1
|
Wang Y, Bendre SV, Krauklis SA, Steelman AJ, Nelson ER. Role of Protein Regulators of Cholesterol Homeostasis in Immune Modulation and Cancer Pathophysiology. Endocrinology 2025; 166:bqaf031. [PMID: 39951497 PMCID: PMC11878532 DOI: 10.1210/endocr/bqaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025]
Abstract
Cholesterol metabolism and homeostasis have emerged as important factors governing various aspects of cancer biology. Clinical associations between circulating cholesterol and poor prognosis or use of cholesterol-lowering medication and improved prognosis have been noted for several different solid tumors. Mechanistically, cholesterol has many different direct and indirect effects on cancer cells themselves but is also critically involved in shaping the function of other cells of the tumor microenvironment, especially immune cells. There are 2 major feedback loops regulating cholesterol homeostasis. Here we highlight the major proteins involved in the so-called oxysterol-bile acid feedback loop and discuss how each has been implicated in cancer biology. We focus on roles within the immune system with implications for cancer. Given that many of these proteins are enzymes or nuclear receptors, both of which are amenable to small molecule intervention, we posit that this axis may represent a promising area for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Shruti V Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Steven A Krauklis
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
McDaniel JM, Morrissey RL, Dibra D, Patel LR, Xiong S, Zhang Y, Chau GP, Su X, Qi Y, El-Naggar AK, Lozano G. p53R172H and p53R245W Hotspot Mutations Drive Distinct Transcriptomes in Mouse Mammary Tumors Through a Convergent Transcriptional Mediator. CANCER RESEARCH COMMUNICATIONS 2024; 4:1991-2007. [PMID: 38994678 PMCID: PMC11310746 DOI: 10.1158/2767-9764.crc-24-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Aggressive breast cancers harbor TP53 missense mutations. Tumor cells with TP53 missense mutations exhibit enhanced growth and survival through transcriptional rewiring. To delineate how TP53 mutations in breast cancer contribute to tumorigenesis and progression in vivo, we created a somatic mouse model driven by mammary epithelial cell-specific expression of Trp53 mutations. Mice developed primary mammary tumors reflecting the human molecular subtypes of luminal A, luminal B, HER2-enriched, and triple-negative breast cancer with metastases. Transcriptomic analyses comparing MaPR172H/- or MaPR245W/- mammary tumors to MaP-/- tumors revealed (1) differences in cancer-associated pathways activated in both p53 mutants and (2) Nr5a2 as a novel transcriptional mediator of distinct pathways in p53 mutants. Meta-analyses of human breast tumors corroborated these results. In vitro assays demonstrate mutant p53 upregulates specific target genes that are enriched for Nr5a2 response elements in their promoters. Co-immunoprecipitation studies revealed p53R172H and p53R245W interact with Nr5a2. These findings implicate NR5A2 as a novel mediator of mutant p53 transcriptional activity in breast cancer. SIGNIFICANCE Our findings implicate NR5A2 as a novel mediator of mutant p53 transcriptional activity in breast cancer. NR5A2 may be an important therapeutic target in hard-to-treat breast cancers such as endocrine-resistant tumors and metastatic triple-negative breast cancers harboring TP53 missense mutations.
Collapse
Affiliation(s)
- Joy M. McDaniel
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Rhiannon L. Morrissey
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas.
| | - Denada Dibra
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Lalit R. Patel
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yun Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas.
| | - Gilda P. Chau
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Adel K. El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Wu T, Lu ZF, Yu HN, Wu XS, Liu Y, Xu Y. Liver receptor homolog-1: structures, related diseases, and drug discovery. Acta Pharmacol Sin 2024; 45:1571-1581. [PMID: 38632319 PMCID: PMC11272790 DOI: 10.1038/s41401-024-01276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Liver receptor homolog-1 (LRH-1), a member of the nuclear receptor superfamily, is a ligand-regulated transcription factor that plays crucial roles in metabolism, development, and immunity. Despite being classified as an 'orphan' receptor due to the ongoing debate surrounding its endogenous ligands, recent researches have demonstrated that LRH-1 can be modulated by various synthetic ligands. This highlights the potential of LRH-1 as an attractive drug target for the treatment of inflammation, metabolic disorders, and cancer. In this review, we provide an overview of the structural basis, functional activities, associated diseases, and advancements in therapeutic ligand research targeting LRH-1.
Collapse
Affiliation(s)
- Tong Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Zhi-Fang Lu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Hao-Nan Yu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Xi-Shan Wu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yong Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Chai H, Lin S, Lin J, He M, Yang Y, OuYang Y, Zhao H. An uncertainty-based interpretable deep learning framework for predicting breast cancer outcome. BMC Bioinformatics 2024; 25:88. [PMID: 38418940 PMCID: PMC10902951 DOI: 10.1186/s12859-024-05716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Predicting outcome of breast cancer is important for selecting appropriate treatments and prolonging the survival periods of patients. Recently, different deep learning-based methods have been carefully designed for cancer outcome prediction. However, the application of these methods is still challenged by interpretability. In this study, we proposed a novel multitask deep neural network called UISNet to predict the outcome of breast cancer. The UISNet is able to interpret the importance of features for the prediction model via an uncertainty-based integrated gradients algorithm. UISNet improved the prediction by introducing prior biological pathway knowledge and utilizing patient heterogeneity information. RESULTS The model was tested in seven public datasets of breast cancer, and showed better performance (average C-index = 0.691) than the state-of-the-art methods (average C-index = 0.650, ranged from 0.619 to 0.677). Importantly, the UISNet identified 20 genes as associated with breast cancer, among which 11 have been proven to be associated with breast cancer by previous studies, and others are novel findings of this study. CONCLUSIONS Our proposed method is accurate and robust in predicting breast cancer outcomes, and it is an effective way to identify breast cancer-associated genes. The method codes are available at: https://github.com/chh171/UISNet .
Collapse
Affiliation(s)
- Hua Chai
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China
| | - Siyin Lin
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Junqi Lin
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China
| | - Minfan He
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yongzhong OuYang
- School of Mathematics and Big Data, Foshan University, Foshan, 528000, China.
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Zheng Q, Tang J, Aicher A, Bou Kheir T, Sabanovic B, Ananthanarayanan P, Reina C, Chen M, Gu JM, He B, Alcala S, Behrens D, Lawlo RT, Scarpa A, Hidalgo M, Sainz B, Sancho P, Heeschen C. Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity. J Exp Clin Cancer Res 2023; 42:323. [PMID: 38012687 PMCID: PMC10683265 DOI: 10.1186/s13046-023-02883-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs. METHODS We modeled human PDAC using primary PDAC cells and CSC-enriched sphere cultures. NR5A2 was genetically silenced or inhibited with Cpd3. Assays included RNA-seq, sphere/colony formation, cell viability/toxicity, real-time PCR, western blot, immunofluorescence, ChIP, CUT&Tag, XF Analysis, lactate production, and in vivo tumorigenicity assays. PDAC models from 18 patients were treated with Cpd3-loaded nanocarriers. RESULTS Our findings demonstrate that NR5A2 plays a dual role in PDAC. In differentiated cancer cells, NR5A2 promotes cell proliferation by inhibiting CDKN1A. On the other hand, in the CSC population, NR5A2 enhances stemness by upregulating SOX2 through direct binding to its promotor/enhancer region. Additionally, NR5A2 suppresses MYC, leading to the activation of the mitochondrial biogenesis factor PPARGC1A and a shift in metabolism towards oxidative phosphorylation, which is a crucial feature of stemness in PDAC. Importantly, our study shows that the specific NR5A2 inhibitor, Cpd3, sensitizes a significant fraction of PDAC models derived from 18 patients to standard chemotherapy. This treatment approach results in durable remissions and long-term survival. Furthermore, we demonstrate that the expression levels of NR5A2/SOX2 can predict the response to treatment. CONCLUSIONS The findings of our study highlight the cell context-dependent effects of NR5A2 in PDAC. We have identified a novel pharmacological strategy to modulate SOX2 and MYC levels, which disrupts stemness and prevents relapse in this deadly disease. These insights provide valuable information for the development of targeted therapies for PDAC, offering new hope for improved patient outcomes. A Schematic illustration of the role of NR5A2 in cancer stem cells versus differentiated cancer cells, along with the action of the NR5A2 inhibitor Cpd3. B Overall survival of tumor-bearing mice following allocated treatment. A total of 18 PDX models were treated using a 2 x 1 x 1 approach (two animals per model per treatment); n=36 per group (illustration created with biorender.com ).
Collapse
Affiliation(s)
- Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Immunology Research and Development Center, China Medical University, Taichung, Taiwan
| | - Tony Bou Kheir
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Berina Sabanovic
- Pancreatic Cancer Heterogeneity Lab, Candiolo Cancer Institute - FPO - IRCCS, Candiolo, Turin, Italy
| | - Preeta Ananthanarayanan
- Pancreatic Cancer Heterogeneity Lab, Candiolo Cancer Institute - FPO - IRCCS, Candiolo, Turin, Italy
| | - Chiara Reina
- Pancreatic Cancer Heterogeneity Lab, Candiolo Cancer Institute - FPO - IRCCS, Candiolo, Turin, Italy
| | - Minchun Chen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Min Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Sonia Alcala
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Chronic Diseases and Cancer Area 3 Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
| | - Diana Behrens
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Rita T Lawlo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net, Applied Research On Cancer Centre, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net, Applied Research On Cancer Centre, University of Verona, Verona, Italy
| | - Manuel Hidalgo
- Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruno Sainz
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Chronic Diseases and Cancer Area 3 Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
| | - Patricia Sancho
- IIS Aragon, Hospital Universitario Miguel Servet, 50009, Saragossa, Spain.
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pancreatic Cancer Heterogeneity Lab, Candiolo Cancer Institute - FPO - IRCCS, Candiolo, Turin, Italy.
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
6
|
Li J, Gu J, Wang J, You A, Zhang Y, Rao G, Li S, Ge X, Zhang K, Wang D. MicroRNA-433-3p enhances chemosensitivity of glioma to cisplatin by downregulating NR5A2. Brain Behav 2022; 12:e2632. [PMID: 36303447 PMCID: PMC9759127 DOI: 10.1002/brb3.2632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE We attempted to investigate influence of microRNA-433-3p on malignant progression of glioma and identify its molecular mechanism, thus laying groundwork for glioma management. METHODS Expression data along with clinical data of glioma were accessed from the TCGA database for differential and survival analyses to look for the target differentially expressed genes. Quantitative reverse transcriptase PCR (qRT-PCR) and western blot were utilized to assess NR5A2 mRNA and protein expression in different glioma cell lines, respectively. MTT, Transwell assay, and flow cytometry were carried out to assay the impact of NR5A2 on behaviors of glioma cells in vitro. Bioinformatics analysis was used to identify the upstream microRNA of NR5A2 in glioma, while dual-luciferase and western blot assays were used to detect binding of microRNA and NR5A2. Chemosensitivity of glioma cells was evaluated by cisplatin cytotoxicity test. RESULTS NR5A2 was upregulated in both glioma tissues and cell lines. Dual-luciferase assay result showed binding site of microRNA-433-3p on NR5A2 mRNA 3'UTR, and microRNA-433-3p reduced NR5A2 expression. Cell assays revealed that silencing NR5A2 could hamper proliferation, invasion, and migration and enhance chemosensitivity to cisplatin while promoting glioma cell apoptosis and blocking glioma cells in G0/G1 phase. Rescue experiments also indicated that microRNA-433-3p suppressed glioma malignant progression via inhibiting NR5A2. CONCLUSION MicroRNA-433-3p which is significantly poorly expressed in glioma targets NR5A2 to suppress glioma malignant progression and enhance chemosensitivity to cisplatin.
Collapse
Affiliation(s)
- Jun Li
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jingshun Gu
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Juntong Wang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Aiwu You
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Yuyan Zhang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Guomin Rao
- The Fourth Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Shuang Li
- Department of Traditional Chinese Medicine, Tangshan Gongren Hospital, Tangshan, China
| | - Xuehua Ge
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Kun Zhang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Dongchun Wang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
7
|
S-phase arrest and apoptosis in human breast adenocarcinoma MCF-7 cells via mitochondrial dependent pathway induced by tricyclohexylphosphine gold (I) n-mercaptobenzoate complexes. Life Sci 2022; 311:121161. [DOI: 10.1016/j.lfs.2022.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
|
8
|
Cato ML, Cornelison JL, Spurlin RM, Courouble VV, Patel AB, Flynn AR, Johnson AM, Okafor CD, Frank F, D’Agostino EH, Griffin PR, Jui NT, Ortlund EA. Differential Modulation of Nuclear Receptor LRH-1 through Targeting Buried and Surface Regions of the Binding Pocket. J Med Chem 2022; 65:6888-6902. [PMID: 35503419 PMCID: PMC10026694 DOI: 10.1021/acs.jmedchem.2c00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver receptor homologue-1 (LRH-1) is a phospholipid-sensing nuclear receptor that has shown promise as a target for alleviating intestinal inflammation and metabolic dysregulation in the liver. LRH-1 contains a large ligand-binding pocket, but generating synthetic modulators has been challenging. We have had recent success generating potent and efficacious agonists through two distinct strategies. We targeted residues deep within the pocket to enhance compound binding and residues at the mouth of the pocket to mimic interactions made by phospholipids. Here, we unite these two designs into one molecule to synthesize the most potent LRH-1 agonist to date. Through a combination of global transcriptomic, biochemical, and structural studies, we show that selective modulation can be driven through contacting deep versus surface polar regions in the pocket. While deep pocket contacts convey high affinity, contacts with the pocket mouth dominate allostery and provide a phospholipid-like transcriptional response in cultured cells.
Collapse
Affiliation(s)
- Michael L. Cato
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | | | | - Anamika B. Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Autumn R. Flynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | | | - C. Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Emma H. D’Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | - Nathan T. Jui
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
- Corresponding Author:
| |
Collapse
|
9
|
Rahimi HR, Mojarrad M, Moghbeli M. MicroRNA-96: A therapeutic and diagnostic tumor marker. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:3-13. [PMID: 35656454 DOI: 10.22038/ijbms.2021.59604.13226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
Cancer has been always considered as one of the main human health challenges worldwide. One of the main causes of cancer-related mortality is late diagnosis in the advanced stages of the disease, which reduces the therapeutic efficiency. Therefore, novel non-invasive diagnostic methods are required for the early detection of tumors and improving the quality of life and survival in cancer patients. MicroRNAs (miRNAs) have pivotal roles in various cellular processes such as cell proliferation, motility, and neoplastic transformation. Since circulating miRNAs have high stability in body fluids, they can be suggested as efficient noninvasive tumor markers. MiR-96 belongs to the miR-183-96-182 cluster that regulates cell migration and tumor progression as an oncogene or tumor suppressor by targeting various genes in solid tumors. In the present review, we have summarized all of the studies that assessed the role of miR-96 during tumor progression. This review clarifies the molecular mechanisms and target genes recruited by miR-96 to regulate tumor progression and metastasis. It was observed that miR-96 mainly affects tumorigenesis by targeting the structural proteins and FOXO transcription factors.
Collapse
Affiliation(s)
- Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Lang A, Isigkeit L, Schubert-Zsilavecz M, Merk D. The Medicinal Chemistry and Therapeutic Potential of LRH-1 Modulators. J Med Chem 2021; 64:16956-16973. [PMID: 34839661 DOI: 10.1021/acs.jmedchem.1c01663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ligand-activated transcription factor liver receptor homologue 1 (LRH-1, NR5A2) is involved in the regulation of metabolic homeostasis, including cholesterol and glucose balance. Preliminary evidence points to therapeutic potential of LRH-1 modulation in diabetes, hepatic diseases, inflammatory bowel diseases, atherosclerosis, and certain cancers, but because of a lack of suitable ligands, pharmacological control of LRH-1 has been insufficiently studied. Despite the availability of considerable structural knowledge on LRH-1, only a few ligand chemotypes have been developed, and potent, selective, and bioavailable tools to explore LRH-1 modulation in vivo are lacking. In view of the therapeutic potential of LRH-1 in prevalent diseases, improved chemical tools are needed to probe the beneficial and adverse effects of pharmacological LRH-1 modulation in sophisticated preclinical models and to further elucidate the receptor's molecular function.
Collapse
Affiliation(s)
- Alisa Lang
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
11
|
FOXA1 of regulatory variant associated with risk of breast cancer through allele-specific enhancer in the Chinese population. Breast Cancer 2021; 29:247-259. [PMID: 34635981 DOI: 10.1007/s12282-021-01305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND FOXA1 is a pioneer transcription factor which has been established as a carcinogenic factor and can regulate the expression of downstream target genes in breast cancer. We hypothesized that genetic variants modulating FOXA1 expression might play a role in the risk of breast cancer. METHODS Physical interaction predicted by PreSTIGE analysis and CHIA-PET data integration with cis-expression quantitative trait loci (cis-eQTL) based SNP-FOXA1 analysis were used to identify potentially regulatory variants modulating the expression of FOXA1. Then, we utilized a case-control study consisting of 855 new diagnosed breast cancer cases and 920 controls in the Chinese population to identify breast cancer associated variants. Biological assays were conducted in breast cancer cell lines to illustrate the effects of associated variants on breast cancer risk. RESULTS We identified that rs7160774 G > A variant was associated with lower risk of breast cancer (OR = 0.77, 95% confidence interval = 0.62-0.96, P = 0.022). Biological experiments indicated that rs7160774[A] allele down-regulated the expression of FOXA1 compared to the G allele by influencing transcription factor binding affinity, thus playing an important role in the development of breast cancer. CONCLUSION Our study suggested that the regulatory variant rs7160774 was associated with risk of breast cancer by long-range modulating FOXA1 expression and provided critical insights into pinpoint causal genetic variants.
Collapse
|
12
|
Gkikas D, Stellas D, Polissidis A, Manolakou T, Kokotou MG, Kokotos G, Politis PK. Nuclear receptor NR5A2 negatively regulates cell proliferation and tumor growth in nervous system malignancies. Proc Natl Acad Sci U S A 2021; 118:e2015243118. [PMID: 34561301 PMCID: PMC8488649 DOI: 10.1073/pnas.2015243118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/03/2023] Open
Abstract
Nervous system malignancies are characterized by rapid progression and poor survival rates. These clinical observations underscore the need for novel therapeutic insights and pharmacological targets. To this end, here, we identify the orphan nuclear receptor NR5A2/LRH1 as a negative regulator of cancer cell proliferation and promising pharmacological target for nervous system-related tumors. In particular, clinical data from publicly available databases suggest that high expression levels of NR5A2 are associated with favorable prognosis in patients with glioblastoma and neuroblastoma tumors. Consistently, we experimentally show that NR5A2 is sufficient to strongly suppress proliferation of both human and mouse glioblastoma and neuroblastoma cells without inducing apoptosis. Moreover, short hairpin RNA-mediated knockdown of the basal expression levels of NR5A2 in glioblastoma cells promotes their cell cycle progression. The antiproliferative effect of NR5A2 is mediated by the transcriptional induction of negative regulators of the cell cycle, CDKN1A (encoding for p21cip1), CDKN1B (encoding for p27kip1) and Prox1 Interestingly, two well-established agonists of NR5A2, dilauroyl phosphatidylcholine (DLPC) and diundecanoyl phosphatidylcholine, are able to mimic the antiproliferative action of NR5A2 in human glioblastoma cells via the induction of the same critical genes. Most importantly, treatment with DLPC inhibits glioblastoma tumor growth in vivo in heterotopic and orthotopic xenograft mouse models. These data indicate a tumor suppressor role of NR5A2 in the nervous system and render this nuclear receptor a potential pharmacological target for the treatment of nervous tissue-related tumors.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
- Department of Biology, University of Patras, 265 04, Patras, Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35, Athens, Greece
| | - Alexia Polissidis
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Theodora Manolakou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
| | - Maroula G Kokotou
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece;
| |
Collapse
|
13
|
Cheng G, Zheng L. Regulation of the apolipoprotein M signaling pathway: a review. J Recept Signal Transduct Res 2021; 42:285-292. [PMID: 34006168 DOI: 10.1080/10799893.2021.1924203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of in vivo and in vitro factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.
Collapse
Affiliation(s)
- Gangli Cheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
14
|
Guo F, Zhou Y, Guo H, Ren D, Jin X, Wu H. NR5A2 transcriptional activation by BRD4 promotes pancreatic cancer progression by upregulating GDF15. Cell Death Discov 2021; 7:78. [PMID: 33850096 PMCID: PMC8044179 DOI: 10.1038/s41420-021-00462-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022] Open
Abstract
NR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Song Y, An W, Wang H, Gao Y, Han J, Hao C, Chen L, Liu S, Xing Y. LRH1 Acts as an Oncogenic Driver in Human Osteosarcoma and Pan-Cancer. Front Cell Dev Biol 2021; 9:643522. [PMID: 33791301 PMCID: PMC8005613 DOI: 10.3389/fcell.2021.643522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
Osteosarcoma (OS) that mainly occurs during childhood and adolescence is a devastating disease with poor prognosis presented by extreme metastases. Recent studies have revealed that liver receptor homolog 1 (LRH-1) plays a vital role in the metastasis of several human cancers, but its role is unknown in the metastasis of OS. In this study, Gene Ontology (GO) enrichment analyses based on high-throughput RNA-seq data revealed that LRH-1 acted a pivotal part in the positive regulation of cell migration, motility, and angiogenesis. Consistently, LRH-1 knockdown inhibited the migration of human OS cells, which was concurrent with the downregulation of mesenchymal markers and the upregulation of epithelial markers. In addition, short hairpin RNAs (shRNAs) targeting LRH-1 inactivated transforming growth factor beta (TGF-β) signaling pathway. LRH-1 knockdown inhibited human umbilical vein endothelial cell (HUVEC) proliferation, migration, and tube formation. Vascular endothelial growth factor A (VEGFA) expression was also downregulated after LRH-1 knockdown. Immunohistochemistry (IHC) revealed that the expression of LRH-1 protein was significantly higher in tumor tissues than in normal bone tissues. We found that high LRH-1 expression was associated with poor differentiation and advanced TNM stage in OS patients using IHC. Based on The Cancer Genome Atlas (TCGA) database, high LRH-1 expression predicts poor survival in lung squamous cell carcinoma (LUSC), kidney renal papillary cell carcinoma (KIRP), and pancreatic adenocarcinoma (PAAD). The downregulation of LRH-1 significantly hindered the migration and motility of LUSC cells. Using multi-omic bioinformatics, the positive correlation between LRH-1- and EMT-related genes was found across these three cancer types. GO analysis indicated that LRH-1 played a vital role in “blood vessel morphogenesis” or “vasculogenesis” in KIRP. Our results indicated that LRH-1 plays a tumor-promoting role in human OS, could predict the early metastatic potential, and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yang Song
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Hongmei Wang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanren Gao
- Department of Intervention, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jihua Han
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chenguang Hao
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Chen
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shilong Liu
- Department of Thoracic Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
16
|
Meinsohn MC, Hughes CHK, Estienne A, Saatcioglu HD, Pépin D, Duggavathi R, Murphy BD. A role for orphan nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) in primordial follicle activation. Sci Rep 2021; 11:1079. [PMID: 33441767 PMCID: PMC7807074 DOI: 10.1038/s41598-020-80178-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Liver receptor homolog-1 (NR5A2) is expressed specifically in granulosa cells of developing ovarian follicles where it regulates the late stages of follicle development and ovulation. To establish its effects earlier in the trajectory of follicular development, NR5A2 was depleted from granulosa cells of murine primordial and primary follicles. Follicle populations were enumerated in neonates at postnatal day 4 (PND4) coinciding with the end of the formation of the primordial follicle pool. The frequency of primordial follicles in PND4 conditional knockout (cKO) ovaries was greater and primary follicles were substantially fewer relative to control (CON) counterparts. Ten-day in vitro culture of PND4 ovaries recapitulated in vivo findings and indicated that CON mice developed primary follicles in the ovarian medulla to a greater extent than did cKO animals. Two subsets of primordial follicles were observed in wildtype ovaries: one that expressed NR5A2 and the second in which the transcript was absent. Neither expressed the mitotic marker. KI-67, indicating their developmental quiescence. RNA sequencing on PND4 demonstrated that loss of NR5A2 induced changes in 432 transcripts, including quiescence markers, inhibitors of follicle activation, and regulators of cellular migration and epithelial-to-mesenchymal transition. These experiments suggest that NR5A2 expression poises primordial follicles for entry into the developing pool.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Camilla H K Hughes
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Anthony Estienne
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Hatice D Saatcioglu
- Pediatric Surgical Research Laboratories, Simches Research Center, Massachusetts General Hospital, 185 Cambridge St., Boston, MA, 02114, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Simches Research Center, Massachusetts General Hospital, 185 Cambridge St., Boston, MA, 02114, USA
| | - Raj Duggavathi
- Department of Animal Science, McGill University, 21111 Lakeshore Rd., MS1085, Ste-Anne de Bellevue, QC, H9X 3V9, Canada
| | - Bruce D Murphy
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada.
| |
Collapse
|
17
|
Hu C, Huang S, Wu F, Ding H. MicroRNA-219-5p participates in cyanotic congenital heart disease progression by regulating cardiomyocyte apoptosis. Exp Ther Med 2020; 21:36. [PMID: 33262822 PMCID: PMC7690344 DOI: 10.3892/etm.2020.9468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) play important roles in the protection against and development of congenital heart disease (CHD). However, the role and potential mechanisms of miR-219-5p in cyanotic CHD remains unclear. Reverse transcription-quantitative PCR (RT-qPCR) was used to measure miR-219-5p levels in cyanotic CHD and hypoxia-induced H9C2 cells. Dual luciferase reporter gene assay was used to confirm whether liver receptor homolog-1 (LRH-1) was a direct target of miR-219-5p. miR-219-5p inhibitor and LRH-1-small interfering RNA were transfected into H9C2 cells under hypoxic conditions to investigate the role of miR-219-5p in hypoxia-induced H9C2 cells. Subsequently, cell viability was detected using an MTT assay and cell apoptosis was detected using flow cytometry. In addition, RT-qPCR and western blotting assays were performed to detect the mRNA and protein expression of LRH-1, cyclin D1 and β-catenin, respectively. The data showed that miR-219-5p expression was higher in patients with cyanotic CHD compared with patients with acyanotic CHD gradually increased in H9C2 cells with prolonged hypoxia time. Dual luciferase reporter assay results showed that LRH-1 was a direct target gene of miR-219-5p. Inhibition of miR-219-5p reversed hypoxia-induced cell viability reduction and attenuated hypoxia-induced cell apoptosis. In addition, hypoxia induction inhibited the expression of LRH-1, cyclin D1 and β-catenin, which was reversed by miR-219-5p inhibitor. However, LRH-1 downregulation reversed the miR-219-5p inhibitor enhanced cell viability, decreased cell apoptosis and increased expression of LRH-1, cyclin D1 and β-catenin in hypoxia-treated cardiomyocytes. The present results demonstrated that downregulation of miR-219-5p promoted the expression of the LRH-1/Wnt/β-catenin signaling pathway-associated components, reduced cardiomyocyte apoptosis and increased cell growth under hypoxic conditions. miR-219-5p may be a potential therapeutic target for cyanotic CHD therapy.
Collapse
Affiliation(s)
- Chuanxian Hu
- Department of Cardiopulmonary Surgery, Huai'an First People's Hospital, Huai'an, Jiangsu 223300, P.R. China
| | - Su Huang
- Department of Cardiopulmonary Surgery, Huai'an First People's Hospital, Huai'an, Jiangsu 223300, P.R. China
| | - Fafu Wu
- Department of Cardiopulmonary Surgery, Huai'an First People's Hospital, Huai'an, Jiangsu 223300, P.R. China
| | - Hui Ding
- Department of Cardiopulmonary Surgery, Huai'an First People's Hospital, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
18
|
Sun W, Shi Q, Li J, Li J, Yu L. LRH1 Promotes Tumor Cell Proliferation and Migration and Is Correlated With Poor Prognosis in Ovarian Cancer. Front Oncol 2020; 10:583566. [PMID: 33194722 PMCID: PMC7641615 DOI: 10.3389/fonc.2020.583566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 01/11/2023] Open
Abstract
Background Liver receptor homolog 1 (LRH1) plays a vital role in several human cancers, but its role in ovarian cancer (OC) remains unclear. We aimed to explore the functions of LRH1 and its clinical relevance. Methods LRH1 expression was evaluated by immunohistochemistry and reverse transcription quantitative polymerase chain reaction (RT-qPCR). The effects of LRH1 on tumor cell proliferation, migration and epithelial–mesenchymal transition (EMT) were evaluated in vitro. Furthermore, bioinformatics analysis was applied to predict the functions of LRH1. Results RT-qPCR showed that LRH1 mRNA expression was higher in the invasive lesions (P < 0.05). LRH1 overexpression was extremely related with elevated International Federation of Gynecology and Obstetrics (FIGO) stage (P = 0.001), lymph node metastasis (P = 0.011), peritoneal metastasis (P = 0.001), and platinum resistance (P = 0.037). Furthermore, LRH1 expression was an independent prognostic index for disease-free survival in patients with OC (P = 0.041). LRH1 overexpression (P = 0.011), FIGO stage (P < 0.001), and ascites (P = 0.015) independently affected peritoneal metastasis in patients with OC. LRH1 knockdown significantly inhibited the proliferation, migration, and EMT of human OC cells (P < 0.05); however, it reversed cisplatin resistance. Bioinformatics analysis indicated that the functions of LRH1 were associated with the PRC1 complex, nuclear ubiquitin ligase complex, and Polycomb-group (PcG) proteins. Conclusions This study provides evidence of the predictive value of LRH1 on peritoneal metastasis and poor outcome and highlights the potential role of LRH1 as a biomarker for the targeted therapy of OC. Furthermore, LRH1 promotes OC cell proliferation, migration, and EMT in vitro, and its functions may be associated with PRC1 complex, nuclear ubiquitin ligase complex, and PcG proteins.
Collapse
Affiliation(s)
- Wenzhou Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Qingtao Shi
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jiaxin Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jinmeng Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Libo Yu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Michalek S, Brunner T. Nuclear-mitochondrial crosstalk: On the role of the nuclear receptor liver receptor homolog-1 (NR5A2) in the regulation of mitochondrial metabolism, cell survival, and cancer. IUBMB Life 2020; 73:592-610. [PMID: 32931651 DOI: 10.1002/iub.2386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Liver receptor homolog-1 (LRH-1, NR5A2) is an orphan nuclear receptor with widespread activities in the regulation of development, stemness, metabolism, steroidogenesis, and proliferation. Many of the LRH-1-regulated processes target the mitochondria and associated activities. While under physiological conditions, a balanced LRH-1 expression and regulation contribute to the maintenance of a physiological equilibrium, deregulation of LRH-1 has been associated with inflammation and cancer. In this review, we discuss the role and mechanism(s) of how LRH-1 regulates metabolic processes, cell survival, and cancer in a nuclear-mitochondrial crosstalk, and evaluate its potential as a pharmacological target.
Collapse
Affiliation(s)
- Svenja Michalek
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
A tetraprenylated benzophenone 7-epiclusianone induces cell cycle arrest at G1/S transition by modulating critical regulators of cell cycle in breast cancer cell lines. Toxicol In Vitro 2020; 68:104927. [PMID: 32634469 DOI: 10.1016/j.tiv.2020.104927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023]
Abstract
Breast cancer is a complex disease and encompassing different types of tumor. Although advances in understanding of the molecular bases of breast cancer biology, the therapeutic proposals available still are not effective. In this scenario, the present study aimed to evaluate the mechanisms associated to antitumor activity of 7-Epiclusianone (7-Epi), a tetraprenylated benzophenone, on luminal A (MCF-7) and claudin-low (Hs 578T) breast cancer cell lines. We found that 7-Epi efficiently inhibited cell proliferation and migration of these cells; however MCF-7 was slightly more responsive than Hs 578T. Cell cycle analysis showed accumulation of cells at G0/G1 phase with drastic reduction of S population in treated cultures. This effect was associated to downregulation of CDKN1A (p21) and cyclin E in both cell lines. In addition, 7-Epi reduced cyclin D1 and p-ERK expression levels in MCF-7 cell line. Cytotoxic effect of 7-Epi on breast cancer cell lines was associated to its ability to increase BAX/BCL-2 ratio. In conclusion, our findings showed that 7-Epi is a promising antitumor agent against breast cancer by modulating critical regulators of the cell cycle and apoptosis.
Collapse
|
21
|
Bacolod MD, Huang J, Giardina SF, Feinberg PB, Mirza AH, Swistel A, Soper SA, Barany F. Prediction of blood-based biomarkers and subsequent design of bisulfite PCR-LDR-qPCR assay for breast cancer detection. BMC Cancer 2020; 20:85. [PMID: 32005108 PMCID: PMC6995062 DOI: 10.1186/s12885-020-6574-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background Interrogation of site-specific CpG methylation in circulating tumor DNAs (ctDNAs) has been employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a technique involving bisulfite conversion, PCR, and qPCR. Methods In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR) which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction (LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of primer-dimer formation (use of ribose primers and RNAseH2). The assay is designed to for breast cancer-specific CpG markers identified through integrated analyses of publicly available genome-wide methylation datasets for 31 types of primary tumors (including BrCa), as well as matching normal tissues, and peripheral blood. Results Our results indicate that the PCR-LDR-qPCR assay is capable of detecting ~ 30 methylated copies of each of 3 BrCa-specific CpG markers, when mixed with excess amount unmethylated CpG markers (~ 3000 copies each), which is a reasonable approximation of BrCa ctDNA overwhelmed with peripheral blood cell-free DNA (cfDNA) when isolated from patient plasma. The bioinformatically-identified CpG markers are located in promoter regions of NR5A2 and PRKCB, and a non-coding region of chromosome 1 (upstream of EFNA3). Additional bioinformatic analyses would reveal that these methylation markers are independent of patient race and age, and positively associated with signaling pathways associated with BrCa progression (such as those related to retinoid nuclear receptor, PTEN, p53, pRB, and p27). Conclusion This report demonstrates the potential utilization of bisulfite PCR-LDR-qPCR assay, along with bioinformatically-driven biomarker discovery, in blood-based BrCa detection.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jianmin Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aashiq H Mirza
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alexander Swistel
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Steven A Soper
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, 66047, USA
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Liu L, Li Y, Pan B, Zhang T, Wei D, Zhu Y, Guo Y. Nr5a2 promotes tumor growth and metastasis of gastric cancer AGS cells by Wnt/beta-catenin signaling. Onco Targets Ther 2019; 12:2891-2902. [PMID: 31114234 PMCID: PMC6489909 DOI: 10.2147/ott.s201228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: Nr5a2 (nuclear receptor subfamily 5 group A member 2, also known as LRH-1), which belongs to the NR5A (Ftz-F1) subfamily of nuclear receptors, is a key regulator in stem cell pluripotency and the development of several types of cancer. However, the data are controversial. Since Nr5a2 plays different roles in multiple types of cancer and the function of Nr5a2 in gastric cancer (GC) has not been revealed, we studied the role and molecular mechanism of Nr5a2 in GC. Methods: In this study, we have investigated the effect of Nr5a2 on tumor growth and metastasis by in vivo and in vitro models. Results: The results showed that knockdown of Nr5a2 could inhibit cell proliferation via arresting the cell cycle in the G2/M phase and suppress cell mobility through preventing the epithelial-mesenchymal transition (EMT) process in AGS cells. In addition, knockdown of Nr5a2 could suppress tumorigenesis and metastasis of AGS cells in vivo. We also demonstrated that knockdown of Nr5a2 inhibited cellular proliferation and mobility by suppressing the Wnt/beta-catenin signaling pathway. Conclusion: Nr5a2 may act as an oncogene in GC development. The EMT process and the Wnt/beta-catenin signaling pathway play an important role in the Nr5a2 induced GC development.
Collapse
Affiliation(s)
- Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan, People's Republic of China.,The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China.,The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, People's Republic of China
| | - Yan Li
- Department of General Surgery, No. 42 Hospital of PLA, Leshan, Sichuan, People's Republic of China
| | - Biran Pan
- Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan, People's Republic of China.,The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China.,The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, People's Republic of China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan, People's Republic of China.,The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China.,The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, People's Republic of China
| | - Danfeng Wei
- Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan, People's Republic of China.,The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China.,The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, People's Republic of China
| | - Yifang Zhu
- Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan, People's Republic of China.,The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China.,The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, People's Republic of China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan, People's Republic of China.,The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China.,The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
23
|
Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 2019; 99:1249-1279. [DOI: 10.1152/physrev.00019.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Olivia E. Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bruce D. Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
24
|
Ye T, Li J, Sun Z, Liu Y, Kong L, Zhou S, Tang J, Wang J, Xing HR. Nr5a2 promotes cancer stem cell properties and tumorigenesis in nonsmall cell lung cancer by regulating Nanog. Cancer Med 2019; 8:1232-1245. [PMID: 30740909 PMCID: PMC6434341 DOI: 10.1002/cam4.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Abstract
Lung cancer has the highest mortality rate due to late diagnosis and high incidence of metastasis. Cancer stem cells (CSCs) are a subgroup of cancer cells with self‐renewal capability similar to that of normal stem cells (NSCs). While CSCs may play an important role in cancer progression, mechanisms underlying CSC self‐renewal and the relationship between self‐renewal of the NSCs and CSCs remain elusive. The orphan nuclear receptor Nr5a2 is a transcriptional factor, and a regulator of stemness of embryonic stem cells and induced pluripotent stem cells. However, whether Nr5a2 regulates the self‐renewal of lung CSCs is unknown. Here, we showed the diagnostic and prognostic values of elevated Nr5a2 expression in human lung cancer. We generated the mouse LLC‐SD lung carcinoma CSC cellular model in which Nr5a2 expression was enhanced. Using the LLC‐SD model, through transient and stable siRNA interference of Nr5a2 expression, we provided convincing evidence for a regulatory role of Nr5a2 in the maintenance of lung CSC self‐renewal and stem cell properties in vitro. Further, using the syngeneic and orthotopic lung transplantation model, we elucidated augmented cancer biological properties associated with Nr5a2 promotion of LLC‐SD self‐renewal. More importantly, we revealed that Nr5a2’s regulatory role in promoting LLC‐SD self‐renewal is mediated by transcriptional activation of its direct target Nanog. Taken together, in this study, we have provided convincing evidence in vitro and in vivo demonstrating that Nr5a2 can induce lung CSC properties and promote tumorigenesis and progression through transcriptional up‐regulation of Nanog.
Collapse
Affiliation(s)
- Ting Ye
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingyuan Li
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yongli Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangsheng Kong
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shixia Zhou
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Junlin Tang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,College of Biomedical Engineering, State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Liu RZ, Vo TM, Jain S, Choi WS, Garcia E, Monckton EA, Mackey JR, Godbout R. NFIB promotes cell survival by directly suppressing p21 transcription in TP53-mutated triple-negative breast cancer. J Pathol 2018; 247:186-198. [PMID: 30350349 DOI: 10.1002/path.5182] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited treatment options and poor prognosis. There is an urgent need to identify and understand the key factors and signalling pathways driving TNBC tumour progression, relapse, and treatment resistance. In this study, we report that gene copy numbers and expression levels of nuclear factor IB (NFIB), a recently identified oncogene in small cell lung cancer, are preferentially increased in TNBC compared to other breast cancer subtypes. Furthermore, increased levels of NFIB are significantly associated with high tumour grade, poor prognosis, and reduced chemotherapy response. Concurrent TP53 mutations and NFIB overexpression (z-scores > 0) were observed in 77.9% of TNBCs, in contrast to 28.5% in non-TNBCs. Depletion of NFIB in TP53-mutated TNBC cell lines promotes cell death, cell cycle arrest, and enhances sensitivity to docetaxel, a first-line chemotherapeutic drug in breast cancer treatment. Importantly, these alterations in growth properties were accompanied by induction of CDKN1A, the gene encoding p21, a downstream effector of p53. We show that NFIB directly interacts with the CDKN1A promoter in TNBC cells. Furthermore, knockdown of combined p21 and NFIB reverses the docetaxel-induced cell growth inhibition observed upon NFIB knockdown, indicating that NFIB's effect on chemotherapeutic drug response is mediated through p21. Our results indicate that NFIB is an important TNBC factor that drives tumour cell growth and drug resistance, leading to poor clinical outcomes. Thus, targeting NFIB in TP53-mutated TNBC may reverse oncogenic properties associated with mutant p53 by restoring p21 activity. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - The M Vo
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Saket Jain
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Won-Shik Choi
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Elizabeth Garcia
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Elizabeth A Monckton
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| |
Collapse
|
26
|
Liu Y, Xing Y, Wang H, Yan S, Wang X, Cai L. LRH1 as a promising prognostic biomarker and predictor of metastasis in patients with non-small cell lung cancer. Thorac Cancer 2018; 9:1725-1732. [PMID: 30273983 PMCID: PMC6275822 DOI: 10.1111/1759-7714.12887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND LRH1, which promotes the malignant transformation of carcinoma, has recently been documented in several types of malignancies. However, LRH1 has not been assessed as a potential clinical biomarker in any cancer. METHODS LRH1 expression was tested in fresh-frozen tissue samples with quantitative real-time PCR and Western blot analysis. Surgically resected tumor tissues were collected from 156 non-small cell lung cancer (NSCLC) patients: 75 with adenocarcinoma and 81 with squamous cell carcinoma. Subsequently, the immunohistochemical expression of LRH1 was examined, and its clinical significance was evaluated. RESULTS LRH1 overexpression was observed in NSCLC carcinoma tissues compared to adjacent normal lung tissues. LRH1 expression was correlated with poorer differentiation (P = 0.023), pathological tumor classification (P < 0.001), advanced pathological tumor node metastasis stage (P = 0.017), adenocarcinoma subtype (P = 0.031), and positive lymph node metastasis (P < 0.001). Multivariate analysis demonstrated that LRH1 expression status was an independent prognostic factor for overall (hazard ratio 1.372, 95% confidence interval 1.225-1.617; P = 0.003) and disease-free survival (hazard ratio 1.497, 95% confidence interval 1.059-2.115; P = 0.011) in patients who suffered from resectable NSCLC. CONCLUSION The results of our study indicate that LRH1 predicts NSCLC progression, metastasis, and a dismal prognosis, emphasizing its promising role as a novel target in NSCLC therapies.
Collapse
Affiliation(s)
- Yuechao Liu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ying Xing
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Hongmei Wang
- Department of PathologyHarbin Medical University Cancer HospitalHarbinChina
| | - Shi Yan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Xinzhu Wang
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Li Cai
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
27
|
Huang P, Ouyang DJ, Chang S, Li MY, Li L, Li QY, Zeng R, Zou QY, Su J, Zhao P, Pei L, Yi WJ. Chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis promote chemoresistance by activating the NF-κB pathway in breast cancer cells. Cell Commun Signal 2018; 16:92. [PMID: 30497491 PMCID: PMC6267809 DOI: 10.1186/s12964-018-0304-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemotherapy is the primary established systemic treatment for patients with breast cancer, especially those with the triple-negative subtype. Simultaneously, the resistance of triple-negative breast cancer (TNBC) to chemotherapy remains a major clinical problem. Our previous study demonstrated that the expression levels of PTN and its receptor PTPRZ1 were upregulated in recurrent TNBC tissue after chemotherapy, and this increase was closely related to poor prognosis in those patients. However, the mechanism and function of chemotherapy-driven increases in PTN/PTPRZ1 expression are still unclear. METHODS We compared the expression of PTN and PTPRZ1 between normal breast and cancer tissues as well as before and after chemotherapy in cancer tissue using the microarray analysis data from the GEPIA database and GEO database. The role of chemotherapy-driven increases in PTN/PTPRZ1 expression was examined with a CCK-8 assay, colony formation efficiency assay and apoptosis analysis with TNBC cells. The potential upstream pathways involved in the chemotherapy-driven increases in PTN/PTPRZ1 expression in TNBC cells were explored using microarray analysis, and the downstream mechanism was dissected with siRNA. RESULTS We demonstrated that the expression of PTN and PTPRZ1 was upregulated by chemotherapy, and this change in expression decreased chemosensitivity by promoting tumour proliferation and inhibiting apoptosis. CDKN1A was the critical switch that regulated the expression of PTN/PTPRZ1 in TNBC cells receiving chemotherapy. We further demonstrated that the mechanism of chemoresistance by chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis depended on the NF-κB pathway. CONCLUSIONS Our studies indicated that chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis play a critical role in chemoresistance, which suggests a novel strategy to enhance chemosensitivity in breast cancer cells, especially in those of the triple-negative subtype.
Collapse
Affiliation(s)
- Peng Huang
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China.,Department of General Surgery, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
| | - Deng-Jie Ouyang
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
| | - Mo-Yun Li
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Lun Li
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Qian-Ying Li
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Rong Zeng
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Qiong-Yan Zou
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Juan Su
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Piao Zhao
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Lei Pei
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China
| | - Wen-Jun Yi
- Department of General Surgery, the Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China.
| |
Collapse
|
28
|
Gang X, Xu H, Si L, Zhu X, Yu T, Jiang Z, Wang Y. Treatment effect of CDKN1A on rheumatoid arthritis by mediating proliferation and invasion of fibroblast-like synoviocytes cells. Clin Exp Immunol 2018; 194:220-230. [PMID: 29920650 DOI: 10.1111/cei.13161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The objective of the present study was to evaluate the role of CDKN1A in rheumatoid arthritis (RA). Related gene expression data screened from Gene Expression Omnibus (GEO) were processed with network analysis. Protein-protein interaction was analysed through string database. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to measure mRNA and microRNA expression. Cell proliferation and cell cycle were tested by MTT assay and flow cytometry, respectively. Transwell migration and invasion assay was used to test cell migration and invasion. CDKN1A screened by bioinformatics methods showed differential expression in RA cells compared with healthy controls (HC), and was at an important position in the protein-protein interaction network of RA. Compared with the HC group, CDKN1A was down-regulated in human RA synovium tissues and human fibroblast-like synoviocytes (HFLS). Contrary to CDKN1A silencing, CDKN1A over-expression significantly inhibited the proliferation and invasion of HFLS-RA, arrested HFLS-RA in G0/G1 phase and down-regulated the expressions of tumour necrosis factor (TNF)-α and interleukin (IL)-6, while it up-regulated the expression of IL-10. CDKN1A over-expression could also suppress phosphorylated signal transducers and activators of transcription 1 (pSTAT-1) expression. MiR-146a, highly expressed in RA tissues, could regulate CDKN1A negatively. Anti-146a suppressed cell proliferation and invasion, and at the same time enhanced IL-10 expression but inhibited IL-6, TNF-α and pSTAT-1 expression. The results indicated that CDKN1A over-expression, which could be enhanced by miR-146a suppression, inhibited the proliferation of invasion in HFLS-RA. This was probably a result of suppressed pSTAT-1, IL-6 and TNF-α expression and enhanced IL-10 expression.
Collapse
Affiliation(s)
- X Gang
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun, Jilin, China
| | - H Xu
- Departments of Ophthalmology, Changchun, Jilin, China
| | - L Si
- Gynaecology and Obstetrics, Changchun, Jilin, China
| | - X Zhu
- Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - T Yu
- Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Z Jiang
- Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Y Wang
- Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Xiao L, Wang Y, Liang W, Liu L, Pan N, Deng H, Li L, Zou C, Chan FL, Zhou Y. LRH-1 drives hepatocellular carcinoma partially through induction of c-myc and cyclin E1, and suppression of p21. Cancer Manag Res 2018; 10:2389-2400. [PMID: 30122988 PMCID: PMC6078084 DOI: 10.2147/cmar.s162887] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background To explore potential therapeutic target is one of the areas of great interest in both clinical and basic hepatocellular carcinoma (HCC) studies. Nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) is proved to play a positive role in several cancers including breast cancer, pancreatic cancer and intestinal cancer in recent years. However, the exact role of LRH-1 in the development and progression of HCC is not fully elucidated. Methods The LRH-1 expression level in HCC clinical samples was examined by immunohis-tochemistry (IHC). Stable LRH-1-suppressed HepG2 clones (HepG2LRH-1/-) were generated by transcription activator-like effector nucleases (TALENs) and both in vitro and in vivo experiments were conducted. Results We confirmed that LRH-1 showed an increased expression pattern in HCC clinical samples. Our in vitro and in vivo results indicated that suppression of LRH-1 in HepG2 significantly attenuated its proliferation rate and tumorigenic capacity. Gene expression microarray analysis indicated that LRH-1mostly regulated gene expression involved in cell cycle. In addition, our gain-of-function experiments indicated that ectopic expression of LRH-1 dramatically induced the mRNA and protein levels of c-myc and cyclin E1, while attenuating the expression of p21. Conclusion Our results suggest that LRH-1 might be a potential therapeutic target for clinical HCC treatment.
Collapse
Affiliation(s)
- Lijia Xiao
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China, .,Department of Clinical Laboratory, Nanshan Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,
| | - Weicheng Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Nannan Pan
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China,
| | - Huimin Deng
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China,
| | - Luqian Li
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China,
| | - Chang Zou
- Clinical Medicine Research Center, Shenzhen Public Service Platform of Precision Medicine and Molecular Diagnosis on Tumor, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,
| | - Yiwen Zhou
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China,
| |
Collapse
|
30
|
LRH1 enhances cell resistance to chemotherapy by transcriptionally activating MDC1 expression and attenuating DNA damage in human breast cancer. Oncogene 2018; 37:3243-3259. [DOI: 10.1038/s41388-018-0193-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/08/2022]
|
31
|
Tuo Y, An N, Zhang M. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods. Mol Med Rep 2018; 17:4281-4290. [PMID: 29328377 PMCID: PMC5802200 DOI: 10.3892/mmr.2018.8398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/01/2017] [Indexed: 01/30/2023] Open
Abstract
The aim of the present study was to investigate the feature genes in metastatic breast cancer samples. A total of 5 expression profiles of metastatic breast cancer samples were downloaded from the Gene Expression Omnibus database, which were then analyzed using the MetaQC and MetaDE packages in R language. The feature genes between metastasis and non‑metastasis samples were screened under the threshold of P<0.05. Based on the protein‑protein interactions (PPIs) in the Biological General Repository for Interaction Datasets, Human Protein Reference Database and Biomolecular Interaction Network Database, the PPI network of the feature genes was constructed. The feature genes identified by topological characteristics were then used for support vector machine (SVM) classifier training and verification. The accuracy of the SVM classifier was then evaluated using another independent dataset from The Cancer Genome Atlas database. Finally, function and pathway enrichment analyses for genes in the SVM classifier were performed. A total of 541 feature genes were identified between metastatic and non‑metastatic samples. The top 10 genes with the highest betweenness centrality values in the PPI network of feature genes were Nuclear RNA Export Factor 1, cyclin‑dependent kinase 2 (CDK2), myelocytomatosis proto‑oncogene protein (MYC), Cullin 5, SHC Adaptor Protein 1, Clathrin heavy chain, Nucleolin, WD repeat domain 1, proteasome 26S subunit non‑ATPase 2 and telomeric repeat binding factor 2. The cyclin‑dependent kinase inhibitor 1A (CDKN1A), E2F transcription factor 1 (E2F1), and MYC interacted with CDK2. The SVM classifier constructed by the top 30 feature genes was able to distinguish metastatic samples from non‑metastatic samples [correct rate, specificity, positive predictive value and negative predictive value >0.89; sensitivity >0.84; area under the receiver operating characteristic curve (AUROC) >0.96]. The verification of the SVM classifier in an independent dataset (35 metastatic samples and 143 non‑metastatic samples) revealed an accuracy of 94.38% and AUROC of 0.958. Cell cycle associated functions and pathways were the most significant terms of the 30 feature genes. A SVM classifier was constructed to assess the possibility of breast cancer metastasis, which presented high accuracy in several independent datasets. CDK2, CDKN1A, E2F1 and MYC were indicated as the potential feature genes in metastatic breast cancer.
Collapse
Affiliation(s)
- Youlin Tuo
- Department of Breast Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, School of Clinical Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Ning An
- Department of Oncology, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, School of Clinical Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Ming Zhang
- Department of Oncology, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, School of Clinical Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
32
|
Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer — uncovering new and evolving roles through genomic analysis. Nat Rev Genet 2017; 19:160-174. [DOI: 10.1038/nrg.2017.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Singla H, Ludhiadch A, Kaur RP, Chander H, Kumar V, Munshi A. Recent advances in HER2 positive breast cancer epigenetics: Susceptibility and therapeutic strategies. Eur J Med Chem 2017; 142:316-327. [DOI: 10.1016/j.ejmech.2017.07.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
34
|
Meinsohn MC, Morin F, Bertolin K, Duggavathi R, Schoonjans K, Murphy BD. The Orphan Nuclear Receptor Liver Homolog Receptor-1 (Nr5a2) Regulates Ovarian Granulosa Cell Proliferation. J Endocr Soc 2017; 2:24-41. [PMID: 29379893 PMCID: PMC5779114 DOI: 10.1210/js.2017-00329] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
In mouse ovaries, liver receptor homolog-1 [nuclear receptor subfamily 5, group A,
member 2 (Nr5a2)] expression is restricted to granulosa cells. Mice with Nr5a2
depletion in this cell population fail to ovulate. To determine whether Nr5a2 is
essential for granulosa cell proliferation during follicular maturation, we generated
granulosa-specific conditional knockout mice (genotype Nr5a2 floxed Cre-recombinase
driven by the anti-Müllerian type II receptor, hereafter cKO) with Nr5a2
depletion from primary follicles forward. Proliferation in cKO granulosa cells was
substantially reduced relative to control (CON) counterparts, as assessed by
bromodeoxyuridine incorporation, proliferative cell nuclear antigen expression, and
fluorescent-activated cell sorting. Microarray analysis revealed >2000
differentially regulated transcripts between cKO and CON granulosa cells. Major gene
ontology pathways disrupted were proliferation, steroid biosynthesis, female gamete
formation, and ovulatory cycle. Transcripts for key cell-cycle genes, including
Ccnd1, Ccnd2, Ccne1,
Ccne2, E2f1, and E2f2, were in
reduced abundance. Transcripts from other cell-cycle-related factors, including
Cdh2, Plagl1, Cdkn1a,
Prkar2b, Gstm1, Cdk7, and
Pts, were overexpressed. Although the follicle-stimulating
hormone and estrogen receptors were overexpressed in the cKO animals, in
vivo treatment with estradiol-17β failed to
rescue decreased proliferation. In vitro inactivation of Nr5a2 using
the ML180 reverse agonist similarly decreased cell-cycle-related gene transcripts and
downstream targets, as in cKO mice. Pharmacological inhibition of
β-catenin, an Nr5a2 cofactor, decreased cyclin gene
transcripts and downstream targets. Terminal deoxynucleotidyltransferase-mediated
deoxyuridine triphosphate nick end labeling immunofluorescence and quantitative
polymerase chain reaction of pro/antiapoptotic and autophagic markers showed no
differences between cKO and CON granulosa cells. Thus, Nr5a2 is essential for
granulosa cell proliferation, but its depletion does not alter the frequency of
apoptosis nor autophagy.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Quebec J2S 2M2, Canada
| | - Fanny Morin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Quebec J2S 2M2, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Quebec J2S 2M2, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste-Anne de Bellevue, Qubec H9X 3V9, Canada
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Quebec J2S 2M2, Canada
| |
Collapse
|
35
|
Qu R, Hao S, Jin X, Shi G, Yu Q, Tong X, Guo D. MicroRNA-374b reduces the proliferation and invasion of colon cancer cells by regulation of LRH-1/Wnt signaling. Gene 2017; 642:354-361. [PMID: 29128635 DOI: 10.1016/j.gene.2017.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/28/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Deregulation of microRNA (miRNA) has been suggested as a critical event in colon cancer development and progression. Recent studies have suggested that miR-374b is a novel cancer-related miRNA involved in several cancer types. Thus far, very little is known about the role of miR-374b in colon cancer; therefore, the goal of this study was to investigate the potential role of miR-374b in colon cancer. Here, we showed that miR-374b expression was significantly downregulated in colon cancer tissues and cell lines. Overexpression of miR-374b inhibited the proliferation and invasion of colon cancer cells, while miR-374b suppression promoted colon cancer cell proliferation and invasion. Liver receptor homolog-1 (LRH-1) was identified as a target of miR-374b in colon cancer cells. Both the mRNA and protein expression of LRH-1 were regulated by miR-374b. In addition, an inverse correlation between LRH-1 mRNA and miR-374b expression was evidenced in colon cancer specimens. Notably, overexpression of miR-374b also downregulated the Wnt signaling in colon cancer cells. Furthermore, restoration of LRH-1 expression significantly abolished the antitumor effect of miR-374b in colon cancer cells. These findings suggest that miR-374b inhibits colon cancer cell proliferation and invasion through downregulation of LRH-1 expression. Inhibiting LRH-1 by miR-374b may represent a novel therapeutic strategy for the treatment of colon cancer.
Collapse
Affiliation(s)
- Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Xianmei Jin
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guang Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Qiong Yu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Xianshuang Tong
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Dongrui Guo
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
36
|
LRH-1 expression patterns in breast cancer tissues are associated with tumour aggressiveness. Oncotarget 2017; 8:83626-83636. [PMID: 29137369 PMCID: PMC5663541 DOI: 10.18632/oncotarget.18886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/12/2017] [Indexed: 11/25/2022] Open
Abstract
The significance and regulation of liver receptor homologue 1 (LRH-1, NR5A2), a tumour-promoting transcription factor in breast cancer cell lines, is unknown in clinical breast cancers. This study aims to determine LRH-1/NR5A2 expression in breast cancers and relationship with DNA methylation and tumour characteristics. In The Cancer Genome Atlas breast cancer cohort NR5A2 expression was positively associated with intragenic CpG island methylation (1.4-fold expression for fully methylated versus not fully methylated, p=0.01) and inversely associated with promoter CpG island methylation (0.6-fold expression for fully methylated versus not fully methylated, p=0.036). LRH-1 immunohistochemistry of 329 invasive carcinomas and ductal carcinoma in situ (DCIS) was performed. Densely punctate/coarsely granular nuclear reactivity was significantly associated with high tumour grade (p<0.005, p=0.033 in invasive carcinomas and DCIS respectively), negative estrogen receptor status (p=0.008, p=0.038 in overall cohort and invasive carcinomas, respectively), negative progesterone receptor status (p=0.003, p=0.013 in overall cohort and invasive carcinomas, respectively), HER2 amplification (overall cohort p=0.034) and non-luminal intrinsic subtype (p=0.018, p=0.038 in overall cohort and invasive carcinomas, respectively). These significant associations of LRH-1 protein expression with tumour phenotype suggest that LRH-1 is an important indicator of tumour biology in breast cancers and may be useful in risk stratification.
Collapse
|
37
|
Yuan Q, Cao G, Li J, Zhang Y, Yang W. MicroRNA-136 inhibits colon cancer cell proliferation and invasion through targeting liver receptor homolog-1/Wnt signaling. Gene 2017; 628:48-55. [PMID: 28710032 DOI: 10.1016/j.gene.2017.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
An increasing number of studies have reported that microRNAs (miRNAs) are involved in the malignant behavior of colon cancer cells through directly targeting multiple tumor suppressors or oncogenes. The expression and role of miR-136 has been reported in several types of human cancer. However, the role of miR-136 in colon cancer remains unclear. In this study, we aimed to investigate the expression and function of miR-136 in colon cancer and the potential underlying mechanism. Here, we found that miR-136 was decreased in colon cancer cell lines and tissues. Overexpression of miR-136 inhibited the proliferation and invasion in SW480 and HCT116 cell lines while suppression of miR-136 exhibited the opposite effect. Liver receptor homolog-1 (LRH-1) was identified as a direct target gene of miR-136. Notably, miR-136 overexpression suppressed LRH-1 expression as well as Wnt signaling in SW480 and HCT116 cell lines. The miR-136 expression level inversely correlated with LRH-1 mRNA expression in colon cancer specimens. Moreover, overexpression of LRH-1 partially reversed the miR-136-induced antitumor effect in SW480 and HCT116 cell lines. Taken together, these findings suggest that miR-136 functions as a negative regulator in colon cancer progression by targeting LRH-1 and that miR-136 downregulation contributes to high expression of LRH-1 and aberrant activation of Wnt signaling, leaving open the possibility that miR-136 may serve as a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Qinggong Yuan
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Wenbin Yang
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
38
|
vel Szic KS, Declerck K, Crans RA, Diddens J, Scherf DB, Gerhäuser C, Berghe WV. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget 2017; 8:40434-40453. [PMID: 28467815 PMCID: PMC5522326 DOI: 10.18632/oncotarget.17107] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by poor prognosis and a DNA hypomethylation profile. Withaferin A (WA) is a plant derived steroidal lactone which holds promise as a therapeutic agent for treatment of breast cancer (BC). We determined genome-wide DNA methylation changes in weakly-metastatic and aggressive, metastatic BC cell lines, following 72h treatment to a sub-cytotoxic concentration of WA. In contrast to the DNA demethylating agent 5-aza-2'-deoxycytidine (DAC), WA treatment of MDA-MB-231 cells rather tackles an epigenetic cancer network through gene-specific DNA hypermethylation of tumor promoting genes including ADAM metallopeptidase domain 8 (ADAM8), urokinase-type plasminogen activator (PLAU), tumor necrosis factor (ligand) superfamily, member 12 (TNFSF12), and genes related to detoxification (glutathione S-transferase mu 1, GSTM1), or mitochondrial metabolism (malic enzyme 3, ME3). Gene expression and pathway enrichment analysis further reveals epigenetic suppression of multiple cancer hallmarks associated with cell cycle regulation, cell death, cancer cell metabolism, cell motility and metastasis. Remarkably, DNA hypermethylation of corresponding CpG sites in PLAU, ADAM8, TNSF12, GSTM1 and ME3 genes correlates with receptor tyrosine-protein kinase erbB-2 amplification (HER2)/estrogen receptor (ESR)/progesterone receptor (PR) status in primary BC tumors. Moreover, upon comparing differentially methylated WA responsive target genes with DNA methylation changes in different clinical subtypes of breast cancer patients in the cancer genome atlas (TCGA), we found that WA silences HER2/PR/ESR-dependent gene expression programs to suppress aggressive TNBC characteristics in favor of luminal BC hallmarks, with an improved therapeutic sensitivity. In this respect, WA may represent a novel and attractive phyto-pharmaceutical for TNBC treatment.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Current address: Division of Hematology, Oncology and Stem Cell Transplantation, Center for Translational Cell Research, The University Medical Center Freiburg, Freiburg, Germany
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - René A.J Crans
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Current address: Laboratory for GPCR Expression and Signal Transduction (L-GEST), Department of Biochemistry and Microbiology, University of Ghent, Ghent, Belgium
| | - Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - David B. Scherf
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhäuser
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
39
|
Duggan SP, Behan FM, Kirca M, Zaheer A, McGarrigle SA, Reynolds JV, Vaz GMF, Senge MO, Kelleher D. The characterization of an intestine-like genomic signature maintained during Barrett's-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival. Sci Rep 2016; 6:32638. [PMID: 27586588 PMCID: PMC5009315 DOI: 10.1038/srep32638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Barrett’s oesophagus (BO), an intestinal-type metaplasia (IM), typically arising in conjunction with gastro-oesophageal reflux disease, is a prominent risk factor for the development of oesophageal adenocarcinoma (OAC). The molecular similarities between IM and normal intestinal tissues are ill-defined. Consequently, the contribution of intestine-enriched factors expressed within BO to oncogenesis is unclear. Herein, using transcriptomics we define the intestine-enriched genes expressed in meta-profiles of BO and OAC. Interestingly, 77% of the genes differentially expressed in a meta-profile of BO were similarly expressed in intestinal tissues. Furthermore, 85% of this intestine-like signature was maintained upon transition to OAC. Gene networking analysis of transcription factors within this signature revealed a network centred upon NR5A2, GATA6 and FOXA2, whose over-expression was determined in a cohort of BO and OAC patients. Simulated acid reflux was observed to induce the expression of both NR5A2 and GATA6. Using siRNA-mediated silencing and an NR5A2 antagonist we demonstrate that NR5A2-mediated cancer cell survival is facilitated through augmentation of GATA6 and anti-apoptotic factor BCL-XL levels. Abrogation of NR5A2-GATA6 expression in conjunction with BCL-XL co-silencing resulted in synergistically increased sensitivity to chemotherapeutics and photo-dynamic therapeutics. These findings characterize the intestine-like signature associated with IM which may have important consequences to adenocarcinogenesis.
Collapse
Affiliation(s)
- Shane P Duggan
- Department of Medicine, Division of Gastroenterology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia, Canada.,Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Fiona M Behan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, St James' Hospital, Dublin, Ireland
| | - Murat Kirca
- Department of Gastroenterology, St James' Hospital, Dublin, Ireland
| | - Abdul Zaheer
- Department of Gastroenterology, St James' Hospital, Dublin, Ireland
| | - Sarah A McGarrigle
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St James' Hospital, Dublin 8, Ireland
| | - John V Reynolds
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, St James' Hospital, Dublin 8, Ireland
| | - Gisela M F Vaz
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity College Dublin, the University of Dublin, St James' Hospital, Dublin 8, Ireland
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity College Dublin, the University of Dublin, St James' Hospital, Dublin 8, Ireland
| | - Dermot Kelleher
- Department of Medicine, Division of Gastroenterology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia, Canada.,Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Nuclear receptor NR5A2 controls neural stem cell fate decisions during development. Nat Commun 2016; 7:12230. [PMID: 27447294 PMCID: PMC4961839 DOI: 10.1038/ncomms12230] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/14/2016] [Indexed: 02/08/2023] Open
Abstract
The enormous complexity of mammalian central nervous system (CNS) is generated by highly synchronized actions of diverse factors and signalling molecules in neural stem/progenitor cells (NSCs). However, the molecular mechanisms that integrate extrinsic and intrinsic signals to control proliferation versus differentiation decisions of NSCs are not well-understood. Here we identify nuclear receptor NR5A2 as a central node in these regulatory networks and key player in neural development. Overexpression and loss-of-function experiments in primary NSCs and mouse embryos suggest that NR5A2 synchronizes cell-cycle exit with induction of neurogenesis and inhibition of astrogliogenesis by direct regulatory effects on Ink4/Arf locus, Prox1, a downstream target of proneural genes, as well as Notch1 and JAK/STAT signalling pathways. Upstream of NR5a2, proneural genes, as well as Notch1 and JAK/STAT pathways control NR5a2 endogenous expression. Collectively, these observations render NR5A2 a critical regulator of neural development and target gene for NSC-based treatments of CNS-related diseases. The molecular signals regulating the decision of neural stem cells (NSC) to proliferate versus differentiate are unclear. Here, the authors identify the nuclear receptor NR5A2 as coordinating cell-cycle exit with differentiation of NSCs via direct actions on Ink4, Prox1, Notch1 and JAK/STAT.
Collapse
|
41
|
MicroRNA-376c suppresses non-small-cell lung cancer cell growth and invasion by targeting LRH-1-mediated Wnt signaling pathway. Biochem Biophys Res Commun 2016; 473:980-986. [PMID: 27049310 DOI: 10.1016/j.bbrc.2016.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) that negatively regulate gene expression have emerged as novel therapeutic tools for cancer treatment. In this study, we investigated the potential role of Liver receptor homolog-1 (LRH-1), a novel oncogene, in non-small-cell lung cancer (NSCLC), and examined the regulation of LRH-1 by miRNAs. We found that LRH-1 was highly overexpressed in NSCLC cell lines. Knockdown of LRH-1 by small interfering RNA significantly inhibited NSCLC cell growth and invasion. miR-376c directly targeted the 3'-untranslated region (UTR) of LRH-1 and negatively regulated LRH-1 expression, as detected by dual-luciferase reporter assay, real-time quantitative polymerase chain reaction and Western blot analysis. Further data showed that miR-376c expression was inversely correlated with LRH-1 expression in clinical cancer samples. Overexpression of miR-376c could inhibit NSCLC cell growth and invasion as well as Wnt signaling. In contrast, depletion of miR-376c exhibited the opposite effects. Moreover, these effects of miR-376c overexpression were partially abrogated by overexpression of LRH-1. Taken together, these results indicate that LRH-1 is involved in regulating the growth and invasion of NSCLC cells and that miR-376c inhibits NSCLC cell growth and invasion by targeting LRH-1, providing a novel insight into the potential for development of anti-cancer drugs for NSCLC.
Collapse
|
42
|
Kramer HB, Lai CF, Patel H, Periyasamy M, Lin ML, Feller SM, Fuller-Pace FV, Meek DW, Ali S, Buluwela L. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res 2016; 44:582-94. [PMID: 26400164 PMCID: PMC4737183 DOI: 10.1093/nar/gkv948] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/15/2022] Open
Abstract
Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53.
Collapse
Affiliation(s)
- Holly B Kramer
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Chun-Fui Lai
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Hetal Patel
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Manikandan Periyasamy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Meng-Lay Lin
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Heinrich-Damerow-Str. 1, D-06120 Halle (Saale), Germany
| | - Frances V Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - David W Meek
- Division of Cancer Research, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Laki Buluwela
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
43
|
Zhang Q, Zhao S, Pang X, Chi B. MicroRNA-381 suppresses cell growth and invasion by targeting the liver receptor homolog-1 in hepatocellular carcinoma. Oncol Rep 2015; 35:1831-40. [PMID: 26677080 DOI: 10.3892/or.2015.4491] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) have emerged as prospective tools for human cancer therapy, including hepatocellular carcinoma (HCC) therapy. Previous studies have suggested that miR-381 functions as oncogenic or tumor-suppressive miRs in other cancer types. However, the role of miR-381 in HCC remains unknown. The present study investigated the expression and functional role of miR-381 in HCC. miR-381 expression was significantly decreased in HCC tissues and cell lines. miR-381 overexpression significantly inhibited HCC cell proliferation and colony formation, induced G0/G1 cell cycle arrest and suppressed cell invasion. Conversely, suppression of miR-381 showed the opposite effect in HCC cells. Bioinformatics analysis and dual-luciferase reporter assay results showed that miR-381 directly targeted the 3'-untranslated region of liver receptor homolog-1 (LRH-1), and quantitative polymerase chain reaction and western blot analysis results showed that miR-381 negatively modulated LRH-1 expression. Data elucidated that miR-381 directly regulated HCC cell growth and invasion, as well as the Wnt signaling pathways, by targeting LRH-1. Clinical tissue detection data revealed an inverse correlation between miR-381 and LRH-1 expression in HCC tissues, further indicating the functional significance of miR-381-LRH-1 in regulating HCC tumorigenesis. The present study indicates that miR-381 may be a novel tumor suppressor that blocks HCC growth and invasion by targeting LRH-1. The results present novel insights into understanding the molecular mechanism underlying HCC tumorigenesis and provide a future direction to the development of therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Hepatobiliary and Pancreatic Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shixing Zhao
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xiaoli Pang
- Department of Hepatobiliary and Pancreatic Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baorong Chi
- Department of Hepatobiliary and Pancreatic Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
44
|
Wu Z, Liu K, Wang Y, Xu Z, Meng J, Gu S. Upregulation of microRNA-96 and its oncogenic functions by targeting CDKN1A in bladder cancer. Cancer Cell Int 2015; 15:107. [PMID: 26582573 PMCID: PMC4650312 DOI: 10.1186/s12935-015-0235-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/26/2015] [Indexed: 01/06/2023] Open
Abstract
Background Genome-wide miRNA expression profile has identified microRNA (miR)-96 as one of upregulated miRNAs in clinical bladder cancer (BC) tissues compared to normal bladder tissues. The aim of this study was to confirm the expression pattern of miR-96 in BC tissues and to investigate its involvement in carcinogenesis. Methods Quantitative real-time PCR was performed to detect the expression levels of miR-96 in 60 BC and 40 normal control tissues. Bioinformatics prediction combined with luciferase reporter assay were used to verify whether the cyclin-dependent kinase inhibitor CDKN1A was a potential target gene of miR-96. Cell counting kit-8 and apoptosis assays were further performed to evaluate the effects of miR-96-CDKN1A axis on cell proliferation and apoptosis of BC cell lines. Results We validated that miR-96 was significantly increased in both human BC tissues and cell lines. According to the data of miRTarBase, CDKN1A might be a candidate target gene of miR-96. In addition, luciferase reporter and Western blot assays respectively demonstrated that miR-96 could bind to the putative seed region in CDKN1A mRNA 3′UTR, and significantly reduce the expression level of CDKN1A protein. Moreover, we found that the inhibition of miR-96 expression remarkably decreased cell proliferation and promoted cell apoptosis of BC cell lines, which was consistent with the findings observed following the introduction of CDKN1A cDNA without 3′UTR restored miR-96. Conclusions Our data reveal that miR-96 may function as an onco-miRNA in BC. Upregulation of miR-96 may contribute to aggressive malignancy partly through suppressing CDKN1A protein expression in BC cells.
Collapse
Affiliation(s)
- Ziyu Wu
- Department of Urology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, 62 Huaihai Road South, Huai'an, 223002 People's Republic of China
| | - Kun Liu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, 223300 Jiangsu People's Republic of China
| | - Yunyan Wang
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, 223300 Jiangsu People's Republic of China
| | - Zongyuan Xu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, 223300 Jiangsu People's Republic of China
| | - Junsong Meng
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, 223300 Jiangsu People's Republic of China
| | - Shuo Gu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, 223300 Jiangsu People's Republic of China
| |
Collapse
|