1
|
Duan CY, Li Y, Zhi HY, Tian Y, Huang ZY, Chen SP, Zhang Y, Liu Q, Zhou L, Jiang XG, Ullah K, Guo Q, Liu ZH, Xu Y, Han JH, Hou J, O'Connor DP, Xu G. E3 ubiquitin ligase UBR5 modulates circadian rhythm by facilitating the ubiquitination and degradation of the key clock transcription factor BMAL1. Acta Pharmacol Sin 2024; 45:1793-1808. [PMID: 38740904 PMCID: PMC11336169 DOI: 10.1038/s41401-024-01290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The circadian clock is the inner rhythm of life activities and is controlled by a self-sustained and endogenous molecular clock, which maintains a ~ 24 h internal oscillation. As the core element of the circadian clock, BMAL1 is susceptible to degradation through the ubiquitin-proteasome system (UPS). Nevertheless, scant information is available regarding the UPS enzymes that intricately modulate both the stability and transcriptional activity of BMAL1, affecting the cellular circadian rhythm. In this work, we identify and validate UBR5 as a new E3 ubiquitin ligase that interacts with BMAL1 by using affinity purification, mass spectrometry, and biochemical experiments. UBR5 overexpression induced BMAL1 ubiquitination, leading to diminished stability and reduced protein level of BMAL1, thereby attenuating its transcriptional activity. Consistent with this, UBR5 knockdown increases the BMAL1 protein. Domain mapping discloses that the C-terminus of BMAL1 interacts with the N-terminal domains of UBR5. Similarly, cell-line-based experiments discover that HYD, the UBR5 homolog in Drosophila, could interact with and downregulate CYCLE, the BMAL1 homolog in Drosophila. PER2-luciferase bioluminescence real-time reporting assay in a mammalian cell line and behavioral experiments in Drosophila reveal that UBR5 or hyd knockdown significantly reduces the period of the circadian clock. Therefore, our work discovers a new ubiquitin ligase UBR5 that regulates BMAL1 stability and circadian rhythm and elucidates the underlying molecular mechanism. This work provides an additional layer of complexity to the regulatory network of the circadian clock at the post-translational modification level, offering potential insights into the modulation of the dysregulated circadian rhythm.
Collapse
Affiliation(s)
- Chun-Yan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Dublin, Ireland
| | - Yue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Hao-Yu Zhi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Yao Tian
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Zheng-Yun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Su-Ping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Xiao-Gang Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Qing Guo
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, 215123, China
| | - Zhao-Hui Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Jun-Hai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Darran P O'Connor
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Dublin, Ireland
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
McClendon LK, Lanz RB, Panigrahi A, Gomez K, Bolt MJ, Liu M, Stossi F, Mancini MA, Dacso CC, Lonard DM, O'Malley BW. Transcriptional coactivation of NRF2 signaling in cardiac fibroblasts promotes resistance to oxidative stress. J Mol Cell Cardiol 2024; 194:70-84. [PMID: 38969334 DOI: 10.1016/j.yjmcc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
We recently discovered that steroid receptor coactivators (SRCs) SRCs-1, 2 and 3, are abundantly expressed in cardiac fibroblasts (CFs) and their activation with the SRC small molecule stimulator MCB-613 improves cardiac function and dramatically lowers pro-fibrotic signaling in CFs post-myocardial infarction. These findings suggest that CF-derived SRC activation could be beneficial in the mitigation of chronic heart failure after ischemic insult. However, the cardioprotective mechanisms by which CFs contribute to cardiac pathological remodeling are unclear. Here we present studies designed to identify the molecular and cellular circuitry that governs the anti-fibrotic effects of an MCB-613 derivative, MCB-613-10-1, in CFs. We performed cytokine profiling and whole transcriptome and proteome analyses of CF-derived signals in response to MCB-613-10-1. We identified the NRF2 pathway as a direct MCB-613-10-1 therapeutic target for promoting resistance to oxidative stress in CFs. We show that MCB-613-10-1 promotes cell survival of anti-fibrotic CFs exposed to oxidative stress by suppressing apoptosis. We demonstrate that an increase in HMOX1 expression contributes to CF resistance to oxidative stress-mediated apoptosis via a mechanism involving SRC co-activation of NRF2, hence reducing inflammation and fibrosis. We provide evidence that MCB-613-10-1 acts as a protectant against oxidative stress-induced mitochondrial damage. Our data reveal that SRC stimulation of the NRF2 transcriptional network promotes resistance to oxidative stress and highlights a mechanistic approach toward addressing pathologic cardiac remodeling.
Collapse
Affiliation(s)
- Lisa K McClendon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Kristan Gomez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Min Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
3
|
Tsai JM, Aguirre JD, Li YD, Brown J, Focht V, Kater L, Kempf G, Sandoval B, Schmitt S, Rutter JC, Galli P, Sandate CR, Cutler JA, Zou C, Donovan KA, Lumpkin RJ, Cavadini S, Park PMC, Sievers Q, Hatton C, Ener E, Regalado BD, Sperling MT, Słabicki M, Kim J, Zon R, Zhang Z, Miller PG, Belizaire R, Sperling AS, Fischer ES, Irizarry R, Armstrong SA, Thomä NH, Ebert BL. UBR5 forms ligand-dependent complexes on chromatin to regulate nuclear hormone receptor stability. Mol Cell 2023; 83:2753-2767.e10. [PMID: 37478846 PMCID: PMC11134608 DOI: 10.1016/j.molcel.2023.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yen-Der Li
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jared Brown
- Department of Data Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Vivian Focht
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Brittany Sandoval
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stefan Schmitt
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Justine C Rutter
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pius Galli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| | - Colby R Sandate
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jevon A Cutler
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Charles Zou
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ryan J Lumpkin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Paul M C Park
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Quinlan Sievers
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlie Hatton
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ener
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Brandon D Regalado
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Micah T Sperling
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mikołaj Słabicki
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeonghyeon Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Rebecca Zon
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zinan Zhang
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Peter G Miller
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Roger Belizaire
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Adam S Sperling
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Rafael Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Scott A Armstrong
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Benjamin L Ebert
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Tiwari PK, Ko TH, Dubey R, Chouhan M, Tsai LW, Singh HN, Chaubey KK, Dayal D, Chiang CW, Kumar S. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics. Front Mol Biosci 2023; 10:1214489. [PMID: 37469704 PMCID: PMC10352522 DOI: 10.3389/fmolb.2023.1214489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a third-generation genome editing method that has revolutionized the world with its high throughput results. It has been used in the treatment of various biological diseases and infections. Various bacteria and other prokaryotes such as archaea also have CRISPR/Cas9 systems to guard themselves against bacteriophage. Reportedly, CRISPR/Cas9-based strategy may inhibit the growth and development of triple-negative breast cancer (TNBC) via targeting the potentially altered resistance genes, transcription, and epigenetic regulation. These therapeutic activities could help with the complex issues such as drug resistance which is observed even in TNBC. Currently, various methods have been utilized for the delivery of CRISPR/Cas9 into the targeted cell such as physical (microinjection, electroporation, and hydrodynamic mode), viral (adeno-associated virus and lentivirus), and non-viral (liposomes and lipid nano-particles). Although different models have been developed to investigate the molecular causes of TNBC, but the lack of sensitive and targeted delivery methods for in-vivo genome editing tools limits their clinical application. Therefore, based on the available evidences, this review comprehensively highlighted the advancement, challenges limitations, and prospects of CRISPR/Cas9 for the treatment of TNBC. We also underscored how integrating artificial intelligence and machine learning could improve CRISPR/Cas9 strategies in TNBC therapy.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tin-Hsien Ko
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei City, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Centre, New York, NY, United States
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Karn V, Sandhya S, Hsu W, Parashar D, Singh HN, Jha NK, Gupta S, Dubey NK, Kumar S. CRISPR/Cas9 system in breast cancer therapy: advancement, limitations and future scope. Cancer Cell Int 2022; 22:234. [PMID: 35879772 PMCID: PMC9316746 DOI: 10.1186/s12935-022-02654-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the major causes of mortality worldwide, therefore it is considered a major health concern. Breast cancer is the most frequent type of cancer which affects women on a global scale. Various current treatment strategies have been implicated for breast cancer therapy that includes surgical removal, radiation therapy, hormonal therapy, chemotherapy, and targeted biological therapy. However, constant effort is being made to introduce novel therapies with minimal toxicity. Gene therapy is one of the promising tools, to rectify defective genes and cure various cancers. In recent years, a novel genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) has emerged as a gene-editing tool and transformed genome-editing techniques in a wide range of biological domains including human cancer research and gene therapy. This could be attributed to its versatile characteristics such as high specificity, precision, time-saving and cost-effective methodologies with minimal risk. In the present review, we highlight the role of CRISPR/Cas9 as a targeted therapy to tackle drug resistance, improve immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Vamika Karn
- Department of Biotechnology, Amity University, Mumbai, 410221, India
| | - Sandhya Sandhya
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wayne Hsu
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Deepak Parashar
- Department of Obstetrics and Gynaecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Himanshu Narayan Singh
- Department of System Biology, Columbia University Irving Medical Centre, New York, NY, 10032, USA
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei, 114757, Taiwan. .,ShiNeo Technology Co., Ltd., New Taipei City, 24262, Taiwan.
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, India.
| |
Collapse
|
6
|
Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, Wei F. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Am J Cancer Res 2022; 12:5086-5102. [PMID: 35836797 PMCID: PMC9274738 DOI: 10.7150/thno.74989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background: The up-regulation of PD-L1 is recognized as an adaption of cancer cells to evade immune surveillance and attack. However, the intrinsic mechanisms of the induction of PD-L1 by interferon-γ (IFN-γ) in tumor microenvironment remain incompletely characterized. Ubiquitin ligase E3 component N-recognition protein 5 (UBR5) has a critical role in tumorigenesis of triple negative breast cancer (TNBC) by triggering specific immune responses to the tumor. Dual targeting of UBR5 and PD-L1 exhibited superior therapeutic benefits in a preclinical TNBC model in short term. Methods: The regulation of UBR5 to PD-L1 upon IFN-γ stimulation was evaluated through in UBR5 deficiency, reconstitution or overexpression cell line models by quantitative PCR, immunohistochemistry and RNA-seq. The effects of PD-L1 regulation by UBR5 and double blockade of both genes were evaluated in mouse TNBC model. Luciferase reporter assay, chromatin immunoprecipitation-qPCR and bioinformatics analysis were performed to explore the transcription factors involved in the regulation of UBR5 to PD-L1. Results: E3 ubiquitin ligase UBR5 plays a key role in IFN-γ-induced PDL1 transcription in TNBC in an E3 ubiquitination activity-independent manner. RNA-seq-based transcriptomic analyses reveal that UBR5 globally affects the genes in the IFN-γ-induced signaling pathway. Through its poly adenylate binding (PABC) domain, UBR5 enhances the transactivation of PDL1 by upregulating protein kinase RNA-activated (PKR), and PKR's downstream factors including signal transducers and activators of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1). Restoration of PD-L1 expression in UBR5-deficient tumor cells recoups their malignancy in vivo, whereas CRISPR/Cas9-mediated simultaneous abrogation of UBR5 and PD-L1 expression yields synergistic therapeutic benefits than either blockade alone, with a strong impact on the tumor microenvironment. Conclusions: This study identifies a novel regulator of PDL1 transcription, elucidates the underlying molecular mechanisms and provides a strong rationale for combination cancer immunotherapies targeting UBR5 and PD-L1.
Collapse
Affiliation(s)
- Bingbing Wu
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Xiang
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York.,✉ Corresponding author: Fang Wei, 800 Dongchuan Road, Minghang, Shanghai 200240, China. Phone: 86-21-34205287; Fax: 86-21-34205287; E-mail: ; Xiaojing Ma,
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding author: Fang Wei, 800 Dongchuan Road, Minghang, Shanghai 200240, China. Phone: 86-21-34205287; Fax: 86-21-34205287; E-mail: ; Xiaojing Ma,
| |
Collapse
|
7
|
Jung JU, Ghosh A, Earnest S, Deaton SL, Cobb MH. UBR5 is a novel regulator of WNK1 stability. Am J Physiol Cell Physiol 2022; 322:C1176-C1186. [PMID: 35442829 DOI: 10.1152/ajpcell.00417.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The with no lysine (K) 1 (WNK1) protein kinase maintains cellular ion homeostasis in many tissues through actions on ion cotransporters and channels. Increased accumulation of WNK1 protein leads to pseudohypoaldosteronism type II (PHAII), a form of familial hypertension. WNK1 can be degraded via its adaptor-dependent recruitment to the Cullin3-RBX1 E3 ligase complex by the ubiquitin-proteasome system. Disruption of this process also leads to disease. To determine if this is the primary mechanism of WNK1 turnover, we examined WNK1 protein stability and degradation by measuring its rate of decay after blockade of translation. Here, we show that WNK1 protein degradation exhibits atypical kinetics in Hela cells. Consistent with this apparent complexity, we found that multiple degradative pathways can modulate cellular WNK1 protein amount. WNK1 protein is degraded not only by the proteasome, but also by the lysosome. Non-lysosomal cysteine proteases calpain and caspases also influence WNK1 degradation, as inhibitors of these proteases modestly increased WNK1 protein expression. Importantly, we discovered that the E3 ubiquitin ligase UBR5 interacts with WNK1 and its deficiency results in increased WNK1 protein. Our results further demonstrate that increased WNK1 in UBR5-depleted cells is attributable to reduced lysosomal degradation of WNK1 protein. Taken together, our findings provide insights into the multiplicity of degradative pathways involved in WNK1 turnover and uncover UBR5 as a previously unknown regulator of WNK1 protein stability that leads to lysosomal degradation of WNK1 protein.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anwesha Ghosh
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Staci L Deaton
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Bolt MJ, Singh P, Obkirchner CE, Powell RT, Mancini MG, Szafran AT, Stossi F, Mancini MA. Endocrine disrupting chemicals differentially alter intranuclear dynamics and transcriptional activation of estrogen receptor-α. iScience 2021; 24:103227. [PMID: 34712924 PMCID: PMC8529556 DOI: 10.1016/j.isci.2021.103227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Transcription is a highly regulated sequence of stochastic processes utilizing many regulators, including nuclear receptors (NR) that respond to stimuli. Endocrine disrupting chemicals (EDCs) in the environment can compete with natural ligands for nuclear receptors to alter transcription. As nuclear dynamics can be tightly linked to transcription, it is important to determine how EDCs affect NR mobility. We use an EPA-assembled set of 45 estrogen receptor-α (ERα) ligands and EDCs in our engineered PRL-Array model to characterize their effect upon transcription using fluorescence in situ hybridization and fluorescence recovery after photobleaching (FRAP). We identified 36 compounds that target ERα-GFP to a transcriptionally active, visible locus. Using a novel method for multi-region FRAP analysis we find a strong negative correlation between ERα mobility and inverse agonists. Our findings indicate that ERα mobility is not solely tied to transcription but affected highly by the chemical class binding the receptor.
Collapse
Affiliation(s)
- Michael J. Bolt
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Pankaj Singh
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Caroline E. Obkirchner
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Reid T. Powell
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
9
|
E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPα. Oncogene 2020; 40:262-276. [PMID: 33122826 DOI: 10.1038/s41388-020-01527-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 11/08/2022]
Abstract
Pancreatic cancer is one of the most fatal cancers in humans. While it thrives in a state of malnutrition, the mechanism by which pancreatic cancer cells adapt to metabolic stress through metabolic reprogramming remains unclear. Here, we showed that UBR5, an E3 ubiquitin ligase, was significantly upregulated in pancreatic cancer patient samples compared to the levels in adjacent normal tissues. Levels of UBR5 were closely related to a malignant phenotype and shorter survival among pancreatic cancer patients. Multivariate analyses also revealed that UBR5 overexpression was an independent predictor of poor outcomes among patients with pancreatic cancer. Functional assays revealed that UBR5 contributes to the growth of pancreatic cancer cells by inducing aerobic glycolysis. Furthermore, we demonstrated that UBR5 knockdown increased levels of fructose-1,6-bisphosphatase (FBP1), an important negative regulator in the process of aerobic glycolysis in many cancers. We found a significant negative correlation between levels of UBR5 and FBP1, further demonstrating that UBR5-induced aerobic glycolysis is dependent on FBP1 in pancreatic cancer cells. Mechanistically, UBR5 regulates FBP1 expression by modulating C/EBPα, directly binding to C/EBPα, and promoting its ubiquitination and degradation. Together, these results identify a mechanism used by pancreatic cancer cells to survive the nutrient-poor tumour microenvironment and also provide insight regarding the role of UBR5 in pancreatic cancer cell adaptation to metabolic stresses.
Collapse
|
10
|
Mukherjee R, Beykal B, Szafran AT, Onel M, Stossi F, Mancini MG, Lloyd D, Wright FA, Zhou L, Mancini MA, Pistikopoulos EN. Classification of estrogenic compounds by coupling high content analysis and machine learning algorithms. PLoS Comput Biol 2020; 16:e1008191. [PMID: 32970665 PMCID: PMC7538107 DOI: 10.1371/journal.pcbi.1008191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/06/2020] [Accepted: 07/25/2020] [Indexed: 12/28/2022] Open
Abstract
Environmental toxicants affect human health in various ways. Of the thousands of chemicals present in the environment, those with adverse effects on the endocrine system are referred to as endocrine-disrupting chemicals (EDCs). Here, we focused on a subclass of EDCs that impacts the estrogen receptor (ER), a pivotal transcriptional regulator in health and disease. Estrogenic activity of compounds can be measured by many in vitro or cell-based high throughput assays that record various endpoints from large pools of cells, and increasingly at the single-cell level. To simultaneously capture multiple mechanistic ER endpoints in individual cells that are affected by EDCs, we previously developed a sensitive high throughput/high content imaging assay that is based upon a stable cell line harboring a visible multicopy ER responsive transcription unit and expressing a green fluorescent protein (GFP) fusion of ER. High content analysis generates voluminous multiplex data comprised of minable features that describe numerous mechanistic endpoints. In this study, we present a machine learning pipeline for rapid, accurate, and sensitive assessment of the endocrine-disrupting potential of benchmark chemicals based on data generated from high content analysis. The multidimensional imaging data was used to train a classification model to ultimately predict the impact of unknown compounds on the ER, either as agonists or antagonists. To this end, both linear logistic regression and nonlinear Random Forest classifiers were benchmarked and evaluated for predicting the estrogenic activity of unknown compounds. Furthermore, through feature selection, data visualization, and model discrimination, the most informative features were identified for the classification of ER agonists/antagonists. The results of this data-driven study showed that highly accurate and generalized classification models with a minimum number of features can be constructed without loss of generality, where these machine learning models serve as a means for rapid mechanistic/phenotypic evaluation of the estrogenic potential of many chemicals. Chemical contaminants or toxicants pose environmental and health-related risks for exposure. The ability to rapidly understand their biological impact, specifically on a key modulator of important physiological and pathological states in the human body is essential for diagnosing and avoiding undesirable health outcomes during environmental emergencies. In this study, we use advanced data analytics for creating statistical models that can accurately predict the endocrinological activity of toxic chemicals based on high throughput/high content image analysis data. We focus on a subclass of chemicals that affect the estrogen receptor (ER), which is a pivotal transcriptional regulator in health and disease. The multidimensional imaging data of these benchmark chemicals are used to train a classification model to ultimately predict the impact of unknown compounds on the ER, either as agonists or antagonists. To this end, we evaluate linear and nonlinear classifiers for predicting the estrogenic activity of unknown compounds and use feature selection, data visualization, and model discrimination methodologies to identify the most informative features for the classification of ER agonists/antagonists.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| | - Burcu Beykal
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
| | - Adam T. Szafran
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melis Onel
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
| | - Fabio Stossi
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Maureen G. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Dillon Lloyd
- Bioinformatics Research Center, Center for Human Health and the Environment, Department of Statistics, North Carolina State University, Raleigh, NC, United States of America
| | - Fred A. Wright
- Bioinformatics Research Center, Center for Human Health and the Environment, Department of Statistics, North Carolina State University, Raleigh, NC, United States of America
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, United States of America
| | - Michael A. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
- Texas A&M University Institute for Bioscience and Technology, Houston, TX, United States of America
- Pharmacology and Chemical Genomics, Baylor College of Medicine, Houston, TX, United States of America
| | - Efstratios N. Pistikopoulos
- Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yang Y, Zhao J, Mao Y, Lin G, Li F, Jiang Z. UBR5 over-expression contributes to poor prognosis and tamoxifen resistance of ERa+ breast cancer by stabilizing β-catenin. Breast Cancer Res Treat 2020; 184:699-710. [PMID: 32914356 DOI: 10.1007/s10549-020-05899-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/29/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tamoxifen (TAM) resistance is a critical clinical challenge in the treatment of ERa+ breast cancer. However, the underlying mechanisms involved in TAM-resistance are not fully understood. Here we study the efficacy of UBR5 in predicting TAM-resistance in ERa+ breast cancer. METHODS Western blot RT-PCR and IHC staining were used to evaluate UBR5 protein and mRNA levels in ERa+ breast cancer cell and tissues. MTT assays and colony formation assays were used to measure cell proliferation. The xeno-graft tumor model was used for in vivo study. We performed protein stability assay and ubiquitin assay to detect β-catenin protein degradation. Immuno-precipitation assay was used to detect the interaction between UBR5 and β-catenin. The ubiquitin-based immuno-precipitation based assay was used to detect the ubiquitination of β-catenin. RESULTS High UBR5 expression was correlated with poor prognosis in ER+ breast cancer. Importantly, UBR5 expression was remarkably upregulated in TAM-refractory breast cancer tissues compared with their primary paired TAM-untreated tissues. Additionally, UBR5 overexpression caused tamoxifen-resistance in vitro, whereas UBR5 knockdown increased TAM sensitivity. Mechanistic investigations revealed that UBR5 overexpression, through its ubiquitin ligase catalyzing activity, led to up-regulation of β-catenin expression and activity. Finally, our results confirmed that TAM-resistance promoting effects by UBR5 in ERa+ breast cancer cells was at least partly due to β-catenin stabilization, and inhibition of the UBR5/β-catenin signaling re-sensitizing the resistant breast cancer cells to tamoxifen in vivo. CONCLUSIONS These findings suggested that UBR5/β-catenin signaling might be a potential therapeutic target for TAM-resistant ERa+ breast cancer.
Collapse
Affiliation(s)
- Yanfang Yang
- Second Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jing Zhao
- Department of Ultrasound Diagnosis, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Yiran Mao
- Department of Ultrasound Diagnosis, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Gu Lin
- Second Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, Tianjin Medical University, Tianjin, China.
| | - Fangxuan Li
- Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
| | - Zhansheng Jiang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
12
|
Tamashunas AC, Tocco VJ, Matthews J, Zhang Q, Atanasova KR, Paschall L, Pathak S, Ratnayake R, Stephens AD, Luesch H, Licht JD, Lele TP. High-throughput gene screen reveals modulators of nuclear shape. Mol Biol Cell 2020; 31:1392-1402. [PMID: 32320319 PMCID: PMC7353136 DOI: 10.1091/mbc.e19-09-0520] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Irregular nuclear shapes characterized by blebs, lobules, micronuclei, or invaginations are hallmarks of many cancers and human pathologies. Despite the correlation between abnormal nuclear shape and human pathologies, the mechanism by which the cancer nucleus becomes misshapen is not fully understood. Motivated by recent evidence that modifying chromatin condensation can change nuclear morphology, we conducted a high-throughput RNAi screen to identify epigenetic regulators that are required to maintain normal nuclear shape in human breast epithelial MCF-10A cells. We silenced 608 genes in parallel using an epigenetics siRNA library and used an unbiased Fourier analysis approach to quantify nuclear contour irregularity from fluorescent images captured on a high-content microscope. Using this quantitative approach, which we validated with confocal microscopy, we significantly expand the list of epigenetic regulators that impact nuclear morphology.
Collapse
Affiliation(s)
| | | | - James Matthews
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | | | - Kalina R. Atanasova
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | | | | | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | - Jonathan D. Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, FL 32610
| | | |
Collapse
|
13
|
Stossi F, Dandekar RD, Mancini MG, Gu G, Fuqua SAW, Nardone A, De Angelis C, Fu X, Schiff R, Bedford MT, Xu W, Johansson HE, Stephan CC, Mancini MA. Estrogen-induced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Res 2020; 48:1800-1810. [PMID: 31930333 PMCID: PMC7039002 DOI: 10.1093/nar/gkz1172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are pivotal modulators of pathophysiological processes in many organs, where they interact with nuclear receptors to regulate gene transcription. However, our understanding of hormone action at the single cell level remains incomplete. Here, we focused on estrogen stimulation of the well-characterized GREB1 and MYC target genes that revealed large differences in cell-by-cell responses, and, more interestingly, between alleles within the same cell, both over time and hormone concentration. We specifically analyzed the role of receptor level and activity state during allele-by-allele regulation and found that neither receptor level nor activation status are the determinant of maximal hormonal response, indicating that additional pathways are potentially in place to modulate cell- and allele-specific responses. Interestingly, we found that a small molecule inhibitor of the arginine methyltransferases CARM1 and PRMT6 was able to increase, in a gene specific manner, the number of active alleles/cell before and after hormonal stimulation, suggesting that mechanisms do indeed exist to modulate hormone receptor responses at the single cell and allele level.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
- Gulf Coast Consortia Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
| | - Radhika D Dandekar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Gulf Coast Consortia Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
| | - Guowei Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suzanne A W Fuqua
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Agostina Nardone
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyong Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Schiff
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | | | - Clifford C Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
- Gulf Coast Consortia Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Jiang CF, Shi ZM, Li DM, Qian YC, Ren Y, Bai XM, Xie YX, Wang L, Ge X, Liu WT, Zhen LL, Liu LZ, Jiang BH. Estrogen-induced miR-196a elevation promotes tumor growth and metastasis via targeting SPRED1 in breast cancer. Mol Cancer 2018; 17:83. [PMID: 29685157 PMCID: PMC5914046 DOI: 10.1186/s12943-018-0830-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Estrogen plays a critical role in breast cancer (BC) progression through estrogen receptor (ER)-mediated gene regulation. Emerging studies suggest that the malignant progress of BC cells is influenced by the cross talk between microRNAs (miRNAs) and ER-α signaling. However, the mechanism and functional linkage between estrogen and miRNAs remain unclear. METHODS The expression levels of miR-196a and SPRED1 in BC were tested by qRT-PCR in 46 paired BC and adjacent tissues and by the GEO datasets. The role of miR-196a in estrogen-induced BC development was examined by CCK-8 assay, wound healing assay, Matrigel invasion assay and tumorigenicity assay in nude mice. The binding site of ER-α in miR-196a promoter region was analyzed by ChIP-seq, ChIP assay and luciferase reporter assay. The potential targets of miR-196a in BC cells were explored using the luciferase reporter assay and western blot analysis, and the correlation between miR-196a and SPRED1 was analyzed by Spearman's correlation analysis in BC specimens and GEO dataset. TCGA BRCA data was used to characterize the ESR1 signatures according to MSigDB gene set. RESULTS The expression levels of miR-196a were higher in ER-positive (ER+) breast tumors compared to ER-negative (ER-) tumor tissue samples. Besides, miR-196a was involved in estrogen-induced BC cell proliferation, migration and invasion. Notably, the up-regulation of miR-196a was mediated by a direct interaction with estrogen receptor α (ER-α) but not estrogen receptor β (ER-β) in its promoter region, and miR-196a expression levels were positively correlated to ER-α signature scores. Furthermore, SPRED1 was a new direct target of miR-196a which participated in miR-196a-promoted BC development and was suppressed by ligand-activated ER-α signal pathway. Finally, forced expression of miR-196a induced tumor growth of MCF7 cells, while inhibition of miR-196a significantly suppressed the tumor progress in vivo. CONCLUSIONS Overall, the identification of estrogen/miR-196a/SPRED1 cascade will shed light on new molecular mechanism of estrogen signaling in BC development and therapy.
Collapse
Affiliation(s)
- Cheng-Fei Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Zhu-Mei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Dong-Mei Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022 People’s Republic of China
| | - Ying-Chen Qian
- Key Laboratory of Human Functional Genomics of Jiangsu Province, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Yi Ren
- Department of Breast and Thyroid Surgery, Huai’an First People’s Hospital, Nanjing Medical University, 6 Beijing Road West, Huai’an, China
| | - Xiao-Ming Bai
- Key Laboratory of Human Functional Genomics of Jiangsu Province, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Yun-Xia Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Lin Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Xin Ge
- Key Laboratory of Human Functional Genomics of Jiangsu Province, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Wei-Tao Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Lin-Lin Zhen
- Department of Breast and Thyroid Surgery, Huai’an First People’s Hospital, Nanjing Medical University, 6 Beijing Road West, Huai’an, China
| | - Ling-Zhi Liu
- Department of Pathology, University of Iowa, 25 S. Grand Avenue, Iowa City, USA
| | - Bing-Hua Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment Department of Pathology, Cancer Center, Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
- Department of Pathology, University of Iowa, 25 S. Grand Avenue, Iowa City, USA
| |
Collapse
|
15
|
Yang H, Jaeger M, Walker A, Wei D, Leiker K, Weitao T. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing. J Cancer 2018; 9:219-231. [PMID: 29344267 PMCID: PMC5771328 DOI: 10.7150/jca.22554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.
Collapse
Affiliation(s)
- Haitao Yang
- Laboratory for Cancer Genome Editing, Zhuhai Lifecode Medical Technologies. Inc. Department of Prenatal Diagnosis, Huizhou 2nd Hospital for Children and Women, #101 University Road, Tangjiawan, Zhuhai, 518900, Guangdong, China
| | - MariaLynn Jaeger
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Averi Walker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Daniel Wei
- University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Katie Leiker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| |
Collapse
|
16
|
Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, Pan Y, Chouchane L, Ma X. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res 2017; 77:2090-2101. [PMID: 28330927 DOI: 10.1158/0008-5472.can-16-2409] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
Abstract
Patients with triple-negative breast cancers (TNBC) are at high risk for recurrence and metastasis at an early time despite standard treatment, underscoring the need for novel therapeutic modalities. Here, we report for the first time a distinctive and profound role of the E3 ubiquitin ligase UBR5 in the growth and metastasis of TNBC. An analysis of primary TNBC specimen by whole-exon sequencing revealed strong gene amplifications of UBR5 associated with the disease. UBR5 overexpression in TNBC tissues was confirmed at mRNA and protein levels. CRISPR/Cas9-mediated deletion of ubr5 in an experimental murine mammary carcinoma model of TNBC dramatically abrogated tumor growth and metastasis in vivo, which could be reversed completely via reconstitution with wild-type UBR5 but not a catalytically inactive mutant. Loss of UBR5 caused an impairment in angiogenesis within the tumor, associated with increased apoptosis, necrosis, and growth arrest. Absence of UBR5 in the tumor triggered aberrant epithelial-to-mesenchymal transition, principally via abrogated expression of E-cadherin, which resulted in severely reduced tumor metastasis to secondary organs. Use of NOD/SCID mice revealed that tumor-derived UBR5 facilitated tumor growth in a manner completely dependent upon immune cells in the microenvironment, whereas it promoted metastasis in a tumor cell-autonomous fashion. Our findings unveil UBR5 as a novel and critical regulator of tumor growth, metastasis, and immune response and highlight the potential for UBR5 as an effective therapeutic target for the treatment of highly aggressive breast and ovarian cancers that fail conventional therapy. Cancer Res; 77(8); 2090-101. ©2017 AACR.
Collapse
Affiliation(s)
- Liqiu Liao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Xin Li
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lili Tang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Lixing Zhang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yihang Pan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Xiaojing Ma
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York.,State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Yang M, Jiang N, Cao QW, Ma MQ, Sun Q. The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1. Biochem Biophys Res Commun 2016; 478:1624-9. [DOI: 10.1016/j.bbrc.2016.08.170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 01/27/2023]
|
18
|
Chen R, Zhu J, Dong Y, He C, Hu X. Suppressor of Ty homolog-5, a novel tumor-specific human telomerase reverse transcriptase promoter-binding protein and activator in colon cancer cells. Oncotarget 2016; 6:32841-55. [PMID: 26418880 PMCID: PMC4741733 DOI: 10.18632/oncotarget.5301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/05/2015] [Indexed: 12/14/2022] Open
Abstract
The human telomerase reverse transcriptase (hTERT) promoter promotes differential hTERT gene expression in tumor cells and normal cells. However, information on the mechanisms underlying the differential hTERT transcription and induction of telomerase activity in tumor cells is limited. In the present study, suppressor of Ty homolog-5 (SPT5), a protein encoded by the SUPT5H gene, was identified as a novel tumor-specific hTERT promoter-binding protein and activator in colon cancer cells. We verified the tumor-specific binding activity of SPT5 to the hTERT promoter in vitro and in vivo and detected high expression levels of SUPT5H in colorectal cancer cell lines and primary human colorectal cancer tissues. SUPT5H was more highly expressed in colorectal cancer cases with distant metastasis than in cases without distant metastasis. Inhibition of endogenous SUPT5H expression by SUPT5H gene-specific short hairpin RNAs effectively attenuated hTERT promoter-driven green fluorescent protein (GFP) expression, whereas no detectable effects on CMV promoter-driven GFP expression in the same cells were observed. In addition, inhibition of SUPT5H expression not only effectively repressed telomerase activity, accelerated telomere shortening, and promoted cell senescence in colon cancer cells, but also suppressed cancer cell growth and migration. Our results demonstrated that SPT5 contributes to the up-regulation of hTERT expression and tumor development, and SUPT5H may potentially be used as a novel tumor biomarker and/or cancer therapeutic target.
Collapse
Affiliation(s)
- Rui Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jing Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Yong Dong
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Chao He
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
19
|
A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A. Cell Discov 2016; 2:16014. [PMID: 27462461 PMCID: PMC4877570 DOI: 10.1038/celldisc.2016.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
The regulation of stability is particularly crucial for unstable proteins in cells. However, a convenient and unbiased method of identifying regulators of protein stability remains to be developed. Recently, a genome-scale CRISPR-Cas9 library has been established as a genetic tool to mediate loss-of-function screening. Here, we developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome CRISPR-Cas9 library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Using Cdc25A as an example, Cul4B-DDB1DCAF8 was identified as a new E3 ligase for Cdc25A. Moreover, the acetylation of Cdc25A at lysine 150, which was acetylated by p300/CBP and deacetylated by HDAC3, prevented the ubiquitin-mediated degradation of Cdc25A by the proteasome. This is the first study to report that acetylation, as a novel posttranslational modification, modulates Cdc25A stability, and we suggest that this unbiased CRISPR-Cas9 screening method at the genome scale may be widely used to globally identify regulators of protein stability.
Collapse
|
20
|
Judson R, Houck K, Martin M, Richard AM, Knudsen TB, Shah I, Little S, Wambaugh J, Woodrow Setzer R, Kothiya P, Phuong J, Filer D, Smith D, Reif D, Rotroff D, Kleinstreuer N, Sipes N, Xia M, Huang R, Crofton K, Thomas RS. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space. Toxicol Sci 2016; 152:323-39. [PMID: 27208079 DOI: 10.1093/toxsci/kfw092] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment.
Collapse
Affiliation(s)
- Richard Judson
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina;
| | - Keith Houck
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Matt Martin
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Ann M Richard
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Thomas B Knudsen
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Imran Shah
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Stephen Little
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - John Wambaugh
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - R Woodrow Setzer
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Parth Kothiya
- Contractor to the U.S. EPA National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Jimmy Phuong
- Contractor to the U.S. EPA National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Dayne Filer
- ORISE Fellow at the U.S. EPA National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Doris Smith
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - David Reif
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | - Daniel Rotroff
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | | | - Nisha Sipes
- National Toxicology Program, Research Triangle Park, North Carolina
| | - Menghang Xia
- NIH National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Ruili Huang
- NIH National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Kevin Crofton
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| | - Russell S Thomas
- *U.S. EPA, National Center for Computational Toxicology, Research Triangle Park, North Carolina
| |
Collapse
|
21
|
Treviño LS, Bolt MJ, Grimm SL, Edwards DP, Mancini MA, Weigel NL. Differential Regulation of Progesterone Receptor-Mediated Transcription by CDK2 and DNA-PK. Mol Endocrinol 2015; 30:158-72. [PMID: 26652902 DOI: 10.1210/me.2015-1144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progesterone receptor (PR) function is altered by cell signaling, but the mechanisms of kinase-specific regulation are not well defined. To examine the role of cell signaling in the regulation of PR transcriptional activity, we have utilized a previously developed mammalian-based estrogen-response element promoter array cell model and automated cell imaging and analysis platform to visualize and quantify effects of specific kinases on different mechanistic steps of PR-mediated target gene activation. For these studies, we generated stable estrogen-response element array cell lines expressing inducible chimeric PR that contains a swap of the estrogen receptor-α DNA-binding domain for the DNA-binding domain of PR. We have focused on 2 kinases important for steroid receptor activity: cyclin-dependent kinase 2 and DNA-dependent protein kinase. Treatment with either a Cdk1/2 inhibitor (NU6102) or a DNA-dependent protein kinase inhibitor (NU7441) decreased hormone-mediated chromatin decondensation and transcriptional activity. Further, we observed a quantitative reduction in the hormone-mediated recruitment of select coregulator proteins with NU6102 that is not observed with NU7441. In parallel, we determined the effect of kinase inhibition on hormone-mediated induction of primary and mature transcripts of endogenous genes in T47D breast cancer cells. Treatment with NU6102 was much more effective than NU7441, in inhibiting induction of PR target genes that exhibit a rapid increase in primary transcript expression in response to hormone. Taken together, these results indicate that the 2 kinases regulate PR transcriptional activity by distinct mechanisms.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael J Bolt
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Sandra L Grimm
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Dean P Edwards
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael A Mancini
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Nancy L Weigel
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
22
|
Shearer RF, Iconomou M, Watts CKW, Saunders DN. Functional Roles of the E3 Ubiquitin Ligase UBR5 in Cancer. Mol Cancer Res 2015; 13:1523-32. [PMID: 26464214 DOI: 10.1158/1541-7786.mcr-15-0383] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) is an important regulator of cell signaling and proteostasis, which are essential to a variety of cellular processes. The UPS is disrupted in many diseases including cancer, and targeting the UPS for cancer therapy is gaining wide interest. E3 ubiquitin ligases occupy a key position in the hierarchical UPS enzymatic cascade, largely responsible for determining substrate specificity and ubiquitin (Ub) chain topology. The E3 ligase UBR5 (aka EDD1) is emerging as a key regulator of the UPS in cancer and development. UBR5 expression is deregulated in many cancer types and UBR5 is frequently mutated in mantle cell lymphoma. UBR5 is highly conserved in metazoans, has unique structural features, and has been implicated in regulation of DNA damage response, metabolism, transcription, and apoptosis. Hence, UBR5 is a key regulator of cell signaling relevant to broad areas of cancer biology. However, the mechanism by which UBR5 may contribute to tumor initiation and progression remains poorly defined. This review synthesizes emerging insights from genetics, biochemistry, and cell biology to inform our understanding of UBR5 in cancer. These molecular insights indicate a role for UBR5 in integrating/coordinating various cellular signaling pathways. Finally, we discuss outstanding questions in UBR5 biology and highlight the need to systematically characterize substrates, and address limitations in current animal models, to better define the role of UBR5 in cancer.
Collapse
Affiliation(s)
- Robert F Shearer
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mary Iconomou
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colin K W Watts
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Darren N Saunders
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
23
|
Systems Medicine: The Application of Systems Biology Approaches for Modern Medical Research and Drug Development. Mol Biol Int 2015; 2015:698169. [PMID: 26357572 PMCID: PMC4556074 DOI: 10.1155/2015/698169] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
The exponential development of highly advanced scientific and medical research technologies throughout the past 30 years has arrived to the point where the high number of characterized molecular agents related to pathogenesis cannot be readily integrated or processed by conventional analytical approaches. Indeed, the realization that several moieties are signatures of disease has partly led to the increment of complex diseases being characterized. Scientists and clinicians can now investigate and analyse any individual dysregulations occurring within the genomic, transcriptomic, miRnomic, proteomic, and metabolomic levels thanks to currently available advanced technologies. However, there are drawbacks within this scientific brave new age in that only isolated molecular levels are individually investigated for their influence in affecting any particular health condition. Since their conception in 1992, systems biology/medicine focuses mainly on the perturbations of overall pathway kinetics for the consequent onset and/or deterioration of the investigated condition/s. Systems medicine approaches can therefore be employed for shedding light in multiple research scenarios, ultimately leading to the practical result of uncovering novel dynamic interaction networks that are critical for influencing the course of medical conditions. Consequently, systems medicine also serves to identify clinically important molecular targets for diagnostic and therapeutic measures against such a condition.
Collapse
|