1
|
Tsuji K, Tamamura H, Burke TR. Fine-tuning probes for fluorescence polarization binding assays of bivalent ligands against polo-like kinase 1 using full-length protein. Bioorg Med Chem 2025; 119:118055. [PMID: 39764864 DOI: 10.1016/j.bmc.2024.118055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 02/16/2025]
Abstract
Polo-like kinase 1 (Plk1) is an important cell cycle regulator that is a recognized target for development of anti-cancer therapeutics. Plk1 is composed of a catalytic kinase domain (KD), a flexible interdomain linker and a polo-box domain (PBD). Intramolecular protein-protein interactions (PPIs) between the PBD and KD result in "auto-inhibition" that is an essential component of proper Plk1 function. Recently, we developed high-affinity PBD-binding inhibitors using a bivalent approach. These ligands contain the low-nanomolar affinity Plk1 KD-binding inhibitors BI2536 or Wortmannin tethered to the PBD-binding peptide, PLH*SpT (H* represents a -(CH2)8Ph group on the histidine side chain π-nitrogen). Due to the extremely high affinity of these bivalent inhibitors, to avoid bottoming out in competitive binding assays, it was necessary to use PLH*SpT in the affinity probe. As reported herein, we have developed fluorescence polarization assays using a new fluorescent probe based on the Plk1 PBD-binding peptide, FDPPLHSpTA. We applied the assay to evaluate the affinities of bivalent inhibitors that possess a variety of PBD-binding peptides having much lower PBD-affinities than PLH*SpT. Tethering BI2536 in these bivalent inhibitors resulted in significant affinity enhancements as compared to the parent monovalent peptides.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA.
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA
| |
Collapse
|
2
|
Wang Z, Lan J, Feng Y, Chen Y, Chen M. Rational design of potent phosphopeptide binders to endocrine Snk PBD domain by integrating machine learning optimization, molecular dynamics simulation, binding energetics rescoring, and in vitro affinity assay. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025; 54:33-43. [PMID: 39611994 DOI: 10.1007/s00249-024-01729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
Human Snk is an evolutionarily conserved serine/threonine kinase essential for the maintenance of endocrine stability. The protein consists of a N-terminal catalytic domain and a C-terminal polo-box domain (PBD) that determines subcellular localization and substrate specificity. Here, an integrated strategy is described to explore the vast structural diversity space of Snk PBD-binding phosphopeptides at a molecular level using machine learning modeling, annealing optimization, dynamics simulation, and energetics rescoring, focusing on the recognition specificity and motif preference of the Snk PBD domain. We further performed a systematic rational design of potent phosphopeptide ligands for the domain based on the harvested knowledge, from which a few potent binders were also confirmed by fluorescence-based assays. A phosphopeptide PP17 was designed as a good binder with affinity improvement by 6.7-fold relative to the control PP0, while the other three designed phosphopeptides PP7, PP13, and PP15 exhibit a comparable potency with PP0. In addition, a basic recognition motif that divides potent Snk PBD-binding sequences into four residue blocks was defined, namely [Χ-5Χ-4]block1-[Ω-3Ω-2Ω-1]block2-[pS0/pT0]block3-[Ψ+1]block4, where the X represents any amino acid, Ω indicates polar amino acid, Ψ denotes hydrophobic amino acid, and pS0/pT0 is the anchor phosphoserine/phosphothreonine at reference residue position 0.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Pediatrics, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, 215200, China
| | - Jixiao Lan
- Department of Internal Medicine, Suzhou Wujiang District Children Hospital, Soochow University, Suzhou, 215200, China
| | - Yan Feng
- Department of Internal Medicine, Suzhou Wujiang District Children Hospital, Soochow University, Suzhou, 215200, China
| | - Yumei Chen
- Department of Pediatrics, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, 215200, China
| | - Meiyuan Chen
- Department of Internal Medicine, Suzhou Wujiang District Children Hospital, Soochow University, Suzhou, 215200, China.
| |
Collapse
|
3
|
Tang C, Peng S, Chen Y, Cheng B, Li S, Zhou J, Wu Y, Li L, Zhong H, Guo Z, Lai Y, Huang H. SHCBP1 is a novel regulator of PLK1 phosphorylation and promotes prostate cancer bone metastasis. MedComm (Beijing) 2025; 6:e70082. [PMID: 39949984 PMCID: PMC11822462 DOI: 10.1002/mco2.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/19/2024] [Accepted: 12/09/2024] [Indexed: 02/16/2025] Open
Abstract
Prostate cancer is a common male genitourinary malignancy with bone metastasis posing challenges for prognosis and treatment. This study aimed to investigate the role of SHC protein SH2 structural domain binding protein 1 (SHCBP1) in prostate cancer bone metastasis. Whole transcriptome sequencing of prostate cancer samples was conducted to identify oncogene expression, specifically focusing on SHCBP1. In vivo and in vitro models were used to study SHCBP1's impact on bone metastasis. Through co-immunoprecipitation, mass spectrometry, and Western blot assays, the interaction between SHCBP1 and cell cycle-related proteins was elucidated, along with analysis of downstream protein partners. SHCBP1 was found to enhance prostate cancer cell development, metastasis, and mitosis, with the SHCBP1-polo-like kinase 1 (PLK1)-CDC25C axis playing a key role in promoting tumorigenesis. Therapeutic inhibition of SHCBP1 increased docetaxel sensitivity. Clinical data showed elevated SHCBP1 expression in advanced prostate cancer stages. These findings offer insights into potential therapeutic strategies for prostate cancer bone metastasis and highlight the significance of the SHCBP1-PLK1-CDC25C axis in docetaxel sensitivity.
Collapse
Affiliation(s)
- Chen Tang
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Department of UrologyShenzhen Nanshan People's HospitalShenzhenP.R. China
| | - Shengmeng Peng
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouP.R. China
| | - Yongming Chen
- Beijing Hospital, National Center of Gerontology Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union MedicalCollegeBeijingP.R. China
| | - Bisheng Cheng
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Shurui Li
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
| | - Jie Zhou
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Yongxin Wu
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Lingfeng Li
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
| | - Haitao Zhong
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
| | - Zhenghui Guo
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouP.R. China
| | - Yiming Lai
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouP.R. China
- Department of Urologythe Fifth Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangP.R. China
| | - Hai Huang
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouP.R. China
| |
Collapse
|
4
|
Ciardo D, Haccard O, de Carli F, Hyrien O, Goldar A, Marheineke K. Dual DNA replication modes: varying fork speeds and initiation rates within the spatial replication program in Xenopus. Nucleic Acids Res 2025; 53:gkaf007. [PMID: 39883014 PMCID: PMC11781033 DOI: 10.1093/nar/gkaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping. The analysis revealed two independent spatiotemporal processes that regulate the replication dynamics in the Xenopus model system. These mechanisms are referred to as a fast and a slow replication mode, differing by their opposite replication fork speed and rate of origin firing. We found that Polo-like kinase 1 (Plk1) depletion abolished the spatial separation of these two replication modes. In contrast, neither replication checkpoint inhibition nor Rap1-interacting factor (Rif1) depletion affected the distribution of these replication patterns. These results suggest that Plk1 plays an essential role in the local coordination of the spatial replication program and the initiation-elongation coupling along the chromosomes in Xenopus, ensuring the timely completion of the S phase.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Haccard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay(NeuroPsi), F-91400 Saclay, France
| | - Francesco de Carli
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91190 Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
5
|
Guelle M, Emond-Fraser V, Archambault V. PP2A-Tws dephosphorylates Map205, is required for Polo localization to microtubules and promotes cytokinesis in Drosophila. Cell Div 2024; 19:36. [PMID: 39732709 DOI: 10.1186/s13008-024-00141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Mitosis and cytokinesis are regulated by reversible phosphorylation events controlled by kinases and phosphatases. Drosophila Polo kinase, like its human ortholog PLK1, plays several roles in this process. Multiple mechanisms contribute to regulate Polo/PLK1 activity, localization and interactions. We previously showed that the microtubule-associated protein Map205 interacts with Polo during interphase and cytokinesis, inhibiting and sequestering Polo on microtubules. During mitosis, phosphorylation of Map205 at a Cyclin-Dependent Kinase site allows Polo to dissociate from Map205, when Polo must fulfill its mitotic functions. How the Polo/Map205 interaction is restored during mitotic exit remained unknown. RESULTS Here we show that PP2A-Tws/B55 is required to dephosphorylate Map205, and enables the Map205-dependent localization of Polo to microtubules during cytokinesis. In addition, we show that PP2A-Tws is required for spindle function during cytokinesis, consistent with the essential role of Polo in this process. CONCLUSIONS These findings complement previous studies to provide an understanding of the full cycle of Polo regulation by Map205, kinases and phosphatases. Our findings have implications for the wider network of cell cycle regulatory circuitry.
Collapse
Affiliation(s)
- Marine Guelle
- Institute for Research in Immunology and Cancer, Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Québec, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Québec, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|
6
|
Fischer J, Erkner E, Radszuweit P, Hentrich T, Keppeler H, Korkmaz F, Schulze-Hentrich J, Fitzel R, Lengerke C, Schneidawind D, Schneidawind C. Only Infant MLL-Rearranged Leukemia Is Susceptible to an Inhibition of Polo-like Kinase 1 (PLK-1) by Volasertib. Int J Mol Sci 2024; 25:12760. [PMID: 39684470 DOI: 10.3390/ijms252312760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
MLL-rearranged (MLLr) leukemia is characterized by a poor prognosis. Depending on the cell of origin, it differs in the aggressiveness and therapy response. For instance, in adults, volasertib blocking Polo-like kinase 1 (PLK-1) exhibited limited success. Otherwise, PLK-1 characterizes an infant MLLr signature, indicating potential sensitivity. By using our CRISPR/Cas9 MLLr model in CD34+ cells from human cord blood (huCB) and bone marrow (huBM) mimicking the infant and adult patient diseases, we were able to shed light on this phenomenon. The PLK-1 mRNA level was significantly increased in our huCB compared to the huBM model, which was underpinned by analyzing infant and adult MLLr leukemia patients. Importantly, the expression levels correlated with a functional response. Volasertib induced a significant dose-dependent decrease in proliferation and cell cycle arrest, most pronounced in the infant model. Mechanistically, upon volasertib treatment, we uncovered negative feedback only in the huBM model by compensatory upregulation of PLK-1 and related genes like AURKA involved in mitosis. Importantly, the poor response could be overcome by a combinatorial strategy with alisertib, an Aurora kinase A inhibitor. Our study emphasizes the importance of considering the cell of origin in therapeutic decision-making and provides the rationale for evaluating volasertib and alisertib in MLLr leukemia.
Collapse
Affiliation(s)
- Jacqueline Fischer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Estelle Erkner
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Pia Radszuweit
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Julia Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Rahel Fitzel
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Claudia Lengerke
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
7
|
Tsuji K, Tamamura H, Burke TR. Affinity enhancement of polo-like kinase 1 polo box domain-binding ligands by a bivalent approach using a covalent kinase-binding component. RSC Chem Biol 2024; 5:721-728. [PMID: 39092437 PMCID: PMC11289893 DOI: 10.1039/d4cb00031e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024] Open
Abstract
The polo-like kinase 1 (Plk1) is an important cell cycle regulator that is recognized as a target molecule for development of anti-cancer agents. Plk1 consists of a catalytic kinase domain (KD) and a polo-box domain (PBD), which engages in protein-protein interactions (PPIs) essential to proper Plk1 function. Recently, we developed extremely high-affinity PBD-binding inhibitors based on a bivalent approach using the Plk1 KD-binding inhibitor, BI2536, and a PBD-binding peptide. Certain of the resulting bivalent constructs exhibited more than 100-fold Plk1 affinity enhancement relative to the best monovalent PBD-binding ligands. Herein, we report an extensive investigation of bivalent ligands that utilize the non-selective kinase inhibitor Wortmannin as a Plk1 KD-binding component. We found that bivalent ligands incorporating Wortmannin demonstrated affinity enhancements that could be similar to what we had obtained with BI2536 and that they could tightly bind to the protein. This suggests that these tight binding ligands might be useful for structural analysis of full-length Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University Tokyo 101-0062 Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University Tokyo 101-0062 Japan
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| |
Collapse
|
8
|
Runnebohm AM, Wijeratne HRS, Justice SAP, Wijeratne AB, Roy G, Singh N, Hergenrother P, Boothman DA, Motea EA, Mosley AL. IB-DNQ and Rucaparib dual treatment alters cell cycle regulation and DNA repair in triple negative breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594427. [PMID: 38798459 PMCID: PMC11118307 DOI: 10.1101/2024.05.15.594427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Triple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death. Methods To gain a better understanding of the mechanisms behind this synergistic effect, we used global proteomics, phosphoproteomics, and thermal proteome profiling to analyze changes in protein abundance, phosphorylation and protein thermal stability. Results Very few protein abundance changes resulted from single or dual agent treatment; however, protein phosphorylation and thermal stability were impacted. Histone H2AX was among several proteins identified to have increased phosphorylation when cells were treated with the combination of IB-DNQ and Rucaparib, validating that the drugs induced persistent DNA damage. Thermal proteome profiling revealed destabilization of H2AX following combination treatment, potentially a result of the increase in phosphorylation. Kinase substrate enrichment analysis predicted altered activity for kinases involved in DNA repair and cell cycle following dual agent treatment. Further biophysical analysis of these two processes revealed alterations in SWI/SNF complex association and tubulin / p53 interactions. Conclusions Our findings that the drugs target DNA repair and cell cycle regulation, canonical cancer treatment targets, in a way that is dependent on increased expression of a protein selectively found to be upregulated in cancers without impacting protein abundance illustrate that multi-omics methodologies are important to gain a deeper understanding of the mechanisms behind treatment induced cancer cell death.
Collapse
Affiliation(s)
- Avery M Runnebohm
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - H R Sagara Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Sarah A Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biology, Marian University, Indianapolis, IN
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- IU Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Gitanjali Roy
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Paul Hergenrother
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL
| | - David A Boothman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- IU Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Edward A Motea
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- IU Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- IU Simon Comprehensive Cancer Center, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
9
|
Zhao G, Wang Y, Zhou J, Ma P, Wang S, Li N. Pan-cancer analysis of polo-like kinase family genes reveals polo-like kinase 1 as a novel oncogene in kidney renal papillary cell carcinoma. Heliyon 2024; 10:e29373. [PMID: 38644836 PMCID: PMC11033160 DOI: 10.1016/j.heliyon.2024.e29373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Polo-like kinases (PLKs) are a kinase class of serine/threonine with five members that play crucial roles in cell cycle regulation. However, their biological functions, regulation, and expression remain unclear. This study revealed the molecular properties, oncogenic role, and clinical significance of PLK genes in pan-cancers, particularly in kidney renal papillary cell carcinoma (KIRP). METHODS We evaluated the mutation landscape, expression level, and prognostic values of PLK genes using bioinformatics analyses and explored the association between the expression level of PLK genes and tumor microenvironment (TME), immune subtype, cancer immunotherapy, tumor stemness, and drug sensitivity. Finally, we verified the prognostic value in patients with KIRP through univariate and multivariate analyses and nomogram construction. RESULTS PLK genes are extensively altered in pan-cancer, which may contribute to tumorigenesis. These genes are aberrantly expressed in some types of cancer, with PLK1 being overexpressed in 31 cancers. PLK expression is closely associated with the prognosis of various cancers. The expression level of PLK genes is related with sensitivity to diverse drugs and cancer immunity as well as cancer immunotherapy. Importantly, we verified that PLK1 was overexpressed in KIRP tissues and could be an unfavorable prognostic biomarker in patients with KIRP. Hence, PLK1 may serve as an oncogenic gene in KIRP and should be explored in future studies. CONCLUSIONS Our study comprehensively reports the molecular characteristics and biological functions of PLK family gens across human cancers and recommends further investigation of these genes as potential biomarkers and therapeutic targets, especially in KIRP.
Collapse
Affiliation(s)
| | | | - Jiawei Zhou
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
10
|
Tsuji K, Tamamura H, Burke TR. Application of a Fluorescence Recovery-Based Polo-Like Kinase 1 Binding Assay to Polo-Like Kinase 2 and Polo-Like Kinase 3. Biol Pharm Bull 2024; 47:1282-1287. [PMID: 38987177 DOI: 10.1248/bpb.b24-00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
11
|
Su S, Ndiaye MA, Guzmán-Pérez G, Baus RM, Huang W, Patankar MS, Ahmad N. Potential Tumor Suppressor Role of Polo-like Kinase 5 in Cancer. Cancers (Basel) 2023; 15:5457. [PMID: 38001717 PMCID: PMC10669931 DOI: 10.3390/cancers15225457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The polo-like kinase (PLK) family of serine/threonine kinases contains five members (PLK1-5). Most PLKs are involved in cell cycle regulation and DNA damage response. However, PLK5 is different as it lacks a functional kinase domain and is not involved in cell cycle control. PLK5 remains the least-studied family member, and its role in oncogenesis remains enigmatic. Here, we identified tissues with high PLK5 expression by leveraging the Protein Atlas and GTEx databases with relevant literature and selected ovarian, lung, testis, endometrium, cervix, and fallopian tube tissues as candidates for further investigation. Subsequently, we performed immunohistochemical staining for PLK5 on multiple tissue microarrays followed by Vectra scanning and quantitative inForm analysis. This revealed consistently downregulated PLK5 expression in these cancers compared to normal tissues. To validate and extend our findings, we performed pan-cancer analysis of PLK5 expression using public RNAseq databases (TCGA and GTEx). We found PLK5 is downregulated in 18 cancer types, including our selected candidates. Interestingly, we also observed PLK5 expression remains consistently low in later stages of cancer, suggesting PLK5 may have a greater role in tumor initiation than cancer progression. Overall, our study demonstrates PLK5 downregulation in multiple cancers, highlighting its role as a tumor suppressor.
Collapse
Affiliation(s)
- Shengqin Su
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (S.S.); (G.G.-P.)
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (S.S.); (G.G.-P.)
| | - Glorimar Guzmán-Pérez
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (S.S.); (G.G.-P.)
| | - Rebecca Michael Baus
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (R.M.B.)
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (R.M.B.)
| | - Manish Suresh Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53792, USA;
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (S.S.); (G.G.-P.)
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
| |
Collapse
|
12
|
Baldrighi M, Doreth C, Li Y, Zhao X, Warner E, Chenoweth H, Kishore K, Umrania Y, Minde DP, Thome S, Yu X, Lu Y, Knapton A, Harrison J, Clarke M, Latz E, de Cárcer G, Malumbres M, Ryffel B, Bryant C, Liu J, Lilley KS, Mallat Z, Li X. PLK1 inhibition dampens NLRP3 inflammasome-elicited response in inflammatory disease models. J Clin Invest 2023; 133:e162129. [PMID: 37698938 PMCID: PMC10617773 DOI: 10.1172/jci162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1β production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Marta Baldrighi
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Doreth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Zhao
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emily Warner
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Chenoweth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yagnesh Umrania
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - David-Paul Minde
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Thome
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xian Yu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuning Lu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alice Knapton
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James Harrison
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Murray Clarke
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Cycle and Cancer Biomarkers Group, “Alberto Sols” Biomedical Research Institute (IIBM-CSIC), Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bernhard Ryffel
- UMR7355 INEM, Experimental and Molecular Immunology and Neurogenetics CNRS and Université d’Orleans, Orleans, France
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kathryn S. Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ziad Mallat
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Université Paris Cité, PARCC, INSERM, Paris, France
| | - Xuan Li
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Normandin K, Coulombe-Huntington J, St-Denis C, Bernard A, Bourouh M, Bertomeu T, Tyers M, Archambault V. Genetic enhancers of partial PLK1 inhibition reveal hypersensitivity to kinetochore perturbations. PLoS Genet 2023; 19:e1010903. [PMID: 37639469 PMCID: PMC10491399 DOI: 10.1371/journal.pgen.1010903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase required for mitosis and cytokinesis. As cancer cells are often hypersensitive to partial PLK1 inactivation, chemical inhibitors of PLK1 have been developed and tested in clinical trials. However, these small molecule inhibitors alone are not completely effective. PLK1 promotes numerous molecular and cellular events in the cell division cycle and it is unclear which of these events most crucially depend on PLK1 activity. We used a CRISPR-based genome-wide screening strategy to identify genes whose inactivation enhances cell proliferation defects upon partial chemical inhibition of PLK1. Genes identified encode proteins that are functionally linked to PLK1 in multiple ways, most notably factors that promote centromere and kinetochore function. Loss of the kinesin KIF18A or the outer kinetochore protein SKA1 in PLK1-compromised cells resulted in mitotic defects, activation of the spindle assembly checkpoint and nuclear reassembly defects. We also show that PLK1-dependent CENP-A loading at centromeres is extremely sensitive to partial PLK1 inhibition. Our results suggest that partial inhibition of PLK1 compromises the integrity and function of the centromere/kinetochore complex, rendering cells hypersensitive to different kinetochore perturbations. We propose that KIF18A is a promising target for combinatorial therapies with PLK1 inhibitors.
Collapse
Affiliation(s)
- Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Corinne St-Denis
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Alexandre Bernard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de médecine, Université de Montréal, Montréal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
14
|
Nkombo Nkoula S, Velez-Aguilera G, Ossareh-Nazari B, Van Hove L, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of nuclear pore complex disassembly by the mitotic Polo-like kinase 1 (PLK-1) in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadf7826. [PMID: 37467327 PMCID: PMC10355831 DOI: 10.1126/sciadv.adf7826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The nuclear envelope, which protects and organizes the genome, is dismantled during mitosis. In the Caenorhabditis elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the maternal and paternal genomes. Nuclear pore complex (NPC) disassembly is a decisive step of NEBD, essential for nuclear permeabilization. By combining live imaging, biochemistry, and phosphoproteomics, we show that NPC disassembly is a stepwise process that involves Polo-like kinase 1 (PLK-1)-dependent and -independent steps. PLK-1 targets multiple NPC subcomplexes, including the cytoplasmic filaments, central channel, and inner ring. PLK-1 is recruited to and phosphorylates intrinsically disordered regions (IDRs) of several multivalent linker nucleoporins. Notably, although the phosphosites are not conserved between human and C. elegans nucleoporins, they are located in IDRs in both species. Our results suggest that targeting IDRs of multivalent linker nucleoporins is an evolutionarily conserved driver of NPC disassembly during mitosis.
Collapse
Affiliation(s)
- Sylvia Nkombo Nkoula
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Griselda Velez-Aguilera
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lucie Van Hove
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laura Thomas
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Géraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Lionel Pintard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
15
|
Emond-Fraser V, Larouche M, Kubiniok P, Bonneil É, Li J, Bourouh M, Frizzi L, Thibault P, Archambault V. Identification of PP2A-B55 targets uncovers regulation of emerin during nuclear envelope reassembly in Drosophila. Open Biol 2023; 13:230104. [PMID: 37463656 PMCID: PMC10353892 DOI: 10.1098/rsob.230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Mitotic exit requires the dephosphorylation of many proteins whose phosphorylation was needed for mitosis. Protein phosphatase 2A with its B55 regulatory subunit (PP2A-B55) promotes this transition. However, the events and substrates that it regulates are incompletely understood. We used proteomic approaches in Drosophila to identify proteins that interact with and are dephosphorylated by PP2A-B55. Among several candidates, we identified emerin (otefin in Drosophila). Emerin resides in the inner nuclear membrane and interacts with the DNA-binding protein barrier-to-autointegration factor (BAF) via a LEM domain. We found that the phosphorylation of emerin at Ser50 and Ser54 near its LEM domain negatively regulates its association with BAF, lamin and additional emerin in mitosis. We show that dephosphorylation of emerin at these sites by PP2A-B55 determines the timing of nuclear envelope reformation. Genetic experiments indicate that this regulation is required during embryonic development. Phosphoregulation of the emerin-BAF complex formation by PP2A-B55 appears as a key event of mitotic exit that is likely conserved across species.
Collapse
Affiliation(s)
- Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Peter Kubiniok
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Laura Frizzi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de chimie, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| |
Collapse
|
16
|
Yang J, Wang Z, Wang C, Tang D, Zang Z, Stover NA, Chen X, Li L. Single-cell transcriptome reveals cell division-regulated hub genes in the unicellular eukaryote Paramecium. Eur J Protistol 2023; 89:125978. [PMID: 37080141 DOI: 10.1016/j.ejop.2023.125978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
The transition from growth to division during the cell cycle encompasses numerous conserved processes such as large-scale DNA replication and protein synthesis. In ciliate cells, asexual cell division is accompanied by additional cellular changes including amitotic nuclear division, extensive ciliogenesis, and trichocyst replication. However, the molecular mechanisms underlying these processes remain elusive. In this study, we present single-cell gene expression profiles of Paramecium cf. multimicronucleatum cells undergoing cell division. Our results reveal that the most up-regulated genes in dividing cells compared to growing cells are associated with 1) cell cycle signaling pathways including transcription, DNA replication, chromosome segregation and protein degradation; 2) microtubule proteins and tubulin glycylases which are essential for ciliogenesis, nuclei separation and structural differentiation signaling; and 3) trichocyst matrix proteins involved in trichocyst synthesis and reproduction. Furthermore, weighted gene co-expression network analysis identified hub genes that may play crucial roles during cell division. Our findings provide insights into cell cycle regulators, microtubules and trichocyst matrix proteins that may exert influence on this process in ciliates.
Collapse
Affiliation(s)
- Juan Yang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Zhenyuan Wang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Chundi Wang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Danxu Tang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Zihan Zang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria 61625, USA
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China; Suzhou Research Institute, Shandong University, Suzhou 215123, China.
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
17
|
Cao YY, Qiao Y, Wang ZH, Chen Q, Qi YP, Lu ZM, Wang Z, Lu WH. The Polo-Like Kinase 1-Mammalian Target of Rapamycin Axis Regulates Autophagy to Prevent Intestinal Barrier Dysfunction During Sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:296-312. [PMID: 36509119 DOI: 10.1016/j.ajpath.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
The intestines play a crucial role in the development of sepsis. The balance between autophagy and apoptosis in intestinal epithelial cells is dynamic and determines intestinal permeability. The present study focused on the potential role of autophagy in sepsis-induced intestinal barrier dysfunction and explored the mechanisms in vivo and in vitro. Excessive apoptosis in intestinal epithelia and a disrupted intestinal barrier were observed in septic mice. Promoting autophagy with rapamycin reduced intestinal epithelial apoptosis and restored intestinal barrier function, presenting as decreased serum diamine oxidase (DAO) and fluorescein isothiocyanate-dextran 40 (FD40) levels and increased expression of zonula occludens-1 (ZO-1) and Occludin. Polo-like kinase 1 (PLK1) knockdown in mice ameliorated intestinal epithelial apoptosis and the intestinal barrier during sepsis, whereas these effects were reduced with chloroquine and enhanced with rapamycin. PLK1 also promoted cell autophagy and improved lipopolysaccharide-induced apoptosis and high permeability in vitro. Moreover, PLK1 physically interacted with mammalian target of rapamycin (mTOR) and participated in reciprocal regulatory crosstalk in intestinal epithelial cells during sepsis. This study provides novel insight into the role of autophagy in sepsis-induced intestinal barrier dysfunction and indicates that the PLK1-mTOR axis may be a promising therapeutic target for sepsis.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Yang Qiao
- Department of Anesthesiology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhong-Han Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Qun Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Yu-Peng Qi
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Zi-Meng Lu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhen Wang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Wei-Hua Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China.
| |
Collapse
|
18
|
Nkoula SN, Velez-Aguilera G, Ossareh-Nazari B, Hove LV, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of Nuclear Pore Complex disassembly by the mitotic Polo-Like Kinase 1 (PLK-1) in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.528438. [PMID: 36865292 PMCID: PMC9980100 DOI: 10.1101/2023.02.21.528438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The nuclear envelope, which protects and organizes the interphase genome, is dismantled during mitosis. In the C. elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the parental genomes. During NEBD, Nuclear Pore Complex (NPC) disassembly is critical for rupturing the nuclear permeability barrier and removing the NPCs from the membranes near the centrosomes and between the juxtaposed pronuclei. By combining live imaging, biochemistry, and phosphoproteomics, we characterized NPC disassembly and unveiled the exact role of the mitotic kinase PLK-1 in this process. We show that PLK-1 disassembles the NPC by targeting multiple NPC sub-complexes, including the cytoplasmic filaments, the central channel, and the inner ring. Notably, PLK-1 is recruited to and phosphorylates intrinsically disordered regions of several multivalent linker nucleoporins, a mechanism that appears to be an evolutionarily conserved driver of NPC disassembly during mitosis. (149/150 words). One-Sentence Summary PLK-1 targets intrinsically disordered regions of multiple multivalent nucleoporins to dismantle the nuclear pore complexes in the C. elegans zygote.
Collapse
|
19
|
Hayden L, Hur W, Vergassola M, Di Talia S. Manipulating the nature of embryonic mitotic waves. Curr Biol 2022; 32:4989-4996.e3. [PMID: 36332617 PMCID: PMC9691596 DOI: 10.1016/j.cub.2022.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Early embryogenesis is characterized by rapid and synchronous cleavage divisions, which are often controlled by wave-like patterns of Cdk1 activity. Two mechanisms have been proposed for mitotic waves: sweep and trigger waves.1,2 The two mechanisms give rise to different wave speeds, dependencies on physical and molecular parameters, and spatial profiles of Cdk1 activity: upward sweeping gradients versus traveling wavefronts. Both mechanisms hinge on the transient bistability governing the cell cycle and are differentiated by the speed of the cell-cycle progression: sweep and trigger waves arise for rapid and slow drives, respectively. Here, using quantitative imaging of Cdk1 activity and theory, we illustrate that sweep waves are the dominant mechanism in Drosophila embryos and test two fundamental predictions on the transition from sweep to trigger waves. We demonstrate that sweep waves can be turned into trigger waves if the cell cycle is slowed down genetically or if significant delays in the cell-cycle progression are introduced across the embryo by altering nuclear density. Our genetic experiments demonstrate that Polo kinase is a major rate-limiting regulator of the blastoderm divisions, and genetic perturbations reducing its activity can induce the transition from sweep to trigger waves. Furthermore, we show that changes in temperature cause an essentially uniform slowdown of interphase and mitosis. That results in sweep waves being observed across a wide temperature range despite the cell-cycle durations being significantly different. Collectively, our combination of theory and experiments elucidates the nature of mitotic waves in Drosophila embryogenesis, their control mechanisms, and their mutual transitions.
Collapse
Affiliation(s)
- Luke Hayden
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA
| | - Woonyung Hur
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA
| | - Massimo Vergassola
- Laboratoire de Physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, 24 Rue Lhomond, 75005 Paris, France; Department of Physics, University of California, San Diego, 9500 Gillman Drive, La Jolla, CA 92093, USA.
| | - Stefano Di Talia
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Gonzalez-Molina J, Moyano-Galceran L, Single A, Gultekin O, Alsalhi S, Lehti K. Chemotherapy as a regulator of extracellular matrix-cell communication: Implications in therapy resistance. Semin Cancer Biol 2022; 86:224-236. [PMID: 35331851 DOI: 10.1016/j.semcancer.2022.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
The development of most solid cancers, including pancreatic, breast, lung, liver, and ovarian cancer, involves a desmoplastic reaction: a process of major remodeling of the extracellular matrix (ECM) affecting the ECM composition, mechanics, and microarchitecture. These properties of the ECM influence key cancer cell functions, including treatment resistance. Furthermore, emerging data show that various chemotherapeutic treatments lead to alterations in ECM features and ECM-cell communication. Here, we summarize the current knowledge around the effects of chemotherapy on both the ECM remodeling and ECM-cell signaling and discuss the implications of these alterations on distinct mechanisms of chemoresistance. Additionally, we provide an overview of current therapeutic strategies and ongoing clinical trials utilizing anti-cancer drugs to target the ECM-cell communication and explore the future challenges of these strategies.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Single
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shno Alsalhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
21
|
Moison C, Spinella JF, Chagraoui J, Lavallée VP, Lehnertz B, Thiollier C, Boivin I, Mayotte N, MacRae T, Marinier A, Hébert J, Sauvageau G. HMGA2 expression defines a subset of human AML with immature transcriptional signature and vulnerability to G2/M inhibition. Blood Adv 2022; 6:4793-4806. [PMID: 35797243 PMCID: PMC9631656 DOI: 10.1182/bloodadvances.2021005828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 06/26/2022] [Indexed: 12/01/2022] Open
Abstract
High-mobility group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein that is normally expressed in stem cells of various tissues and aberrantly detected in several tumor types. We recently observed that one-fourth of human acute myeloid leukemia (AML) specimens express HMGA2, which associates with a very poor prognosis. We present results indicating that HMGA2+ AMLs share a distinct transcriptional signature representing an immature phenotype. Using single-cell analyses, we showed that HMGA2 is expressed in CD34+ subsets of stem cells and early progenitors, whether normal or derived from AML specimens. Of interest, we found that one of the strongest gene expression signatures associated with HMGA2 in AML is the upregulation of G2/M checkpoint genes. Whole-genome CRISPR/Cas9 screening in HMGA2 overexpressing cells further revealed a synthetic lethal interaction with several G2/M checkpoint genes. Accordingly, small molecules that target G2/M proteins were preferentially active in vitro and in vivo on HMGA2+ AML specimens. Together, our findings suggest that HMGA2 is a key functional determinant in AML and is associated with stem cell features, G2/M status, and related drug sensitivity.
Collapse
Affiliation(s)
- Céline Moison
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Spinella
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Division of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, and
| | - Bernhard Lehnertz
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Clarisse Thiollier
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Isabel Boivin
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Nadine Mayotte
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Tara MacRae
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Anne Marinier
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Institut universitaire d’hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; and
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Institut universitaire d’hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; and
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
Mu XR, Ma MM, Lu ZY, Liu J, Xue YT, Cao J, Zeng LY, Li F, Xu KL, Wu QY. Effects of the PLK4 inhibitor Centrinone on the biological behaviors of acute myeloid leukemia cell lines. Front Genet 2022; 13:898474. [PMID: 36051696 PMCID: PMC9424683 DOI: 10.3389/fgene.2022.898474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Polo-like kinase 4 (PLK4), a key regulator of centriole biogenesis, is frequently overexpressed in cancer cells. However, roles and the mechanism of PLK4 in the leukemiagenesis of acute myeloid leukemia (AML) remain unclear. In this study, the PLK4 inhibitor Centrinone and the shRNA knockdown were used to investigate roles and the mechanism of PLK4 in the leukemiagenesis of AML. Our results indicated that Centrinone inhibited the proliferation of AML cells in a dose- and time-dependent manner via reduced the expression of PLK4 both in the protein and mRNA levels. Moreover, colony formation assay revealed that Centrinone reduced the number and the size of the AML colonies. Centrinone induced AML cell apoptosis by increasing the activation of Caspase-3/poly ADP-ribose polymerase (PARP). Notably, Centrinone caused the G2/M phase cell cycle arrest by decreasing the expression of cell cycle-related proteins such as Cyclin A2, Cyclin B1, and Cyclin-dependent kinase 1 (CDK1). Consistent with above results, knockdown the expression of PLK4 also inhibited cell proliferation and colony formation, induced cell apoptosis, and caused G2/M phase cell cycle arrest without affecting cell differentiation. All in all, this study suggested that PLK4 inhibited the progression of AML in vitro, and these results herein may provide clues in roles of PLK4 in the leukemiagenesis of AML.
Collapse
Affiliation(s)
- Xing-Ru Mu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Feng Li, ; Kai-Lin Xu, ; Qing-Yun Wu,
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Feng Li, ; Kai-Lin Xu, ; Qing-Yun Wu,
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Feng Li, ; Kai-Lin Xu, ; Qing-Yun Wu,
| |
Collapse
|
23
|
Sun Y, Sun Y, Wang L, Wu T, Yin W, Wang J, Xue Y, Qin Q, Sun Y, Yang H, Zhao D, Cheng M. Design, synthesis, and biological evaluation of novel pyrazolo [3,4-d]pyrimidine derivatives as potent PLK4 inhibitors for the treatment of TRIM37-amplified breast cancer. Eur J Med Chem 2022; 238:114424. [DOI: 10.1016/j.ejmech.2022.114424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
|
24
|
Darp R, Vittoria MA, Ganem NJ, Ceol CJ. Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis. Nat Commun 2022; 13:4109. [PMID: 35840569 PMCID: PMC9287415 DOI: 10.1038/s41467-022-31899-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Melanomas and other solid tumors commonly have increased ploidy, with near-tetraploid karyotypes being most frequently observed. Such karyotypes have been shown to arise through whole-genome doubling events that occur during early stages of tumor progression. The generation of tetraploid cells via whole-genome doubling is proposed to allow nascent tumor cells the ability to sample various pro-tumorigenic genomic configurations while avoiding the negative consequences that chromosomal gains or losses have in diploid cells. Whereas a high prevalence of whole-genome doubling events has been established, the means by which whole-genome doubling arises is unclear. Here, we find that BRAFV600E, the most common mutation in melanomas, can induce whole-genome doubling via cytokinesis failure in vitro and in a zebrafish melanoma model. Mechanistically, BRAFV600E causes decreased activation and localization of RhoA, a critical cytokinesis regulator. BRAFV600E activity during G1/S phases of the cell cycle is required to suppress cytokinesis. During G1/S, BRAFV600E activity causes inappropriate centriole amplification, which is linked in part to inhibition of RhoA and suppression of cytokinesis. Together these data suggest that common abnormalities of melanomas linked to tumorigenesis - amplified centrosomes and whole-genome doubling events - can be induced by oncogenic BRAF and other mutations that increase RAS/MAPK pathway activity.
Collapse
Affiliation(s)
- Revati Darp
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA
| | - Marc A Vittoria
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Neil J Ganem
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Craig J Ceol
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA.
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA.
| |
Collapse
|
25
|
Yoshida K, Yokoi A, Yamamoto T, Hayashi Y, Nakayama J, Yokoi T, Yoshida H, Kato T, Kajiyama H, Yamamoto Y. Aberrant Activation of Cell-Cycle-Related Kinases and the Potential Therapeutic Impact of PLK1 or CHEK1 Inhibition in Uterine Leiomyosarcoma. Clin Cancer Res 2022; 28:2147-2159. [PMID: 35302600 PMCID: PMC9365385 DOI: 10.1158/1078-0432.ccr-22-0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Uterine leiomyosarcoma is among the most aggressive gynecological malignancies. No effective treatment strategies have been established. This study aimed to identify novel therapeutic targets for uterine leiomyosarcoma based on transcriptome analysis and assess the preclinical efficacy of novel drug candidates. EXPERIMENTAL DESIGN Transcriptome analysis was performed using fresh-frozen samples of six uterine leiomyosarcomas and three myomas. The Ingenuity Pathway Analysis (IPA) was used to identify potential therapeutic target genes for uterine leiomyosarcoma. Afterward, our results were validated using three independent datasets, including 40 uterine leiomyosarcomas. Then, the inhibitory effects of several selective inhibitors for the candidate genes were examined using SK-UT-1, SK-LMS-1, and SKN cell lines. RESULTS We identified 512 considerably dysregulated genes in uterine leiomyosarcoma compared with myoma. The IPA revealed that the function of several genes, including CHEK1 and PLK1, were predicted to be activated in uterine leiomyosarcoma. Through an in vitro drug screening, PLK1 or CHEK1 inhibitors (BI-2536 or prexasertib) were found to exert a superior anticancer effect against cell lines at low nanomolar concentrations and induce cell-cycle arrest. In SK-UT-1 tumor-bearing mice, BI-2536 monotherapy remarkably suppressed tumorigenicity. Moreover, the prexasertib and cisplatin combination therapy inhibited tumor proliferation and prolonged the time to tumor progression. CONCLUSIONS We identified upregulated expressions of PLK1 and CHEK1; their kinase activity was activated in uterine leiomyosarcoma. BI-2536 and prexasertib demonstrated a significant anticancer effect. Therefore, cell-cycle-related kinases may present a promising therapeutic strategy for the treatment of uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Tomofumi Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Hayashi
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsuyoshi Yokoi
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
26
|
Saikiran Reddy M, Bhattacharjee D, Jain N. Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Cell Signal 2022; 92:110279. [PMID: 35143931 DOI: 10.1016/j.cellsig.2022.110279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Mutations in the metabolic enzymes, IDH1 and IDH2 are frequently found in glioma, chondrosarcoma, and acute myeloid leukemia. In our previous study, we showed that mutant IDH1 and IDH2 proteins levels are high in mitosis, and mutant IDH1 enzyme activity increases in mitosis. In another study, we observed that mutant IDH2 is ubiquitinated in mitosis in an APC/C-dependent manner. To orchestrate mitosis, kinases phosphorylate key proteins and regulate their functions. But it is unknown, whether mitotic kinases regulate mutant IDH1 and IDH2. As IDH1 and IDH2 have 66% sequence identity, thus we hypothesized that a common mitotic kinase(s) may regulate mutant IDH1 and IDH2 in mitosis. To test our hypothesis, we examined mutant IDH1 and IDH2 binding to mitotic kinases and determined their role in regulating mutant IDH1 and IDH2 in mitosis. Here, we observed that Cdk1/Cyclin B1 phosphorylated mutant IDH1 and IDH2 binds Plk1. Conserved Plk1 phosphobinding sites in IDH1 and IDH2 are important for Plk1 binding. We found that Plk1 regulates mutant IDH1 enzyme activity and blocking Plk1 decreases D-2HG, whereas, overexpressing Plk1 increases D-2HG levels. Furthermore, blocking Plk1 decreases mutant IDH2 ubiquitination, whereas, overexpressing Plk1 increases mutant IDH2 ubiquitination in mitosis. We conclude that Plk1 regulates mutant IDH1 enzyme activity and mutant IDH2 ubiquitination in mitosis. Based on our results, we suggest that Plk1 can be a therapeutic target in mutant IDH-linked tumours.
Collapse
Affiliation(s)
- M Saikiran Reddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debanjan Bhattacharjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Modeling protein dynamics in Caenorhabditis elegans embryos reveals that the PLK-1 gradient relies on weakly coupled reaction-diffusion mechanisms. Proc Natl Acad Sci U S A 2022; 119:e2114205119. [PMID: 35259017 PMCID: PMC8931239 DOI: 10.1073/pnas.2114205119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular gradients have essential roles in cell and developmental biology, but their formation is not fully understood. We have developed a computational approach facilitating interpretation of protein dynamics and gradient formation. We have combined this computational approach with experiments to understand how Polo-Like Kinase 1 (PLK-1) forms a cytoplasmic gradient in Caenorhabditis elegans embryos. Although the PLK-1 gradient depends on the Muscle EXcess-5/6 (MEX-5/6) proteins, we reveal differences in PLK-1 and MEX-5 gradient formation that can be explained by a model with two components, PLK-1 bound to MEX-5 and unbound PLK-1. Our combined approach suggests that a weak coupling between PLK-1 and MEX-5 reaction–diffusion mechanisms dictates the dynamic exchange of PLK-1 with the cytoplasm, explaining PLK-1 high diffusivity and smooth gradient. Protein gradients have fundamental roles in cell and developmental biology. In the one-cell Caenorhabditis elegans embryo, the mitotic Polo-Like Kinase 1 (PLK-1) forms an anterior-rich cytoplasmic gradient, which is crucial for asymmetric cell division and embryonic development. The PLK-1 gradient depends on the RNA-binding Muscle-EXcess-5 protein (MEX-5), whose slow-diffusing complexes accumulate in the anterior via a reaction–diffusion mechanism. Here, we combine experiments and a computational approach to investigate the dynamics of PLK-1 gradient formation. We find that the gradient of PLK-1 initiates later, is less steep, and forms with slower dynamics than does the MEX-5 gradient. The data show that PLK-1 diffuses faster than MEX-5 in both anterior and posterior cytoplasmic regions. Our simulations suggest that binding to slow-diffusing MEX-5 is required for PLK-1 gradient formation, but that a significant fraction of unbound PLK-1 is necessary to justify the different gradient dynamics. We provide a computational tool able to predict gradient establishment prior to cell division and show that a two-component, bound and unbound, model of PLK-1 dynamics recapitulates the experimental observations.
Collapse
|
28
|
Tsuji K, Hymel D, Ma B, Tamamura H, Nussinov R, Burke TR. Development of ultra-high affinity bivalent ligands targeting the polo-like kinase 1. RSC Chem Biol 2022; 3:1111-1120. [PMID: 36128509 PMCID: PMC9428768 DOI: 10.1039/d2cb00153e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
The polo-like kinase 1 (Plk1) is an important mediator of cell cycle regulation and a recognized anti-cancer molecular target. In addition to its catalytic kinase domain (KD), Plk1 contains a polo-box domain (PBD), which engages in protein–protein interactions (PPIs) essential to proper Plk1 function. We have developed a number of extremely high-affinity PBD-binding peptide inhibitors. However, we have reached an apparent limit to increasing the affinities of these monovalent ligands. Accordingly, we undertook an extensive investigation of bivalent ligands, designed to engage both KD and PBD regions of Plk1. This has resulted in bivalent constructs exhibiting more than 100-fold Plk1 affinity enhancement relative to the best monovalent PBD-binding ligands. Startlingly, and in contradiction to widely accepted notions of KD–PBD interactions, we have found that full affinities can be retained even with minimal linkers between KD and PBD-binding components. In addition to significantly advancing the development of PBD-binding ligands, our findings may cause a rethinking of the structure – function of Plk1. The polo-like kinase 1 (Plk1) is an important mediator of cell cycle regulation and a recognized anti-cancer molecular target.![]()
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Buyong Ma
- Computational Structural Biology Section, Laboratory of Immunometabolism, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Laboratory of Immunometabolism, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
29
|
González-Arranz S, Acosta I, Carballo JA, Santos B, San-Segundo PA. The N-Terminal Region of the Polo Kinase Cdc5 Is Required for Downregulation of the Meiotic Recombination Checkpoint. Cells 2021; 10:2561. [PMID: 34685541 PMCID: PMC8533733 DOI: 10.3390/cells10102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/04/2022] Open
Abstract
During meiosis, the budding yeast polo-like kinase Cdc5 is a crucial driver of the prophase I to meiosis I (G2/M) transition. The meiotic recombination checkpoint restrains cell cycle progression in response to defective recombination to ensure proper distribution of intact chromosomes to the gametes. This checkpoint detects unrepaired DSBs and initiates a signaling cascade that ultimately inhibits Ndt80, a transcription factor required for CDC5 gene expression. Previous work revealed that overexpression of CDC5 partially alleviates the checkpoint-imposed meiotic delay in the synaptonemal complex-defective zip1Δ mutant. Here, we show that overproduction of a Cdc5 version (Cdc5-ΔN70), lacking the N-terminal region required for targeted degradation of the protein by the APC/C complex, fails to relieve the zip1Δ-induced meiotic delay, despite being more stable and reaching increased protein levels. However, precise mutation of the consensus motifs for APC/C recognition (D-boxes and KEN) has no effect on Cdc5 stability or function during meiosis. Compared to the zip1Δ single mutant, the zip1Δ cdc5-ΔN70 double mutant exhibits an exacerbated meiotic block and reduced levels of Ndt80 consistent with persistent checkpoint activity. Finally, using a CDC5-inducible system, we demonstrate that the N-terminal region of Cdc5 is essential for its checkpoint erasing function. Thus, our results unveil an additional layer of regulation of polo-like kinase function in meiotic cell cycle control.
Collapse
Affiliation(s)
- Sara González-Arranz
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain; (S.G.-A.); (I.A.); (B.S.)
| | - Isabel Acosta
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain; (S.G.-A.); (I.A.); (B.S.)
| | - Jesús A. Carballo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain;
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain; (S.G.-A.); (I.A.); (B.S.)
- Departamento de Microbiología y Genética, University of Salamanca, 37007 Salamanca, Spain
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain; (S.G.-A.); (I.A.); (B.S.)
| |
Collapse
|
30
|
Cheuka PM. Drug Discovery and Target Identification against Schistosomiasis: a Reality Check on Progress and Future Prospects. Curr Top Med Chem 2021; 22:1595-1610. [PMID: 34565320 DOI: 10.2174/1568026621666210924101805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Schistosomiasis ranks among the most important infectious diseases, with over 200 million people currently being infected and > 280,000 deaths reported annually. Chemotherapeutic treatment has relied on one drug, praziquantel, for four decades, while other drugs, such as oxamniquine and metrifonate, are no longer preferred for clinical use due to their narrow spectrum of activity - these are only active against S. mansoni and S. haematobium, respectively. Despite being cheap, safe, and effective against all schistosome species, praziquantel is ineffective against immature worms, which may lead to reinfections and treatment failure in endemic areas; a situation that necessitates repeated administration besides other limitations. Therefore, novel drugs are urgently needed to overcome this situation. In this paper, an up to date review of drug targets identified and validated against schistosomiasis while also encompassing promising clinical and preclinical candidate drugs is presented. While there are considerable efforts aimed at identifying and validating drug targets, the pipeline for new antischistosomals is dry. Moreover, the majority of compounds evaluated preclinically are not really advanced because most of them were evaluated in very small preclinical species such as mice alone. Overall, it appears that although a lot of research is going on at discovery phases, unfortunately, it does not translate to advanced preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, Lusaka. Zambia
| |
Collapse
|
31
|
Hymel D, Tsuji K, Grant RA, Chingle RM, Kunciw DL, Yaffe MB, Burke TR. Design and synthesis of a new orthogonally protected glutamic acid analog and its use in the preparation of high affinity polo-like kinase 1 polo-box domain - binding peptide macrocycles. Org Biomol Chem 2021; 19:7843-7854. [PMID: 34346472 PMCID: PMC8456285 DOI: 10.1039/d1ob01120k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022]
Abstract
Targeting protein - protein interactions (PPIs) has emerged as an important area of discovery for anticancer therapeutic development. In the case of phospho-dependent PPIs, such as the polo-like kinase 1 (Plk1) polo-box domain (PBD), a phosphorylated protein residue can provide high-affinity recognition and binding to target protein hot spots. Developing antagonists of the Plk1 PBD can be particularly challenging if one relies solely on interactions within and proximal to the phospho-binding pocket. Fortunately, the affinity of phospho-dependent PPI antagonists can be significantly enhanced by taking advantage of interactions in both the phospho-binding site and hidden "cryptic" pockets that may be revealed on ligand binding. In our current paper, we describe the design and synthesis of macrocyclic peptide mimetics directed against the Plk1 PBD, which are characterized by a new glutamic acid analog that simultaneously serves as a ring-closing junction that provides accesses to a cryptic binding pocket, while at the same time achieving proper orientation of a phosphothreonine (pT) residue for optimal interaction in the signature phospho-binding pocket. Macrocycles prepared with this new amino acid analog introduce additional hydrogen-bonding interactions not found in the open-chain linear parent peptide. It is noteworthy that this new glutamic acid-based amino acid analog represents the first example of extremely high affinity ligands where access to the cryptic pocket from the pT-2 position is made possible with a residue that is not based on histidine. The concepts employed in the design and synthesis of these new macrocyclic peptide mimetics should be useful for further studies directed against the Plk1 PBD and potentially for ligands directed against other PPI targets.
Collapse
Affiliation(s)
- David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Robert A Grant
- Department of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ramesh M Chingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Dominique L Kunciw
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Michael B Yaffe
- Department of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
32
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
33
|
Cicconardi F, Krapf P, D'Annessa I, Gamisch A, Wagner HC, Nguyen AD, Economo EP, Mikheyev AS, Guénard B, Grabherr R, Andesner P, Wolfgang A, Di Marino D, Steiner FM, Schlick-Steiner BC. Genomic Signature of Shifts in Selection in a Subalpine Ant and Its Physiological Adaptations. Mol Biol Evol 2021; 37:2211-2227. [PMID: 32181804 PMCID: PMC7403626 DOI: 10.1093/molbev/msaa076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how organisms adapt to extreme environments is fundamental and can provide insightful case studies for both evolutionary biology and climate-change biology. Here, we take advantage of the vast diversity of lifestyles in ants to identify genomic signatures of adaptation to extreme habitats such as high altitude. We hypothesized two parallel patterns would occur in a genome adapting to an extreme habitat: 1) strong positive selection on genes related to adaptation and 2) a relaxation of previous purifying selection. We tested this hypothesis by sequencing the high-elevation specialist Tetramorium alpestre and four other phylogenetically related species. In support of our hypothesis, we recorded a strong shift of selective forces in T. alpestre, in particular a stronger magnitude of diversifying and relaxed selection when compared with all other ants. We further disentangled candidate molecular adaptations in both gene expression and protein-coding sequence that were identified by our genome-wide analyses. In particular, we demonstrate that T. alpestre has 1) a higher level of expression for stv and other heat-shock proteins in chill-shock tests and 2) enzymatic enhancement of Hex-T1, a rate-limiting regulatory enzyme that controls the entry of glucose into the glycolytic pathway. Together, our analyses highlight the adaptive molecular changes that support colonization of high-altitude environments.
Collapse
Affiliation(s)
| | - Patrick Krapf
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Ilda D'Annessa
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR (SCITEC-CNR), Milan, Italy
| | - Alexander Gamisch
- Department of Ecology, University of Innsbruck, Innsbruck, Austria.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Herbert C Wagner
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andrew D Nguyen
- Department of Entomology and Nematology, University of Florida, Gainesville, FL
| | - Evan P Economo
- Biodiversity & Biocomplexity Unit, Okinawa Institute of Science & Technology, Onna, Japan
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science & Technology, Onna, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Reingard Grabherr
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Philipp Andesner
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Daniele Di Marino
- Department of Life and Environmental Sciences - New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | | | | |
Collapse
|
34
|
Tavernier N, Thomas Y, Vigneron S, Maisonneuve P, Orlicky S, Mader P, Regmi SG, Van Hove L, Levinson NM, Gasmi-Seabrook G, Joly N, Poteau M, Velez-Aguilera G, Gavet O, Castro A, Dasso M, Lorca T, Sicheri F, Pintard L. Bora phosphorylation substitutes in trans for T-loop phosphorylation in Aurora A to promote mitotic entry. Nat Commun 2021; 12:1899. [PMID: 33771996 PMCID: PMC7997955 DOI: 10.1038/s41467-021-21922-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is instrumental for mitotic entry and progression. Plk1 is activated by phosphorylation on a conserved residue Thr210 in its activation segment by the Aurora A kinase (AURKA), a reaction that critically requires the co-factor Bora phosphorylated by a CyclinA/B-Cdk1 kinase. Here we show that phospho-Bora is a direct activator of AURKA kinase activity. We localize the key determinants of phospho-Bora function to a 100 amino acid region encompassing two short Tpx2-like motifs and a phosphoSerine-Proline motif at Serine 112, through which Bora binds AURKA. The latter substitutes in trans for the Thr288 phospho-regulatory site of AURKA, which is essential for an active conformation of the kinase domain. We demonstrate the importance of these determinants for Bora function in mitotic entry both in Xenopus egg extracts and in human cells. Our findings unveil the activation mechanism of AURKA that is critical for mitotic entry.
Collapse
Affiliation(s)
- N Tavernier
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - Y Thomas
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - S Vigneron
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - P Maisonneuve
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S Orlicky
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - P Mader
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S G Regmi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - L Van Hove
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - N M Levinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - G Gasmi-Seabrook
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - N Joly
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - M Poteau
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - G Velez-Aguilera
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - O Gavet
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - A Castro
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - M Dasso
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - T Lorca
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - F Sicheri
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - L Pintard
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France.
| |
Collapse
|
35
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
36
|
Tsuji K, Hymel D, Burke TR. A new genre of fluorescence recovery assay to evaluate polo-like kinase 1 ATP-competitive inhibitors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4418-4421. [PMID: 32970049 PMCID: PMC7523589 DOI: 10.1039/d0ay01223h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using a probe consisting of a fluorescein-labeled variant of the potent polo-like kinase 1 (Plk1) inhibitor BI2536 [FITC-PEG-Lys(BI2536) 4], we were able to determine half maximal inhibitory concentration (IC50) of ATP-competitive Type 1 inhibitors of Plk1 by means of a fluorescence recovery assay. This methodology represents a cost-effective and simple alternative to traditional kinase assays for initial screening of potential Plk1 inhibitors.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702 USA.
| | | | | |
Collapse
|
37
|
Anticancer effects of the PLK4 inhibitors CFI-400945 and centrinone in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2020; 146:2871-2883. [PMID: 32770382 PMCID: PMC7519924 DOI: 10.1007/s00432-020-03346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
Purpose Polo-like kinase 4 (PLK4) inhibitors, such as CFI-400945 and centrinone, are emerging as promising antineoplastic agents. However, their effectiveness against Ewing’s sarcoma, a highly aggressive childhood cancer, remains to be established.
Methods CFI-400945 and centrinone were tested in three Ewing’s sarcoma cell lines with different TP53 status. Effects were assessed by flow-cytometric analyses of cell death, dissipation of the mitochondrial transmembrane potential and cell cycle distribution, by cell viability assay as well as by caspase 3/7 activity measurement, by immunoblotting and by immunofluorescence microscopy. Results CFI-400945 and centrinone elicited cell death in p53 wild-type and mutant Ewing’s sarcoma cells. Both agents induced mitochondrial membrane depolarisation, caspase 3/7 activation, PARP1 cleavage and DNA fragmentation, indicating an apoptotic form of cell death. In addition, the PLK4 inhibitors induced a G2/M cell cycle arrest, particularly when cell killing was attenuated by the pan-caspase inhibitor z-VAD-fmk. Moreover, CFI-400945 treatment produced polyploidy. Conclusion Our findings show that PLK4 inhibitors were effective against Ewing’s sarcoma cells in vitro and thus provide a rationale for their evaluation in vivo. Electronic supplementary material The online version of this article (10.1007/s00432-020-03346-z) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Landmann C, Pierre-Elies P, Goutte-Gattat D, Montembault E, Claverie MC, Royou A. The Mre11-Rad50-Nbs1 complex mediates the robust recruitment of Polo to DNA lesions during mitosis in Drosophila. J Cell Sci 2020; 133:jcs244442. [PMID: 32487663 DOI: 10.1242/jcs.244442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
The DNA damage sensor Mre11-Rad50-Nbs1 complex and Polo kinase are recruited to DNA lesions during mitosis. However, their mechanism of recruitment is elusive. Here, using live-cell imaging combined with micro-irradiation of single chromosomes, we analyze the dynamics of Polo and Mre11 at DNA lesions during mitosis in Drosophila These two proteins display distinct kinetics. Whereas Polo kinetics at double-strand breaks (DSBs) are Cdk1-driven, Mre11 promptly but briefly associates with DSBs regardless of the phase of mitosis and re-associates with DSBs in the proceeding interphase. Mechanistically, Polo kinase activity is required for its own recruitment and that of the mitotic proteins BubR1 and Bub3 to DSBs. Moreover, depletion of Rad50 severely impaired Polo kinetics at mitotic DSBs. Conversely, ectopic tethering of Mre11 to chromatin was sufficient to recruit Polo. Our study highlights a novel pathway that links the DSB sensor Mre11-Rad50-Nbs1 complex and Polo kinase to initiate a prompt, decisive response to the presence of DNA damage during mitosis.
Collapse
Affiliation(s)
- Cedric Landmann
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Priscillia Pierre-Elies
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Damien Goutte-Gattat
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Emilie Montembault
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Marie-Charlotte Claverie
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Anne Royou
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
39
|
Zhu Y, Liu Z, Qu Y, Zeng J, Yang M, Li X, Wang Z, Su J, Wang X, Yu L, Wang Y. YLZ-F5, a novel polo-like kinase 4 inhibitor, inhibits human ovarian cancer cell growth by inducing apoptosis and mitotic defects. Cancer Chemother Pharmacol 2020; 86:33-43. [PMID: 32519033 DOI: 10.1007/s00280-020-04098-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Polo-like kinase 4 (PLK4), a member of the polo-like kinase family, plays several important roles in mitotic regulation, including centrosome duplication, spindle formation, and cytokinesis. PLK4 overexpression is frequently detected in many human cancers, including ovarian cancer, and the inhibition of PLK4 activity results in cancer cell mitotic arrest and apoptosis. Therefore, PLK4 might be a valid therapeutic target for antitumor therapy. In the present study, we aimed to determine if YLZ-F5, a potent small-molecule inhibitor of PLK4, inhibits ovarian cancer cell growth. METHODS AND RESULTS MTT assay showed that YLZ-F5 inhibited ovarian cancer cell proliferation in a concentration- and time-dependent manner. The results of colony formation assays were consistent with those of the MTT assay results. In addition, YLZ-F5 induced ovarian cancer cell apoptosis that was associated with activation of caspase-3/caspase-9. Moreover, YLZ-F5 caused aberrant in centriole duplication that was associated with the inhibition of PLK4 phosphorylation. Notably, we showed that YLZ-F5 promoted the accumulation of ovarian cancer cells with mitotic defects (> 4 N DNA content) in a concentration-dependent manner. Furthermore, YLZ-F5 markedly inhibited the migration of A2780 cells. CONCLUSION Taken together, these findings suggest that YLZ-F5 is a potential drug candidate for human ovarian cancer.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yanling Qu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Meiqin Yang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Xiaoyi Li
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Zhaodi Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Junxiang Su
- Medical Genetics Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xueqin Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Yue Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
40
|
Lamothe R, Costantino L, Koshland DE. The spatial regulation of condensin activity in chromosome condensation. Genes Dev 2020; 34:819-831. [PMID: 32354834 PMCID: PMC7263143 DOI: 10.1101/gad.335471.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/27/2020] [Indexed: 11/24/2022]
Abstract
Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase. We show that Cdc5p is recruited to the site of condensin binding in the RDN by cohesin, a complex related to condensin. Cdc5p and cohesin prevent condensin from misfolding the RDN into an irreversibly decondensed state. From these and other observations, we propose that the spatial regulation of Cdc5p by cohesin modulates condensin activity to ensure proper RDN folding into a thin loop. This mechanism may be evolutionarily conserved, promoting the thinly condensed constrictions that occur at centromeres and RDN of mitotic chromosomes in plants and animals.
Collapse
Affiliation(s)
- Rebecca Lamothe
- University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
41
|
Guo W, Xu B, Wang X, Zheng B, Du J, Liu S. The Analysis of the Anti-Tumor Mechanism of Ursolic Acid Using Connectively Map Approach in Breast Cancer Cells Line MCF-7. Cancer Manag Res 2020; 12:3469-3476. [PMID: 32523377 PMCID: PMC7237111 DOI: 10.2147/cmar.s241957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Ursolic acid (UA), a primary bioactive triterpenoid, was reported as an anti-cancer agent. However, the current knowledge of UA and its potential anti-cancer mechanisms and targets in breast cancer cells are limited. In this study, we aimed to illustrate the potential mechanisms and targets of UA in breast cancer cells MCF-7. METHODS The effect of UA on cell growth was determined in MCF-7 cells by MTT assay. The anti-tumor mechanism of UA was evaluated by microarray, CAMP, and Western blot. Moreover, the molecular docking between UA and potential receptors were predicted by iGEMDOCK software. RESULTS The result of MTT assay demonstrated that UA could inhibit MCF-7 cell growth with IC50 values of 20 μM. Microarray and CMAP analysis, validated by Western blot, indicated that UA significantly modulated IKK/NF-κB, RAF/ERK pathways, and down-regulated the phosphorylation level of PLK1 in MCF-7 cells. CONCLUSION Our data indicated that the anti-tumor effects of UA are due to the inhibited RAF/ERK pathway and IKK/NF-κB pathway. It could also be explained by the reduced phosphorylation of PLK1 in MCF-7 cells. This study provides a new insight for deep understanding of the new anti-cancer mechanisms of UA in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Weiqiang Guo
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou215009, People’s Republic of China
| | - Bin Xu
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou215009, People’s Republic of China
| | - Xiaoxiao Wang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou215009, People’s Republic of China
| | - Bo Zheng
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou215009, People’s Republic of China
| | - Jiahui Du
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou215009, People’s Republic of China
| | - Songbai Liu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou215009, People’s Republic of China
| |
Collapse
|
42
|
De Blasio C, Zonfrilli A, Franchitto M, Mariano G, Cialfi S, Verma N, Checquolo S, Bellavia D, Palermo R, Benelli D, Screpanti I, Talora C. PLK1 targets NOTCH1 during DNA damage and mitotic progression. J Biol Chem 2019; 294:17941-17950. [PMID: 31597699 PMCID: PMC6879332 DOI: 10.1074/jbc.ra119.009881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor suppressor and oncogenic components. To identify regulators that might control this dual activity of NOTCH1, we screened a chemical library targeting kinases and identified Polo-like kinase 1 (PLK1) as one of the kinases involved in arsenite-induced NOTCH1 down-modulation. As PLK1 activity drives mitotic entry but also is inhibited after DNA damage, we investigated the PLK1-NOTCH1 interplay in the G2 phase of the cell cycle and in response to DNA damage. Here, we found that PLK1 regulates NOTCH1 expression at G2/M transition. However, when cells in G2 phase are challenged with DNA damage, PLK1 is inhibited to prevent entry into mitosis. Interestingly, we found that the interaction between NOTCH1 and PLK1 is functionally important during the DNA damage response, as we found that whereas PLK1 activity is inhibited, NOTCH1 expression is maintained during DNA damage response. During genotoxic stress, cellular transformation requires that promitotic activity must override DNA damage checkpoint signaling to drive proliferation. Interestingly, we found that arsenite-induced genotoxic stress causes a PLK1-dependent signaling response that antagonizes the involvement of NOTCH1 in the DNA damage checkpoint. Taken together, our data provide evidence that Notch signaling is altered but not abolished in SCC cells. Thus, it is also important to recognize that Notch plasticity might be modulated and could represent a key determinant to switch on/off either the oncogenic or tumor suppressor function of Notch signaling in a single type of tumor.
Collapse
Affiliation(s)
- Carlo De Blasio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Azzurra Zonfrilli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
- Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Matteo Franchitto
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Germano Mariano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Nagendra Verma
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, 04100 Latina, Italy
| | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Dario Benelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
43
|
Sharma P, Mahen R, Rossmann M, Stokes JE, Hardwick B, Huggins DJ, Emery A, Kunciw DL, Hyvönen M, Spring DR, McKenzie GJ, Venkitaraman AR. A cryptic hydrophobic pocket in the polo-box domain of the polo-like kinase PLK1 regulates substrate recognition and mitotic chromosome segregation. Sci Rep 2019; 9:15930. [PMID: 31685831 PMCID: PMC6828814 DOI: 10.1038/s41598-019-50702-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/26/2019] [Indexed: 11/25/2022] Open
Abstract
The human polo-like kinase PLK1 coordinates mitotic chromosome segregation by phosphorylating multiple chromatin- and kinetochore-binding proteins. How PLK1 activity is directed to specific substrates via phosphopeptide recognition by its carboxyl-terminal polo-box domain (PBD) is poorly understood. Here, we combine molecular, structural and chemical biology to identify a determinant for PLK1 substrate recognition that is essential for proper chromosome segregation. We show that mutations ablating an evolutionarily conserved, Tyr-lined pocket in human PLK1 PBD trigger cellular anomalies in mitotic progression and timing. Tyr pocket mutations selectively impair PLK1 binding to the kinetochore phosphoprotein substrate PBIP1, but not to the centrosomal substrate NEDD1. Through a structure-guided approach, we develop a small-molecule inhibitor, Polotyrin, which occupies the Tyr pocket. Polotyrin recapitulates the mitotic defects caused by mutations in the Tyr pocket, further evidencing its essential function, and exemplifying a new approach for selective PLK1 inhibition. Thus, our findings support a model wherein substrate discrimination via the Tyr pocket in the human PLK1 PBD regulates mitotic chromosome segregation to preserve genome integrity.
Collapse
Affiliation(s)
- Pooja Sharma
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Jamie E Stokes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Bryn Hardwick
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - David J Huggins
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Amy Emery
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Dominique L Kunciw
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Grahame J McKenzie
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|
44
|
TraFo-CRISPR: Enhanced Genome Engineering by Transient Foamy Virus Vector-Mediated Delivery of CRISPR/Cas9 Components. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:708-726. [PMID: 31726388 PMCID: PMC6859288 DOI: 10.1016/j.omtn.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
Abstract
The adaptation of CRISPR/Cas technology for use in mammals has revolutionized genome engineering. In particular with regard to clinical application, efficient expression of Cas9 within a narrow time frame is highly desirable to minimize the accumulation of off-target editing. We developed an effective, aptamer-independent retroviral delivery system for Cas9 mRNAs that takes advantage of a unique foamy virus (FV) capability: the efficient encapsidation and transfer of non-viral RNAs. This enabled us to create a FV vector toolbox for efficient, transient delivery (TraFo) of CRISPR/Cas9 components into different target tissues. Co-delivery of Cas9 mRNA by TraFo-Cas9 vectors in combination with retroviral, integration-deficient single guide RNA (sgRNA) expression enhanced efficacy and specificity of gene-inactivation compared with CRISPR/Cas9 lentiviral vector systems. Furthermore, separate TraFo-Cas9 delivery allowed the optional inclusion of a repair matrix for efficient gene correction or tagging as well as the addition of fluorescent negative selection markers for easy identification of off-target editing or incorrect repair events. Thus, the TraFo CRISPR toolbox represents an interesting alternative technology for gene inactivation and gene editing.
Collapse
|
45
|
Andrews PGP, Popadiuk C, Belbin TJ, Kao KR. Augmentation of Myc-Dependent Mitotic Gene Expression by the Pygopus2 Chromatin Effector. Cell Rep 2019; 23:1516-1529. [PMID: 29719262 DOI: 10.1016/j.celrep.2018.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/14/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Mitotic segregation of chromosomes requires precise coordination of many factors, yet evidence is lacking as to how genes encoding these elements are transcriptionally controlled. Here, we found that the Pygopus (Pygo)2 chromatin effector is indispensable for expression of the MYC-dependent genes that regulate cancer cell division. Depletion of Pygo2 arrested SKOV-3 cells at metaphase, which resulted from the failure of chromosomes to capture spindle microtubules, a critical step for chromosomal biorientation and segregation. This observation was consistent with global chromatin association findings in HeLa S3 cells, revealing the enrichment of Pygo2 and MYC at promoters of biorientation and segmentation genes, at which Pygo2 maintained histone H3K27 acetylation. Immunoprecipitation and proximity ligation assays demonstrated MYC and Pygo2 interacting in nuclei, corroborated in a heterologous MYC-driven prostate cancer model that was distinct from Wnt/β-catenin signaling. Our evidence supports a role for Pygo2 as an essential component of MYC oncogenic activity required for mitosis.
Collapse
Affiliation(s)
- Phillip G P Andrews
- Terry Fox Cancer Research Labs, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada
| | - Catherine Popadiuk
- Division of Gynecologic Oncology, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada
| | - Thomas J Belbin
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada
| | - Kenneth R Kao
- Terry Fox Cancer Research Labs, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada; Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's Campus, NL A1B 3V6, Canada.
| |
Collapse
|
46
|
Zhao Y, Wang X. PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol 2019; 145:2413-2422. [PMID: 31492983 DOI: 10.1007/s00432-019-02994-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
47
|
Mo H, He J, Yuan Z, Wu Z, Liu B, Lin X, Guan J. PLK1 contributes to autophagy by regulating MYC stabilization in osteosarcoma cells. Onco Targets Ther 2019; 12:7527-7536. [PMID: 31571905 PMCID: PMC6750617 DOI: 10.2147/ott.s210575] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background PLK1, a typical PLK protein, is the main driver of cancer cell growth and proliferation. It is an inhibitor of the protein kinases that is currently being investigated in clinical studies. It is often used as a tumor marker, as high PLK1 expression correlates with poor prognosis in cancer. Overexpression of MYC is a hallmark of many human cancers. MYC modulates the transcription of thousands of genes that required to coordinate a series of cellular processes, including those essential for growth, proliferation, differentiation, self-renewal and apoptosis. To date, functions of PLK1 and MYC on tumor are mostly studied in separate researches, and studies on their mutual crosstalk are lacking. Purpose To investigate the mechanism of PLK1 and MYC in regulating progress of osteosarcoma. Methods Protein level was examined using Western blot. Animal experiments were performed with female FOX CHASE severe combined immunodeficient mice. Mice were randomly divided into experimental or control groups. Results PLK1 or MYC promoted the proliferation of osteosarcoma cells through the autophagy pathway. PLK1 contributed to MYC protein stabilization. PLK1 inhibition enhanced MYC degradation in osteosarcoma cells. PLK1 inhibition led to a marked decline in MYC protein abundance. The representative MYC target genes were deregulated by PLK1 inhibitors. BI2536 treatment caused a significant delay in xenograft tumor growth in mice injected with U-2 OS cells subcutaneously, with lower mean tumor weight compared to the control group. Conclusion PLK1 is crucial for MYC stabilization. It promotes cell proliferation by autophagy pathway in osteosarcoma cells. Data validate PLK1 as a potential therapeutic target in osteosarcoma caused by MYC-amplified.
Collapse
Affiliation(s)
- Hao Mo
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Juliang He
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhenjie Wu
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Bin Liu
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiang Lin
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian Guan
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
48
|
Littler S, Sloss O, Geary B, Pierce A, Whetton AD, Taylor SS. Oncogenic MYC amplifies mitotic perturbations. Open Biol 2019; 9:190136. [PMID: 31455158 PMCID: PMC6731591 DOI: 10.1098/rsob.190136] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
The oncogenic transcription factor MYC modulates vast arrays of genes, thereby influencing numerous biological pathways including biogenesis, metabolism, proliferation, apoptosis and pluripotency. When deregulated, MYC drives genomic instability via several mechanisms including aberrant proliferation, replication stress and ROS production. Deregulated MYC also promotes chromosome instability, but less is known about how MYC influences mitosis. Here, we show that deregulating MYC modulates multiple aspects of mitotic chromosome segregation. Cells overexpressing MYC have altered spindle morphology, take longer to align their chromosomes at metaphase and enter anaphase sooner. When challenged with a variety of anti-mitotic drugs, cells overexpressing MYC display more anomalies, the net effect of which is increased micronuclei, a hallmark of chromosome instability. Proteomic analysis showed that MYC modulates multiple networks predicted to influence mitosis, with the mitotic kinase PLK1 identified as a central hub. In turn, we show that MYC modulates several PLK1-dependent processes, namely mitotic entry, spindle assembly and SAC satisfaction. These observations thus underpin the pervasive nature of oncogenic MYC and provide a mechanistic rationale for MYC's ability to drive chromosome instability.
Collapse
Affiliation(s)
- Samantha Littler
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Olivia Sloss
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany Geary
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Andrew Pierce
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony D. Whetton
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Stephen S. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
49
|
Lin TC, Kuo HH, Wu YC, Pan TS, Yih LH. Phosphatidylinositol-5-phosphate 4-kinase gamma accumulates at the spindle pole and prevents microtubule depolymerization. Cell Div 2019; 14:9. [PMID: 31452676 PMCID: PMC6702725 DOI: 10.1186/s13008-019-0053-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background A previous screen of a human kinase and phosphatase shRNA library to select genes that mediate arsenite induction of spindle abnormalities resulted in the identification of phosphatidylinositol-5-phosphate 4-kinase type-2 gamma (PIP4KIIγ), a phosphatidylinositol 4,5-bisphosphate (PIP2)-synthesizing enzyme. In this study, we explored how PIP4KIIγ regulates the assembly of mitotic spindles. Results PIP4KIIγ accumulates at the spindle pole before anaphase, and is required for the assembly of functional bipolar spindles. Depletion of PIP4KIIγ enhanced the spindle pole accumulation of mitotic centromere-associated kinesin (MCAK), a microtubule (MT)-depolymerizing kinesin, and resulted in a less stable spindle pole-associated MT. Depletion of MCAK can ameliorate PIP4KIIγ depletion-induced spindle abnormalities. In addition, PIP2 binds to polo-like kinase (PLK1) and reduces PLK1-mediated phosphorylation of MCAK. These results indicate that PIP4KIIγ and PIP2 may negatively regulate the MT depolymerization activity of MCAK by reducing PLK1-mediated phosphorylation of MCAK. Consequently, depletion of PLK1 has been shown to counteract the PIP4KIIγ depletion-induced instability of spindle pole-associated MT and cell resistance to arsenite. Conclusions Our current results imply that PIP4KIIγ may restrain MT depolymerization at the spindle pole through attenuating PLK1-mediated activation of MCAK before anaphase onset.
Collapse
Affiliation(s)
- Tz-Chi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Yi-Chen Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Tiffany S Pan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
50
|
Yabuno Y, Uchihashi T, Sasakura T, Shimizu H, Naito Y, Fukushima K, Ota K, Kogo M, Nojima H, Yabuta N. Clathrin heavy chain phosphorylated at T606 plays a role in proper cell division. Cell Cycle 2019; 18:1976-1994. [PMID: 31272276 PMCID: PMC6681784 DOI: 10.1080/15384101.2019.1637201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022] Open
Abstract
Clathrin regulates mitotic progression, in addition to membrane trafficking. However, the detailed regulatory mechanisms of clathrin during mitosis remain elusive. Here, we demonstrate novel regulation of clathrin during mitotic phase of the cell cycle. Clathrin heavy chain (CHC) was phosphorylated at T606 by its association partner cyclin G-associated kinase (GAK). This phosphorylation was required for proper cell proliferation and tumor growth of cells implanted into nude mice. Immunofluorescence analysis showed that the localization of CHC-pT606 signals changed during mitosis. CHC-pT606 signals localized in the nucleus and at the centrosome during interphase, whereas CHC signals were mostly cytoplasmic. Co-immunoprecipitation suggested that CHC formed a complex with GAK and polo-like kinase 1 (PLK1). Depletion of GAK using siRNA induced metaphase arrest and aberrant localization of CHC-pT606, which abolished Kiz-pT379 (as a phosphorylation target of PLK1) signals on chromatin at metaphase. Taken together, we propose that the GAK_CHC-pT606_PLK1_Kiz-pT379 axis plays a role in proliferation of cancer cells.
Collapse
Affiliation(s)
- Yusuke Yabuno
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Toshihiro Uchihashi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Shimizu
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Ota
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|