discovery, curation, and validation. IPAW includes the SpectrumAI tool for automated inspection of MS/MS spectra, eliminating false identifications of single-residue substitution peptides. We employ IPAW to analyze two proteomics data sets acquired from A431 cells and five normal human tissues using extended (pH range, 3–10) high-resolution isoelectric focusing (HiRIEF) pre-fractionation and TMT-based peptide quantitation. The IPAW results provide evidence for the translation of pseudogenes, lncRNAs, short ORFs, alternative ORFs, N-terminal extensions, and intronic sequences. Moreover, our quantitative analysis indicates that protein production from certain pseudogenes and lncRNAs is tissue specific. Proteogenomics enables the discovery of protein coding regions and disease-relevant mutations but their verification remains challenging. Here, the authors combine peptide discovery, curation and validation in an integrated proteogenomics workflow, robustly identifying unknown coding regions and mutations.
Collapse
|
20
|
Freitag D, McLean AL, Simon M, Koch A, Grube S, Walter J, Kalff R, Ewald C. NANOG overexpression and its correlation with stem cell and differentiation markers in meningiomas of different WHO grades. Mol Carcinog 2017; 56:1953-1964. [PMID: 28345785 DOI: 10.1002/mc.22653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 01/15/2023]
Abstract
NANOG, as a key regulator of pluripotency and acting synergistically with other factors, has been described as a crucial transcription factor in various types of cancer. In meningiomas the expression of this marker has not yet been described. With our study, we aimed to identify and localize NANOG and other possible markers of pluripotency, stem cell properties and differentiation in meningioma tissue, to elucidate a possible effect on tumorigenesis. The gene expression levels of NANOG (NANOG1 and NANOGP8), SOX2, OCT4, KLF4, ABCG2, CMYC, MSI1, CD44, NOTCH1, NES, SALL4B, TP53, and EPAS1 were quantitatively examined using RT-qPCR in 33 surgical specimens of low- (WHO grade I) as well as in high-grade (WHO grade II/III) meningiomas with dural tissue as reference. Immunofluorescence co-localization analysis following confocal fluorescence microscopy for NANOG, OCT4, SOX2, Nestin, KI-67, and CD44 was also performed. There was a significant overexpression of NANOG, MSI1, and EPAS1 and a downregulation of NES in all examined tumors. Subgroup analysis (WHO grade I versus grade II/III) revealed differences in the expression of NANOG, CD44, and MSI1. We found 1% NANOG-positive (NANOG+) cells in low-grade and 2% in grade II/III meningiomas co-expressing the other mentioned markers in various compositions. In particular, NANOG+ cells expressing SOX2 and OCT4 were successfully identified (26% low-grade versus 20% high-grade). Our data reveal an overexpression of NANOG and other markers of pluripotency and stemness in meningiomas. Such potentially pluripotent "stem cell-like" cells may have an impact on tumorigenesis and progression in human meningiomas.
Collapse
Affiliation(s)
- Diana Freitag
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Aaron Lawson McLean
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Michèle Simon
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.,Department of Neurosurgery, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Grube
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jan Walter
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Rolf Kalff
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Ewald
- Department of Neurosurgery, Section of Experimental Neurooncology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.,Department of Neurosurgery, Städtisches Klinikum Brandenburg, Brandenburg an der Havel, Germany
| |
Collapse
|
21
|
Wang B, Chen Q, Cao Y, Ma X, Yin C, Jia Y, Zang A, Fan W. LGR5 Is a Gastric Cancer Stem Cell Marker Associated with Stemness and the EMT Signature Genes NANOG, NANOGP8, PRRX1, TWIST1, and BMI1. PLoS One 2016; 11:e0168904. [PMID: 28033430 PMCID: PMC5199039 DOI: 10.1371/journal.pone.0168904] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
Abstract
Background Accumulating evidence supports the hypothesis that cancer stem cells (CSCs) are essential for cancer initiation, metastasis and drug resistance. However, the functional association of gastric CSC markers with stemness and epithelial-mesenchymal transition (EMT) signature genes is unclear. Methods qPCR was performed to measure the expression profiles of stemness and EMT signature genes and their association with putative CSC markers in gastric cancer tissues, cancer cell lines and sphere cells. Western blot analysis was used to confirm the results of the transcript analysis. Cell proliferation, cell migration, drug resistance and sphere cell growth assays were conducted to measure the expansion and invasion abilities of the cells. Tumor xenograft experiments were performed in NOD/SCID mice to test cell stemness in vivo. Flow cytometry and immunofluorescence staining were used to analyze cell subpopulations. Results The expression of LGR5 was strikingly up-regulated in sphere cells but not in cancer tissues or parental adherent cells. The up-regulation of LGR5 was also positively associated with stemness regulators (NANOG, OCT4, SOX2, and AICDA) and EMT inducers (PRRX1, TWIST1, and BMI1). In addition, sphere cells exhibited up-regulated vimentin and down-regulated E-cadherin expression. Using gene-specific primers, we found that the NANOG expression primarily originates from the retrogene NANOGP8. Western blot analysis showed that the expression of both LGR5 and NANOG is significantly higher in sphere cells. LGR5 over-expression significantly enhanced sphere cell growth, cell proliferation, cell migration and drug resistance in MGC803 cells. Tumor xenografts in nude mice showed that sphere cells are at least 10 times more efficient at tumor initiation than adherent cells. Flow cytometry analysis showed that ~20% of sphere cells are LGR5+/CD54+, but only ~3% of adherent cells are Lgr5+/CD54+. Immunofluorescence staining supports the above results. Conclusion The LGR5-expressing fraction of CD54+ cells represents gastric cancer CSCs, in which LGR5 is closely associated with stemness and EMT core genes, and NANOG expression is mainly contributed by the retrogene NANOGP8. Sphere cells are the best starting materials for the characterization of CSCs.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/deficiency
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Carcinogenesis/genetics
- Cell Adhesion
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic
- Down-Regulation
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/genetics
- Humans
- Mice
- Mitogen-Activated Protein Kinase 7/genetics
- Nanog Homeobox Protein/genetics
- Neoplastic Stem Cells/pathology
- Organoplatinum Compounds/pharmacology
- Oxaliplatin
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Twist-Related Protein 1/genetics
- Up-Regulation
- Vimentin/genetics
Collapse
Affiliation(s)
- Bei Wang
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Queting Chen
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Yang Cao
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Xia Ma
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Chenxing Yin
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Youchao Jia
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Wufang Fan
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
- * E-mail:
| |
Collapse
|
22
|
Jeter CR, Liu B, Lu Y, Chao HP, Zhang D, Liu X, Chen X, Li Q, Rycaj K, Calhoun-Davis T, Yan L, Hu Q, Wang J, Shen J, Liu S, Tang DG. NANOG reprograms prostate cancer cells to castration resistance via dynamically repressing and engaging the AR/FOXA1 signaling axis. Cell Discov 2016; 2:16041. [PMID: 27867534 PMCID: PMC5109294 DOI: 10.1038/celldisc.2016.41] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022] Open
Abstract
The pluripotency transcription factor NANOG has been implicated in tumor development, and NANOG-expressing cancer cells manifest stem cell properties that sustain tumor homeostasis, mediate therapy resistance and fuel tumor progression. However, how NANOG converges on somatic circuitry to trigger oncogenic reprogramming remains obscure. We previously reported that inducible NANOG expression propels the emergence of aggressive castration-resistant prostate cancer phenotypes. Here we first show that endogenous NANOG is required for the growth of castration-resistant prostate cancer xenografts. Genome-wide chromatin immunoprecipitation sequencing coupled with biochemical assays unexpectedly reveals that NANOG co-occupies a distinctive proportion of androgen receptor/Forkhead box A1 genomic loci and physically interacts with androgen receptor and Forkhead box A1. Integrative analysis of chromatin immunoprecipitation sequencing and time-resolved RNA sequencing demonstrates that NANOG dynamically alters androgen receptor/Forkhead box A1 signaling leading to both repression of androgen receptor-regulated pro-differentiation genes and induction of genes associated with cell cycle, stem cells, cell motility and castration resistance. Our studies reveal global molecular mechanisms whereby NANOG reprograms prostate cancer cells to a clinically relevant castration-resistant stem cell-like state driven by distinct NANOG-regulated gene clusters that correlate with patient survival. Thus, reprogramming factors such as NANOG may converge on and alter lineage-specific master transcription factors broadly in somatic cancers, thereby facilitating malignant disease progression and providing a novel route for therapeutic resistance.
Collapse
Affiliation(s)
- Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , Smithville, TX, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , Smithville, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , Smithville, TX, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , Smithville, TX, USA
| | - Dingxiao Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Xin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , Smithville, TX, USA
| | - Xin Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qiuhui Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kiera Rycaj
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , Smithville, TX, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute , Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute , Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute , Buffalo, NY, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , Smithville, TX, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute , Buffalo, NY, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China; Centers for Cancer Epigenetics, Stem Cell and Developmental Biology, RNA Interference and Non-coding RNAs and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget 2016; 6:22361-74. [PMID: 26087476 PMCID: PMC4673169 DOI: 10.18632/oncotarget.4293] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023] Open
Abstract
NANOG expression in prostate cancer is highly correlated with cancer stem cell characteristics and resistance to androgen deprivation. However, it is not clear whether NANOG or its pseudogenes contribute to the malignant potential of cancer. We established NANOG- and NANOGP8-knockout DU145 prostate cancer cell lines using the CRISPR/Cas9 system. Knockouts of NANOG and NANOGP8 significantly attenuated malignant potential, including sphere formation, anchorage-independent growth, migration capability, and drug resistance, compared to parental DU145 cells. NANOG and NANOGP8 knockout did not inhibit in vitro cell proliferation, but in vivo tumorigenic potential decreased significantly. These phenotypes were recovered in NANOG- and NANOGP8-rescued cell lines. These results indicate that NANOG and NANOGP8 proteins are expressed in prostate cancer cell lines, and NANOG and NANOGP8 equally contribute to the high malignant potential of prostate cancer.
Collapse
|
24
|
Gerashchenko BI, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol 2016; 145:497-508. [PMID: 26860864 DOI: 10.1007/s00418-016-1415-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/13/2022]
Abstract
Aneuploid cells should have a reduced proliferation rate due to difficulty in proceeding through mitosis. However, contrary to this, high aneuploidy is associated with aggressive tumour growth and poor survival prognosis, in particular in triploid breast cancer. A further paradox revolves around the observation that, while cell senescence should inhibit proliferation, the senescence marker p16INK4a correlates with poor treatment outcome in patients with a very aggressive triple-negative breast carcinoma (TNBC). In this study, we aim to pour light on the possible relationship of these conundrums with polyploidy of tumour cells. We performed detailed analysis of DNA histogram profiles in diagnostic core biopsies of 30 cases of operable breast cancer and found that near triploidy in TNBC and other forms correlated with weak or no response to neoadjuvant chemotherapy (NAC) as scored by Miller-Payne index. Polyploid cells in operation samples from tumours that were non-responsive to NAC treatment were Ki67 and CD44 positive. In addition, polyploid cells were positive for markers of embryonic stemness (OCT4, SOX2, NANOG) and senescence (p16INK4a). The relationship patterns between p16INK4a and NANOG were heterogeneous, with predominantly mutually exclusive expression but also synergistic and intermediate variants in the same samples. We conclude that the aneuploidy and senescence paradoxes can be explained by the mutual platform of polyploidy, conferring genomic and epigenetic instability as a survival advantage. Such cells are able to bypass aneuploidy restrictions of conventional mitosis and overcome the barrier of senescence by a shift to self-renewal, resulting in progression of cancer.
Collapse
Affiliation(s)
- B I Gerashchenko
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Sciences of Ukraine, Kiev, 03022, Ukraine
| | - K Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
| | - J Eglitis
- Faculty of Medicine, University of Latvia, Riga, 1586, Latvia
| | - A Huna
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
| | - V Grjunberga
- Faculty of Medicine, University of Latvia, Riga, 1586, Latvia
| | - J Erenpreisa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia.
| |
Collapse
|
25
|
Affiliation(s)
- Mireia Mato Prado
- Division of Cancer, Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital Campus, London, UK
| | - Adam E Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital Campus, London, UK HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Justin Stebbing
- Division of Cancer, Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital Campus, London, UK
| | - Jonathan Krell
- Division of Cancer, Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
26
|
Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells 2015; 33:2381-90. [PMID: 25821200 DOI: 10.1002/stem.2007] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/08/2015] [Indexed: 12/22/2022]
Abstract
The homeobox domain transcription factor NANOG, a key regulator of embryonic development and cellular reprogramming, has been reported to be broadly expressed in human cancers. Functional studies have provided strong evidence that NANOG possesses protumorigenic attributes. In addition to promoting self-renewal and long-term proliferative potential of stem-like cancer cells, NANOG-mediated oncogenic reprogramming may underlie clinical manifestations of malignant disease. In this review, we examine the molecular origin, expression, biological activities, and mechanisms of action of NANOG in various malignancies. We also consider clinical implications such as correlations between NANOG expression and cancer prognosis and/or response to therapy. We surmise that NANOG potentiates the molecular circuitry of tumorigenesis, and thus may represent a novel therapeutic target or biomarker for the diagnosis, prognosis, and treatment outcome of cancer. Finally, we present critical pending questions relating NANOG to cancer stem cells and tumor development.
Collapse
Affiliation(s)
- Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Tao Yang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junchen Wang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Yang F, Zhang J, Liu Y, Cheng D, Wang H. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes. Int J Biochem Cell Biol 2015; 59:142-52. [DOI: 10.1016/j.biocel.2014.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
|
28
|
Chestkov IV, Khomyakova EA, Vasilieva EA, Lagarkova MA, Kiselev SL. Molecular barriers to processes of genetic reprogramming and cell transformation. BIOCHEMISTRY. BIOKHIMIIA 2014; 79:1297-1307. [PMID: 25716723 DOI: 10.1134/s0006297914120037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genetic reprogramming by ectopic expression of transcription factor genes induces the pluripotent state in somatic cells. This technology provides an opportunity to establish pluripotent stem cells for each person, as well as to get better understanding of epigenetic mechanisms controlling cell state. Interestingly, some of the molecular processes that accompany somatic cell reprogramming in vitro are also characteristic for tumor manifestation. Thus, similar "molecular barriers" that control the stability of epigenetic state exist for both processes of pluripotency induction and malignant transformation. The reprogramming of tumor cells is interesting in two aspects: first, it will determine the contribution of epigenetic changes in carcinogenesis; second, it gives an approach to evaluate tumor stem cells that are supposed to form the entire cell mass of the tumor. This review discusses the key stages of genetic reprogramming, the similarity and difference between the reprogramming process and malignant transformation.
Collapse
Affiliation(s)
- I V Chestkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
29
|
Mattoo AR, Zhang J, Espinoza LA, Jessup JM. Inhibition of NANOG/NANOGP8 downregulates MCL-1 in colorectal cancer cells and enhances the therapeutic efficacy of BH3 mimetics. Clin Cancer Res 2014; 20:5446-55. [PMID: 25208882 DOI: 10.1158/1078-0432.ccr-14-1134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE High levels of BCL-2 family members in colorectal carcinoma cause resistance to treatment. Inhibition of NANOG or its paralog NANOGP8 reduces the proliferation, stemness, and tumorigenicity of colorectal carcinoma cells. Our hypothesis was that inhibition of NANOG/NANOGP8 enhances the cytotoxic effect of BH3 mimetics targeting BCL-2 family members in colorectal carcinoma cells through reducing expression of MCL-1, a prosurvival BCL-2 protein. EXPERIMENTAL DESIGN Lentiviral vector (LV) shRNA to NANOG (shNG-1) or NANOGP8 (shNp8-1) transduced colorectal carcinoma cells that were also exposed to the BH3 mimetics ABT-737 or ABT-199 in vivo in colorectal carcinoma xenografts and in vitro where proliferation, protein and gene expression, and apoptosis were measured. RESULTS Clone A and CX-1 were sensitive to ABT-737 and ABT-199 at IC50s of 2 to 9 μmol/L but LS174T was resistant with IC50s of 18 to 30 μmol/L. Resistance was associated with high MCL-1 expression in LS174T. LVshNG-1 or LVshNp8-1 decreased MCL-1 expression, increased apoptosis, and decreased replating efficiency in colorectal carcinoma cells treated with either ABT-737 or ABT-199 compared with the effects of either BH3 mimetic alone. Inhibition or overexpression of MCL-1 alone replicated the effects of LVshNG-1 or LVshNp8-1 in increasing or decreasing the apoptosis caused with the BH3 mimetic. The combination therapy inhibited the growth of LS174T xenografts in vivo compared with untreated controls or treatment with only LV shRNA or ABT-737. CONCLUSIONS Inhibition of NANOGP8 or NANOG enhances the cytotoxicity of BH3 mimetics that target BCL-2 family members. Gene therapy targeting the NANOGs may increase the efficacy of BH3 mimetics in colorectal carcinoma.
Collapse
Affiliation(s)
- Abid R Mattoo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jingyu Zhang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Luis A Espinoza
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - J Milburn Jessup
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland. Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
30
|
Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun 2014; 5:4226. [PMID: 24979572 DOI: 10.1038/ncomms5226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
NANOG is a pluripotency transcription factor in embryonic stem cells; however, its role in adult tissues remains largely unexplored. Here we show that mouse NANOG is selectively expressed in stratified epithelia, most notably in the oesophagus where the Nanog promoter is hypomethylated. Interestingly, inducible ubiquitous overexpression of NANOG in mice causes hyperplasia selectively in the oesophagus, in association with increased cell proliferation. NANOG transcriptionally activates the mitotic programme, including Aurora A kinase (Aurka), in stratified epithelia, and endogenous NANOG directly binds to the Aurka promoter in primary keratinocytes. Interestingly, overexpression of Nanog or Aurka in mice increased proliferation and aneuploidy in the oesophageal basal epithelium. Finally, inactivation of NANOG in cell lines from oesophageal or head and neck squamous cell carcinomas (ESCCs or HNSCCs, respectively) results in lower levels of AURKA and decreased proliferation, and NANOG and AURKA expression are positively correlated in HNSCCs. Together, these results indicate that NANOG has a lineage-restricted mitogenic function in stratified epithelia.
Collapse
|
31
|
An expressed retrogene of the master embryonic stem cell gene POU5F1 is associated with prostate cancer susceptibility. Am J Hum Genet 2014; 94:395-404. [PMID: 24581739 DOI: 10.1016/j.ajhg.2014.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/31/2014] [Indexed: 12/21/2022] Open
Abstract
Genetic association studies of prostate and other cancers have identified a major risk locus at chromosome 8q24. Several independent risk variants at this locus alter transcriptional regulatory elements, but an affected gene and mechanism for cancer predisposition have remained elusive. The retrogene POU5F1B within the locus has a preserved open reading frame encoding a homolog of the master embryonic stem cell transcription factor Oct4. We find that 8q24 risk alleles are expression quantitative trait loci correlated with reduced expression of POU5F1B in prostate tissue and that predicted deleterious POU5F1B missense variants are also associated with risk of transformation. POU5F1 is known to be self-regulated by the encoded Oct4 transcription factor. We further observe that POU5F1 expression is directly correlated with POU5F1B expression. Our results suggest that a pathway critical to self-renewal of embryonic stem cells may also have a role in the origin of cancer.
Collapse
|
32
|
Liu B, Badeaux MD, Choy G, Chandra D, Shen I, Jeter CR, Rycaj K, Lee CF, Person MD, Liu C, Chen Y, Shen J, Jung SY, Qin J, Tang DG. Nanog1 in NTERA-2 and recombinant NanogP8 from somatic cancer cells adopt multiple protein conformations and migrate at multiple M.W species. PLoS One 2014; 9:e90615. [PMID: 24598770 PMCID: PMC3944193 DOI: 10.1371/journal.pone.0090615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/29/2014] [Indexed: 12/12/2022] Open
Abstract
Human Nanog1 is a 305-amino acid (aa) homeodomain-containing transcription factor critical for the pluripotency of embryonic stem (ES) and embryonal carcinoma (EC) cells. Somatic cancer cells predominantly express a retrogene homolog of Nanog1 called NanogP8, which is ∼99% similar to Nanog at the aa level. Although the predicted M.W of Nanog1/NanogP8 is ∼35 kD, both have been reported to migrate, on Western blotting (WB), at apparent molecular masses of 29–80 kD. Whether all these reported protein bands represent authentic Nanog proteins is unclear. Furthermore, detailed biochemical studies on Nanog1/NanogpP8 have been lacking. By combining WB using 8 anti-Nanog1 antibodies, immunoprecipitation, mass spectrometry, and studies using recombinant proteins, here we provide direct evidence that the Nanog1 protein in NTERA-2 EC cells exists as multiple M.W species from ∼22 kD to 100 kD with a major 42 kD band detectable on WB. We then demonstrate that recombinant NanogP8 (rNanogP8) proteins made in bacteria using cDNAs from multiple cancer cells also migrate, on denaturing SDS-PAGE, at ∼28 kD to 180 kD. Interestingly, different anti-Nanog1 antibodies exhibit differential reactivity towards rNanogP8 proteins, which can spontaneously form high M.W protein species. Finally, we show that most long-term cultured cancer cell lines seem to express very low levels of or different endogenous NanogP8 protein that cannot be readily detected by immunoprecipitation. Altogether, the current study reveals unique biochemical properties of Nanog1 in EC cells and NanogP8 in somatic cancer cells.
Collapse
Affiliation(s)
- Bigang Liu
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Mark D. Badeaux
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Grace Choy
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Dhyan Chandra
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Irvin Shen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Collene R. Jeter
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Kiera Rycaj
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Chia-Fang Lee
- College of Pharmacy, University of Texas, Austin, Texas, United States of America
| | - Maria D. Person
- College of Pharmacy, University of Texas, Austin, Texas, United States of America
| | - Can Liu
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Yueping Chen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Jianjun Shen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jun Qin
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dean G. Tang
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Iv Santaliz-Ruiz LE, Xie X, Old M, Teknos TN, Pan Q. Emerging role of nanog in tumorigenesis and cancer stem cells. Int J Cancer 2014; 135:2741-8. [PMID: 24375318 DOI: 10.1002/ijc.28690] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
Nanog is a transcription factor that is well-established as a key regulator of embryonic stem cell (ESC) maintenance. Recent evidence demonstrates that Nanog is dysregulated and intimately involved in promoting tumorigenesis in part through regulation of the cancer stem cell (CSC) population. Elevated Nanog is associated with poorer outcome in numerous epithelial malignancies. Nanog is enriched in CSCs and ablation of Nanog is sufficient to reduce the CSC pool. Nanog has also been implicated to promote chemoresistance and epithelial-mesenchymal transition (EMT). Insight into the Nanog signaling cascade, upstream regulators and downstream effectors, is beginning to emerge but remains to be fully elucidated. This review highlights the current literature on the emerging role of Nanog in tumorigenesis and CSCs.
Collapse
Affiliation(s)
- Luis E Iv Santaliz-Ruiz
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | | | | |
Collapse
|