1
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
2
|
Shen Y, Yan J, Li L, Sun H, Zhang L, Li G, Wang X, Liu R, Wu X, Han B, Sun X, Liu J, Fan X. LOXL2-induced PEAR1 Ser891 phosphorylation suppresses CD44 degradation and promotes triple-negative breast cancer metastasis. J Clin Invest 2024; 134:e177357. [PMID: 39145451 PMCID: PMC11324313 DOI: 10.1172/jci177357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
CD44 is associated with a high risk of metastasis, recurrence, and drug resistance in various cancers. Here we report that platelet endothelial aggregation receptor 1 (PEAR1) is a CD44 chaperone protein that protected CD44 from endocytosis-mediated degradation and enhances cleavage of the CD44 intracellular domain (CD44-ICD). Furthermore, we found that lysyl oxidase-like protein 2 (LOXL2), an endogenous ligand of PEAR1, bound to the PEAR1-EMI domain and facilitated the interaction between PEAR1 and CD44 by inducing PEAR1 Ser891 phosphorylation in a manner that was independent of its enzyme activity. Levels of PEAR1 protein and PEAR1 phosphorylation at Ser891 were increased in patients with triple-negative breast cancer (TNBC), were positively correlated with expression of LOXL2 and CD44, and were negatively correlated with overall survival. The level of PEAR1 Ser891 phosphorylation was identified as the best independent prognostic factor in TNBC patients. The prognostic efficacy of the combination of PEAR1 phosphorylation at Ser891 and CD44 expression was superior to that of PEAR1 phosphorylation at Ser891 alone. Blocking the interaction between LOXL2 and PEAR1 with monoclonal antibodies significantly inhibited TNBC metastasis, representing a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Yingzhi Shen
- Department of Biochemistry and Molecular Cell Biology
| | - Jie Yan
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Li
- Department of Biochemistry and Molecular Cell Biology
| | - Huiyan Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology
| | - Guoming Li
- Department of Biochemistry and Molecular Cell Biology
| | - Xinxia Wang
- Department of Biochemistry and Molecular Cell Biology
| | - Ruoyan Liu
- Department of Biochemistry and Molecular Cell Biology
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology
- Shanghai Synvida Biotechnology Co., Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology
| |
Collapse
|
3
|
Ye C, Jiang S, Zeng T, He S, Cao J, Xiao J. The role of LOXL2 in tumor progression, immune response and cellular senescence: a comprehensive analysis. Discov Oncol 2024; 15:245. [PMID: 38922489 PMCID: PMC11208360 DOI: 10.1007/s12672-024-01107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
LOXL2, an enzyme belonging to the LOX family, facilitates the cross-linking of extracellular matrix (ECM) elements. However, the roles of the LOXL2 gene in mechanisms of oncogenesis and tumor development have not been clearly defined. In this pan-cancer study, we examined the notable disparity in LOXL2 expression at the mRNA and protein levels among various cancer types and elucidated its interconnected roles in tumor progression, mutational profile, immune response, and cellular senescence. Apart from investigating the hyperexpression of LOXL2 being related to poorer prognosis in different types of tumors, this study also unveiled noteworthy connections between LOXL2 and genetic mutations, infiltration of tumor immune cells, and genes in immune checkpoint pathways. Further analysis revealed the participation of LOXL2 in multiple pathways related to cancer extracellular matrix remodeling and cellular senescence. Moreover, our investigation uncovered that the knockdown and inhibition of LOXL2 significantly attenuated the proliferation and migration of PC-9 and HCC-LM3 cells. The knock-down and inhibition of LOXL2 enhanced cellular senescence in lung and liver cancer cells, as confirmed by SA-β-Gal staining and quantitative RT-PCR analyses. This comprehensive analysis offers valuable insights on the functions of LOXL2 in different types of cancer and its role in regulating the senescence of cancer cells.
Collapse
Affiliation(s)
- Chen Ye
- School of Health Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Sihan Jiang
- Graduate School, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Tanlun Zeng
- Graduate School, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Shaohui He
- Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jinjin Cao
- School of Health Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Jianru Xiao
- School of Health Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
- Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
4
|
Di Mauro P, Croset M, Bouazza L, Clézardin P, Reynaud C. LOX, but not LOXL2, promotes bone metastasis formation and bone destruction in triple-negative breast cancer. J Bone Oncol 2024; 44:100522. [PMID: 38283827 PMCID: PMC10820283 DOI: 10.1016/j.jbo.2024.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
The primary function of the lysyl oxidase (LOX) family, including LOX and its paralogue LOX-like (LOXL)-2, is to catalyze the covalent crosslinking of collagen and elastin in the extracellular matrix. LOX and LOXL2 are also facilitating breast cancer invasion and metastatic spread to visceral organs (lungs, liver) in vivo. Conversely, the contribution of LOX and LOXL2 to breast cancer bone metastasis remains scant. Here, using gene overexpression or silencing strategies, we investigated the role of LOX and LOXL2 on the formation of metastatic osteolytic lesions in animal models of triple negative breast cancer. In vivo, the extent of radiographic metastatic osteolytic lesions in animals injected with LOX-overexpressing [LOX(+)] tumor cells was 3-fold higher than that observed in animals bearing tumors silenced for LOX [LOX(-)]. By contrast, the extent of osteolytic lesions between LOXL2(+) and LOXL2(-) tumor-bearing animals did not differ, and was comparable to that observed with LOX(-) tumor-bearing animals. In situ, TRAP staining of bone tissue sections from the hind limbs of LOX(+) tumor-bearing animals was substantially increased compared to LOX(-), LOXL2(+) and LOXL2(-)-tumor-bearing animals, which was indicative of enhanced active-osteoclast resorption. In vitro, tumor-secreted LOX increased osteoclast differentiation induced by RANKL, whereas LOXL2 seemed to counteract LOX's pro-osteoclastic activity. Furthermore, LOX (but not LOXL2) overexpression in tumor cells induced a robust production of IL-6, the latter being a pro-osteoclastic cytokine. Based on these findings, we propose a model in which LOX and IL-6 secreted from tumor cells act in concert to enhance osteoclast-mediated bone resorption that, in turn, promotes metastatic bone destruction in vivo.
Collapse
Affiliation(s)
- Paola Di Mauro
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
| | - Martine Croset
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
| | - Lamia Bouazza
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
| | - Philippe Clézardin
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Caroline Reynaud
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
5
|
Cano A, Eraso P, Mazón MJ, Portillo F. LOXL2 in Cancer: A Two-Decade Perspective. Int J Mol Sci 2023; 24:14405. [PMID: 37762708 PMCID: PMC10532419 DOI: 10.3390/ijms241814405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Lysyl Oxidase Like 2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises five lysine tyrosylquinone (LTQ)-dependent copper amine oxidases in humans. In 2003, LOXL2 was first identified as a promoter of tumour progression and, over the course of two decades, numerous studies have firmly established its involvement in multiple cancers. Extensive research with large cohorts of human tumour samples has demonstrated that dysregulated LOXL2 expression is strongly associated with poor prognosis in patients. Moreover, investigations have revealed the association of LOXL2 with various targets affecting diverse aspects of tumour progression. Additionally, the discovery of a complex network of signalling factors acting at the transcriptional, post-transcriptional, and post-translational levels has provided insights into the mechanisms underlying the aberrant expression of LOXL2 in tumours. Furthermore, the development of genetically modified mouse models with silenced or overexpressed LOXL2 has enabled in-depth exploration of its in vivo role in various cancer models. Given the significant role of LOXL2 in numerous cancers, extensive efforts are underway to identify specific inhibitors that could potentially improve patient prognosis. In this review, we aim to provide a comprehensive overview of two decades of research on the role of LOXL2 in cancer.
Collapse
Affiliation(s)
- Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
| | - María J. Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Zhang X, Jing F, Guo C, Li X, Li J, Liang G. Tumor-suppressive function and mechanism of miR-873-5p in glioblastoma: evidence based on bioinformatics analysis and experimental validation. Aging (Albany NY) 2023; 15:5412-5425. [PMID: 37382594 PMCID: PMC10333085 DOI: 10.18632/aging.204800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
This study aims to clarify the mechanistic actions of microRNA-873-5p (miR-873-5p) on glioblastoma (GBM) progression. The most differentially expressed miRNAs were retrieved from the GEO database. It was established that miR-873-5p was downregulated in GBM tissues and cells. Based on in silico prediction and experimental data, HMOX1 was demonstrated to be a target gene of miR-873-5p. Further, miR-873-5p was then ectopically expressed in GBM cells to examine its effect on the malignant behaviors of GBM cells. Overexpression of miR-873-5p inhibited GBM cell proliferation and invasion by targeting HMOX1. HMOX1 promoted SPOP expression by increasing HIF1α expression, thus stimulating GBM cell malignant phenotypes. miR-873-5p suppressed the malignant phenotypes of GBM cells and tumorigenesis in vitro and in vivo by inhibiting the HMOX1/HIF1α/SPOP signaling axis. This study uncovers a novel miR-873-5p/HMOX1/HIF1α/SPOP axis in GBM, providing new insights into GBM progression and therapeutic targets for GBM treatment.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Fangkun Jing
- Department of Neurosurgery, Jinqiu Hospital of Liaoning Province, Shenyang 110000, China
| | - Chen Guo
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Xinning Li
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Jianan Li
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang 110000, China
| |
Collapse
|
7
|
Eraso P, Mazón MJ, Jiménez V, Pizarro-García P, Cuevas EP, Majuelos-Melguizo J, Morillo-Bernal J, Cano A, Portillo F. New Functions of Intracellular LOXL2: Modulation of RNA-Binding Proteins. Molecules 2023; 28:molecules28114433. [PMID: 37298909 DOI: 10.3390/molecules28114433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process-the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2's nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs' targets, points to six RBPs as candidates to be substrates of LOXL2's action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process.
Collapse
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - María J Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Victoria Jiménez
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Patricia Pizarro-García
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Eva P Cuevas
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Jara Majuelos-Melguizo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Jesús Morillo-Bernal
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Lu X, Xin DE, Du JK, Zou QC, Wu Q, Zhang YS, Deng W, Yue J, Fan XS, Zeng Y, Cheng X, Li X, Hou Z, Mohan M, Zhao TC, Lu X, Chang Z, Xu L, Sun Y, Zu X, Zhang Y, Chinn YE. Loss of LOXL2 Promotes Uterine Hypertrophy and Tumor Progression by Enhancing H3K36ac-Dependent Gene Expression. Cancer Res 2022; 82:4400-4413. [PMID: 36197797 DOI: 10.1158/0008-5472.can-22-0848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023]
Abstract
UNLABELLED Lysyl oxidase-like 2 (LOXL2) is a member of the scavenger receptor cysteine-rich (SRCR) repeat carrying LOX family. Although LOXL2 is suspected to be involved in histone association and chromatin modification, the role of LOXL2 in epigenetic regulation during tumorigenesis and cancer progression remains unclear. Here, we report that nuclear LOXL2 associates with histone H3 and catalyzes H3K36ac deacetylation and deacetylimination. Both the N-terminal SRCR repeats and the C-terminal catalytic domain of LOXL2 carry redundant deacetylase catalytic activity. Overexpression of LOXL2 markedly reduced H3K36 acetylation and blocked H3K36ac-dependent transcription of genes, including c-MYC, CCND1, HIF1A, and CD44. Consequently, LOXL2 overexpression reduced cancer cell proliferation in vitro and inhibited xenograft tumor growth in vivo. In contrast, LOXL2 deficiency resulted in increased H3K36 acetylation and aberrant expression of H3K36ac-dependent genes involved in multiple oncogenic signaling pathways. Female LOXL2-deficient mice spontaneously developed uterine hypertrophy and uterine carcinoma. Moreover, silencing LOXL2 in cancer cells enhanced tumor progression and reduced the efficacy of cisplatin and anti-programmed cell death 1 (PD-1) combination therapy. Clinically, low nuclear LOXL2 expression and high H3K36ac levels corresponded to poor prognosis in uterine endometrial carcinoma patients. These results suggest that nuclear LOXL2 restricts cancer development in the female reproductive system via the regulation of H3K36ac deacetylation. SIGNIFICANCE LOXL2 loss reprograms the epigenetic landscape to promote uterine cancer initiation and progression and repress the efficacy of anti-PD-1 immunotherapy, indicating that LOXL2 is a tumor suppressor.
Collapse
Affiliation(s)
- Xufeng Lu
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Dazhuan E Xin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang
- Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Juanjuan K Du
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang
- Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Quanli C Zou
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Wu
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yanan S Zhang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Wenhai Deng
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Xing S Fan
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Zeng
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Xiaju Cheng
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Xue Li
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Mohan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting C Zhao
- Departments of Surgery and Medicine, Brown University School of Medicine-Rhode Island Hospital, Providence, Rhode Island
| | - Xiaomei Lu
- Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, Tsinghua University School of Medicine, Beijing, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Yu Sun
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiongbing Zu
- Departments of Urology and Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan, China
| | - Yu Zhang
- Departments of Urology and Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan, China
| | - Y Eugene Chinn
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang
- Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| |
Collapse
|
9
|
Lysyl Oxidases: Orchestrators of Cellular Behavior and ECM Remodeling and Homeostasis. Int J Mol Sci 2022; 23:ijms231911378. [PMID: 36232685 PMCID: PMC9569843 DOI: 10.3390/ijms231911378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Lysyl oxidases have long been considered key secreted extracellular matrix modifying enzymes. As such, their activity has been associated with the crosslinking of collagens and elastin, and as a result, they have been linked to multiple developmental and pathological processes. However, numerous lines of evidence also demonstrated that members of this enzyme family are localized and are active within the cytoplasm or cell nuclei, where they regulate and participate in distinct cellular events. In this review, we focus on a few of these events and highlight the intracellular role these enzymes play. Close examination of these events, suggest that the intracellular activities of lysyl oxidases is mostly observed in processes where concomitant changes in the extracellular matrix takes place. Here, we suggest that the LOX family members act in the relay between changes in the cells’ environment and the intracellular processes that promote them or that follow.
Collapse
|
10
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
11
|
Sarrio D, Rojo-Sebastián A, Teijo A, Pérez-López M, Díaz-Martín E, Martínez L, Morales S, García-Sanz P, Palacios J, Moreno-Bueno G. Gasdermin-B Pro-Tumor Function in Novel Knock-in Mouse Models Depends on the in vivo Biological Context. Front Cell Dev Biol 2022; 10:813929. [PMID: 35281099 PMCID: PMC8907722 DOI: 10.3389/fcell.2022.813929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Gasdermins (GSDM) genes play complex roles in inflammatory diseases and cancer. Gasdermin-B (GSDMB) is frequently upregulated in human cancers, especially in HER2-amplified breast carcinomas, and can promote diverse pro-tumor functions (invasion, metastasis, therapy-resistance). In particular, the GSDMB shortest translated variant (isoform 2; GSDMB2) increases aggressive behavior in breast cancer cells. Paradoxically, GSDMB can also have tumor suppressor (cell death induction) effects in specific biological contexts. However, whether GSDMB has inherent oncogenic, or tumor suppressor function in vivo has not been demonstrated yet in preclinical mouse models, since mice lack GSDMB orthologue. Therefore, to decipher GSDMB cancer functions in vivo we first generated a novel knock-in mouse model (R26-GB2) ubiquitously expressing human GSDMB2. The comprehensive histopathological analysis of multiple tissues from 75 animals showed that nucleus-cytoplasmic GSDMB2 expression did not clearly affect the overall frequency nor the histology of spontaneous neoplasias (mostly lung carcinomas), but associated with reduced incidence of gastric tumors, compared to wildtype animals. Next, to assess specifically the GSDMB2 roles in breast cancer, we generated two additional double transgenic mouse models, that co-express GSDMB2 with either the HER2/NEU oncogene (R26-GB2/MMTV-NEU mice) or the Polyoma middle-T antigen (R26-GB2/MMTV-PyMT) in breast tumors. Consistent with the pro-tumor effect of GSDMB in HER2+ human breast carcinomas, R26-GB2/MMTV-NEU GSDMB2-positive mice have double breast cancer incidence than wildtype animals. By contrast, in the R26-GB2/MMTV-PyMT model of fast growing and highly metastatic mammary tumors, GSDMB2 expression did not significantly influence cancer development nor metastatic potential. In conclusion, our data prove that GSDMB2 in vivo pro-tumor effect is evidenced only in specific biological contexts (in concert with the HER2 oncogene), while GSDMB2 alone does not have overall intrinsic oncogenic potential in genetically modified mice. Our novel models are useful to identify the precise stimuli and molecular mechanisms governing GSDMB functions in neoplasias and can be the basis for the future development of additional tissue-specific and context-dependent cancer models.
Collapse
Affiliation(s)
- David Sarrio
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- *Correspondence: David Sarrio, ; Gema Moreno-Bueno,
| | | | - Ana Teijo
- Fundación MD Anderson Internacional, Madrid, Spain
| | - María Pérez-López
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Fundación MD Anderson Internacional, Madrid, Spain
| | | | - Lidia Martínez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Saleta Morales
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - José Palacios
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Servicio de Anatomía Patológica, Hospital Ramón y Cajal, Universidad de Alcalá, IRYCIS, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Fundación MD Anderson Internacional, Madrid, Spain
- *Correspondence: David Sarrio, ; Gema Moreno-Bueno,
| |
Collapse
|
12
|
HIF-1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer. Cancer Lett 2022; 531:39-56. [DOI: 10.1016/j.canlet.2022.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
|
13
|
Koorman T, Jansen KA, Khalil A, Haughton PD, Visser D, Rätze MAK, Haakma WE, Sakalauskaitè G, van Diest PJ, de Rooij J, Derksen PWB. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene 2022; 41:2458-2469. [PMID: 35292774 PMCID: PMC9033577 DOI: 10.1038/s41388-022-02258-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 01/29/2023]
Abstract
The tumor micro-environment often contains stiff and irregular-bundled collagen fibers that are used by tumor cells to disseminate. It is still unclear how and to what extent, extracellular matrix (ECM) stiffness versus ECM bundle size and alignment dictate cancer cell invasion. Here, we have uncoupled Collagen-I bundling from stiffness by introducing inter-collagen crosslinks, combined with temperature induced aggregation of collagen bundling. Using organotypic models from mouse invasive ductal and invasive lobular breast cancers, we show that increased collagen bundling in 3D induces a generic increase in breast cancer invasion that is independent of migration mode. However, systemic collagen stiffening using advanced glycation end product (AGE) crosslinking prevents collective invasion, while leaving single cell invasion unaffected. Collective invasion into collagen matrices by ductal breast cancer cells depends on Lysyl oxidase-like 3 (Loxl3), a factor produced by tumor cells that reinforces local collagen stiffness. Finally, we present clinical evidence that collectively invading cancer cells at the invasive front of ductal breast carcinoma upregulate LOXL3. By uncoupling the mechanical, chemical, and structural cues that control invasion of breast cancer in three dimensions, our data reveal that spatial control over stiffness and bundling underlie collective dissemination of ductal-type breast cancers.
Collapse
Affiliation(s)
- Thijs Koorman
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karin A. Jansen
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antoine Khalil
- grid.7692.a0000000090126352Molecular Cancer Research/Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D. Haughton
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daan Visser
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max A. K. Rätze
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wisse E. Haakma
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gabrielè Sakalauskaitè
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J. van Diest
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- grid.7692.a0000000090126352Molecular Cancer Research/Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick W. B. Derksen
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Li R, Li H, Zhu L, Zhang X, Liu D, Li Q, Ni B, Hu L, Zhang Z, Zhang Y, Wang X, Jiang SH. Reciprocal regulation of LOXL2 and HIF1α drives the Warburg effect to support pancreatic cancer aggressiveness. Cell Death Dis 2021; 12:1106. [PMID: 34836938 PMCID: PMC8626482 DOI: 10.1038/s41419-021-04391-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Hypoxic microenvironment is common in solid tumors, particularly in pancreatic ductal adenocarcinoma (PDAC). The Warburg effect is known to facilitate cancer aggressiveness and has long been linked to hypoxia, yet the underlying mechanism remains largely unknown. In this study, we identify that lysyl oxidase-like 2 (LOXL2) is a hypoxia-responsive gene and is essential for the Warburg effect in PDAC. LOXL2 stabilizes hypoxia-inducible factor 1α (HIF1α) from prolyl hydroxylase (PHD)-dependent hydroxylation via hydrogen peroxide generation, thereby facilitating the transcription of multiple glycolytic genes. Therefore, a positive feedback loop exists between LOXL2 and HIF1α that facilitates glycolytic metabolism under hypoxia. Moreover, LOXL2 couples the Warburg effect to tumor growth and metastasis in PDAC. Hijacking glycolysis largely compromises LOXL2-induced oncogenic activities. Collectively, our results identify a hitherto unknown hypoxia-LOXL2-HIF1α axis in regulating the Warburg effect and provide an intriguing drug target for PDAC therapy.
Collapse
Affiliation(s)
- Rongkun Li
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengchao Li
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lili Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Zhang X, Ke S, Lu Y, An H. ITGA7 relates to disease risk, pathological feature, treatment response and survival in Ph - acute lymphoblastic leukemia. Biomark Med 2021; 15:1589-1597. [PMID: 34743543 DOI: 10.2217/bmm-2021-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: This study aimed to investigate clinical involvement of ITGA7 in Philadelphia-chromosome-negative acute lymphoblastic leukemia (Ph- ALL). Methods: We sampled bone marrow (BM) from 91 Ph- ALL patients and 20 healthy donors (HDs), detecting ITGA7 expression in BM. Results: ITGA7 was highly expressed in Ph- ALL patients at differentiating values between Ph- ALL patients and HDs. Elevated ITGA7 expression was associated with CNS leukemia (CNSL) occurrence and increased percentage of BM blasts in Ph- ALL patients. Elevated ITGA7 expression was linked with lower complete remission rate (CR), worse event-free survival, and worse overall survival in Ph- ALL patients. Conclusion: ITGA7 highly expressed, correlated with CNSL occurrence and higher BM blasts, furthermore predicts lower CR rate and worse prognosis.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Huangshi Central Hospital of Edong Medical Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, Hubei, China
| | - Shandong Ke
- Department of Hematology, Huangshi Central Hospital of Edong Medical Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, Hubei, China
| | - Yalan Lu
- Department of Hematology, Huangshi Central Hospital of Edong Medical Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, Hubei, China
| | - Hongyu An
- Department of Hematology, Huangshi Central Hospital of Edong Medical Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, Hubei, China
| |
Collapse
|
16
|
López-Menéndez C, Vázquez-Naharro A, Santos V, Dubus P, Santamaría PG, Martínez-Ramírez Á, Portillo F, Moreno-Bueno G, Faraldo MM, Cano A. E2A Modulates Stemness, Metastasis, and Therapeutic Resistance of Breast Cancer. Cancer Res 2021; 81:4529-4544. [PMID: 34145034 PMCID: PMC7611611 DOI: 10.1158/0008-5472.can-20-2685] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSC) are considered responsible for tumor initiation, therapeutic resistance, and metastasis. A comprehensive knowledge of the mechanisms governing the acquisition and maintenance of cancer stemness is crucial for the development of new therapeutic approaches in oncology. E2A basic helix-loop-helix (bHLH) transcription factors are associated with epithelial-mesenchymal transition (EMT) and tumor progression, but knowledge of their functional contributions to cancer biology is still limited. Using a combination of in vivo and in vitro analyses in a novel PyMT-E2A conditional knockout mouse model and derived primary tumor cell lines, we report here an essential role of E2A in stemness, metastasis, and therapeutic resistance in breast cancer. Targeted deletion of E2A in the mammary gland impaired tumor-initiating ability and dedifferentiation potential and severely compromised metastatic competence of PyMT-driven mammary tumors. Mechanistic studies in PyMT-derived cell lines indicated that E2A actions are mediated by the upregulation of Snai1 transcription. Importantly, high E2A and SNAIL1 expression occurred in aggressive human basal-like breast carcinomas, highlighting the relevance of the E2A-Snail1 axis in metastatic breast cancer. In addition, E2A factors contributed to the maintenance of genomic integrity and resistance to PARP inhibitors in PyMT and human triple-negative breast cancer cells. Collectively, these results support the potential for E2A transcription factors as novel targets worthy of translational consideration in breast cancer. SIGNIFICANCE: These findings identify key functions of E2A factors in breast cancer cell stemness, metastasis, and drug resistance, supporting a therapeutic vulnerability to targeting E2A proteins in breast cancer.
Collapse
Affiliation(s)
- Celia López-Menéndez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Alberto Vázquez-Naharro
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Pierre Dubus
- Université de Bordeaux, INSERM, Bordeaux, France
- CHU de Bordeaux, Talence, France
| | - Patricia G Santamaría
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Ángel Martínez-Ramírez
- Cytogenetic Unit. MD Anderson Cancer Center Madrid, Spain
- Oncohematology Cytogenetics Lab, Eurofins-Megalab, Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Fundación MD Anderson Internacional, Madrid, Spain
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, INSERM, Paris, France
- Sorbonne Universités, UPMC Université de Paris VI; Paris, France
| | - Amparo Cano
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| |
Collapse
|
17
|
Fernández-Nogueira P, Fuster G, Gutierrez-Uzquiza Á, Gascón P, Carbó N, Bragado P. Cancer-Associated Fibroblasts in Breast Cancer Treatment Response and Metastasis. Cancers (Basel) 2021; 13:3146. [PMID: 34201840 PMCID: PMC8268405 DOI: 10.3390/cancers13133146] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BrCa) is the leading cause of death among women worldwide, with about one million new cases diagnosed each year. In spite of the improvements in diagnosis, early detection and treatment, there is still a high incidence of mortality and failure to respond to current therapies. With the use of several well-established biomarkers, such as hormone receptors and human epidermal growth factor receptor-2 (HER2), as well as genetic analysis, BrCa patients can be categorized into multiple subgroups: Luminal A, Luminal B, HER2-enriched, and Basal-like, with specific treatment strategies. Although chemotherapy and targeted therapies have greatly improved the survival of patients with BrCa, there is still a large number of patients who relapse or who fail to respond. The role of the tumor microenvironment in BrCa progression is becoming increasingly understood. Cancer-associated fibroblasts (CAFs) are the principal population of stromal cells in breast tumors. In this review, we discuss the current understanding of CAFs' role in altering the tumor response to therapeutic agents as well as in fostering metastasis in BrCa. In addition, we also review the available CAFs-directed molecular therapies and their potential implications for BrCa management.
Collapse
Affiliation(s)
- Patricia Fernández-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
- Department of Biomedicine, School of Medicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
- Department of Biochemistry & Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Department of Biosciences, Faculty of Sciences and Technology, University of Vic, 08500 Vic, Spain
| | - Álvaro Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
18
|
Bharti A, Urs AB, Kumar P. Significance of HIF-1α Expression and LOXL-2 Localization in Progression of Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2021; 22:341-347. [PMID: 33639646 PMCID: PMC8190371 DOI: 10.31557/apjcp.2021.22.2.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Backgroud: In the microenvironment of Oral Squamous Cell Carcinoma (OSCC), Hypoxia-inducible transcription factor 1 (HIF-1) is a very important chemical mediator in the microenvironment of OSCC through which cells respond to hypoxia. LOXL-2 participates in ECM remodelling, and also in regulating epithelial-to-mesenchymal transition, epithelial cell polarity and differentiation. Aim/material and methods: The present study was conducted on 90 histopathologically proven cases of OSCC to ascertain the role of HIF-1α and LOXL-2 in OSCC. Immunoexpression of both HIF-1α and LOXL-2 was analyzed both quantitatively and qualitatively and compared with tumor stage, nodal stage, clinical stage, and histological grade. Results: Tumor stages and nodal stages had significant correlation with HIF-1α expression and localization of LOXL-2 immunoexpression respectively. Conclusion: This is probably the first study to analyze LOXL-2 localization in OSCC. Alteration in the immunoexpression of LOXL-2 from nuclear to cytoplasmic and HIF-1α immunoexpression might be an important factor in progression of OSCC.
Collapse
Affiliation(s)
| | - Aadithya B Urs
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, India.
| | | |
Collapse
|
19
|
Yang H, Kuo YH, Smith ZI, Spangler J. Targeting cancer metastasis with antibody therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1698. [PMID: 33463090 DOI: 10.1002/wnan.1698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Cancer metastasis, the spread of disease from a primary to a distal site through the circulatory or lymphatic systems, accounts for over 90% of all cancer related deaths. Despite significant progress in the field of cancer therapy in recent years, mortality rates remain dramatically higher for patients with metastatic disease versus those with local or regional disease. Although there is clearly an urgent need to develop drugs that inhibit cancer spread, the overwhelming majority of anticancer therapies that have been developed to date are designed to inhibit tumor growth but fail to address the key stages of the metastatic process: invasion, intravasation, circulation, extravasation, and colonization. There is growing interest in engineering targeted therapeutics, such as antibody drugs, that inhibit various steps in the metastatic cascade. We present an overview of antibody therapeutic approaches, both in the pipeline and in the clinic, that disrupt the essential mechanisms that underlie cancer metastasis. These therapies include classes of antibodies that indirectly target metastasis, including anti-integrin, anticadherin, and immune checkpoint blocking antibodies, as well as monoclonal and bispecific antibodies that are specifically designed to interrupt disease dissemination. Although few antimetastatic antibodies have achieved clinical success to date, there are many promising candidates in various stages of development, and novel targets and approaches are constantly emerging. Collectively, these efforts will enrich our understanding of the molecular drivers of metastasis, and the new strategies that arise promise to have a profound impact on the future of cancer therapeutic development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zion I Smith
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Ye M, Zhou J, Gao Y, Pan S, Zhu X. The prognostic value of the lysyl oxidase family in ovarian cancer. J Clin Lab Anal 2020; 34:e23538. [PMID: 33058284 PMCID: PMC7755792 DOI: 10.1002/jcla.23538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Our study intended to evaluate the prognostic value of lysyl oxidase (LOX) and its four relevant members, the lysyl oxidase-like genes (LOXL1-4), in ovarian cancer (OC) patients. MATERIAL AND METHODS The Kaplan-Meier plotter (KM plotter) database was used to investigate the prognostic power of the LOX family for OC patients. Overall survival (OS) and progression-free survival (PFS) were the clinical endpoints. The prognostic roles of the LOX family in OC patients were also analyzed according to various clinicopathological characteristics, including histological subtypes, clinical stages, pathological grades, and chemotherapeutic treatments. RESULTS Overexpression of LOX, LOXL1, LOXL2, and LOXL3 mRNA indicated poor OS and PFS in OC patients, particularly in serous and grade II + III OC patients. Overexpression of LOXL4 mRNA resulted in worse PFS in OC patients. Overexpression of LOX and LOXL1 mRNA showed worse OS and PFS in stage III + IV OC patients, and overexpression of LOXL3 mRNA indicated worse OS and PFS in stage I + II OC patients. Overexpression of LOX, LOXL3, and LOXL4 mRNA indicated worse OS and PFS among OC patients who received platinum, taxol, and taxol + platinum chemotherapy. Overexpression of LOXL1 and LOXL2 mRNA was related to lower OS and PFS in OC patients who received platinum chemotherapy. CONCLUSION LOX, LOXL1, LOXL2, and LOXL3 may become potential predictive markers for negative outcomes in OC patients. Moreover, the LOX family can serve as new molecular predictors for the efficiency of platinum-based chemotherapy in OC patients.
Collapse
Affiliation(s)
- Miaomiao Ye
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Junhan Zhou
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ying Gao
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shuya Pan
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xueqiong Zhu
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
21
|
Wen B, Xu LY, Li EM. LOXL2 in cancer: regulation, downstream effectors and novel roles. Biochim Biophys Acta Rev Cancer 2020; 1874:188435. [PMID: 32976981 DOI: 10.1016/j.bbcan.2020.188435] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 2 (LOXL2) is a copper and lysine tyrosyl-quinone (LTQ)-dependent amine oxidase belonging to the lysyl oxidase (LOX) family, the canonical function of which is to catalyze the crosslinking of elastin and collagen in the extracellular matrix (ECM). Many studies have revealed that the aberrant expression of LOXL2 in multiple cancers is associated with epithelial-mesenchymal transition (EMT), metastasis, poor prognosis, chemoradiotherapy resistance, and tumor progression. LOXL2 is regulated in many ways, such as transcriptional regulation, alternative splicing, microRNA regulation, posttranslational modification, and cleavage. Beyond affecting the extracellular environment, various intracellular roles, such as oxidation and deacetylation activities in the nucleus, have been reported for LOXL2. Additionally, LOXL2 contributes to tumor cell invasion by promoting cytoskeletal reorganization. Targeting LOXL2 has become a potential therapeutic strategy to combat many types of cancers. Here, we provide an overview of the regulation and downstream effectors of LOXL2 and discuss the intracellular role of LOXL2 in cancer.
Collapse
Affiliation(s)
- Bing Wen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
22
|
STAT3 inhibition with galiellalactone effectively targets the prostate cancer stem-like cell population. Sci Rep 2020; 10:13958. [PMID: 32811873 PMCID: PMC7434889 DOI: 10.1038/s41598-020-70948-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs’ activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations.
Collapse
|
23
|
Leung MS, Chan KKS, Dai WJ, Wong CY, Au KY, Wong PY, Wong CCL, Lee TKW, Ng IOL, Kao WJ, Lo RCL. Anti-tumour effects of PIM kinase inhibition on progression and chemoresistance of hepatocellular carcinoma. J Pathol 2020; 252:65-76. [PMID: 32558942 DOI: 10.1002/path.5492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a biologically aggressive cancer. Targeted therapy is in need to tackle challenges in the treatment perspective. A growing body of evidence suggests a promising role of pharmacological inhibition of PIM (proviral integration site for Moloney murine leukaemia virus) kinase in some human haematological and solid cancers. Yet to date, the potential application of PIM inhibitors in HCC is still largely unexplored. In the present study we investigated the pre-clinical efficacy of PIM inhibition as a therapeutic approach in HCC. Effects of PIM inhibitors on cell proliferation, migration, invasion, chemosensitivity, and self-renewal were examined in vitro. The effects of PIM inhibitors on tumour growth and chemoresistance in vivo were studied using xenograft mouse models. Potential downstream molecular mechanisms were elucidated by RNA sequencing (RNA-seq) of tumour tissues harvested from animal models. Our findings demonstrate that PIM inhibitors SGI-1776 and PIM447 reduced HCC proliferation, metastatic potential, and self-renewal in vitro. Results from in vivo experiments supported the role of PIM inhibition in suppressing of tumour growth and increasing chemosensitivity of HCC toward cisplatin and doxorubicin, the two commonly used chemotherapeutic agents in trans-arterial chemoembolisation (TACE) for HCC. RNA-seq analysis revealed downregulation of the MAPK/ERK pathway upon PIM inhibition in HCC cells. In addition, LOXL2 and ICAM1 were identified as potential downstream effectors. Taken together, PIM inhibitors demonstrated remarkable anti-tumourigenic effects in HCC in vitro and in vivo. PIM kinase inhibition is a potential approach to be exploited in formulating adjuvant therapy for HCC patients of different disease stages. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - Wen-Juan Dai
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Cheuk-Yan Wong
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kwan-Yung Au
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Pik-Ying Wong
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong SAR, PR China
| | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong SAR, PR China
| | - Weiyuan John Kao
- Department of Industrial and Manufacturing Systems Engineering, Biomedical Engineering Program of Faculty of Engineering and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong SAR, PR China
| |
Collapse
|
24
|
Xuefeng X, Hou MX, Yang ZW, Agudamu A, Wang F, Su XL, Li X, Shi L, Terigele T, Bao LL, Wu XL. Epithelial-mesenchymal transition and metastasis of colon cancer cells induced by the FAK pathway in cancer-associated fibroblasts. J Int Med Res 2020; 48:300060520931242. [PMID: 32588696 PMCID: PMC7323289 DOI: 10.1177/0300060520931242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The role and mechanism of tetrathiomolybdate (TM) in cancer-associated fibroblasts (CAFs) in colon cancer using three-dimensional (3D) culture were investigated, and the associations between the focal adhesion kinase (FAK) pathway and epithelial-mesenchymal transition (EMT) in CAFs were explored. METHODS A 3D co-culture model of colon cancer LOVO cells with CAFs and normal fibroblasts (NFs) was established using Matrigel as a scaffold material. The differential expression of LOXL2 (lysyl oxidase-like 2) in the supernatant of CAFs and NFs was determined using ELISA, and expression levels of EMT-related proteins and FAK signaling pathway-related proteins were determined using western blot. RESULTS LOXL2 levels secreted by CAFs were higher compared with that secreted by NFs. In the CAF + LOVO group, compared with the LOVO group, E-cadherin expression decreased significantly, while N-cadherin and F-PAK expression increased significantly. TM results were opposite compared with the above results. CONCLUSIONS CAFs stimulate EMT in human colon cancer LOVO cells by secreting LOXL2 to activate the FAK signaling pathway, thereby promoting tumor metastasis. TM inhibited the occurrence of EMT in the CAF-induced colon cancer LOVO cell line, thereby reducing the invasion and metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Xuefeng Xuefeng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Ming-Xing Hou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Zhi-Wen Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Agudamu Agudamu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Xiu-Lan Su
- Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Xian Li
- Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Lin Shi
- Department of Pathology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Terigele Terigele
- Department of Pathology, Inner Mongolia Autonomous Region Maternal and Child Health Hospital, Hohhot, Inner Mongolian Autonomous Region, China
| | - Li-Li Bao
- Center of Geriatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| | - Xin-Lin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolian Autonomous Region, China
| |
Collapse
|
25
|
Wei X, Zhu X, Jiang L, Huang X, Zhang Y, Zhao D, Du Y. Recent advances in understanding the role of hypoxia-inducible factor 1α in renal fibrosis. Int Urol Nephrol 2020; 52:1287-1295. [PMID: 32378138 DOI: 10.1007/s11255-020-02474-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the most common pathological manifestation of chronic kidney disease (CKD), and with numerous influencing factors, its pathogenesis is complex. Epithelial-mesenchymal transition (EMT) is known to promote the progression of renal fibrosis via alterations in the secreted proteome. Moreover, blocking or even reversing EMT can effectively reduce the degree of fibrosis. As such, targeting the key molecules responsible for promoting EMT may be an effective strategy for inhibiting renal fibrosis. Research in recent years has demonstrated that hypoxia-inducible factor 1α (HIF-1α) acts to promote renal fibrosis through regulation of EMT. However, the relationship between HIF-1α and EMT remains incompletely understood. In the present review, the underlying mechanism of the interaction between HIF-1α and EMT is explored to provide novel insight into the pathogenesis of renal fibrosis and new ideas for early targeted intervention.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Lili Jiang
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Xiu Huang
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Yangyang Zhang
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Dan Zhao
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China.
| |
Collapse
|
26
|
Kong D, Hughes CJ, Ford HL. Cellular Plasticity in Breast Cancer Progression and Therapy. Front Mol Biosci 2020; 7:72. [PMID: 32391382 PMCID: PMC7194153 DOI: 10.3389/fmolb.2020.00072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
With the exception of non-melanoma skin cancer, breast cancer is the most frequently diagnosed malignant disease among women, with the majority of mortality being attributable to metastatic disease. Thus, even with improved early screening and more targeted treatments which may enable better detection and control of early disease progression, metastatic disease remains a significant problem. While targeted therapies exist for breast cancer patients with particular subtypes of the disease (Her2+ and ER/PR+), even in these subtypes the therapies are often not efficacious once the patient's tumor metastasizes. Increases in stemness or epithelial-to-mesenchymal transition (EMT) in primary breast cancer cells lead to enhanced plasticity, enabling tumor progression, therapeutic resistance, and distant metastatic spread. Numerous signaling pathways, including MAPK, PI3K, STAT3, Wnt, Hedgehog, and Notch, amongst others, play a critical role in maintaining cell plasticity in breast cancer. Understanding the cellular and molecular mechanisms that regulate breast cancer cell plasticity is essential for understanding the biology of breast cancer progression and for developing novel and more effective therapeutic strategies for targeting metastatic disease. In this review we summarize relevant literature on mechanisms associated with breast cancer plasticity, tumor progression, and drug resistance.
Collapse
Affiliation(s)
- Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Chuva de Sousa Lopes SM, Alexdottir MS, Valdimarsdottir G. The TGFβ Family in Human Placental Development at the Fetal-Maternal Interface. Biomolecules 2020; 10:biom10030453. [PMID: 32183218 PMCID: PMC7175362 DOI: 10.3390/biom10030453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.
Collapse
Affiliation(s)
- Susana M. Chuva de Sousa Lopes
- Dept. Anatomy and Embryology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
- Dept. Reproductive Medicine Anatomy and Embryology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marta S. Alexdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
| | - Gudrun Valdimarsdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
- Correspondence: ; Tel.: +354-5254797
| |
Collapse
|
28
|
Liu X, Liu T, Hu L, Jiang T, Liu H, Wang Y, Lei Y, Zhu J, Bu Y. Identification and characterization of the promoter of cancer-related gene LOXL2. Exp Cell Res 2020; 387:111786. [DOI: 10.1016/j.yexcr.2019.111786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023]
|
29
|
Chopra V, Sangarappillai RM, Romero‐Canelón I, Jones AM. Lysyl Oxidase Like‐2 (LOXL2): An Emerging Oncology Target. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vriddhi Chopra
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| | | | | | - Alan M. Jones
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
30
|
Sayed N, Khurana A, Saifi MA, Singh M, Godugu C. Withaferin A reverses bile duct ligation-induced liver fibrosis by modulating extracellular matrix deposition: Role of LOXL2/Snail1, vimentin, and NFκB signaling. Biofactors 2019; 45:959-974. [PMID: 31336025 DOI: 10.1002/biof.1546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Herein, we studied the effect of Withaferin A (WFA) in reversing bile duct ligation (BDL)-induced liver fibrosis. BDL was performed on C57BL/6J mice and 2 days later, WFA (1 and 3 mg/kg) was administered for 12 days. Estimation of liver enzymes and assays for lipid peroxidation, reduced glutathione, and nitrite levels were performed. Picrosirius red, Masson's trichrome, and H&E staining were performed to study histological changes. WFA proved to be a holistic intervention for the attenuation and reversal of liver fibrosis. Reduction in inflammatory stimulus and oxidative stress restored the levels of stress-related chaperone Hsp70 (p < .001 vs. BDL) in WFA treated groups. We found 3.59-fold (p < .001) and 1.37-fold (p < .01) reduction in the expression of lysyl oxidase like2 (LOXL2) and Snail1, respectively, in WFA-treated animals as compared with BDL animals. These reductions led to 1.9-fold (p < .001) elevation in levels of E-cadherin signifying the reversal of epithelial to mesenchymal transition by WFA. Further, the reduction in LOXL2 levels enhanced the susceptibility of fibrotic scar toward degradation. The picrosirius red and Masson's trichrome staining done on liver tissue sections supported the above results. We, for the first time, report the role of WFA in modulating the expression of LOXL2 and Snail1 in addition to vimentin inhibition and regulation of NFκB signaling for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Nilofer Sayed
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mandip Singh
- College of Pharmacy Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
31
|
Lysyl oxidases: linking structures and immunity in the tumor microenvironment. Cancer Immunol Immunother 2019; 69:223-235. [PMID: 31650200 PMCID: PMC7000489 DOI: 10.1007/s00262-019-02404-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The lysyl oxidases (LOXs) are a family of enzymes deputed to cross-link collagen and elastin, shaping the structure and strength of the extracellular matrix (ECM). However, many novel “non-canonical” functions, alternative substrates, and regulatory mechanisms have been described and are being continuously elucidated. The activity of LOXs, therefore, appears to be integrated into a complex network of signals regulating many cell functions, including survival/proliferation/differentiation. Among these signaling pathways, TGF-β and PI3K/Akt/mTOR, in particular, cross-talk extensively with each other and with LOXs also initiating complex feedback loops which modulate the activity of LOXs and direct the remodeling of the ECM. A growing body of evidence indicates that LOXs are not only important in the homeostasis of the normal structure of the ECM, but are also implicated in the establishment and maturation of the tumor microenvironment. LOXs’ association with advanced and metastatic cancer is well established; however, there is enough evidence to support a significant role of LOXs in the transformation of normal epithelial cells, in the accelerated tumor development and the induction of invasion of the premalignant epithelium. A better understanding of LOXs and their interactions with the different elements of the tumor immune microenvironment will prove invaluable in the design of novel anti-tumor strategies.
Collapse
|
32
|
Tumor-Derived Exosomes Mediate the Instability of Cadherins and Promote Tumor Progression. Int J Mol Sci 2019; 20:ijms20153652. [PMID: 31357383 PMCID: PMC6696460 DOI: 10.3390/ijms20153652] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cadherins, including E-cadherin, N-cadherin, VE-cadherin, etc., are important adhesion molecules mediating intercellular junctions. The abnormal expression of cadherins is often associated with tumor development and progression. Epithelial–mesenchymal transition (EMT) is the most important step in the metastasis cascade and is accompanied by altered expression of cadherins. Recent studies reveal that as a cargo for intercellular communication, exosomes—one type of extracellular vesicles that can be secreted by tumor cells—are involved in a variety of physiological and pathological processes, especially in tumor metastasis. Tumor-derived exosomes play a crucial role in mediating the cadherin instability in recipient cells by transferring bioactive molecules (oncogenic microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), EMT-related proteins, and others), modulating their local and distant microenvironment, and facilitating cancer metastasis. In turn, aberrant expression of cadherins in carcinoma cells can also affect the biogenesis and release of exosomes. Therefore, we summarize the current research on the crosstalk between tumor-derived exosomes and aberrant cadherin signals to reveal the unique role of exosomes in cancer progression.
Collapse
|
33
|
Peng T, Deng X, Tian F, Li Z, Jiang P, Zhao X, Chen G, Chen Y, Zheng P, Li D, Wang S. The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol 2019; 55:657-670. [PMID: 31322171 PMCID: PMC6685595 DOI: 10.3892/ijo.2019.4837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common hepatobiliary cancer after hepatocellular carcinoma. Antiangiogenic therapy has been administered to patients with CCA, but the benefits of this therapy remain unsatisfactory. Improved understanding of the molecular mechanisms underlying angiogenesis in CCA is required. In the present study, the expression of GATA-binding protein 6 (GATA6), lysyl oxidase-like 2 (LOXL2) and vascular endothelial growth factor A (VEGFA), in addition to the microvessel density (MVD), were evaluated by performing immunohistochemical staining of human CCA microarrays. The expression of GATA6/LOXL2 was associated with poor overall survival (P=0.01) and disease-free survival (P=0.02), and was positively associated with VEGFA expression (P=0.02) and MVD (P=0.04). In vitro, western blotting, reverse transcription-quantitative PCR analysis and ELISAs revealed that altered GATA6 and LOXL2 expression regulated the expression levels of secreted VEGFA. Co-immunoprecipitation demonstrated a physical interaction between GATA6 and LOXL2 in CCA cell lines, and the scavenger receptor cysteine-rich domain of LOXL2 interacted with GATA6, which regulated VEGFA mRNA expression and protein secretion, and promoted tube formation. In vivo analyses further revealed that GATA6/LOXL2 promoted VEGFA expression, angiogenesis and tumor growth. The GATA6/LOXL2 complex represents a novel candidate prognostic marker for stratifying patients with CCA. Drugs targeting this complex may possess great therapeutic value in the treatment of CCA.
Collapse
Affiliation(s)
- Tao Peng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiang Deng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Feng Tian
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Peng Jiang
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xin Zhao
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Guangyu Chen
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yan Chen
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Ping Zheng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Dajiang Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Shuguang Wang
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
34
|
Sanada T, Islam A, Kaminota T, Kirino Y, Tanimoto R, Yoshimitsu H, Yano H, Mizuno Y, Okada M, Mitani S, Ugumori T, Tanaka J, Hato N. Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma. Laryngoscope 2019; 130:E327-E334. [PMID: 31219623 DOI: 10.1002/lary.28142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The secretory enzyme lysyl oxidase like 2 (LOXL2) is speculated to contribute to tumor progression through its functions in the remodeling of extracellular matrix and epithelial-mesenchymal transition. We previously identified elevated expression of LOXL2 in metastatic human head and neck squamous cell carcinoma (HNSCC) cells in a mouse lymph node metastases model. Here we performed a case series study examining LOXL2 expression levels in human serum from HNSCC patients to evaluate whether LOXL2 is worth evaluation in a large cohort study. METHODS LOXL2 protein levels in three serum samples from HNSCC patients were assessed by immunoblotting and LOXL2 tissue expression was examined in one human tongue squamous cell carcinoma (SCC) tissue by immunohistochemistry as a representative of HNSCC tissue. Serum samples were further fractionated in exosomes and supernatants by ultracentrifugation, which were then subjected to immunoblot and in vitro LOX activity analyses. Exosomal LOXL2 levels of 36 serum samples from HNSCC patients and seven healthy volunteers were measured using polymer sedimentation exosome preparation followed by ELISA measurement and subjected to statistical analyses. RESULTS Immunoblot analyses revealed that LOXL2 was present in serum exosomal fractions from three HNSCC patients, and we observed approximately threefold higher levels of LOXL2 in HNSCC patients compared with three healthy volunteers. Immunohistochemical LOXL2 staining was detected in HNSCC cells in addition to non-cancerous lipid tissues and some muscles in human tongue HNSCC tissue. Further measurements of exosomal LOXL2 by ELISA showed over ninefold higher mean LOXL2 levels in patients compared with controls. Statistical analysis revealed a correlation between elevated serum exosomal LOXL2 levels and low-grade, but not high-grade, HNSCC. CONCLUSIONS Our case series study that elevated serum exosomal LOXL2 levels exhibited a correlation with low-grade HNSCCs. A follow-up large cohort clinical study will be required to determine the potential clinical utility of LOXL2 as a new biomarker and/or therapy target for HNSCCs. LEVEL OF EVIDENCE 4 Laryngoscope, 130:E327-E334, 2020.
Collapse
Affiliation(s)
- Tomoyoshi Sanada
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Teppei Kaminota
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Yui Kirino
- School of Medicine, Ehime University, Ehime, Japan
| | | | | | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Yosuke Mizuno
- Department of Pathological Diagnosis, Matsuyama Red Cross Hospital, Ehime, Japan
| | - Masahiro Okada
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Souhei Mitani
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Tohru Ugumori
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Naohito Hato
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| |
Collapse
|
35
|
Mechanism for oral tumor cell lysyl oxidase like-2 in cancer development: synergy with PDGF-AB. Oncogenesis 2019; 8:34. [PMID: 31086173 PMCID: PMC6513832 DOI: 10.1038/s41389-019-0144-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular lysyl oxidases (LOX and LOXL1–LOXL4) are critical for collagen biosynthesis. LOXL2 is a marker of poor survival in oral squamous cell cancer. We investigated mechanisms by which tumor cell secreted LOXL2 targets proximal mesenchymal cells to enhance tumor growth and metastasis. This study identified the first molecular mechanism for LOXL2 in the promotion of cancer via its enzymatic modification of a non-collagenous substrate in the context of paracrine signaling between tumor cells and resident fibroblasts. The role and mechanism of active LOXL2 in promoting oral cancer was evaluated and employed a novel LOXL2 small molecule inhibitor, PSX-S1C, administered to immunodeficient, and syngeneic immunocompetent orthotopic oral cancer mouse models. Tumor growth, histopathology, and metastases were monitored. In vitro mechanistic studies with conditioned tumor cell medium treatment of normal human oral fibroblasts were carried out in the presence and absence of the LOXL2 inhibitor to identify signaling mechanisms promoted by LOXL2 activity. Inhibition of LOXL2 attenuated cancer growth and lymph node metastases in the orthotopic tongue mouse models. Immunohistochemistry data indicated that LOXL2 expression in and around tumors was decreased in mice treated with the inhibitor. Inhibition of LOXL2 activity by administration of PXS-S1C to mice reduced tumor cell proliferation, accompanied by changes in morphology and in the expression of epithelial to mesenchymal transition markers. In vitro studies identified PDGFRβ as a direct substrate for LOXL2, and indicated that LOXL2 and PDGF-AB together secreted by tumor cells optimally activated PDGFRβ in fibroblasts to promote proliferation and the tendency toward fibrosis via ERK activation, but not AKT. Optimal fibroblast proliferation in vitro required LOXL2 activity, while tumor cell proliferation did not. Thus, tumor cell-derived LOXL2 in the microenvironment directly targets neighboring resident cells to promote a permissive local niche, in addition to its known role in collagen maturation.
Collapse
|
36
|
Wang JY, Cheng H, Zhang HY, Ye YQ, Feng Q, Chen ZM, Zheng YL, Wu ZG, Wang B, Yao J. Suppressing microRNA-29c promotes biliary atresia-related fibrosis by targeting DNMT3A and DNMT3B. Cell Mol Biol Lett 2019; 24:10. [PMID: 30906331 PMCID: PMC6410490 DOI: 10.1186/s11658-018-0134-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
This study was designed to investigate the potential role of microRNA-29c (miR-29c) in biliary atresia-related fibrosis. The expression of miR-29c was determined in 15 pairs of peripheral blood samples from infants with biliary atresia (BA) and infants with non-BA neonatal cholestasis using quantitative real-time PCR. EMT was established by induction with TGF-β1 in HIBEpiC cells. MiR-29c was inhibited by lipofectamine transfection. The expressions of proteins related to epithelial-mesenchymal transition (EMT), i.e., E-cadherin, N-cadherin and vimentin, were determined using quantitative real-time PCR and western blotting. Direct interaction between miR-29c and DNMT3A and DNMT3B was identified using a luciferase reporter assay. The expressions of DNMT3A and DNMT3B were suppressed by treatment with SGI-1027. Patients with BA showed significantly lower miR-29c levels in peripheral blood samples than the control subjects. In vitro, TGF-β1-induced EMT significantly decreased the expression of miR-29c. Downregulation of miR-29c had a promotional effect on BA-related fibrosis in HIBEpiC cells, as confirmed by the decrease in E-cadherin and increase in N-cadherin and vimentin levels. MiR-29c was found to target the 3'UTR of DNMT3A and DNMT3B and inhibit their expression. Suppression of DNMT3A and DNMT3B reversed the effects of miR-29c downregulation on BA-related fibrosis in HIBEpiC cells. These data suggest that BA-related fibrosis is closely associated with the occurrence of EMT in HIBEpiC cells. MiR-29c might be a candidate for alleviating BA-related fibrosis by targeting DNMT3A and DNMT3B.
Collapse
Affiliation(s)
- Jian-yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, 518026 Guangdong Province China
| | - Hao Cheng
- Graduate School of China Medical University, Shenzhen, 110122 Liaoning Province China
| | - Hong-yan Zhang
- Graduate School of China Medical University, Shenzhen, 110122 Liaoning Province China
| | - Yong-qin Ye
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, 518026 Guangdong Province China
| | - Qi Feng
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, 518026 Guangdong Province China
| | - Zi-min Chen
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, 518026 Guangdong Province China
| | - Yue-lan Zheng
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, 518026 Guangdong Province China
| | - Zhou-guang Wu
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, 518026 Guangdong Province China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, 518026 Guangdong Province China
| | - Jun Yao
- Department of Gastroenterology, Jinan University of Medical Sciences, Shenzhen Municipal People’s Hospital, Shenzhen, 518020 Guangdong Province China
| |
Collapse
|
37
|
Xie P, Yu H, Wang F, Yan F, He X. Inhibition of LOXL2 Enhances the Radiosensitivity of Castration-Resistant Prostate Cancer Cells Associated with the Reversal of the EMT Process. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4012590. [PMID: 30809541 PMCID: PMC6369494 DOI: 10.1155/2019/4012590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Radiotherapy is the mainstay in the treatment of prostate cancer. However, significant radioresistance of castration-resistant prostate cancer (CRPC) cells constitutes a main obstacle in the treatment of this disease. By using bioinformatic data mining methods, LOXL2 was found to be upregulated in both androgen-independent prostate cancer cell lines and radioresistant tumor samples collected from patients with prostate cancer. We speculate that LOXL2 may play an important role in the radioresistance of CRPC cells. METHODS The effect of LOXL2 knockdown on the radiosensitivity of androgen-independent prostate cancer cells lines was measured by the clonogenic assay and xenograft tumor experiments under in vitro and in vivo conditions, respectively. In studies on the mechanism, we focused on the EMT phenotype changes and cell apoptosis changes induced by LOXL2 knockdown in DU145 cells. The protein levels of three EMT biomarkers, namely, E-cadherin, vimentin, and N-cadherin, were measured by western blotting and immunohistochemical staining. Cell apoptosis after irradiation was measured by flow cytometry and caspase-3 activity assay. Salvage experiment was also conducted to confirm the possible role of EMT in the radiosensitization effect of LOXL2 knockdown in CRPC cells. RESULTS LOXL2 knockdown in CRPC cells enhanced cellular radiosensitivity under both in vitro and in vivo conditions. A significant reversal of EMT was observed in LOXL2-silenced DU145 cells. Cell apoptosis after irradiation was significantly enhanced by LOXL2 knockdown in DU145 cells. Results from the salvage experiment confirmed the key role of EMT process reversal in the radiosensitization effect of LOXL2 knockdown in DU145 cells. CONCLUSIONS LOXL2 plays an important role in the development of cellular radioresistance in CRPC cells. Targeting LOXL2 may be a rational avenue to overcome radioresistance in CRPC cells. A LOXL2-targeting strategy for CRPC treatment warrants detailed investigation in the future.
Collapse
Affiliation(s)
- Peng Xie
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, China
| | - Hongliang Yu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, China
| | - Feijiang Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, China
| |
Collapse
|
38
|
Schilter H, Findlay AD, Perryman L, Yow TT, Moses J, Zahoor A, Turner CI, Deodhar M, Foot JS, Zhou W, Greco A, Joshi A, Rayner B, Townsend S, Buson A, Jarolimek W. The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. J Cell Mol Med 2018; 23:1759-1770. [PMID: 30536539 PMCID: PMC6378217 DOI: 10.1111/jcmm.14074] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is characterized by the excessive deposition of extracellular matrix and crosslinked proteins, in particular collagen and elastin, leading to tissue stiffening and disrupted organ function. Lysyl oxidases are key players during this process, as they initiate collagen crosslinking through the oxidation of the ε-amino group of lysine or hydroxylysine on collagen side-chains, which subsequently dimerize to form immature, or trimerize to form mature, collagen crosslinks. The role of LOXL2 in fibrosis and cancer is well documented, however the specific enzymatic function of LOXL2 and LOXL3 during disease is less clear. Herein, we describe the development of PXS-5153A, a novel mechanism based, fast-acting, dual LOXL2/LOXL3 inhibitor, which was used to interrogate the role of these enzymes in models of collagen crosslinking and fibrosis. PXS-5153A dose-dependently reduced LOXL2-mediated collagen oxidation and collagen crosslinking in vitro. In two liver fibrosis models, carbon tetrachloride or streptozotocin/high fat diet-induced, PXS-5153A reduced disease severity and improved liver function by diminishing collagen content and collagen crosslinks. In myocardial infarction, PXS-5153A improved cardiac output. Taken together these results demonstrate that, due to their crucial role in collagen crosslinking, inhibition of the enzymatic activities of LOXL2/LOXL3 represents an innovative therapeutic approach for the treatment of fibrosis.
Collapse
Affiliation(s)
- Heidi Schilter
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Alison D Findlay
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Lara Perryman
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Tin T Yow
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Joshua Moses
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Amna Zahoor
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Craig I Turner
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Mandar Deodhar
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Jonathan S Foot
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Wenbin Zhou
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Angelique Greco
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Amar Joshi
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - Benjamin Rayner
- Heart Research Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sarah Townsend
- Centre for Liver Research, Institute of Immunology, National Institute for Health Research Liver Biomedical Research Unit, University Hospitals, Birmingham, UK.,Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - Alberto Buson
- Drug Discovery department, Pharmaxis Ltd., Sydney, NSW, Australia
| | | |
Collapse
|
39
|
Shao B, Zhao X, Liu T, Zhang Y, Sun R, Dong X, Liu F, Zhao N, Zhang D, Wu L, Wang Y, Wang M, Meng J, Lin X, Sun B. LOXL2 promotes vasculogenic mimicry and tumour aggressiveness in hepatocellular carcinoma. J Cell Mol Med 2018; 23:1363-1374. [PMID: 30506621 PMCID: PMC6349148 DOI: 10.1111/jcmm.14039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/11/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022] Open
Abstract
Lysyl oxidase‐like 2 (LOXL2) has shown to promote metastasis and poor prognosis in hepatocellular carcinoma (HCC). Also, we have previously reported that vasculogenic mimicry (VM) is associated with invasion, metastasis and poor survival in HCC patients. In the present study, we investigated molecular function of LOXL2 in HCC and VM. We used the immunohistochemical and CD31/periodic acid‐Schiff double staining to detect the relationship between LOXL2 and VM formation. We performed the gain and loss of function studies and analysed the migratory, invasion and tube formation in HCC cell lines. We analysed the function of LOXL2 in VM formation and HCC metastasis both in vitro and in vivo. We have showed that LOXL2 was overexpression in HCC and was positively correlated with tumour grade, metastasis, VM formation and poor survival in 201 HCC patients. Secondly, our studies have showed that LOXL2 overexpression in HCC cells significantly promoted migration, invasion and tube formation. Finally, we found that LOXL2 may increase SNAIL expression, thereby enabling VM. Our study indicated that LOXL2 may promote VM formation and tumour metastasis by collaborating with SNAIL in HCC. What's more, the overexpression of LOXL2 indicated a poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Bing Shao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Ran Sun
- Tianjin Nankai Hospital, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yong Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Meili Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Jie Meng
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Lin
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Tsubakihara Y, Moustakas A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int J Mol Sci 2018; 19:ijms19113672. [PMID: 30463358 PMCID: PMC6274739 DOI: 10.3390/ijms19113672] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Metastasis of tumor cells from primary sites of malignancy to neighboring stromal tissue or distant localities entails in several instances, but not in every case, the epithelial-mesenchymal transition (EMT). EMT weakens the strong adhesion forces between differentiated epithelial cells so that carcinoma cells can achieve solitary or collective motility, which makes the EMT an intuitive mechanism for the initiation of tumor metastasis. EMT initiates after primary oncogenic events lead to secondary secretion of cytokines. The interaction between tumor-secreted cytokines and oncogenic stimuli facilitates EMT progression. A classic case of this mechanism is the cooperation between oncogenic Ras and the transforming growth factor β (TGFβ). The power of TGFβ to mediate EMT during metastasis depends on versatile signaling crosstalk and on the regulation of successive waves of expression of many other cytokines and the progressive remodeling of the extracellular matrix that facilitates motility through basement membranes. Since metastasis involves many organs in the body, whereas EMT affects carcinoma cell differentiation locally, it has frequently been debated whether EMT truly contributes to metastasis. Despite controversies, studies of circulating tumor cells, studies of acquired chemoresistance by metastatic cells, and several (but not all) metastatic animal models, support a link between EMT and metastasis, with TGFβ, often being a common denominator in this link. This article aims at discussing mechanistic cases where TGFβ signaling and EMT facilitate tumor cell dissemination.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
41
|
Danese S, Bonovas S, Lopez A, Fiorino G, Sandborn WJ, Rubin DT, Kamm MA, Colombel JF, Sands BE, Vermeire S, Panes J, Rogler G, D'Haens G, Peyrin-Biroulet L. Identification of Endpoints for Development of Antifibrosis Drugs for Treatment of Crohn's Disease. Gastroenterology 2018; 155:76-87. [PMID: 29601825 DOI: 10.1053/j.gastro.2018.03.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Intestinal fibrosis is a challenge to management of patients with Crohn's disease (CD); there is an urgent need to expedite development of antifibrosis drugs for this disease. The International Organization for the Study of Inflammatory Bowel Disease (IOIBD) aimed to identify a set of endpoints that can be used to determine efficacy of antifibrosis agents tested in clinical trials of patients with CD. METHODS We conducted a systematic review to identify clinical, radiologic, biochemical, endoscopic, and composite endpoints used in assessing activity of fibrostenosing CD and response to treatment, and determined their operational properties. A panel of IOIBD experts performed a consensus process to identify the best endpoints for inclusion in clinical trials, through a 2-round, Delphi-style online survey. RESULTS A total of 36 potentially relevant endpoints for intestinal fibrosis were selected and assessed. Forty-eight physicians with expertise in inflammatory bowel disease, from 5 regions (North America, Europe, Middle East, Asia/Pacific, and Latin America), participated in the Delphi consensus process. A core set of 13 endpoints (complete clinical response, long-term efficacy, sustained clinical benefit, treatment failure, radiological remission, normal quality of life, clinical remission without steroids, therapeutic failure, deep remission, complete absence of occlusive symptoms, symptom-free survival, bowel damage progression, and no disability) were rated as critical. Agreement was high among the experts. CONCLUSIONS Members of the IOIBD reached expert consensus on a set of endpoints that can be used to assess antifibrosis agents in trials of patients with CD. Studies are needed to clarify methods for measuring these outcomes and validate measurement instruments.
Collapse
Affiliation(s)
- Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IBD Center, Humanitas Clinical and Research Center, Milan, Italy.
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IBD Center, Humanitas Clinical and Research Center, Milan, Italy
| | - Anthony Lopez
- Department of Hepato-Gastroenterology and Inserm U954, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Gionata Fiorino
- IBD Center, Humanitas Clinical and Research Center, Milan, Italy
| | | | | | - Michael A Kamm
- Departments of Gastroenterology and Medicine, St Vincent's Hospital and University of Melbourne, Melbourne, Australia
| | - Jean-Frederic Colombel
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Severine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - Julian Panes
- Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology and Inserm U954, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
42
|
Stangenberg S, Saad S, Schilter HC, Zaky A, Gill A, Pollock CA, Wong MG. Lysyl oxidase-like 2 inhibition ameliorates glomerulosclerosis and albuminuria in diabetic nephropathy. Sci Rep 2018; 8:9423. [PMID: 29930330 PMCID: PMC6013429 DOI: 10.1038/s41598-018-27462-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy is characterised by the excessive amount of extracellular matrix in glomeruli and tubulointerstitial space. Lysyl oxidase-like 2 (LOXL2) is elevated in renal fibrosis and known to play key roles in ECM stabilisation by facilitating collagen cross-links, epithelial to mesenchymal transition and myofibroblast activation. Thus, targeting LOXL2 may prove to be a useful strategy to prevent diabetic nephropathy. We explored the renoprotective effect of a selective small molecule LOXL2 inhibitor (PXS-S2B) in a streptozotocin-induced diabetes model. Diabetic mice were treated with PXS-S2B for 24 weeks and outcomes compared with untreated diabetic mice and with telmisartan treated animals as comparator of current standard of care. Diabetic mice had albuminuria, higher glomerulosclerosis scores, upregulation of fibrosis markers and increased renal cortical LOXL2 expression. Treatment with PXS-S2B reduced albuminuria and ameliorated glomerulosclerosis. This was associated with reduced expression of glomerular fibronectin and tubulointerstitial collagen I. The renoprotective effects of both PXS-S2B and telmisartan were more marked in the glomerular compartment than in the tubulointerstitial space. The study reveals that LOXL2 inhibition was beneficial in preserving glomerular structure and function. Thus, LOXL2 may be a potential therapeutic target in diabetic nephropathy.
Collapse
Affiliation(s)
- Stefanie Stangenberg
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia.,Sydney Medical School Northern, University of Sydney, NSW, Sydney, Australia
| | - Sonia Saad
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia.
| | - Heidi C Schilter
- Pharmaxis Pharmaceutical Ltd., Frenchs Forest, NSW, Sydney, Australia
| | - Amgad Zaky
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia
| | - Anthony Gill
- Department of Cancer Research and Pathology Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia
| | - Carol A Pollock
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia.,Sydney Medical School Northern, University of Sydney, NSW, Sydney, Australia
| | - Muh Geot Wong
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia.
| |
Collapse
|
43
|
Robado de Lope L, Alcíbar OL, Amor López A, Hergueta-Redondo M, Peinado H. Tumour-adipose tissue crosstalk: fuelling tumour metastasis by extracellular vesicles. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0485. [PMID: 29158314 DOI: 10.1098/rstb.2016.0485] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
During metastasis, tumour cells must communicate with their microenvironment by secreted soluble factors and extracellular vesicles. Different stromal cell types (e.g. bone marrow-derived cells, endothelial cells and fibroblasts) influence the growth and progression of tumours. In recent years, interest has extended to other cell types in the tumour microenvironment such as adipocytes and adipose tissue-derived mesenchymal stem cells. Indeed, obesity is becoming pandemic in some developing countries and it is now considered to be a risk factor for cancer progression. However, the true impact of obesity on the metastatic behaviour of tumours is still not yet fully understood. In this 'Perspective' article, we will discuss the potential influence of obesity on tumour metastasis, mainly in melanoma, breast and ovarian cancer. We summarize the main mechanisms involved with special attention to the role of extracellular vesicles in this process. We envisage that besides having a direct impact on tumour cells, obesity systemically preconditions the tumour microenvironment for future metastasis by favouring the formation of pro-inflammatory niches.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Lucía Robado de Lope
- Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Olwen Leaman Alcíbar
- Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Ana Amor López
- Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain .,Children's Cancer and Blood Foundation Laboratories. Department of Pediatrics, Drukier Institute for Children's Health and Meyer Cancer Center, Belfer Research Building, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
44
|
Yu Z, Lou L, Zhao Y. Fibroblast growth factor 18 promotes the growth, migration and invasion of MDA‑MB‑231 cells. Oncol Rep 2018; 40:704-714. [PMID: 29901199 PMCID: PMC6072296 DOI: 10.3892/or.2018.6482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 18 (FGF18) increases cell motility and invasion in colon tumors, and is linked with ovarian and lung tumors. Furthermore, the increased expression of FGF18 mRNA and protein has been associated with poor overall survival in cancer patients. However, its function has not been investigated in breast cancer. In the present study, we demonstrated that FGF18 promoted cell growth and metastasis in vitro and stimulated tumor growth in xenograft models in vivo. FGF18 mediated the proliferation of MDA-MB-231 cells via the ERK/c-Myc signaling pathway and induced epithelial-to-mesenchymal transition (EMT) factors to promote cancer migration and invasion. The decreased expression of FGF18 was strongly correlated with the loss/reduction of p-ERK, c-Myc, N-cadherin, vimentin and Snail 1 protein in MDA-MB-231 cells. Collectively, our results indicated that FGF18 played an important role in the growth and metastasis of breast cancer via the ERK/c-Myc signaling pathway and EMT, indicating that FGF18 may be a potential molecular treatment target for breast cancer.
Collapse
Affiliation(s)
- Ziyi Yu
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Longquan Lou
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Yi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
45
|
Wang Y, Zhang S, Liu J, Fang B, Yao J, Cheng B. Matrine inhibits the invasive and migratory properties of human hepatocellular carcinoma by regulating epithelial‑mesenchymal transition. Mol Med Rep 2018; 18:911-919. [PMID: 29845189 PMCID: PMC6059723 DOI: 10.3892/mmr.2018.9023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
Matrine has been reported to be an effective anti-tumor therapy; however, the anti-metastatic effects of matrine on hepatocellular carcinoma (HCC) and the molecular mechanism(s) involved remain unclear. Therefore, the aims of the present study were to evaluate the effects of matrine on hepatoma and to determine the associated mechanism(s) involved. In the present study, matrine was confirmed to prevent the proliferation of HCC cells and it was observed that matrine also inhibited the migratory, and invasive capabilities of HCC at non-toxic concentrations. Additionally, matrine increased epithelial-cadherin expression and decreased the expression levels of vimentin, matrix metalloproteinase (MMP)2, MMP9, zinc finger protein SNAI1 and zinc finger protein SNAI2. These results indicate that the anti-metastatic effect of matrine may be associated with epithelial-mesenchymal transition (EMT). Furthermore, matrine can increase phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN) expression and reduce phosphorylated-protein kinase B (Akt) levels. In conclusion, these results suggested that matrine is a potential therapeutic agent that can suppress cancer-associated invasion and migration via PTEN/Akt-dependent inhibition of EMT.
Collapse
Affiliation(s)
- Yuwen Wang
- Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Shujun Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jia Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Biaobiao Fang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jie Yao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Binglin Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
46
|
Wu S, Zheng Q, Xing X, Dong Y, Wang Y, You Y, Chen R, Hu C, Chen J, Gao D, Zhao Y, Wang Z, Xue T, Ren Z, Cui J. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:99. [PMID: 29728125 PMCID: PMC5935912 DOI: 10.1186/s13046-018-0761-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Higher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown. METHODS We comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre-metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc. RESULTS: Higher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1 and α5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts. Moreover, activation of Akt pathway contributed to LOXL2-induced fibronectin upregulation. LOXL2 in CM as chemoattractant increased motility and invasion of BMCs, implicating a significant role of LOXL2 in BMCs recruitment. Except that, CM-LV-LOXL2-OE as chemoattractant also increased the number of migrated HCC cells, and improved chemokine CXCL12 expression in lung fibroblasts. The number of HCC cells adhered to surface of lung fibroblasts treated with CM-LV-LOXL2-OE was remarkably higher than that of the control cells. These results indicated that the secreted LOXL2 facilitated the motility of HCC cells and strengthened CTCs settlement on the remodeled matrix "soil". CONCLUSION Integrin β1/α5/JNK/c-JUN signaling pathway participates in higher matrix stiffness-induced LOXL2 upregulation in HCC cells. The secreted LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.
Collapse
Affiliation(s)
- Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Xiaoxia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tongchun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
47
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
48
|
Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth. Oncotarget 2018; 7:71362-71377. [PMID: 27655685 PMCID: PMC5342084 DOI: 10.18632/oncotarget.12109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
Recurrence of breast cancer disease years after treatment appears to arise from disseminated dormant tumor cells (DTC). The mechanisms underlying the outgrowth of DTC remain largely unknown. Here we demonstrate that dormant MCF-7 cells expressing LOXL2 acquire a cancer stem cell (CSC)-like phenotype, mediating their outgrowth in the 3D BME system that models tumor dormancy and outgrowth. Similarly, MCF-7-LOXL2 cells colonizing the lung transitioned from dormancy to metastatic outgrowth whereas MCF-7 cells remained dormant. Notably, epithelial to mesenchymal transition (EMT) of MCF-7-LOXL2 cells was required for their CSC-like properties and their transition to metastatic outgrowth. These findings were further supported by clinical data demonstrating that increase in LOXL2 mRNA levels correlates with increase in the mRNA levels of EMT and stem cells markers, and is also associated with decrease in relapse free survival of breast cancer patients. Notably, conditional hypoxia induced expression of endogenous LOXL2 in MCF-7 cells promoted EMT and the acquisition of a CSC-like phenotype, while knockdown of LOXL2 inhibited this transition. Overall, our results demonstrate that expression of LOXL2 endowed DTC with CSC-like phenotype driving their transition to metastatic outgrowth and this stem-like phenotype is dependent on EMT that can be driven by the tumor microenvironment.
Collapse
|
49
|
Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression. Oncotarget 2018; 7:23684-99. [PMID: 27008697 PMCID: PMC5029656 DOI: 10.18632/oncotarget.8152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression.
Collapse
|
50
|
Ma S, Jia W, Ni S. miR-199a-5p inhibits the progression of papillary thyroid carcinoma by targeting SNAI1. Biochem Biophys Res Commun 2018; 497:181-186. [DOI: 10.1016/j.bbrc.2018.02.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
|