1
|
Othaim AA, Alasiri G, Alfahed A. Therapeutic, Clinicopathological, and Molecular Correlates of PRKACA Expression in Gastrointestinal Cancers. Pharmaceuticals (Basel) 2024; 17:1263. [PMID: 39458904 PMCID: PMC11510541 DOI: 10.3390/ph17101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES PRKACA alterations have clear diagnostic and biological roles in the fibrolamellar variant of hepatocellular carcinoma and a potential predictive role in that cancer type. However, the roles of PRKACA have not been comprehensively examined in gastric and colorectal cancers (GC and CRC). This study, therefore, sought to investigate the roles of PRKACA expression in GC and CRC. METHODS The clinico-genomic data of 441 GC and 629 CRC cases were analyzed for therapeutic, clinicopathological, and biological correlates using appropriate bioinformatics and statistical tools. Furthermore, the deregulation of PRKACA expression in GC and CRC was investigated using correlative and regression analyses. RESULTS The results showed that PRKACA expression subsets were enriched for gene targets of chemotherapeutics, tyrosine kinase, and β-adrenergic inhibitors. Moreover, high PRKACA expression was associated with adverse clinicopathological and genomic features of GC and CRC. Gene Ontology Enrichment Analysis also showed that PRKACA-high subsets of the GI cancers were enriched for the biological and molecular functions that are associated with cell motility, invasion, and metastasis but not cell proliferation. Finally, multiple regression analyses identified multiple methylation loci, transcription factors, miRNA species, and PRKACA copy number changes that deregulated PRKACA expression in GC and CRC. CONCLUSIONS This study has identified potential predictive and clinicopathological roles for PRKACA expression in GI cancers and has added to the growing body of knowledge on the deregulation of PRKACA in cancer.
Collapse
Affiliation(s)
- Ayoub Al Othaim
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| | - Abdulaziz Alfahed
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
2
|
Alfahed A. Cell Migration-Proliferation Dichotomy in Cancer: Biological Fact or Experimental Artefact? BIOLOGY 2024; 13:753. [PMID: 39452063 PMCID: PMC11504154 DOI: 10.3390/biology13100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024]
Abstract
The migration-proliferation dichotomy (MPD) has long been observed in cultured cancer cells. This phenomenon is not only relevant to tumour progression but may also have therapeutic significance in clinical cancer. However, MPD has rarely been investigated in primary cancer. This study aimed to either confirm or disprove the existence of MPD in primary cancer. Using primary gastric, colorectal and prostate cancer (GC, CRC and PCa) cohorts from the Cancer Genome Atlas and Memorial Sloan Kettering Cancer Center, this study interrogated the MPD phenomenon by utilising RNA-Seq-based proliferation (CIN70 signature) and migration (epithelial-mesenchymal transition) indices, as well as gene set enrichment analyses (GSEA). Alternative hypothetical migration-proliferation models-The simultaneous migration-proliferation (SMP) and phenotype-refractory (PR) models-were compared to the MPD model by probing the migration-proliferation relationships within cancer stages and between early- and late-stage diseases using chi-square and independent T tests, z-score statistics and GSEA. The results revealed an inverse relationship between migration and proliferation signatures overall in the GC, CRC and PCa cohorts, as well as in early- and late-stage diseases. Additionally, a shift in proliferation- to migration dominance was observed from early- to late-stage diseases in the GC and CRC cohorts but not in the PCa cohorts, which showed enhanced proliferation dominance in metastatic tumours compared to primary cancers. The above features exhibited by the cancer cohorts are in keeping with the MPD model of the migration-proliferation relationship at the cellular level and exclude the SMP and PR migration-proliferation models.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
3
|
Chompunud Na Ayudhya C, Graidist P, Tipmanee V. Role of CSF1R 550th-tryptophan in kusunokinin and CSF1R inhibitor binding and ligand-induced structural effect. Sci Rep 2024; 14:12531. [PMID: 38822100 PMCID: PMC11143223 DOI: 10.1038/s41598-024-63505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Binding affinity is an important factor in drug design to improve drug-target selectivity and specificity. In this study, in silico techniques based on molecular docking followed by molecular dynamics (MD) simulations were utilized to identify the key residue(s) for CSF1R binding affinity among 14 pan-tyrosine kinase inhibitors and 15 CSF1R-specific inhibitors. We found tryptophan at position 550 (W550) on the CSF1R binding site interacted with the inhibitors' aromatic ring in a π-π way that made the ligands better at binding. Upon W550-Alanine substitution (W550A), the binding affinity of trans-(-)-kusunokinin and imatinib to CSF1R was significantly decreased. However, in terms of structural features, W550 did not significantly affect overall CSF1R structure, but provided destabilizing effect upon mutation. The W550A also did not either cause ligand to change its binding site or conformational changes due to ligand binding. As a result of our findings, the π-π interaction with W550's aromatic ring could be still the choice for increasing binding affinity to CSF1R. Nevertheless, our study showed that the increasing binding to W550 of the design ligand may not ensure CSF1R specificity and inhibition since W550-ligand bound state did not induce significantly conformational change into inactive state.
Collapse
Affiliation(s)
- Chompunud Chompunud Na Ayudhya
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand
- Bioactivity Testing Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand.
- Bioactivity Testing Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90100, Songkhla, Thailand.
| |
Collapse
|
4
|
Surve CR, Duran CL, Ye X, Chen X, Lin Y, Harney AS, Wang Y, Sharma VP, Stanley ER, Cox D, McAuliffe JC, Entenberg D, Oktay MH, Condeelis JS. Signaling events at TMEM doorways provide potential targets for inhibiting breast cancer dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574676. [PMID: 38260319 PMCID: PMC10802469 DOI: 10.1101/2024.01.08.574676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tumor cell intravasation is essential for metastatic dissemination, but its exact mechanism is incompletely understood. We have previously shown that in breast cancer, the direct and stable association of a tumor cell expressing Mena, a Tie2hi/VEGFhi macrophage, and a vascular endothelial cell, creates an intravasation portal, called a "tumor microenvironment of metastasis" (TMEM) doorway, for tumor cell intravasation, leading to dissemination to distant sites. The density of TMEM doorways, also called TMEM doorway score, is a clinically validated prognostic marker of distant metastasis in breast cancer patients. Although we know that tumor cells utilize TMEM doorway-associated transient vascular openings to intravasate, the precise signaling mechanisms involved in TMEM doorway function are only partially understood. Using two mouse models of breast cancer and an in vitro assay of intravasation, we report that CSF-1 secreted by the TMEM doorway tumor cell stimulates local secretion of VEGF-A from the Tie2hi TMEM doorway macrophage, leading to the dissociation of endothelial junctions between TMEM doorway associated endothelial cells, supporting tumor cell intravasation. Acute blockade of CSF-1R signaling decreases macrophage VEGF-A secretion as well as TMEM doorway-associated vascular opening, tumor cell trans-endothelial migration, and dissemination. These new insights into signaling events regulating TMEM doorway function should be explored further as treatment strategies for metastatic disease.
Collapse
Affiliation(s)
- Chinmay R. Surve
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Camille L. Duran
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Xianjun Ye
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yu Lin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Allison S. Harney
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yarong Wang
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
| | - Ved P. Sharma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Dianne Cox
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - John C. McAuliffe
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
5
|
Gali A, Bijnsdorp IV, Piersma SR, Pham TV, Gutiérrez-Galindo E, Kühnel F, Tsolakos N, Jimenez CR, Hausser A, Alexopoulos LG. Protein kinase D drives the secretion of invasion mediators in triple-negative breast cancer cell lines. iScience 2024; 27:108958. [PMID: 38323010 PMCID: PMC10844833 DOI: 10.1016/j.isci.2024.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The protein kinase D (PKD) family members regulate the fission of cargo vesicles at the Golgi complex and play a pro-oncogenic role in triple-negative breast cancer (TNBC). Whether PKD facilitates the secretion of tumor-promoting factors in TNBC, however, is still unknown. Using the pharmacological inhibition of PKD activity and siRNA-mediated depletion of PKD2 and PKD3, we identified the PKD-dependent secretome of the TNBC cell lines MDA-MB-231 and MDA-MB-468. Mass spectrometry-based proteomics and antibody-based assays revealed a significant downregulation of extracellular matrix related proteins and pro-invasive factors such as LIF, MMP-1, MMP-13, IL-11, M-CSF and GM-CSF in PKD-perturbed cells. Notably, secretion of these proteins in MDA-MB-231 cells was predominantly controlled by PKD2 and enhanced spheroid invasion. Consistently, PKD-dependent secretion of pro-invasive factors was more pronounced in metastatic TNBC cell lines. Our study thus uncovers a novel role of PKD2 in releasing a pro-invasive secretome.
Collapse
Affiliation(s)
- Alexia Gali
- Biomedical Systems Laboratory, National Technical University of Athens, 15780 Athens, Greece
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| | - Irene V. Bijnsdorp
- Department of Urology, Cancer Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, de Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | | | - Fiona Kühnel
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nikos Tsolakos
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
- Stuttgart Research Center for Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Leonidas G. Alexopoulos
- Biomedical Systems Laboratory, National Technical University of Athens, 15780 Athens, Greece
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| |
Collapse
|
6
|
Cersosimo F, Lonardi S, Ulivieri C, Martini P, Morrione A, Vermi W, Giordano A, Giurisato E. CSF-1R in Cancer: More than a Myeloid Cell Receptor. Cancers (Basel) 2024; 16:282. [PMID: 38254773 PMCID: PMC10814415 DOI: 10.3390/cancers16020282] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Andrea Morrione
- Center for Biotechnology, Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
7
|
Efe G, Dunbar KJ, Sugiura K, Cunningham K, Carcamo S, Karaiskos S, Tang Q, Cruz-Acuña R, Resnick-Silverman L, Peura J, Lu C, Hasson D, Klein-Szanto AJ, Taylor AM, Manfredi JJ, Prives C, Rustgi AK. p53 Gain-of-Function Mutation Induces Metastasis via BRD4-Dependent CSF-1 Expression. Cancer Discov 2023; 13:2632-2651. [PMID: 37676642 PMCID: PMC10841313 DOI: 10.1158/2159-8290.cd-23-0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
TP53 mutations are frequent in esophageal squamous cell carcinoma (ESCC) and other SCCs and are associated with a proclivity for metastasis. Here, we report that colony-stimulating factor-1 (CSF-1) expression is upregulated significantly in a p53-R172H-dependent manner in metastatic lung lesions of ESCC. The p53-R172H-dependent CSF-1 signaling, through its cognate receptor CSF-1R, increases tumor cell invasion and lung metastasis, which in turn is mediated in part through Stat3 phosphorylation and epithelial-to-mesenchymal transition (EMT). In Trp53R172H tumor cells, p53 occupies the Csf-1 promoter. The Csf-1 locus is enriched with histone 3 lysine 27 acetylation (H3K27ac), which is likely permissive for fostering an interaction between bromodomain-containing domain 4 (BRD4) and p53-R172H to regulate Csf-1 transcription. Inhibition of BRD4 not only reduces tumor invasion and lung metastasis but also reduces circulating CSF-1 levels. Overall, our results establish a novel p53-R172H-dependent BRD4-CSF-1 axis that promotes ESCC lung metastasis and suggest avenues for therapeutic strategies for this difficult-to-treat disease. SIGNIFICANCE The invasion-metastasis cascade is a recalcitrant barrier to effective cancer therapy. We establish that the p53-R172H-dependent BRD4-CSF-1 axis is a mediator of prometastatic properties, correlates with patient survival and tumor stages, and its inhibition significantly reduces tumor cell invasion and lung metastasis. This axis can be exploited for therapeutic advantage. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Karen J. Dunbar
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Kensuke Sugiura
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Katherine Cunningham
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Saul Carcamo
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Spyros Karaiskos
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Qiaosi Tang
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Lois Resnick-Silverman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Peura
- Division of Hematology-Oncology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Chao Lu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Dan Hasson
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Alison M. Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - James J. Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carol Prives
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Department of Biological Sciences, Columbia University, Columbia University, New York, NY, 10032, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
8
|
Tomasik B, Bieńkowski M, Górska Z, Gutowska K, Kumięga P, Jassem J, Duchnowska R. Molecular aspects of brain metastases in breast cancer. Cancer Treat Rev 2023; 114:102521. [PMID: 36736124 DOI: 10.1016/j.ctrv.2023.102521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Brain metastases (BM) are a common and devastating manifestation of breast cancer (BC). BM are particularly frequent in the HER2-positive and triple-negative breast cancer phenotypes and usually occur following the metastatic spread to extracranial sites. Several genes mediating BM and biomarkers predicting their risk in BC have been reported in the past decade. These findings have advanced the understanding of BM pathobiology and paved the way for developing new therapeutic strategies but they still warrant a thorough clinical validation. Hence, a better understanding of the mechanistic aspects of BM and delineating the interactions of tumor cells with the brain microenvironment are of utmost importance. This review discusses the molecular basis of the metastatic cascade: the epithelial-mesenchymal transition, cancer, and tumor microenvironment interaction and intravasation, priming of the metastatic niche in the brain, and survival in the new site. We also outline the postulated mechanisms of BC cells' brain tropism. Finally, we discuss advances in the field of biomarkers (both tissue-based and liquid-based) that predict BM from BC.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Michał Bieńkowski
- Department of Pathology, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdańsk, Poland.
| | - Zuzanna Górska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| | - Klaudia Gutowska
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Paulina Kumięga
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| |
Collapse
|
9
|
Trinidad EM, Vidal E, Coronado E, Esteve-Codina A, Castel V, Cañete A, Gut M, Heath S, Font de Mora J. Liquidhope: methylome and genomic profiling from very limited quantities of plasma-derived DNA. Brief Bioinform 2023; 24:6972296. [PMID: 36611239 PMCID: PMC9851319 DOI: 10.1093/bib/bbac575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 01/09/2023] Open
Abstract
Analysis of the methylome of tumor cell-free deoxyribonucleic acid (DNA; cfDNA) has emerged as a powerful non-invasive technique for cancer subtyping and prognosis. However, its application is frequently hampered by the quality and total cfDNA yield. Here, we demonstrate the feasibility of very low-input cfDNA for whole-methylome and copy-number profiling studies using enzymatic conversion of unmethylated cysteines [enzymatic methyl-seq (EM-seq)] to better preserve DNA integrity. We created a model for predicting genomic subtyping and prognosis with high accuracy. We validated our tool by comparing whole-genome CpG sequencing with in situ cohorts generated with bisulfite conversion and array hybridization, demonstrating that, despite the different techniques and sample origins, information on cfDNA methylation is comparable with in situ cohorts. Our findings support use of liquid biopsy followed by EM-seq to assess methylome of cancer patients, enabling validation in external cohorts. This advance is particularly relevant for rare cancers like neuroblastomas where liquid-biopsy volume is restricted by ethical regulations in pediatric patients.
Collapse
Affiliation(s)
- Eva María Trinidad
- Corresponding author: Eva M. Trinidad, Laboratory of Cellular and Molecular Biology and Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell, 106; Torre A, 5-0746026 Valencia, Spain. Tel.: +34-961246646; ; Fax: +34-963496620; E-mail:
| | - Enrique Vidal
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain,Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Esther Coronado
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain,Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), , Barcelona , Spain
| | - Victoria Castel
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain,Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), , Barcelona , Spain
| | | | | |
Collapse
|
10
|
Macrophage-Colony-Stimulating Factor Receptor Enhances Prostate Cancer Cell Growth and Aggressiveness In Vitro and In Vivo and Increases Osteopontin Expression. Int J Mol Sci 2022; 23:ijms232416028. [PMID: 36555673 PMCID: PMC9785574 DOI: 10.3390/ijms232416028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is a major public health concern and one of the most prevalent forms of cancer worldwide. The definition of altered signaling pathways implicated in this complex disease is thus essential. In this context, abnormal expression of the receptor of Macrophage Colony-Stimulating Factor-1 (M-CSF or CSF-1) has been described in prostate cancer cells. Yet, outcomes of this expression remain unknown. Using mouse and human prostate cancer cell lines, this study has investigated the functionality of the wild-type CSF-1 receptor in prostate tumor cells and identified molecular mechanisms underlying its ligand-induced activation. Here, we showed that upon CSF-1 binding, the receptor autophosphorylates and activates multiple signaling pathways in prostate tumor cells. Biological experiments demonstrated that the CSF-1R/CSF-1 axis conferred significant advantages in cell growth and cell invasion in vitro. Mouse xenograft experiments showed that CSF-1R expression promoted the aggressiveness of prostate tumor cells. In particular, we demonstrated that the ligand-activated CSF-1R increased the expression of spp1 transcript encoding for osteopontin, a key player in cancer development and metastasis. Therefore, this study highlights that the CSF-1 receptor is fully functional in a prostate cancer cell and may be a potential therapeutic target for the treatment of prostate cancer.
Collapse
|
11
|
Achkova DY, Beatson RE, Maher J. CAR T-Cell Targeting of Macrophage Colony-Stimulating Factor Receptor. Cells 2022; 11:cells11142190. [PMID: 35883636 PMCID: PMC9323367 DOI: 10.3390/cells11142190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
Macrophage colony-stimulating factor receptor (M-CSFR) is found in cells of the mononuclear phagocyte lineage and is aberrantly expressed in a range of tumours, in addition to tumour-associated macrophages. Consequently, a variety of cancer therapies directed against M-CSFR are under development. We set out to engineer chimeric antigen receptors (CARs) that employ the natural ligands of this receptor, namely M-CSF or interleukin (IL)-34, to achieve specificity for M-CSFR-expressing target cells. Both M-CSF and IL-34 bind to overlapping regions of M-CSFR, although affinity of IL-34 is significantly greater than that of M-CSF. Matched second- and third-generation CARs targeted using M-CSF or IL-34 were expressed in human T-cells using the SFG retroviral vector. We found that both M-CSF- and IL-34-containing CARs enable T-cells to mediate selective destruction of tumour cells that express enforced or endogenous M-CSFR, accompanied by production of both IL-2 and interferon (IFN)-γ. Although they contain an additional co-stimulatory module, third-generation CARs did not outperform second-generation CARs. M-CSF-containing CARs mediated enhanced cytokine production and cytolytic activity compared to IL-34-containing CARs. These data demonstrate the feasibility of targeting M-CSFR using ligand-based CARs and raise the possibility that the low picomolar affinity of IL-34 for M-CSFR is detrimental to CAR function.
Collapse
Affiliation(s)
- Daniela Yordanova Achkova
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
| | - Richard Esmond Beatson
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
| | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (D.Y.A.); (R.E.B.)
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
- Correspondence: ; Tel.: +44-(0)207188-1468
| |
Collapse
|
12
|
Riaz N, Burugu S, Cheng AS, Leung SCY, Gao D, Nielsen TO. Prognostic Significance of CSF-1R Expression in Early Invasive Breast Cancer. Cancers (Basel) 2021; 13:5769. [PMID: 34830923 PMCID: PMC8616299 DOI: 10.3390/cancers13225769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colony-stimulating factor-1 receptor (CSF-1R) signaling promotes an immune suppressive microenvironment enriched in M2 macrophages. Given that CSF-1R inhibitors are under investigation in clinical trials, including in breast cancer, CSF-1R expression and association with immune biomarkers could identify patients who derive greater benefit from combination with immunotherapies. TIMER2.0 and bc-GenExMiner v4.7 were used to assess the correlation of CSF1R mRNA with immune infiltrates and prognosis. Following a prespecified training-validation approach, an optimized immunohistochemistry assay was applied to assess CSF-1R on carcinoma cells and macrophages on breast cancer tissue microarray series representing 2384 patients, coupled to comprehensive clinicopathological, biomarker, and outcome data. Significant positive correlations were observed between CSF1R mRNA and immune infiltrates. High carcinoma CSF-1R correlated with grade 3 tumors >2 cm, hormone receptor negativity, high Ki67, immune checkpoint biomarkers, and macrophages expressing CSF-1R and CD163. High carcinoma CSF-1R was significantly associated with poor survival in univariate and multivariate analyses. Adverse prognostic associations were retained in ER+ cases regardless of the presence of CD8+ T cells. CSF-1R+ macrophages were not prognostic. High carcinoma CSF-1R is associated with aggressive breast cancer biology and poor prognosis, particularly in ER+ cases, and identifies patients in whom biomarker-directed CSF-1R therapies may yield superior therapeutic responses.
Collapse
Affiliation(s)
- Nazia Riaz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan
| | - Samantha Burugu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Angela S. Cheng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Samuel C. Y. Leung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Dongxia Gao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Torsten O. Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| |
Collapse
|
13
|
Saha T, Gil-Henn H. Invadopodia, a Kingdom of Non-Receptor Tyrosine Kinases. Cells 2021; 10:cells10082037. [PMID: 34440806 PMCID: PMC8391121 DOI: 10.3390/cells10082037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Non-receptor tyrosine kinases (NRTKs) are crucial mediators of intracellular signaling and control a wide variety of processes such as cell division, morphogenesis, and motility. Aberrant NRTK-mediated tyrosine phosphorylation has been linked to various human disorders and diseases, among them cancer metastasis, to which no treatment presently exists. Invasive cancer cells leaving the primary tumor use invadopodia, feet-like structures which facilitate extracellular matrix (ECM) degradation and intravasation, to escape the primary tumor and disseminate into distant tissues and organs during metastasis. A major challenge in metastasis research is to elucidate the molecular mechanisms and signaling pathways underlying invadopodia regulation, as the general belief is that targeting these structures can potentially lead to the eradication of cancer metastasis. Non-receptor tyrosine kinases (NRTKs) play a central role in regulating invadopodia formation and function, but how they coordinate the signaling leading to these processes was not clear until recently. Here, we describe the major NRTKs that rule invadopodia and how they work in concert while keeping an accurate hierarchy to control tumor cell invasiveness and dissemination.
Collapse
|
14
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
15
|
Liu F, Yang Z, Zheng L, Shao W, Cui X, Wang Y, Jia J, Fu Y. A Tumor Progression Related 7-Gene Signature Indicates Prognosis and Tumor Immune Characteristics of Gastric Cancer. Front Oncol 2021; 11:690129. [PMID: 34195091 PMCID: PMC8238374 DOI: 10.3389/fonc.2021.690129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer is a common gastrointestinal malignancy. Since it is often diagnosed in the advanced stage, its mortality rate is high. Traditional therapies (such as continuous chemotherapy) are not satisfactory for advanced gastric cancer, but immunotherapy has shown great therapeutic potential. Gastric cancer has high molecular and phenotypic heterogeneity. New strategies for accurate prognostic evaluation and patient selection for immunotherapy are urgently needed. METHODS Weighted gene coexpression network analysis (WGCNA) was used to identify hub genes related to gastric cancer progression. Based on the hub genes, the samples were divided into two subtypes by consensus clustering analysis. After obtaining the differentially expressed genes between the subtypes, a gastric cancer risk model was constructed through univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis. The differences in prognosis, clinical features, tumor microenvironment (TME) components and immune characteristics were compared between subtypes and risk groups, and the connectivity map (CMap) database was applied to identify potential treatments for high-risk patients. RESULTS WGCNA and screening revealed nine hub genes closely related to gastric cancer progression. Unsupervised clustering according to hub gene expression grouped gastric cancer patients into two subtypes related to disease progression, and these patients showed significant differences in prognoses, TME immune and stromal scores, and suppressive immune checkpoint expression. Based on the different expression patterns between the subtypes, we constructed a gastric cancer risk model and divided patients into a high-risk group and a low-risk group based on the risk score. High-risk patients had a poorer prognosis, higher TME immune/stromal scores, higher inhibitory immune checkpoint expression, and more immune characteristics suitable for immunotherapy. Multivariate Cox regression analysis including the age, stage and risk score indicated that the risk score can be used as an independent prognostic factor for gastric cancer. On the basis of the risk score, we constructed a nomogram that relatively accurately predicts gastric cancer patient prognoses and screened potential drugs for high-risk patients. CONCLUSIONS Our results suggest that the 7-gene signature related to tumor progression could predict the clinical prognosis and tumor immune characteristics of gastric cancer.
Collapse
Affiliation(s)
- Fen Liu
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongcheng Yang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Shao
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiujie Cui
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Wang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Lattmann E, Deng T, Hajnal A. To Divide or Invade: A Look Behind the Scenes of the Proliferation-Invasion Interplay in the Caenorhabditis elegans Anchor Cell. Front Cell Dev Biol 2021; 8:616051. [PMID: 33490081 PMCID: PMC7815685 DOI: 10.3389/fcell.2020.616051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cell invasion is defined by the capability of cells to migrate across compartment boundaries established by basement membranes (BMs). The development of complex organs involves regulated cell growth and regrouping of different cell types, which are enabled by controlled cell proliferation and cell invasion. Moreover, when a malignant tumor takes control over the body, cancer cells evolve to become invasive, allowing them to spread to distant sites and form metastases. At the core of the switch between proliferation and invasion are changes in cellular morphology driven by remodeling of the cytoskeleton. Proliferative cells utilize their actomyosin network to assemble a contractile ring during cytokinesis, while invasive cells form actin-rich protrusions, called invadopodia that allow them to breach the BMs. Studies of developmental cell invasion as well as of malignant tumors revealed that cell invasion and proliferation are two mutually exclusive states. In particular, anchor cell (AC) invasion during Caenorhabditis elegans larval development is an excellent model to study the transition from cell proliferation to cell invasion under physiological conditions. This mini-review discusses recent insights from the C. elegans AC invasion model into how G1 cell-cycle arrest is coordinated with the activation of the signaling networks required for BM breaching. Many regulators of the proliferation-invasion network are conserved between C. elegans and mammals. Therefore, the worm may provide important clues to better understand cell invasion and metastasis formation in humans.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ting Deng
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program, University and ETH Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
da Silva SD, Marchi FA, Su J, Yang L, Valverde L, Hier J, Bijian K, Hier M, Mlynarek A, Kowalski LP, Alaoui-Jamali MA. Co-Overexpression of TWIST1-CSF1 Is a Common Event in Metastatic Oral Cancer and Drives Biologically Aggressive Phenotype. Cancers (Basel) 2021; 13:cancers13010153. [PMID: 33466385 PMCID: PMC7795342 DOI: 10.3390/cancers13010153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Invasive oral squamous cell carcinoma (OSCC) is often ulcerated and heavily infiltrated by pro-inflammatory cells. We conducted a genome-wide profiling of tissues from OSCC patients (early versus advanced stages) with 10 years follow-up. Co-amplification and co-overexpression of TWIST1, a transcriptional activator of epithelial-mesenchymal-transition (EMT), and colony-stimulating factor-1 (CSF1), a major chemotactic agent for tumor-associated macrophages (TAMs), were observed in metastatic OSCC cases. The overexpression of these markers strongly predicted poor patient survival (log-rank test, p = 0.0035 and p = 0.0219). Protein analysis confirmed the enhanced expression of TWIST1 and CSF1 in metastatic tissues. In preclinical models using OSCC cell lines, macrophages, and an in vivo matrigel plug assay, we demonstrated that TWIST1 gene overexpression induces the activation of CSF1 while TWIST1 gene silencing down-regulates CSF1 preventing OSCC invasion. Furthermore, excessive macrophage activation and polarization was observed in co-culture system involving OSCC cells overexpressing TWIST1. In summary, this study provides insight into the cooperation between TWIST1 transcription factor and CSF1 to promote OSCC invasiveness and opens up the potential therapeutic utility of currently developed antibodies and small molecules targeting cancer-associated macrophages.
Collapse
Affiliation(s)
- Sabrina Daniela da Silva
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.); (K.B.)
- Correspondence: or (S.D.d.S.); (M.A.A.-J.); Tel.: +1-514-340-8222 (S.D.d.S.)
| | - Fabio Albuquerque Marchi
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), São Paulo 01509-010, Brazil; (F.A.M.); (L.P.K.)
| | - Jie Su
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.); (K.B.)
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Ludmila Valverde
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
| | - Jessica Hier
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
| | - Krikor Bijian
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.); (K.B.)
| | - Michael Hier
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
| | - Alex Mlynarek
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (L.V.); (J.H.); (M.H.); (A.M.)
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), São Paulo 01509-010, Brazil; (F.A.M.); (L.P.K.)
| | - Moulay A. Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; (J.S.); (K.B.)
- Correspondence: or (S.D.d.S.); (M.A.A.-J.); Tel.: +1-514-340-8222 (S.D.d.S.)
| |
Collapse
|
18
|
Coste A, Karagiannis GS, Wang Y, Xue EA, Lin Y, Skobe M, Jones JG, Oktay MH, Condeelis JS, Entenberg D. Hematogenous Dissemination of Breast Cancer Cells From Lymph Nodes Is Mediated by Tumor MicroEnvironment of Metastasis Doorways. Front Oncol 2020; 10:571100. [PMID: 33194666 PMCID: PMC7649363 DOI: 10.3389/fonc.2020.571100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022] Open
Abstract
In primary breast tumors, cancer cells hematogenously disseminate through doorways in the vasculature composed of three-cell complexes (known as Tumor MicroEnvironment of Metastasis) comprising a perivascular macrophage, a tumor cell overexpressing the actin-regulatory protein Mammalian Enabled (Mena), and an endothelial cell, all in direct physical contact. It has been previously shown that once tumor cells establish lymph node metastases in patients, TMEM doorways form in the metastatic tumor cell nests. However, it has not been established if such lymph node-TMEM doorways actively transit tumor cells into the peripheral circulation and on to tertiary sites. To address this question in this short report, we used a mouse model of lymph node metastasis to demonstrate that TMEM doorways: (1) exist in tumor-positive lymph nodes of mice, (2) are restricted to the blood vascular endothelium, (3) serve as a mechanism for further dissemination to peripheral sites such as to the lungs, and (4) their activity can be abrogated by a pharmaceutical intervention. Our data suggest that cancer cell dissemination via TMEM doorways is a common mechanism of breast cancer cell dissemination to distant sites and thus the pharmacological targeting of TMEM may be necessary, even after resection of the primary tumor, to suppress cancer cell dissemination.
Collapse
Affiliation(s)
- Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Emily A Xue
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Yu Lin
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Mihaela Skobe
- Department of Oncological Sciences and Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Epidemiology and Population Health, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
19
|
Borriello L, Karagiannis GS, Duran CL, Coste A, Oktay MH, Entenberg D, Condeelis JS. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur J Cell Biol 2020; 99:151098. [PMID: 32800278 DOI: 10.1016/j.ejcb.2020.151098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Metastasis, a process that requires tumor cell dissemination followed by tumor growth, is the primary cause of death in cancer patients. An essential step of tumor cell dissemination is intravasation, a process by which tumor cells cross the blood vessel endothelium and disseminate to distant sites. Studying this process is of utmost importance given that intravasation in the primary tumor, as well as the secondary and tertiary metastases, is the key step in the systemic spread of tumor cells, and that this process continues even after removal of the primary tumor. High-resolution intravital imaging of the tumor microenvironment of breast carcinoma has revealed that tumor cell intravasation exclusively occurs at doorways, termed "Tumor MicroEnvironment of Metastasis" (TMEM), composed of three different cell types: a Tie2high/VEGFhigh perivascular macrophage, a Mena overexpressing tumor cell, and an endothelial cell, all in direct contact. In this review article, we discuss the interactions between these cell types, the subsequent signaling events which lead to tumor cell intravasation, and the role of invadopodia in supporting tumor cell invasion and dissemination. We end our review by discussing how the knowledge acquired from the use of intravital imaging is now leading to new clinical trials targeting tumor cell dissemination and preventing metastatic progression.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
20
|
Shi X, Kaller M, Rokavec M, Kirchner T, Horst D, Hermeking H. Characterization of a p53/miR-34a/CSF1R/STAT3 Feedback Loop in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2020; 10:391-418. [PMID: 32304779 PMCID: PMC7423584 DOI: 10.1016/j.jcmgh.2020.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The miR-34a gene is a direct target of p53 and is commonly silenced in colorectal cancer (CRC). Here we identified the receptor tyrosine kinase CSF1R as a direct miR-34a target and characterized CSF1R as an effector of p53/miR-34a-mediated CRC suppression. METHODS Analyses of TCGA-COAD and three other CRC cohorts for association of mRNA expression and signatures with patient survival and molecular subtypes. Bioinformatics identification and experimental validation of miRNA and transcription factor targets. Functional analysis of factors/pathways in the regulation of epithelial-mesenchymal transition (EMT), invasion, migration, acquired chemo-resistance and metastasis. Analyses of protein expression and CpG methylation within primary human colon cancer samples. RESULTS In primary CRCs increased CSF1R, CSF1 and IL34 expression was associated with poor patient survival and a mesenchymal-like subtype. CSF1R displayed an inverse correlation with miR-34a expression. This was explained by direct inhibition of CSF1R by miR-34a. Furthermore, p53 repressed CSF1R via inducing miR-34a, whereas SNAIL induced CSF1R both directly and indirectly via repressing miR-34a in a coherent feed-forward loop. Activation of CSF1R induced EMT, migration, invasion and metastasis of CRC cells via STAT3-mediated down-regulation of miR-34a. 5-FU resistance of CRC cells was mediated by CpG-methylation of miR-34a and the resulting elevated expression of CSF1R. In primary CRCs elevated expression of CSF1R was detected at the tumor invasion front and was associated with CpG methylation of the miR-34a promoter as well as distant metastasis. CONCLUSIONS The reciprocal inhibition between miR-34a and CSF1R and its loss in tumor cells may be relevant for therapeutic and prognostic approaches towards CRC management.
Collapse
Affiliation(s)
- Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium, Partner site Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany,Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany,German Cancer Consortium, Partner site Berlin, Berlin, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium, Partner site Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany,Correspondence Address requests for reprints to: Heiko Hermeking, Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany; fax: +49-89-2180-73697.
| |
Collapse
|
21
|
Murga-Zamalloa C, Rolland DCM, Polk A, Wolfe A, Dewar H, Chowdhury P, Onder O, Dewar R, Brown NA, Bailey NG, Inamdar K, Lim MS, Elenitoba-Johnson KSJ, Wilcox RA. Colony-Stimulating Factor 1 Receptor (CSF1R) Activates AKT/mTOR Signaling and Promotes T-Cell Lymphoma Viability. Clin Cancer Res 2019; 26:690-703. [PMID: 31636099 DOI: 10.1158/1078-0432.ccr-19-1486] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Peripheral T-cell lymphomas are clinically aggressive and usually fatal, as few complete or durable remissions are achieved with currently available therapies. Recent evidence supports a critical role for lymphoma-associated macrophages during T-cell lymphoma progression, but the specific signals involved in the cross-talk between malignant T cells and their microenvironment are poorly understood. Colony-stimulator factor 1 receptor (CSF1R, CD115) is required for the homeostatic survival of tissue-resident macrophages. Interestingly, its aberrant expression has been reported in a subset of tumors. In this article, we evaluated its expression and oncogenic role in T-cell lymphomas. EXPERIMENTAL DESIGN Loss-of-function studies, including pharmacologic inhibition with a clinically available tyrosine kinase inhibitor, pexidartinib, were performed in multiple in vitro and in vivo models. In addition, proteomic and genomic screenings were performed to discover signaling pathways that are activated downstream of CSF1R signaling. RESULTS We observed that CSF1R is aberrantly expressed in many T-cell lymphomas, including a significant number of peripheral and cutaneous T-cell lymphomas. Colony-stimulating factor 1 (CSF1), in an autocrine or paracrine-dependent manner, leads to CSF1R autophosphorylation and activation in malignant T cells. Furthermore, CSF1R signaling was associated with significant changes in gene expression and in the phosphoproteome, implicating PI3K/AKT/mTOR in CSF1R-mediated T-cell lymphoma growth. We also demonstrated that inhibition of CSF1R in vivo and in vitro models is associated with decreased T-cell lymphoma growth. CONCLUSIONS Collectively, these findings implicate CSF1R in T-cell lymphomagenesis and have significant therapeutic implications.
Collapse
Affiliation(s)
- Carlos Murga-Zamalloa
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan. .,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Delphine C M Rolland
- Department of Laboratory Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Avery Polk
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ashley Wolfe
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Hiran Dewar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Pinki Chowdhury
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ozlem Onder
- Department of Laboratory Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rajan Dewar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Noah A Brown
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Nathanael G Bailey
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan
| | - Megan S Lim
- Department of Laboratory Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Ryan A Wilcox
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
22
|
Karagiannis GS, Condeelis JS, Oktay MH. Chemotherapy-Induced Metastasis: Molecular Mechanisms, Clinical Manifestations, Therapeutic Interventions. Cancer Res 2019; 79:4567-4576. [PMID: 31431464 PMCID: PMC6744993 DOI: 10.1158/0008-5472.can-19-1147] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
Chemotherapy offers long-term clinical benefits to many patients with advanced cancer. However, recent evidence has linked the cytotoxic effects of chemotherapy with the de novo elicitation of a prometastatic tumor microenvironment. This "modified" tumor microenvironment is triggered by a chemotherapy-driven cytokine storm or through direct effects of certain chemotherapeutics on stromal and/or immune cells, the most critical being tumor-associated macrophages. These chemotherapy-educated cells act as facilitators in tumor-host cell interactions promoting the establishment of distant metastasis. Certain clinical studies now offer substantial evidence that prometastatic changes are indeed identified in the tumor microenvironment of certain patient subpopulations, especially those that do not present with any pathologic response after neoadjuvant chemotherapy. Deciphering the exact contextual prerequisites for chemotherapy-driven metastasis will be paramount for designing novel mechanism-based treatments for circumventing chemotherapy-induced metastasis.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Montefiore Medical Center, Bronx, New York
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
23
|
Tang J, Gautam P, Gupta A, He L, Timonen S, Akimov Y, Wang W, Szwajda A, Jaiswal A, Turei D, Yadav B, Kankainen M, Saarela J, Saez-Rodriguez J, Wennerberg K, Aittokallio T. Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. NPJ Syst Biol Appl 2019; 5:20. [PMID: 31312514 PMCID: PMC6614366 DOI: 10.1038/s41540-019-0098-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/06/2019] [Indexed: 01/02/2023] Open
Abstract
Cancer cells with heterogeneous mutation landscapes and extensive functional redundancy easily develop resistance to monotherapies by emerging activation of compensating or bypassing pathways. To achieve more effective and sustained clinical responses, synergistic interactions of multiple druggable targets that inhibit redundant cancer survival pathways are often required. Here, we report a systematic polypharmacology strategy to predict, test, and understand the selective drug combinations for MDA-MB-231 triple-negative breast cancer cells. We started by applying our network pharmacology model to predict synergistic drug combinations. Next, by utilizing kinome-wide drug-target profiles and gene expression data, we pinpointed a synergistic target interaction between Aurora B and ZAK kinase inhibition that led to enhanced growth inhibition and cytotoxicity, as validated by combinatorial siRNA, CRISPR/Cas9, and drug combination experiments. The mechanism of such a context-specific target interaction was elucidated using a dynamic simulation of MDA-MB-231 signaling network, suggesting a cross-talk between p53 and p38 pathways. Our results demonstrate the potential of polypharmacological modeling to systematically interrogate target interactions that may lead to clinically actionable and personalized treatment options.
Collapse
Affiliation(s)
- Jing Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Abhishekh Gupta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT USA
| | - Liye He
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sanna Timonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Wenyu Wang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Agnieszka Szwajda
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Alok Jaiswal
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Denes Turei
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Department of Medicine and Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| |
Collapse
|
24
|
Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, Parappilly MS, Roh-Johnson M, Goodman JR, Olson B, Schmidt M, Swain JR, Davies PS, Shasthri V, Iizuka S, Flynn P, Watson S, Korkola J, Courtneidge SA, Fischer JM, Jaboin J, Billingsley KG, Lopez CD, Burchard J, Gray J, Coussens LM, Sheppard BC, Wong MH. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. SCIENCE ADVANCES 2018; 4:eaat7828. [PMID: 30214939 PMCID: PMC6135550 DOI: 10.1126/sciadv.aat7828] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/01/2018] [Indexed: 05/06/2023]
Abstract
High lethality rates associated with metastatic cancer highlight an urgent medical need for improved understanding of biologic mechanisms driving metastatic spread and identification of biomarkers predicting late-stage progression. Numerous neoplastic cell intrinsic and extrinsic mechanisms fuel tumor progression; however, mechanisms driving heterogeneity of neoplastic cells in solid tumors remain obscure. Increased mutational rates of neoplastic cells in stressed environments are implicated but cannot explain all aspects of tumor heterogeneity. We present evidence that fusion of neoplastic cells with leukocytes (for example, macrophages) contributes to tumor heterogeneity, resulting in cells exhibiting increased metastatic behavior. Fusion hybrids (cells harboring hematopoietic and epithelial properties) are readily detectible in cell culture and tumor-bearing mice. Further, hybrids enumerated in peripheral blood of human cancer patients correlate with disease stage and predict overall survival. This unique population of neoplastic cells provides a novel biomarker for tumor staging, as well as a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Charles E. Gast
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alain D. Silk
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Luai Zarour
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lara Riegler
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joshua G. Burkhart
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kyle T. Gustafson
- Center for Early Detection Advanced Research, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S. Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Minna Roh-Johnson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - James R. Goodman
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brennan Olson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mark Schmidt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John R. Swain
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paige S. Davies
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Vidya Shasthri
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shinji Iizuka
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Flynn
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Spencer Watson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James Korkola
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sara A. Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jared M. Fischer
- Center for Early Detection Advanced Research, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jerry Jaboin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kevin G. Billingsley
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles D. Lopez
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julja Burchard
- Department of Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joe Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brett C. Sheppard
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Corresponding author.
| |
Collapse
|
25
|
Niehus SE, Tran DDH, Mischak M, Koch A. Colony-stimulating factor-1 receptor provides a growth advantage in epithelial cancer cell line A431 in the presence of epidermal growth factor receptor inhibitor gefitinib. Cell Signal 2018; 51:191-198. [PMID: 30075184 DOI: 10.1016/j.cellsig.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022]
Abstract
Although epidermal growth factor receptor (EGFR) has been identified as a potent "oncogenic driver" in various tumors of epithelial origin, EGFR-targeted therapies are often of limited success. One of the challenges of improving targeted therapies is to overcome bypassing signaling pathways. Analysis of RNA-seq data of 1006 cell lines from the Cancer Cell Line Encyclopedia (CCLE) revealed that more than 12% of carcinoma cell lines expressed markedly elevated mRNA levels of colony-stimulating factor (CSF)-1 receptor (CSF-1R). Since epithelial cells also express CSF-1, elevated levels of CSF-1R may participate in providing alternative growth and survival signals under targeted therapies. To address this question, we ectopically expressed CSF-1R in A431 cells that express EGFR at high levels, but no biologically relevant level of CSF-1R. In the presence of EGFR inhibitor gefitinib, CSF-1R provided a significant growth advantage in A431 cells. As expected, activation of both receptors, EGFR or CSF-1R, induced phosphorylation of extracellular signal-regulated kinase (Erk)1/2, Akt, protein kinase C (PKC) and signal transducer and activator of transcription (STAT)3. However, EGFR, but not CSF-1R, also induced STAT5 phosphorylation. Inhibitor of phosphatidylinositol 3-kinase (PI3K) (AZD8186), MAPK/ERK kinase (MEK)1/2 (U0126), PKCs (Bisindolylmaleimide I or Gö6976) or STAT3 (Stattic) partially reduced proliferation of CSF-1R expressing A431 cells in the presence of gefitinib. Moreover, multi-kinase inhibitor, cabozantinib, suppressed CSF-1R activation and drastically reduced cell growth when combined with gefitinib. These data suggest that CSF-1R has the potential to reduce sensitivity to gefitinib and may be involved in resistance development.
Collapse
Affiliation(s)
- Svenja Ellen Niehus
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Doan Duy Hai Tran
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Michaela Mischak
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Alexandra Koch
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
26
|
Claudin 11 regulates bone homeostasis via bidirectional EphB4-EphrinB2 signaling. Exp Mol Med 2018; 50:1-18. [PMID: 29700355 PMCID: PMC5938033 DOI: 10.1038/s12276-018-0076-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/06/2018] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Claudins (Cldns) are well-established components of tight junctions (TJs) that play a pivotal role in the modulation of paracellular permeability. Several studies have explored the physiologic aspects of Cldn family members in bone metabolism. However, the effect of Cldn11, a major component of central nervous system myelin, on bone homeostasis has not been reported. In this study, we demonstrate that Cldn11 is a potential target for bone disease therapeutics as a dual modulator of osteogenesis enhancement and osteoclastogenesis inhibition. We found that Cldn11 played a negative role in the receptor activator of nuclear factor kappa B ligand-induced osteoclast (OC) differentiation and function by downregulating the phosphorylated form of extracellular signal-regulated kinase (ERK), Bruton's tyrosine kinase, and phospholipase C gamma 2, in turn impeding c-Fos and nuclear factor in activated T cell c1 expression. The enhancement of osteoblast (OB) differentiation by positive feedback of Cldn11 was achieved through the phosphorylation of Smad1/5/8, ERK, and c-Jun amino-terminal kinase. Importantly, this Cldn11-dependent dual event in bone metabolism arose from targeting EphrinB2 ligand reverse signaling in OC and EphB4 receptor forward signaling in OB. In agreement with these in vitro effects, subcutaneous injection of Cldn11 recombinant protein exerted anti-resorbing effects in a lipopolysaccharide-induced calvarial bone loss mouse model and increased osteogenic activity in a calvarial bone formation model. These findings suggest that Cldn11 is a novel regulator in bone homeostasis.
Collapse
|
27
|
Baghdadi M, Endo H, Takano A, Ishikawa K, Kameda Y, Wada H, Miyagi Y, Yokose T, Ito H, Nakayama H, Daigo Y, Suzuki N, Seino KI. High co-expression of IL-34 and M-CSF correlates with tumor progression and poor survival in lung cancers. Sci Rep 2018; 8:418. [PMID: 29323162 PMCID: PMC5765132 DOI: 10.1038/s41598-017-18796-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in diagnosis and treatment of lung cancers, the 5-year survival rate remains unsatisfactory, which necessitates the identification of novel factors that associates with disease progression and malignant degree for improving diagnostic and therapeutic strategies. Recent progress in cancer immunology research has unveiled critical roles for colony stimulating factor 1 receptor (CSF1R) in multiple aspects of the tumor microenvironment. CSF1R is expressed on tumor-associated macrophages (TAMs), and mediates important pro-tumorigenic functions. CSF1R also provides critical autocrine signals that promote cancer cell survival and proliferation. Activation of CSF1R can be achieved by two independent ligands; macrophage colony-stimulating factor (M-CSF) and interleukin 34 (IL-34). Accordingly, the expression of these ligands in cancer is expected to result in poor prognosis. In this study, we show that IL-34 and M-CSF expression correlates with poor survival in a cohort of lung cancer patients. Importantly, high co-expression of IL-34 and M-CSF associates with the poorest survival compared to cancers that show weak or absent expression of the two ligands. Furthermore, high expression of IL-34 and M-CSF associates with advanced stages of lung cancers. Together, these results indicate a correlation between IL-34/M-CSF expression with poor survival and disease progression in lung cancer patients.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Hiraku Endo
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan.,Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki City, Kanagawa, 216-8512, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, 520-2192, Japan.,Center for Antibody and Vaccine, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Kozo Ishikawa
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Yosuke Kameda
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, 241-0815, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, 520-2192, Japan.,Center for Antibody and Vaccine, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki City, Kanagawa, 216-8512, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan.
| |
Collapse
|
28
|
Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clin Sci (Lond) 2017; 131:2161-2182. [DOI: 10.1042/cs20170238] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 12/17/2022]
Abstract
The proliferation, differentiation, and survival of cells of the macrophage lineage depends upon signals from the macrophage colony-stimulating factor (CSF) receptor (CSF1R). CSF1R is expressed by embryonic macrophages and induced early in adult hematopoiesis, upon commitment of multipotent progenitors to the myeloid lineage. Transcriptional activation of CSF1R requires interaction between members of the E26 transformation-specific family of transcription factors (Ets) (notably PU.1), C/EBP, RUNX, AP-1/ATF, interferon regulatory factor (IRF), STAT, KLF, REL, FUS/TLS (fused in sarcoma/ranslocated in liposarcoma) families, and conserved regulatory elements within the mouse and human CSF1R locus. One element, the Fms-intronic regulatory element (FIRE), within intron 2, is conserved functionally across all the amniotes. Lineage commitment in multipotent progenitors also requires down-regulation of specific transcription factors such as MYB, FLI1, basic leucine zipper transcriptional factor ATF-like (BATF3), GATA-1, and PAX5 that contribute to differentiation of alternative lineages and repress CSF1R transcription. Many of these transcription factors regulate each other, interact at the protein level, and are themselves downstream targets of CSF1R signaling. Control of CSF1R transcription involves feed–forward and feedback signaling in which CSF1R is both a target and a participant; and dysregulation of CSF1R expression and/or function is associated with numerous pathological conditions. In this review, we describe the regulatory network behind CSF1R expression during differentiation and development of cells of the mononuclear phagocyte system.
Collapse
|
29
|
Sossey-Alaoui K, Pluskota E, Bialkowska K, Szpak D, Parker Y, Morrison CD, Lindner DJ, Schiemann WP, Plow EF. Kindlin-2 Regulates the Growth of Breast Cancer Tumors by Activating CSF-1-Mediated Macrophage Infiltration. Cancer Res 2017; 77:5129-5141. [PMID: 28687620 DOI: 10.1158/0008-5472.can-16-2337] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/03/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022]
Abstract
Interplay between tumor cells and host cells in the tumor microenvironment dictates the development of all cancers. In breast cancer, malignant cells educate host macrophages to adopt a protumorigenic phenotype. In this study, we show how the integrin-regulatory protein kindlin-2 (FERMT2) promotes metastatic progression of breast cancer through the recruitment and subversion of host macrophages. Kindlin-2 expression was elevated in breast cancer biopsy tissues where its levels correlated with reduced patient survival. On the basis of these observations, we used CRISPR/Cas9 technology to ablate Kindlin-2 expression in human MDA-MB-231 and murine 4T1 breast cancer cells. Kindlin-2 deficiency inhibited invasive and migratory properties in vitro without affecting proliferation rates. However, in vivo tumor outgrowth was inhibited by >80% in a manner associated with reduced macrophage infiltration and secretion of the macrophage attractant and growth factor colony-stimulating factor-1 (CSF-1). The observed loss of CSF-1 appeared to be caused by a more proximal deficiency in TGFβ-dependent signaling in Kindlin-2-deficient cells. Collectively, our results illuminate a Kindlin-2/TGFβ/CSF-1 signaling axis employed by breast cancer cells to capture host macrophage functions that drive tumor progression. Cancer Res; 77(18); 5129-41. ©2017 AACR.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio
| | | | - Dorota Szpak
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio
| | - Yvonne Parker
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Cleveland, Ohio
| |
Collapse
|
30
|
Ali MS, Wang X, Lacerda CMR. A survey of membrane receptor regulation in valvular interstitial cells cultured under mechanical stresses. Exp Cell Res 2017; 351:150-156. [PMID: 28109865 DOI: 10.1016/j.yexcr.2017.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/01/2022]
Abstract
Degenerative valvular diseases have been linked to the action of abnormal forces on valve tissues during each cardiac cycle. It is now accepted that the degenerative behavior of valvular cells can be induced mechanically in vitro. This approach of in vitro modeling of valvular cells in culture constitutes a powerful tool to study, characterize, and develop predictors of heart valve degeneration in vivo. Using such in vitro systems, we expect to determine the exact signaling mechanisms that trigger and mediate propagation of degenerative signals. In this study, we aim to uncover the role of mechanosensing proteins on valvular cell membranes. These can be cell receptors and triggers of downstream pathways that are activated upon the action of cyclical tensile strains in pathophysiological conditions. In order to identify mechanosensors of tensile stresses on valvular interstitial cells, we employed biaxial cyclic strain of valvular cells in culture and quantitatively evaluated the expression of cell membrane proteins using a targeted protein array and interactome analyses. This approach yielded a high-throughput screening of all cell surface proteins involved in sensing mechanical stimuli. In this study, we were able to identify the cell membrane proteins which are activated during physiological cyclic tensile stresses of valvular cells. The proteins identified in this study were clustered into four interactomes, which included CC chemokine ligands, thrombospondin (adhesive glycoproteins), growth factors, and interleukins. The expression levels of these proteins generally indicated that cells tend to increase adhesive efforts to counteract the action of mechanical forces. This is the first study of this kind used to comprehensively identify the mechanosensitive proteins in valvular cells.
Collapse
Affiliation(s)
- Mir S Ali
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Avenue, Lubbock, TX, 79409-3121 USA
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Avenue, Lubbock, TX, 79409-3121 USA
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Avenue, Lubbock, TX, 79409-3121 USA.
| |
Collapse
|
31
|
Saha SK, Choi HY, Kim BW, Dayem AA, Yang GM, Kim KS, Yin YF, Cho SG. KRT19 directly interacts with β-catenin/RAC1 complex to regulate NUMB-dependent NOTCH signaling pathway and breast cancer properties. Oncogene 2017; 36:332-349. [PMID: 27345400 PMCID: PMC5270332 DOI: 10.1038/onc.2016.221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/19/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022]
Abstract
Studies have reported that interactions between keratins (KRTs) and other proteins initiate signaling cascades that regulate cell migration, invasion, and metastasis. In the current study, we found that expression of KRT19 was specifically high in breast cancers and significantly correlated with their invasiveness. Moreover, knockdown of KRT19 led to increased proliferation, migration, invasion, drug resistance, and sphere formation in breast cancer cells via an upregulated NOTCH signaling pathway. This was owing to reduced expression of NUMB, an inhibitory protein of the NOTCH signaling pathway. In addition, we found that KRT19 interacts with β-catenin/RAC1 complex and enhances the nuclear translocation of β-catenin. Concordantly, knockdown of KRT19 suppressed the nuclear translocation of β-catenin as well as β-catenin-mediated NUMB expression. Furthermore, modulation of KRT19-mediated regulation of NUMB and NOTCH1 expression led to the repression of the cancer stem cell properties of breast cancer patient-derived CD133high/CXCR4high/ALDH1high cancer stem-like cells (CSLCs), which showed very low KRT19 and high NOTCH1 expression. Taken together, our study suggests a novel function for KRT19 in the regulation of nuclear import of the β-catenin/RAC1 complex, thus modulating the NUMB-dependent NOTCH signaling pathway in breast cancers and CSLCs, which might bear potential clinical implications for cancer or CSLC treatment.
Collapse
Affiliation(s)
- S K Saha
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - H Y Choi
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - B W Kim
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - A A Dayem
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - G-M Yang
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - K S Kim
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - Y F Yin
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - S-G Cho
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Kohrman AQ, Matus DQ. Divide or Conquer: Cell Cycle Regulation of Invasive Behavior. Trends Cell Biol 2017; 27:12-25. [PMID: 27634432 PMCID: PMC5186408 DOI: 10.1016/j.tcb.2016.08.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/30/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Cell invasion through the basement membrane (BM) occurs during normal embryonic development and is a fundamental feature of cancer metastasis. The underlying cellular and genetic machinery required for invasion has been difficult to identify, due to a lack of adequate in vivo models to accurately examine invasion in single cells at subcellular resolution. Recent evidence has documented a functional link between cell cycle arrest and invasive activity. While cancer progression is traditionally thought of as a disease of uncontrolled cell proliferation, cancer cell dissemination, a critical aspect of metastasis, may require a switch from a proliferative to an invasive state. In this work, we review evidence that BM invasion requires cell cycle arrest and discuss the implications of this concept with regard to limiting the lethality associated with cancer metastasis.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
33
|
Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene 2016; 36:2680-2692. [PMID: 27893712 PMCID: PMC5426963 DOI: 10.1038/onc.2016.421] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 01/14/2023]
Abstract
During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.
Collapse
|
34
|
Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, Endo D, Watari H, Sakuragi N, Hida Y, Kaga K, Miyagi Y, Yokose T, Takano A, Daigo Y, Seino KI. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells. Cancer Res 2016; 76:6030-6042. [PMID: 27550451 DOI: 10.1158/0008-5472.can-16-1170] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022]
Abstract
The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance local immunosuppression and to promote the survival of chemoresistant cancer cells by activating AKT signaling. Targeting IL34 in chemoresistant tumors resulted in a remarkable inhibition of tumor growth when accompanied with chemotherapy. Our results define a pathogenic role for IL34 in mediating immunosuppression and chemoresistance and identify it as a tractable target for anticancer therapy. Cancer Res; 76(20); 6030-42. ©2016 AACR.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Sayaka Nakanishi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hirotake Abe
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Wira Eka Putra
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Endo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriaki Sakuragi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan. Center for Antibody and Vaccine, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan. Center for Antibody and Vaccine, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
35
|
In Vivo Visualization of Stromal Macrophages via label-free FLIM-based metabolite imaging. Sci Rep 2016; 6:25086. [PMID: 27220760 PMCID: PMC4879594 DOI: 10.1038/srep25086] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
Abstract
Macrophage infiltration and recruitment in breast tumors has been correlated with poor prognosis in breast cancer patients and has been linked to tumor cell dissemination. Much of our understanding comes from animal models in which macrophages are labeled by expression of an extrinsic fluorophore. However, conventional extrinsic fluorescence labeling approaches are not readily applied to human tissue and clinical use. We report a novel strategy that exploits endogenous fluorescence from the metabolic co-factors NADH and FAD with quantitation from Fluorescence Lifetime Imaging Microscopy (FLIM) as a means to non-invasively identify tumor-associated macrophages in the intact mammary tumor microenvironment. Macrophages were FADHI and demonstrated a glycolytic-like NADH-FLIM signature that was readily separated from the intrinsic fluorescence signature of tumor cells. This non-invasive quantitative technique provides a unique ability to discern specific cell types based upon their metabolic signatures without the use of exogenous fluorescent labels. Not only does this provide high resolution temporal and spatial views of macrophages in live animal breast cancer models, this approach can be extended to other animal disease models where macrophages are implicated and has potential for clinical applications.
Collapse
|
36
|
Rietkötter E, Bleckmann A, Bayerlová M, Menck K, Chuang HN, Wenske B, Schwartz H, Erez N, Binder C, Hanisch UK, Pukrop T. Anti-CSF-1 treatment is effective to prevent carcinoma invasion induced by monocyte-derived cells but scarcely by microglia. Oncotarget 2016; 6:15482-93. [PMID: 26098772 PMCID: PMC4558165 DOI: 10.18632/oncotarget.3855] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/29/2015] [Indexed: 01/15/2023] Open
Abstract
The mononuclear phagocytic system is categorized in three major groups: monocyte-derived cells (MCs), dendritic cells and resident macrophages. During breast cancer progression the colony stimulating factor 1 (CSF-1) can reprogram MCs into tumor-promoting macrophages in the primary tumor. However, the effect of CSF-1 during colonization of the brain parenchyma is largely unknown. Thus, we analyzed the outcome of anti-CSF-1 treatment on the resident macrophage population of the brain, the microglia, in comparison to MCs, alone and in different in vitro co-culture models. Our results underline the addiction of MCs to CSF-1 while surprisingly, microglia were not affected. Furthermore, in contrast to the brain, the bone marrow did not express the alternative ligand, IL-34. Yet treatment with IL-34 and co-culture with carcinoma cells partially rescued the anti-CSF-1 effects on MCs. Further, MC-induced invasion was significantly reduced by anti-CSF-1 treatment while microglia-induced invasion was reduced to a lower extend. Moreover, analysis of lung and breast cancer brain metastasis revealed significant differences of CSF-1 and CSF-1R expression. Taken together, our findings demonstrate not only differences of anti-CSF-1 treatment on MCs and microglia but also in the CSF-1 receptor and ligand expression in brain and bone marrow as well as in brain metastasis.
Collapse
Affiliation(s)
- Eva Rietkötter
- Department of Hematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany
| | - Michaela Bayerlová
- Department of Medical Statistics, University Medical Center, 37075 Göttingen, Germany
| | - Kerstin Menck
- Department of Hematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany
| | - Han-Ning Chuang
- Department of Hematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany
| | - Britta Wenske
- Department of Hematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany
| | - Hila Schwartz
- Department of Pathology, Sackler School of Medicine, 69978 Tel Aviv University, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, 69978 Tel Aviv University, Israel
| | - Claudia Binder
- Department of Hematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center, 37075 Göttingen, Germany
| | - Tobias Pukrop
- Department of Hematology and Medical Oncology, University Medical Center, 37075 Göttingen, Germany.,Department of Hematology and Medical Oncology, University Clinic Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
37
|
Abstract
The process of entering the bloodstream, intravasation, is a necessary step in the development of distant metastases. The focus of this review is on the pathways and molecules that have been identified as being important based on current in vitro and in vivo assays for intravasation. Properties of the vasculature which are important for intravasation include microvessel density and also diameter of the vasculature, with increased intravasation correlating with increased vessel diameter in some tumors. TGFB signaling can enhance intravasation at least in part through induction of EMT, and we discuss other TGFB target genes that are important for intravasation. In addition to TGFB signaling, a number of studies have demonstrated that activation of EGF receptor family members stimulates intravasation, with downstream signaling through PI3K, N-WASP, RhoA, and WASP to induce invadopodia. With respect to proteases, there is strong evidence for contributions by uPA/uPAR, while the roles of MMPs in intravasation may be more tumor specific. Other cells including macrophages, fibroblasts, neutrophils, and platelets can also play a role in enhancing tumor cell intravasation. The technology is now available to interrogate the expression patterns of circulating tumor cells, which will provide an important reality check for the model systems being used. With a better understanding of the mechanisms underlying intravasation, the goal is to provide new opportunities for improving prognosis as well as potentially developing new treatments.
Collapse
Affiliation(s)
- Serena P H Chiang
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Ramon M Cabrera
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
38
|
Hur H, Lee JY, Yang S, Kim JM, Park AE, Kim MH. HOXC9 Induces Phenotypic Switching between Proliferation and Invasion in Breast Cancer Cells. J Cancer 2016; 7:768-73. [PMID: 27162534 PMCID: PMC4860792 DOI: 10.7150/jca.13894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/20/2016] [Indexed: 01/07/2023] Open
Abstract
HOX genes encode a family of transcriptional regulators that are involved in pattern formation and organogenesis during embryo development. In addition, these genes play important roles in adult tissues and some of the dysregulated HOX genes are associated with cancer development and metastasis. Like many other HOX genes, HOXC9 is aberrantly expressed in certain breast cancer cell lines and tissues; however, its specific functions in breast cancer progression were not investigated. In the present study, we demonstrated that HOXC9 overexpression in breast cancer cell lines such as MDA-MB-231 and MCF7 increased the invasiveness but reduced the proliferation of cells, resembling a phenotype switch from a proliferative to an invasive state. Furthermore, the reciprocal result was detected in MCF7 and BT474 cells when the expression level of HOXC9 was reduced with siRNA. The clinical impact of HOXC9 in breast cancer was interpreted from the survival analysis data, in which high HOXC9 expression led to considerably poorer disease-free survival and distant metastasis-free survival, especially in lymph node-positive patients. Together, the prognostic relevance of HOXC9 and the HOXC9-derived phenotypic switch between proliferative and invasive states in the breast cancer cell lines suggest that HOXC9 could be a prognostic marker in breast cancer patients with lymph node metastasis and a target for therapeutic intervention in malignant breast cancer.
Collapse
Affiliation(s)
- Ho Hur
- 1. Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang 410-719, Korea
| | - Ji-Yeon Lee
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seoyeon Yang
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jie Min Kim
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Anna E Park
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Myoung Hee Kim
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
39
|
Scheele CLGJ, Maynard C, van Rheenen J. Intravital Insights into Heterogeneity, Metastasis, and Therapy Responses. Trends Cancer 2016; 2:205-216. [PMID: 28741572 DOI: 10.1016/j.trecan.2016.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/08/2023]
Abstract
Tumor progression is driven by a series of genetic and microenvironmental changes. These events lead to heterogeneous tumors which consist of a variety of cells from which some cells may possess properties which promote survival after therapy and metastasis. Recent advances in intravital microscopy (IVM) have enabled visualization of this tumor heterogeneity over time at a single-cell resolution. We highlight here the latest IVM studies that have revealed the dynamic interactions between the tumor cells and their local microenvironment. We review the most recent data that exposes how these dynamic interactions cause an additional increase in tumor heterogeneity, resulting in multiple metastatic strategies and facilitating therapy resistance.
Collapse
Affiliation(s)
- Colinda L G J Scheele
- Cancer Genomics Netherlands, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Carrie Maynard
- Cancer Genomics Netherlands, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Yang L, Liu Y, An H, Chang Y, Zhang W, Zhu Y, Xu L, Xu J. High Expression of Colony-Stimulating Factor 1 Receptor Associates with Unfavorable Cancer-Specific Survival of Patients with Clear Cell Renal Cell Carcinoma. Ann Surg Oncol 2015; 23:1044-52. [PMID: 26467457 DOI: 10.1245/s10434-015-4911-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colony-stimulating factor 1 receptor (CSF-1R), a single-pass type III transmembrane tyrosine-protein kinase, is mainly involved in inflammation and immune regulation to facilitate the progression of solid tumors. This study aimed to evaluate the impact of CSF-1R expression on clinical outcome of patients with clear cell renal cell carcinoma (ccRCC) after surgery. METHODS We retrospectively enrolled 268 patients with ccRCC undergoing nephrectomy between 2001 and 2004. Clinicopathologic features and cancer-specific survival (CSS) were collected. Western blot analysis was performed in the pairwise comparisons of CSF-1R expression in peritumor and tumor tissues of patients with ccRCC. Immunohistochemistry was conducted to determine CSF-1R expression level in tumor specimens. Survival analysis was performed by the Kaplan-Meier method. Cox regression models were used to evaluate the impact of prognostic factors on CSS. A concordance index was calculated to measure prognostic accuracy. A prognostic nomogram was constructed on the basis of the identified independent prognostic factors. RESULTS CSF-1R expression in tumor tissues was higher than in peritumor tissues in 71.4% (5 of 7) patients. CSF-1R expression of tumor tissues was positively associated with metastasis, tumor, node, metastasis classification system (TNM) stage, Eastern Cooperative Oncology Group performance status score and poor CSS. CSF-1R expression was determined as an independent prognostic factor for CSS in patients with ccRCC. Furthermore, extension of the well-established prognostic models with CSF-1R expression presented significantly improved prognostic accuracy. An efficient prognostic nomogram was constructed on the basis of the independent prognostic factors. CONCLUSIONS High CSF-1R expression is a potential independent adverse prognostic factor for CSS in patients with ccRCC.
Collapse
Affiliation(s)
- Liu Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yidong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huimin An
- Department of Urology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yu Zhu
- Department of Urology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Entenberg D, Rodriguez-Tirado C, Kato Y, Kitamura T, Pollard JW, Condeelis J. In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. INTRAVITAL 2015; 4:e1086613. [PMID: 26855844 PMCID: PMC4737962 DOI: 10.1080/21659087.2015.1086613] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 10/25/2022]
Abstract
To better understand breast cancer metastatic cell seeding, we have employed multiphoton microscopy and a vacuum stabilized window which eliminates the need for complex registration software, video rate microscopy or specialized gating electronics to observe the initial steps of tumor cell seeding within the living, breathing lung. We observe that upon arrival to the lung, tumor cells are found exclusively in capillary vessels, completely fill their volume and display an initial high level of protrusive activity that dramatically reduces over time. Further, we observe a concomitant increase in positional stability during this same period. We employ several techniques accessible to most imaging labs for optimizing signal to noise and resolution which enable us to report the first direct observation, with subcellular resolution, of the arrival, proliferation, and motility of metastatic tumor cells within the lung.
Collapse
Affiliation(s)
- David Entenberg
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx, NY USA
- Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine; Bronx, NY USA
- Integrated Imaging Program; Albert Einstein College of Medicine; Bronx, NY USA
| | - Carolina Rodriguez-Tirado
- Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health; Albert Einstein College of Medicine; Bronx, NY, USA
| | - Yu Kato
- Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health; Albert Einstein College of Medicine; Bronx, NY, USA
| | - Takanori Kitamura
- Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health; Albert Einstein College of Medicine; Bronx, NY, USA
- Medical Research Council Centre for Reproductive Health; Queen's Medical Research Institute; University of Edinburgh; Edinburgh, UK
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health; Albert Einstein College of Medicine; Bronx, NY, USA
- Medical Research Council Centre for Reproductive Health; Queen's Medical Research Institute; University of Edinburgh; Edinburgh, UK
| | - John Condeelis
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx, NY USA
- Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine; Bronx, NY USA
- Integrated Imaging Program; Albert Einstein College of Medicine; Bronx, NY USA
| |
Collapse
|
42
|
Pignatelli J, Goswami S, Jones JG, Rohan TE, Pieri E, Chen X, Adler E, Cox D, Maleki S, Bresnick A, Gertler FB, Condeelis JS, Oktay MH. Invasive breast carcinoma cells from patients exhibit MenaINV- and macrophage-dependent transendothelial migration. Sci Signal 2014; 7:ra112. [PMID: 25429076 DOI: 10.1126/scisignal.2005329] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis is a complex, multistep process of cancer progression that has few treatment options. A critical event is the invasion of cancer cells into blood vessels (intravasation), through which cancer cells disseminate to distant organs. Breast cancer cells with increased abundance of Mena [an epidermal growth factor (EGF)-responsive cell migration protein] are present with macrophages at sites of intravasation, called TMEM sites (for tumor microenvironment of metastasis), in patient tumor samples. Furthermore, the density of these intravasation sites correlates with metastatic risk in patients. We found that intravasation of breast cancer cells may be prevented by blocking the signaling between cancer cells and macrophages. We obtained invasive breast ductal carcinoma cells of various subtypes by fine-needle aspiration (FNA) biopsies from patients and found that, in an in vitro transendothelial migration assay, cells that migrated through a layer of human endothelial cells were enriched for the transcript encoding Mena(INV), an invasive isoform of Mena. This enhanced transendothelial migration required macrophages and occurred with all of the breast cancer subtypes. Using mouse macrophages and the human cancer cells from the FNAs, we identified paracrine and autocrine activation of colony-stimulating factor-1 receptor (CSF-1R). The paracrine or autocrine nature of the signal depended on the breast cancer cell subtype. Knocking down Mena(INV) or adding an antibody that blocks CSF-1R function prevented transendothelial migration. Our findings indicate that Mena(INV) and TMEM frequency are correlated prognostic markers and CSF-1 and Mena(INV) may be therapeutic targets to prevent metastasis of multiple breast cancer subtypes.
Collapse
Affiliation(s)
- Jeanine Pignatelli
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA. Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Evan Pieri
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Esther Adler
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sara Maleki
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Anne Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA.
| |
Collapse
|