1
|
Shaw P, Bhowmik AD, Gopinatha Pillai MS, Robbins N, Dhar Dwivedi SK, Rao G. Anoikis Resistance in Cancer: Mechanisms, Therapeutic Strategies, Potential Targets, and Models for Enhanced Understanding. Cancer Lett 2025:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, Oklahoma, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
2
|
Cimino PJ, Keiser DJ, Parrish AG, Holland EC, Szulzewsky F. C-terminal fusion partner activity contributes to the oncogenic functions of YAP1::TFE3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647316. [PMID: 40291683 PMCID: PMC12026745 DOI: 10.1101/2025.04.04.647316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
YAP1 gene fusions are found in a multitude of human tumors, are potent oncogenic drivers, and are the likely initiating tumorigenic events in these tumors. We and others have previously shown that a YAP1 fusion proteins exert TEAD-dependent oncogenic YAP1 activity that is resistant to inhibitory Hippo pathway signaling. However, the contributions of the C-terminal fusion partners to the oncogenic functions of YAP1 fusion proteins are understudied. Here, we used the RCAS/tv-a system to express eight different YAP1 gene fusions in vivo and observed significant differences in the latencies of tumors induced by the various YAP1 fusions. We observed that tumors induced by YAP1::TFE3 displayed a significantly different histomorphology compared to tumors induced by other YAP1 fusions or activated non-fusion YAP1. To assess the extent to which the functional TFE3 domains (DNA binding: leucine zipper (LZ) and basic-helix-loop-helix (bHLH); activation domain (AD)) contribute to the oncogenic functions of YAP1::TFE3, we generated several mutant variants and performed functional in vitro and in vivo assays. In vitro, mutation or deletion of the TFE3 DNA binding domains (LZ, bHLH) resulted in reduced TFE3 activity but increased YAP1 activity of YAP1::TFE3. In vivo, deletion of the LZ and bHLH domains did not result in a decrease in tumor incidence but induced the formation of more YAP1-like tumors that lacked prominent features of YAP1::TFE3-driven tumors. By contrast, loss of the TFE3 AD almost completely abrogated tumor formation. Our results suggest that the TFE3 domains significantly contribute to the oncogenic activity of YAP1::TFE3.
Collapse
|
3
|
Scalora N, DeWane G, Drebot Y, Khan AA, Sinha S, Ghosh K, Robinson D, Cogswell P, Bellizzi AM, Snow AN, Breheny P, Chimenti MS, Tanas MR. EHE cell cultures: a platform for mechanistic and therapeutic investigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644191. [PMID: 40196670 PMCID: PMC11974726 DOI: 10.1101/2025.03.24.644191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Epithelioid hemangioendothelioma (EHE) is a difficult to treat vascular sarcoma defined by TAZ- CAMTA1 or YAP-TFE3 fusion proteins. Human cell lines needed to further understand the pathogenesis of EHE have been lacking. Herein, we describe a method to generate EHE extended primary cell cultures. An integrated multi -omic and functional approach was used to characterize these cultures. The cell cultures, relatively homogenous by single cell RNA-Seq, demonstrated established characteristics of EHE including increased proliferation, anchorage independent growth, as well as the overall gene expression profile and secondary genetic alterations seen in EHE. Whole genome sequencing (WGS) identified links to epigenetic modifying complexes, metabolic processes, and pointed to the importance of the extracellular matrix (ECM) in these tumors. Bulk RNA-Seq demonstrated upregulation of pathways including PI3K-Akt signaling, ECM/ECM receptor interaction, and the Hippo signaling pathway. Development of these extended primary cell cultures allowed for single-cell profiling which demonstrated different cell compartments within the cultures. Furthermore, the cultures served as a therapeutic platform to test the efficacy of TEAD inhibitors in vitro . Overall, the development of EHE primary cell cultures will aid in the mechanistic understanding of this sarcoma and serve as a model system to test new therapeutic approaches.
Collapse
|
4
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
5
|
Pobbati AV, Burtscher A, Siva NR, Hallett A, Romigh T, Che K, Zhao B, Coker JA, Wang N, Stauffer SR, Rubin BP. CDK9 Inhibition by Dinaciclib Is a Therapeutic Vulnerability in Epithelioid Hemangioendothelioma. Clin Cancer Res 2024; 30:4179-4189. [PMID: 39052240 PMCID: PMC11398983 DOI: 10.1158/1078-0432.ccr-24-1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE There are no effective treatment options for patients with aggressive epithelioid hemangioendothelioma (EHE) driven by the TAZ-CAMTA1 (TC) fusion gene. Here, we aimed to understand the regulation of TC using pharmacologic tools and identify vulnerabilities that can potentially be exploited for the treatment of EHE. EXPERIMENTAL DESIGN TC is a transcriptional coregulator; we hypothesized that compounds that reduce TC nuclear levels, either through translocation of TC to the cytoplasm, or through degradation, would render TC less oncogenic. TC localization was monitored using immunofluorescence in an EHE tumor cell line. Two target-selective libraries were used to identify small molecules that reduce TC localization in the nucleus. The ability of the shortlisted hits to affect cell viability, apoptosis, and tumorigenesis was also evaluated. RESULTS Basal TC remained "immobile" in the nucleus; administration of cyclin-dependent kinase (CDK) inhibitors such as CGP60474 and dinaciclib (Dina) mobilized TC. "Mobile" TC shuttled between the nucleus and cytoplasm; however, it was eventually degraded through proteasomes. This dramatically suppressed the levels of TC-regulated transcripts and cell viability, promoted apoptosis, and reduced the area of metastatic lesions in the allograft model of EHE. We specifically identified that the inhibition of CDK9, a transcriptional CDK, destabilizes TC. CONCLUSIONS The CDK inhibitor Dina exhibited antitumorigenic properties both in vitro and in vivo in EHE models. Dina has been rigorously tested in clinical trials and displayed an acceptable toxicity profile. Therefore, there is a potential therapeutic window for repurposing Dina for the treatment of EHE.
Collapse
Affiliation(s)
- Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ashley Burtscher
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Nandini Rajaram Siva
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Andrea Hallett
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Todd Romigh
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Bin Zhao
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Jesse A. Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Nancy Wang
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun R. Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Tsuchihashi K, Baba E. Epithelioid hemangioendothelioma-its history, clinical features, molecular biology and current therapy. Jpn J Clin Oncol 2024; 54:739-747. [PMID: 38555494 DOI: 10.1093/jjco/hyae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a remarkably rare tumor arising from endothelial cells that is classified as a vascular tumor in the WHO classification. The tumor is predominantly characterized by the presence of fusion genes, such as WWTR1-CAMTA1 or YAP1-TFE3, with a minority of cases exhibiting other rare fusion genes. EHE exhibits a broad age of onset, typically presenting at ~50 years, but it is not uncommon in pediatric populations. It manifests in a variety of organs, including the liver, lung, soft tissue and bone. Initial multiple-organ involvement is also observed. The tumor's biological behavior and prognosis vary substantially based on the primary site of manifestation. From a therapeutic perspective, initial active surveillance might be considered in selected cases, although surgical intervention remains the mainstay of treatment, especially for localized single-organ involvement. Chemotherapy is administered to patients with progressive unresectable tumors. Recent advances in the biological analysis of EHE fusion genes have elucidated their diverse functions. Additionally, next-generation sequencing has facilitated the identification of other mutations beyond the fusion genes. These continuous efforts to understand the biology of the fusion genes themselves and/or the dysregulated signaling by fusion genes are expected to lead to the development of novel therapeutic strategies for EHE. This article aims to provide a comprehensive review of EHE, encompassing its historical context, clinical manifestations, molecular biology and the current state of treatment.
Collapse
Affiliation(s)
- Kenji Tsuchihashi
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
7
|
Chapeau EA, Sansregret L, Galli GG, Chène P, Wartmann M, Mourikis TP, Jaaks P, Baltschukat S, Barbosa IAM, Bauer D, Brachmann SM, Delaunay C, Estadieu C, Faris JE, Furet P, Harlfinger S, Hueber A, Jiménez Núñez E, Kodack DP, Mandon E, Martin T, Mesrouze Y, Romanet V, Scheufler C, Sellner H, Stamm C, Sterker D, Tordella L, Hofmann F, Soldermann N, Schmelzle T. Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. NATURE CANCER 2024; 5:1102-1120. [PMID: 38565920 PMCID: PMC11286534 DOI: 10.1038/s43018-024-00754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The YAP-TEAD protein-protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP-TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP-TEAD protein-protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daniel Bauer
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | - Pascal Furet
- Novartis BioMedical Research, Basel, Switzerland
| | - Stefanie Harlfinger
- Novartis BioMedical Research, Basel, Switzerland
- AstraZeneca, Oncology R&D, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Francesco Hofmann
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Group, R&D Medical Care, Toulouse, France
| | | | | |
Collapse
|
8
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Wachtel M, Surdez D, Grünewald TGP, Schäfer BW. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel) 2024; 16:1355. [PMID: 38611033 PMCID: PMC11010897 DOI: 10.3390/cancers16071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcomas comprise a heterogeneous group of malignant tumors of mesenchymal origin. More than 80 entities are associated with different mesenchymal lineages. Sarcomas with fibroblastic, muscle, bone, vascular, adipocytic, and other characteristics are distinguished. Nearly half of all entities contain specific chromosomal translocations that give rise to fusion proteins. These are mostly pathognomonic, and their detection by various molecular techniques supports histopathologic classification. Moreover, the fusion proteins act as oncogenic drivers, and their blockade represents a promising therapeutic approach. This review summarizes the current knowledge on fusion proteins in sarcoma. We categorize the different fusion proteins into functional classes, including kinases, epigenetic regulators, and transcription factors, and describe their mechanisms of action. Interestingly, while fusion proteins acting as transcription factors are found in all mesenchymal lineages, the others have a more restricted pattern. Most kinase-driven sarcomas belong to the fibroblastic/myofibroblastic lineage. Fusion proteins with an epigenetic function are mainly associated with sarcomas of unclear differentiation, suggesting that epigenetic dysregulation leads to a major change in cell identity. Comparison of mechanisms of action reveals recurrent functional modes, including antagonism of Polycomb activity by fusion proteins with epigenetic activity and recruitment of histone acetyltransferases by fusion transcription factors of the myogenic lineage. Finally, based on their biology, we describe potential approaches to block the activity of fusion proteins for therapeutic intervention. Overall, our work highlights differences as well as similarities in the biology of fusion proteins from different sarcomas and provides the basis for a functional classification.
Collapse
Affiliation(s)
- Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), CH-8008 Zurich, Switzerland
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| |
Collapse
|
10
|
Tortorelli I, Bellan E, Chiusole B, Murtas F, Ruggieri P, Pala E, Cerchiaro M, Buzzaccarini MS, Scarzello G, Krengli M, Bisinella G, Battisti S, Di Maggio A, Zagonel V, Tos APD, Sbaraglia M, Brunello A. Primary vascular tumors of bone: A comprehensive literature review on classification, diagnosis and treatment. Crit Rev Oncol Hematol 2024; 195:104268. [PMID: 38237880 DOI: 10.1016/j.critrevonc.2024.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Primary vascular tumors of bone are a heterogeneous group of neoplasms, ranging from benign hemangiomas to frankly malignant epithelioid hemangioendotheliomas and angiosarcomas. Over the years, their classification has been a matter of discussion, due to morphologic similarities and uncertainty regarding biologic behavior. Over the past decade, with the development of next-generation sequencing, there has been a significant improvement in the molecular characterization of these lesions. The integration of their morphologic, immunohistochemical and molecular features has led to a better stratification, with important prognostic and therapeutic implications. Nevertheless, primary vascular bone tumors still represent a challenge for medical oncologists. Given their rarity and heterogeneity, in the last few years, there has been no significant progress in medical treatment options, so further research is needed. Here we present a review of the current knowledge regarding primary vascular tumors of the bone, correlating clinicopathologic features with tumor behavior and therapeutic approaches.
Collapse
Affiliation(s)
- Ilaria Tortorelli
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy; Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Elena Bellan
- Department of Pathology, Azienda Ospedale Università Padova, Via Gabelli 61, 35121 Padua, Italy
| | - Benedetta Chiusole
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Fabio Murtas
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy; Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Pietro Ruggieri
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Via Nicolò Giustiniani 1, 35128 Padua, Italy
| | - Elisa Pala
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Via Nicolò Giustiniani 1, 35128 Padua, Italy
| | - Mariachiara Cerchiaro
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Via Nicolò Giustiniani 1, 35128 Padua, Italy
| | | | - Giovanni Scarzello
- Radiotherapy Unit, Istituto Oncologico Veneto IOV - IRCCS, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Marco Krengli
- Radiotherapy Unit, Istituto Oncologico Veneto IOV - IRCCS, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Gianluca Bisinella
- Division of Orthopedics and Trauma, AULSS 6 Euganea, Ospedali Riuniti Padova Sud, Via Albere 30, Monselice, Padua, Italy
| | - Sara Battisti
- Division of Orthopedics and Trauma, AULSS 6 Euganea, Ospedali Riuniti Padova Sud, Via Albere 30, Monselice, Padua, Italy
| | - Antonio Di Maggio
- Oncologic Radiology Unit, Department of Radiology and Medical Physics, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Vittorina Zagonel
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Azienda Ospedale Università Padova, Via Gabelli 61, 35121 Padua, Italy; Department of Medicine, University of Padua School of Medicine, Via 8 Febbraio 2, 35122 Padua, Italy
| | - Marta Sbaraglia
- Department of Pathology, Azienda Ospedale Università Padova, Via Gabelli 61, 35121 Padua, Italy; Department of Medicine, University of Padua School of Medicine, Via 8 Febbraio 2, 35122 Padua, Italy
| | - Antonella Brunello
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy.
| |
Collapse
|
11
|
Li S, Dermawan JK, Seavey CN, Ma S, Antonescu CR, Rubin BP. Epithelioid hemangioendothelioma (EHE) with WWTR1::TFE3 gene fusion, a novel fusion variant. Genes Chromosomes Cancer 2024; 63:e23226. [PMID: 38380774 PMCID: PMC11293803 DOI: 10.1002/gcc.23226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a rare endothelial sarcoma associated with a high incidence of metastases and for which there are no standard treatment options. Based on disease-defining mutations, most EHEs are classified into two subtypes: WWTR1::CAMTA1-fused EHE or YAP1::TFE3-fused EHE. However, rare non-canonical fusions have been identified in clinical samples of EHE cases and are challenging to classify. In this study, we report the identification of a novel WWTR1::TFE3 fusion variant in an EHE patient using targeted RNA sequencing. Histologically, the tumor exhibited hybrid morphological characteristics between WWTR1::CAMTA1-fused EHE and YAP1::TFE3-fused EHE. In addition to the driver fusion, there were six additional secondary mutations identified, including a loss-of-function FANCA mutation. Furthermore, in vitro studies were conducted to investigate the tumorigenic function of the WWTR1::TFE3 fusion protein in NIH3T3 cells and demonstrated that WWTR1::TFE3 promotes colony formation in soft agar. Finally, as the wild-type WWTR1 protein relies on binding the TEAD family of transcription factors to affect gene transcription, mutation of the WWTR1 domain of the fusion protein to inhibit such binding abrogates the transformative effect of WWTR1::TFE3. Overall, we describe a novel gene fusion in EHE with a hybrid histological appearance between the two major genetic subtypes of EHE. Further cases of this very rare subtype of EHE will need to be identified to fully elucidate the clinical and pathological characteristics of this unusual subtype of EHE.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Caleb N Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, PRISM Program, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Neil E, Paredes R, Pooley O, Rubin B, Kouskoff V. The oncogenic fusion protein TAZ::CAMTA1 promotes genomic instability and senescence through hypertranscription. Commun Biol 2023; 6:1174. [PMID: 37980390 PMCID: PMC10657451 DOI: 10.1038/s42003-023-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
TAZ::CAMTA1 is a fusion protein found in over 90% of Epithelioid Hemangioendothelioma (EHE), a rare vascular sarcoma with an unpredictable disease course. To date, how TAZ::CAMTA1 initiates tumour formation remains unexplained. To study the oncogenic mechanism leading to EHE initiation, we developed a model system whereby TAZ::CAMTA1 expression is induced by doxycycline in primary endothelial cells. Using this model, we establish that upon TAZ::CAMTA1 expression endothelial cells rapidly enter a hypertranscription state, triggering considerable DNA damage. As a result, TC-expressing cells become trapped in S phase. Additionally, TAZ::CAMTA1-expressing endothelial cells have impaired homologous recombination, as shown by reduced BRCA1 and RAD51 foci formation. Consequently, the DNA damage remains unrepaired and TAZ::CAMTA1-expressing cells enter senescence. Knockout of Cdkn2a, the most common secondary mutation found in EHE, allows senescence bypass and uncontrolled growth. Together, this provides a mechanistic explanation for the clinical course of EHE and offers novel insight into therapeutic options.
Collapse
Affiliation(s)
- Emily Neil
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Roberto Paredes
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Oscar Pooley
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Brian Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Valerie Kouskoff
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
13
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
14
|
Papke DJ. Mesenchymal Neoplasms of the Liver. Surg Pathol Clin 2023; 16:609-634. [PMID: 37536892 DOI: 10.1016/j.path.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mesenchymal neoplasms of the liver can be diagnostically challenging, particularly on core needle biopsies. Here, I discuss recent updates in neoplasms that are specific to the liver (mesenchymal hamartoma, undifferentiated embryonal sarcoma, calcifying nested stromal-epithelial tumor), vascular tumors of the liver (anastomosing hemangioma, hepatic small vessel neoplasm, epithelioid hemangioendothelioma, angiosarcoma), and other tumor types that can occur primarily in the liver (PEComa/angiomyolipoma, inflammatory pseudotumor-like follicular dendritic cell sarcoma, EBV-associated smooth muscle tumor, inflammatory myofibroblastic tumor, malignant rhabdoid tumor). Lastly, I discuss metastatic sarcomas to the liver, as well as pitfalls presented by metastatic melanoma and sarcomatoid carcinoma.
Collapse
Affiliation(s)
- David J Papke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Dermawan JK, Rubin BP. The spectrum and significance of secondary (co-occurring) genetic alterations in sarcomas: the hallmarks of sarcomagenesis. J Pathol 2023; 260:637-648. [PMID: 37345731 DOI: 10.1002/path.6140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Bone and soft tissue tumors are generally classified into complex karyotype sarcomas versus those with recurrent genetic alterations, often in the form of gene fusions. In this review, we provide an overview of important co-occurring genomic alterations, organized by biological mechanisms and covering a spectrum of genomic alteration types: mutations (single-nucleotide variations or indels) in oncogenes or tumor suppressor genes, copy number alterations, transcriptomic signatures, genomic complexity indices (e.g. CINSARC), and complex genomic structural variants. We discuss the biological and prognostic roles of these so-called secondary or co-occurring alterations, arguing that recognition and detection of these alterations may be significant for our understanding and management of mesenchymal tumors. On a related note, we also discuss major recurrent alterations in so-called complex karyotype sarcomas. These secondary alterations are essential to sarcomagenesis via a variety of mechanisms, such as inactivation of tumor suppressors, activation of proliferative signal transduction, telomere maintenance, and aberrant regulation of epigenomic/chromatin remodeling players. The use of comprehensive genomic profiling, including targeted next-generation sequencing panels or whole-exome sequencing, may be incorporated into clinical workflows to offer more comprehensive, potentially clinically actionable information. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
16
|
Palamaris K, Levidou G, Kordali K, Masaoutis C, Rontogianni D, Theocharis S. Searching for Novel Biomarkers in Thymic Epithelial Tumors: Immunohistochemical Evaluation of Hippo Pathway Components in a Cohort of Thymic Epithelial Tumors. Biomedicines 2023; 11:1876. [PMID: 37509515 PMCID: PMC10377518 DOI: 10.3390/biomedicines11071876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Given the pivotal role of the Hippo pathway in different facets of tumorigenesis, which has been vigorously established in multiple heterogenous malignancies, we attempted to evaluate its potential utility as a prognostic-predictive biomarker in thymic epithelial tumors (TETs). For this purpose, we performed a comprehensive immunohistochemical analysis of four Hippo cascade components (YAP, TAZ, TEAD4 and LATS1) in a sizeable cohort of TETs and attempted to identify possible correlations of their H-score with various clinicopathological parameters. TAZ and TEAD4 displayed both cytoplasmic and nuclear immunoreactivity in almost equal frequency, with their cytoplasmic H-score being strongly associated with more aggressive high-grade tumors (type B3, thymic carcinoma) and more advanced pathological stages. On the other hand, a primarily nuclear staining pattern was encountered in both YAP and LATS1, with the YAP nuclear H-score being higher in more indolent (type A) and earlier stage tumors. Interestingly, none of the four examined factors displayed any statistically significant correlation with patient overall (OS) or disease-free survival (DFS). In summary, our results provide some initial insight into the expression profile of these core Hippo pathway components in thymic neoplasms and point towards some clear associations with tumor characteristics, which are of paramount translational-clinical research with profound implications in therapeutic targeting of this pathway in the context of precision medicine.
Collapse
Affiliation(s)
- Kostas Palamaris
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Levidou
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Katerina Kordali
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitra Rontogianni
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
17
|
Neil E, Kouskoff V. Current Model Systems for Investigating Epithelioid Haemangioendothelioma. Cancers (Basel) 2023; 15:3005. [PMID: 37296967 PMCID: PMC10251951 DOI: 10.3390/cancers15113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Epithelioid haemangioendothelioma (EHE) is a rare sarcoma of the vascular endothelium with an unpredictable disease course. EHE tumours can remain indolent for long period of time but may suddenly evolve into an aggressive disease with widespread metastases and a poor prognosis. Two mutually exclusive chromosomal translocations define EHE tumours, each involving one of the transcription co-factors TAZ and YAP. The TAZ-CAMTA1 fusion protein results from a t(1;3) translocation and is present in 90% of EHE tumours. The remaining 10% of EHE cases harbour a t(X;11) translocation, resulting in the YAP1-TFE3 (YT) fusion protein. Until recently, the lack of representative EHE models made it challenging to study the mechanisms by which these fusion proteins promote tumorigenesis. Here, we describe and compare the recently developed experimental approaches that are currently available for studying this cancer. After summarising the key findings obtained with each experimental approach, we discuss the advantages and limitations of these different model systems. Our survey of the current literature shows how each experimental approach can be utilised in different ways to improve our understanding of EHE initiation and progression. Ultimately, this should lead to better treatment options for patients.
Collapse
Affiliation(s)
- Emily Neil
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Valerie Kouskoff
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
18
|
Zhao B, Pobbati AV, Rubin BP, Stauffer S. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals (Basel) 2023; 16:ph16040583. [PMID: 37111340 PMCID: PMC10146773 DOI: 10.3390/ph16040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway that plays important roles in the regulation of cell proliferation and apoptosis. Transcription factors TEAD1-4 and transcriptional coregulators YAP/TAZ are the downstream effectors of the Hippo pathway and can modulate Hippo biology. Dysregulation of this pathway is implicated in tumorigenesis and acquired resistance to therapies. The emerging importance of YAP/TAZ-TEAD interaction in cancer development makes it a potential therapeutic target. In the past decade, disrupting YAP/TAZ-TEAD interaction as an effective approach for cancer treatment has achieved great progress. This approach followed a trajectory wherein peptidomimetic YAP-TEAD protein-protein interaction disruptors (PPIDs) were first designed, followed by the discovery of allosteric small molecule PPIDs, and currently, the development of direct small molecule PPIDs. YAP and TEAD form three interaction interfaces. Interfaces 2 and 3 are amenable for direct PPID design. One direct YAP-TEAD PPID (IAG933) that targets interface 3 has entered a clinical trial in 2021. However, in general, strategically designing effective small molecules PPIDs targeting TEAD interfaces 2 and 3 has been challenging compared with allosteric inhibitor development. This review focuses on the development of direct surface disruptors and discusses the challenges and opportunities for developing potent YAP/TAZ-TEAD inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
19
|
Choi JH, Ro JY. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci 2023; 24:ijms24065934. [PMID: 36983010 PMCID: PMC10051446 DOI: 10.3390/ijms24065934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Soft tissue tumors are rare mesenchymal tumors with divergent differentiation. The diagnosis of soft tissue tumors is challenging for pathologists owing to the diversity of tumor types and histological overlap among the tumor entities. Present-day understanding of the molecular pathogenesis of soft tissue tumors has rapidly increased with the development of molecular genetic techniques (e.g., next-generation sequencing). Additionally, immunohistochemical markers that serve as surrogate markers for recurrent translocations in soft tissue tumors have been developed. This review aims to provide an update on recently described molecular findings and relevant novel immunohistochemical markers in selected soft tissue tumors.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Namgu, Daegu 42415, Republic of Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College, Cornell University, Houston, TX 77030, USA
| |
Collapse
|
20
|
Pobbati AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem Sci 2023; 48:450-462. [PMID: 36709077 DOI: 10.1016/j.tibs.2022.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673.
| |
Collapse
|
21
|
Zhang L, Chen W, Liu S, Chen C. Targeting Breast Cancer Stem Cells. Int J Biol Sci 2023; 19:552-570. [PMID: 36632469 PMCID: PMC9830502 DOI: 10.7150/ijbs.76187] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The potential roles of breast cancer stem cells (BCSCs) in tumor initiation and recurrence have been recognized for many decades. Due to their strong capacity for self-renewal and differentiation, BCSCs are the major reasons for poor clinical outcomes and low therapeutic response. Several hypotheses on the origin of cancer stem cells have been proposed, including critical gene mutations in stem cells, dedifferentiation of somatic cells, and cell plasticity remodeling by epithelial-mesenchymal transition (EMT) and the tumor microenvironment. Moreover, the tumor microenvironment, including cellular components and cytokines, modulates the self-renewal and therapeutic resistance of BCSCs. Small molecules, antibodies, and chimeric antigen receptor (CAR)-T cells targeting BCSCs have been developed, and their applications in combination with conventional therapies are undergoing clinical trials. In this review, we focus on the features of BCSCs, emphasize the major factors and tumor environment that regulate the stemness of BCSCs, and discuss potential BCSC-targeting therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China
| | - Wenmin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Kunming College of Life Sciences, the University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| |
Collapse
|
22
|
Genetic Alterations and Deregulation of Hippo Pathway as a Pathogenetic Mechanism in Bone and Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:cancers14246211. [PMID: 36551696 PMCID: PMC9776600 DOI: 10.3390/cancers14246211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved modulator of developmental biology with a key role in tissue and organ size regulation under homeostatic conditions. Like other signaling pathways with a significant role in embryonic development, the deregulation of Hippo signaling contributes to oncogenesis. Central to the Hippo pathway is a conserved cascade of adaptor proteins and inhibitory kinases that converge and regulate the activity of the oncoproteins YAP and TAZ, the final transducers of the pathway. Elevated levels and aberrant activation of YAP and TAZ have been described in many cancers. Though most of the studies describe their pervasive activation in epithelial neoplasms, there is increasing evidence pointing out its relevance in mesenchymal malignancies as well. Interestingly, somatic or germline mutations in genes of the Hippo pathway are scarce compared to other signaling pathways that are frequently disrupted in cancer. However, in the case of sarcomas, several examples of genetic alteration of Hippo members, including gene fusions, have been described during the last few years. Here, we review the current knowledge of Hippo pathway implication in sarcoma, describing mechanistic hints recently reported in specific histological entities and how these alterations represent an opportunity for targeted therapy in this heterogeneous group of neoplasm.
Collapse
|
23
|
Garcia K, Gingras AC, Harvey KF, Tanas MR. TAZ/YAP fusion proteins: mechanistic insights and therapeutic opportunities. Trends Cancer 2022; 8:1033-1045. [PMID: 36096997 PMCID: PMC9671862 DOI: 10.1016/j.trecan.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
The Hippo pathway is dysregulated in many different cancers, but point mutations in the pathway are rare. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) fusion proteins have emerged in almost all major cancer types and represent the most common genetic mechanism by which the two transcriptional co-activators are activated. Given that the N termini of TAZ or YAP are fused to the C terminus of another transcriptional regulator, the resultant fusion proteins hyperactivate a TEAD transcription factor-based transcriptome. Recent advances show that the C-terminal fusion partners confer oncogenic properties to TAZ/YAP fusion proteins by recruiting epigenetic modifiers that promote a hybrid TEAD-based transcriptome. Elucidating these cooperating epigenetic complexes represents a strategy to identify new therapeutic approaches for a pathway that has been recalcitrant to medical therapy.
Collapse
Affiliation(s)
- Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA; Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
Gridnev A, Maity S, Misra JR. Structure-based discovery of a novel small-molecule inhibitor of TEAD palmitoylation with anticancer activity. Front Oncol 2022; 12:1021823. [PMID: 36523977 PMCID: PMC9745137 DOI: 10.3389/fonc.2022.1021823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
The paralogous oncogenic transcriptional coactivators YAP and TAZ are the distal effectors of the Hippo signaling pathway, which plays a critical role in cell proliferation, survival and cell fate specification. They are frequently deregulated in most human cancers, where they contribute to multiple aspects of tumorigenesis including growth, metabolism, metastasis and chemo/immunotherapy resistance. Thus, they provide a critical point for therapeutic intervention. However, due to their intrinsically disordered structure, they are challenging to target directly. Since YAP/TAZ exerts oncogenic activity by associating with the TEAD1-4 transcription factors, to regulate target gene expression, YAP activity can be controlled indirectly by regulating TEAD1-4. Interestingly, TEADs undergo autopalmitoylation, which is essential for their stability and function, and small-molecule inhibitors that prevent this posttranslational modification can render them unstable. In this article we report discovery of a novel small molecule inhibitor of YAP activity. We combined structure-based virtual ligand screening with biochemical and cell biological studies and identified JM7, which inhibits YAP transcriptional reporter activity with an IC50 of 972 nMoles/Ltr. Further, it inhibits YAP target gene expression, without affecting YAP/TEAD localization. Mechanistically, JM7 inhibits TEAD palmitoylation and renders them unstable. Cellular thermal shift assay revealed that JM7 directly binds to TEAD1-4 in cells. Consistent with the inhibitory effect of JM7 on YAP activity, it significantly impairs proliferation, colony-formation and migration of mesothelioma (NCI-H226), breast (MDA-MB-231) and ovarian (OVCAR-8) cancer cells that exhibit increased YAP activity. Collectively, these results establish JM7 as a novel lead compound for development of more potent inhibitors of TEAD palmitoylation for treating cancer.
Collapse
Affiliation(s)
| | | | - Jyoti R. Misra
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
25
|
Chu K, Li Z, Tang W, Jiang X. Updated information regarding management of hepatic epithelioid hemangioendothelioma. Intractable Rare Dis Res 2022; 11:211-214. [PMID: 36457586 PMCID: PMC9709622 DOI: 10.5582/irdr.2022.01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
Hepatic epithelioid hemangioendothelioma (HEHE) is a rare hepatic vascular tumor with a borderline biological behavior between hemangioma and hemangiosarcoma. It tends to be multiple or diffuse subcapsular lesions across the liver but has no characteristic clinical manifestations or imaging findings. On computed tomography and magnetic resonance imaging, these lesions usually have a hypodense appearance with heterogeneous enhancement and a "halo sign" or "lollipop sign" may be evident in some cases. HEHE is diagnosed mainly based on a pathological examination along with differential immunohistochemical markers such as CAMTA1, CD31, CD34, CD10, vimentin, and factor VIII antigen. Currently, there are no standardized treatment guidelines for HEHE, and surgery (curative resection and liver transplantation) remains the mainstay of treatment. Studies have indicated that extra-hepatic metastasis might not be a contraindication for resection or transplantation. Systemic chemotherapeutic agents including doxorubicin, vincristine, interferon-a, 5-fluorouracil, and thalidomide, as well as VEGF-related agents are being investigated, but no agents have been approved for the treatment of HEHE.
Collapse
Affiliation(s)
- Kaijian Chu
- Biliary Surgery Department No. 1, Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zhizheng Li
- Biliary Surgery Department No. 1, Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Wei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xiaoqing Jiang
- Biliary Surgery Department No. 1, Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Ma S, Kanai R, Pobbati AV, Li S, Che K, Seavey CN, Hallett A, Burtscher A, Lamar JM, Rubin BP. The TAZ-CAMTA1 Fusion Protein Promotes Tumorigenesis via Connective Tissue Growth Factor and Ras-MAPK Signaling in Epithelioid Hemangioendothelioma. Clin Cancer Res 2022; 28:3116-3126. [PMID: 35443056 PMCID: PMC9306355 DOI: 10.1158/1078-0432.ccr-22-0421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE A consistent genetic alteration in vascular cancer epithelioid hemangioendothelioma (EHE) is the t(1;3)(p36;q25) chromosomal translocation, which generates a WWTR1(TAZ)-CAMTA1 (TC) fusion gene. TC is a transcriptional coactivator that drives EHE. Here, we aimed to identify the TC transcriptional targets and signaling mechanisms that underlie EHE tumorigenesis. EXPERIMENTAL DESIGN We used NIH3T3 cells transformed with TC (NIH3T3/TC) as a model system to uncover TC-dependent oncogenic signaling. These cells proliferated in an anchorage-independent manner in suspension and soft agar. The findings of the cell-based studies were validated in a xenograft model. RESULTS We identified connective tissue growth factor (CTGF) as a tumorigenic transcriptional target of TC. We show that CTGF binds to integrin αIIbβ3, which is essential for sustaining the anchorage-independent proliferation of transformed NIH3T3/TC cells. NIH3T3/TC cells also have enhanced Ras and MAPK signaling, and the activity of these pathways is reduced upon CTGF knockdown, suggesting that CTGF signaling occurs via the Ras-MAPK cascade. Further, pharmacologic inhibition of MAPK signaling through PD 0325901 and trametinib abrogated TC-driven anchorage-independent growth. Likewise, for tumor growth in vivo, NIH3T3/TC cells require CTGF and MAPK signaling. NIH3T3/TC xenograft growth was profoundly reduced upon CTGF knockdown and after trametinib treatment. CONCLUSIONS Collectively, our results demonstrated that CTGF and the Ras-MAPK signaling cascade are essential for TC-mediated tumorigenesis. These studies provided the preclinical rationale for SARC033 (NCI 10015-NCT03148275), a nonrandomized, open-label, phase II study of trametinib in patients with unresectable or metastatic EHE.
Collapse
Affiliation(s)
- Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ryan Kanai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Shuo Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Caleb N. Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Andrea Hallett
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ashley Burtscher
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - John M. Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Corresponding Author: Brian P. Rubin, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195. Phone: 216-445-6889; E-mail:
| |
Collapse
|
27
|
Unraveling the Biology of Epithelioid Hemangioendothelioma, a TAZ-CAMTA1 Fusion Driven Sarcoma. Cancers (Basel) 2022; 14:cancers14122980. [PMID: 35740643 PMCID: PMC9221450 DOI: 10.3390/cancers14122980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Epithelioid hemangioendothelioma (EHE) is a rare vascular cancer that involves a gain-of-function gene fusion involving TAZ, a transcriptional coactivator, and one of two end effectors of the Hippo pathway. Although the activity of TAZ and/or YAP, a paralog of TAZ, is consistently altered in many cancers, genetic alterations involving YAP/TAZ are rare, and the precise mechanisms by which YAP/TAZ are activated are not well understood in most cancers. Because WWTR1(TAZ)–CAMTA1 is the only genetic alteration in approximately half of EHE, EHE is a genetically clean and homogenous system for understanding how the dysregulation of TAZ promotes tumorigenesis. Therefore, by using EHE as a model system, we hope to elucidate the essential biological pathways mediated by TAZ and identify mechanisms to target them. The findings of EHE research can be applied to other cancers that are addicted to high YAP/TAZ activity. Abstract The activities of YAP and TAZ, the end effectors of the Hippo pathway, are consistently altered in cancer, and this dysregulation drives aggressive tumor phenotypes. While the actions of these two proteins aid in tumorigenesis in the majority of cancers, the dysregulation of these proteins is rarely sufficient for initial tumor development. Herein, we present a unique TAZ-driven cancer, epithelioid hemangioendothelioma (EHE), which harbors a WWTR1(TAZ)–CAMTA1 gene fusion in at least 90% of cases. Recent investigations have elucidated the mechanisms by which YAP/TAP-fusion oncoproteins function and drive tumorigenesis. This review presents a critical evaluation of this recent work, with a particular focus on how the oncoproteins alter the normal activity of TAZ and YAP, and, concurrently, we generate a framework for how we can target the gene fusions in patients. Since EHE represents a paradigm of YAP/TAZ dysregulation in cancer, targeted therapies for EHE may also be effective against other YAP/TAZ-dependent cancers.
Collapse
|
28
|
Ketehouli T, Nguyen Quoc VH, Dong J, Do H, Li X, Wang F. Overview of the roles of calcium sensors in plants’ response to osmotic stress signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:589-599. [PMID: 35339206 DOI: 10.1071/fp22012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Calcium signals serve an important function as secondary messengers between cells in various biological processes due to their robust homeostatic mechanism, maintaining an intracellular free Ca2+ concentration. Plant growth, development, and biotic and abiotic stress are all regulated by Ca2+ signals. Ca2+ binding proteins decode and convey the messages encoded by Ca2+ ions. In the presence of high quantities of Mg2+ and monovalent cations, such sensors bind to Ca2+ ions and modify their conformation in a Ca2+ -dependent manner. Calcium-dependent protein kinases (CPKs), calmodulins (CaMs), and calcineurin B-like proteins are all calcium sensors (CBLs). To transmit Ca2+ signals, CPKs, CBLs, and CaMs interact with target proteins and regulate the expression of their genes. These target proteins may be protein kinases, metabolic enzymes, or cytoskeletal-associated proteins. Beyond its role in plant nutrition as a macroelement and its involvement in the plant cell wall structure, calcium modulates many aspects of development, growth and adaptation to environmental constraints such as drought, salinity and osmotic stresses. This review summarises current knowledge on calcium sensors in plant responses to osmotic stress signalling.
Collapse
Affiliation(s)
- Toi Ketehouli
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Viet Hoang Nguyen Quoc
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jinye Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hoaithuong Do
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
29
|
Che K, Pobbati AV, Seavey CN, Fedorov Y, Komar AA, Burtscher A, Ma S, Rubin BP. Aurintricarboxylic acid is a canonical disruptor of the TAZ-TEAD transcriptional complex. PLoS One 2022; 17:e0266143. [PMID: 35417479 PMCID: PMC9007350 DOI: 10.1371/journal.pone.0266143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Disrupting the formation of the oncogenic YAP/TAZ-TEAD transcriptional complex holds substantial therapeutic potential. However, the three protein interaction interfaces of this complex cannot be easily disrupted using small molecules. Here, we report that the pharmacologically active small molecule aurintricarboxylic acid (ATA) acts as a disruptor of the TAZ-TEAD complex. ATA was identified in a high-throughput screen using a TAZ-TEAD AlphaLISA assay that was tailored to identify disruptors of this transcriptional complex. We further used fluorescence polarization assays both to confirm disruption of the TAZ-TEAD complex and to demonstrate that ATA binds to interface 3. We have previously shown that cell-based models that express the oncogenic TAZ-CAMTA1 (TC) fusion protein display enhanced TEAD transcriptional activity because TC functions as an activated form of TAZ. Utilizing cell-based studies and our TC model system, we performed TC/TEAD reporter, RNA-Seq, and qPCR assays and found that ATA inhibits TC/TEAD transcriptional activity. Further, disruption of TC/TEAD and TAZ/TEAD interaction by ATA abrogated anchorage-independent growth, the phenotype most closely linked to dysregulated TAZ/TEAD activity. Therefore, this study demonstrates that ATA is a novel small molecule that has the ability to disrupt the undruggable TAZ-TEAD interface.
Collapse
Affiliation(s)
- Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Caleb N. Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yuriy Fedorov
- Small Molecule Drug Development Core, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anton A. Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ashley Burtscher
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
30
|
Savvidou O, Korkolopoulou P, Lakiotaki E, Sioutis S, Vottis C, Gavriil P, Melissaridou D, Papagelopoulos P. Multifocal Epithelioid Hemangioma of bone: a rare vascular neoplasm. Clinicopathological diagnosis and treatment. A case report and literature review. J Long Term Eff Med Implants 2022; 32:47-55. [DOI: 10.1615/jlongtermeffmedimplants.2022041868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Black MA, Charville GW. Diagnosis of soft tissue tumors using immunohistochemistry as a surrogate for recurrent fusion oncoproteins. Semin Diagn Pathol 2022; 39:38-47. [PMID: 34750023 PMCID: PMC8688262 DOI: 10.1053/j.semdp.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Soft tissue neoplasms encompass a broad spectrum of clinicopathologic manifestations. In a subset of soft tissue tumors, spanning a wide range of clinical behavior from indolent to highly aggressive, recurrent genetic translocations yield oncogenic fusion proteins that drive neoplastic growth. Beyond functioning as primary mechanisms of tumorigenesis, recurrent translocations represent key diagnostic features insofar as the presence of a particular oncogenic gene fusion generally points to specific tumor entities. In addition to more direct methods for identifying recurrent translocations, such as conventional cytogenetics or fluorescence in situ hybridization, immunohistochemistry for a component of the fusion oncoprotein increasingly is being used as a surrogate marker, exploiting the tendency of these fusion components to be distinctively overexpressed by translocation-bearing tumor cells. Diagnostic immunohistochemistry can also be used to identify the characteristic gene expression changes that occur downstream of oncogenic fusions. Here, we review the use of immunohistochemistry to detect surrogate markers of recurrent translocations in soft tissue tumors, focusing on the practical applications and limitations of this diagnostic approach.
Collapse
Affiliation(s)
- Margaret A. Black
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory W. Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Correspondence to: Gregory W. Charville, MD, PhD, Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Lane 235, Stanford, CA 94305-5324 (, tel: 650-723-8310)
| |
Collapse
|
32
|
Papke DJ, Hornick JL. Recent advances in the diagnosis, classification and molecular pathogenesis of cutaneous mesenchymal neoplasms. Histopathology 2021; 80:216-232. [DOI: 10.1111/his.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Affiliation(s)
- D J Papke
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| | - J L Hornick
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
33
|
Liu T, Yang Y, Xie Z, Luo Q, Yang D, Liu X, Zhao H, Wei Q, Liu Y, Li L, Wang Y, Wang F, Yu J, Xu J, Yu J, Yi P. The RNA binding protein QKI5 suppresses ovarian cancer via downregulating transcriptional coactivator TAZ. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:388-400. [PMID: 34552820 PMCID: PMC8426461 DOI: 10.1016/j.omtn.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/17/2021] [Indexed: 01/14/2023]
Abstract
RNA-binding proteins (RBPs) are a set of proteins involved in many steps of post-transcriptional regulation to maintain cellular homeostasis. Ovarian cancer (OC) is the most deadly gynecological cancer, but the roles of RBPs in OC are not fully understood. Here, we reported that the RBP QKI5 was significantly negatively correlated with aggressive tumor stage and worse prognosis in serous OC patients. QKI5 could suppress the growth and metastasis of OC cells both in vitro and in vivo. Transcriptome analysis showed that QKI5 negatively regulated the expression of the transcriptional coactivator TAZ and its downstream targets (e.g., CTGF and CYR61). Mechanistically, QKI5 bound to TAZ mRNA and recruited EDC4, thus decreasing the stability of TAZ mRNA. Functionally, TAZ was involved in the QKI5-mediated tumor suppression of OC cells, and QKI5 expression was inversely correlated with TAZ, CTGF, and CYR61 expression in OC patients. Together, our study indicates that QKI5 plays a tumor-suppressive role and negatively regulates TAZ expression in OC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Zhe Xie
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qingya Luo
- Department of Pathology, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Dan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Lanfang Li
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fang Wang
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jia Yu
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
34
|
Dermawan JK, Azzato EM, Billings SD, Fritchie KJ, Aubert S, Bahrami A, Barisella M, Baumhoer D, Blum V, Bode B, Aesif SW, Bovée JVMG, Dickson BC, van den Hout M, Lucas DR, Moch H, Oaxaca G, Righi A, Sciot R, Sumathi V, Yoshida A, Rubin BP. YAP1-TFE3-fused hemangioendothelioma: a multi-institutional clinicopathologic study of 24 genetically-confirmed cases. Mod Pathol 2021; 34:2211-2221. [PMID: 34381186 DOI: 10.1038/s41379-021-00879-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022]
Abstract
YAP1-TFE3-fused hemangioendothelioma is an extremely rare malignant vascular tumor. We present the largest multi-institutional clinicopathologic study of YAP1-TFE3-fused hemangioendothelioma to date. The 24 cases of YAP1-TFE3-fused hemangioendothelioma showed a female predominance (17 female, 7 male) across a wide age range (20-78 years old, median 44). Tumors were most commonly located in soft tissue (50%), followed by bone (29%), lung (13%), and liver (8%), ranging from 3 to 115 mm in size (median 40 mm). About two-thirds presented with multifocal disease, including 7 cases with distant organ metastasis. Histopathologically, we describe three dominant architectural patterns: solid sheets of coalescing nests, pseudoalveolar and (pseudo)vasoformative pattern, and discohesive strands and clusters of cells set in a myxoid to myxohyaline stroma. These patterns were present in variable proportions across different tumors and often coexisted within the same tumor. The dominant cytomorphology (88%) was large epithelioid cells with abundant, glassy eosinophilic to vacuolated cytoplasm, prominent nucleoli and well-demarcated cell borders. Multinucleated or binucleated cells, prominent admixed erythrocytic and lymphocytic infiltrates, and intratumoral fat were frequently present. Immunohistochemically, ERG, CD31, and TFE3 were consistently expressed, while expression of CD34 (83%) and cytokeratin AE1/AE3 (20%) was variable. CAMTA1 was negative in all but one case. All cases were confirmed by molecular testing to harbor YAP1-TFE3 gene fusions: majority with YAP1 exon 1 fused to TFE3 exon 4 (88%), or less commonly, TFE3 exon 6 (12%). Most patients (88%) were treated with primary surgical resection. Over a follow-up period of 4-360 months (median 36 months) in 17 cases, 35% of patients remained alive without disease, and 47% survived many years with stable, albeit multifocal and/or metastatic disease. Five-year progression-free survival probability was 88%. We propose categorizing YAP1-TFE3-fused hemangioendothelioma as a distinct disease entity given its unique clinical and histopathologic characteristics in comparison to conventional epithelioid hemangioendothelioma.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elizabeth M Azzato
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven D Billings
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karen J Fritchie
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sebastien Aubert
- Department of Pathology, Institut de Pathologie, University of Lille, Lille, France
| | - Armita Bahrami
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Marta Barisella
- Struttura Complessa Anatomia Patologica, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Veronika Blum
- FMH Medical Oncology, Luzerner Kantonsspital, Luzern, Switzerland
| | - Beata Bode
- Pathology Institute Enge and University of Zurich, Zurich, Switzerland
| | - Scott W Aesif
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Mari van den Hout
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David R Lucas
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gabriel Oaxaca
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Vaiyapuri Sumathi
- Department of Musculoskeletal Pathology, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, UK
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
35
|
Seavey CN, Rubin BP. Letter by Seavey and Rubin Regarding Article, "Sustained Activation of Endothelial YAP1 Causes Epithelioid Hemangioendothelioma". Arterioscler Thromb Vasc Biol 2021; 41:e491-e492. [PMID: 34550713 DOI: 10.1161/atvbaha.121.316754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Caleb N Seavey
- Department of Cancer Biology, Lerner Research Institute (C.N.S., B.P.R.), Cleveland Clinic Foundation, OH.,Department of General Surgery, Digestive Disease and Surgery Institute (C.N.S.), Cleveland Clinic Foundation, OH.,Department of Molecular Medicine, PRISM Program, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, OH (C.N.S.)
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute (C.N.S., B.P.R.), Cleveland Clinic Foundation, OH.,Robert J. Tomsich Pathology and Laboratory Medicine Institute (B.P.R.), Cleveland Clinic Foundation, OH
| |
Collapse
|
36
|
Ong SLM, Szuhai K, Bovée JVMG. Gene fusions in vascular tumors and their underlying molecular mechanisms. Expert Rev Mol Diagn 2021; 21:897-909. [PMID: 34225547 DOI: 10.1080/14737159.2021.1950533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The group of vascular tumors contains many different entities, and is considered difficult by pathologists, as they often have overlapping histological characteristics. Chromosomal translocations have been identified in ~20% of mesenchymal tumors and are considered the drivers of tumor formation. Many translocations have been discovered over the past decade through next-generation sequencing. This technological advancement has also revealed several recurrent gene fusions in vascular tumors. AREAS COVERED This review will discuss the various vascular tumors for which recurrent gene fusions have been identified. The gene fusions and the presumed molecular mechanisms underlying tumorigenesis are shown, and potential implications for targeted therapies discussed. The identification of these gene fusions in vascular tumors has improved diagnostic accuracy, especially since several of these fusions can be easily detected using surrogate immunohistochemical markers. EXPERT OPINION The identification of gene fusions in a subset of vascular tumors over the past decade has improved diagnostic accuracy, and has provided the pathologists with novel diagnostic tools to accurately diagnose these often difficult tumors. Moreover, the increased understanding of the underlying molecular mechanisms can guide the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sheena L M Ong
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Dermawan JK, Azzato EM, McKenney JK, Liegl-Atzwanger B, Rubin BP. YAP1-TFE3 gene fusion variant in clear cell stromal tumour of lung: report of two cases in support of a distinct entity. Histopathology 2021; 79:940-946. [PMID: 34156713 DOI: 10.1111/his.14437] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
AIMS Clear cell (haemangioblastoma-like) stromal tumour of the lung is a newly described, rare pulmonary neoplasm. Recurrent YAP1-TFE3 gene fusions have recently been reported in three cases. We describe two additional cases and confirm the characteristic YAP1-TFE3 gene fusion. METHODS AND RESULTS Two mesenchymal tumours of lung were identified from our soft tissue pathology consultation services and RNA sequencing was performed. Both cases were in male patients, aged 35 and 77 years. Both presented as solitary lung nodules measuring 3.9 and 7.5 cm in greatest dimension. Histopathologically, the tumours were composed of epithelioid to plump spindle cells arranged in packets and solid sheets. The cells showed fusiform to ovoid nuclei with open chromatin, variably prominent nucleoli and scant to moderate, clear to eosinophilic cytoplasm. Cytological atypia and significant mitotic activity were minimal. None of the tumours expressed lineage-specific immunophenotypical markers. Both cases were diffusely positive for nuclear TFE3. Unlike YAP1-TFE3-fused epithelioid haemangioendothelioma, for which the fusion breakpoint occurs in YAP1 exon 1 and TFE3 exons 4 or 6, the fusion breakpoints of these tumours were located in YAP1 exon 4 and TFE3 exon 7. Following complete surgical resection, neither of the tumours has recurred or metastasised (follow-up period 6-7 months). CONCLUSIONS We validate the presence of YAP1-TFE3 gene fusion in a unique primary mesenchymal tumour of lung, adding additional support for clear cell stromal tumour of the lung as a distinct entity.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elizabeth M Azzato
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Translational Sarcoma Pathology, Medical University of Graz, Graz, Austria
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
38
|
Stacchiotti S, Miah AB, Frezza AM, Messiou C, Morosi C, Caraceni A, Antonescu CR, Bajpai J, Baldini E, Bauer S, Biagini R, Bielack S, Blay JY, Bonvalot S, Boukovinas I, Bovee JVMG, Boye K, Brodowicz T, Callegaro D, De Alava E, Deoras-Sutliff M, Dufresne A, Eriksson M, Errani C, Fedenko A, Ferraresi V, Ferrari A, Fletcher CDM, Garcia Del Muro X, Gelderblom H, Gladdy RA, Gouin F, Grignani G, Gutkovich J, Haas R, Hindi N, Hohenberger P, Huang P, Joensuu H, Jones RL, Jungels C, Kasper B, Kawai A, Le Cesne A, Le Grange F, Leithner A, Leonard H, Lopez Pousa A, Martin Broto J, Merimsky O, Merriam P, Miceli R, Mir O, Molinari M, Montemurro M, Oldani G, Palmerini E, Pantaleo MA, Patel S, Piperno-Neumann S, Raut CP, Ravi V, Razak ARA, Reichardt P, Rubin BP, Rutkowski P, Safwat AA, Sangalli C, Sapisochin G, Sbaraglia M, Scheipl S, Schöffski P, Strauss D, Strauss SJ, Sundby Hall K, Tap WD, Trama A, Tweddle A, van der Graaf WTA, Van De Sande MAJ, Van Houdt W, van Oortmerssen G, Wagner AJ, Wartenberg M, Wood J, Zaffaroni N, Zimmermann C, Casali PG, Dei Tos AP, Gronchi A. Epithelioid hemangioendothelioma, an ultra-rare cancer: a consensus paper from the community of experts. ESMO Open 2021; 6:100170. [PMID: 34090171 PMCID: PMC8182432 DOI: 10.1016/j.esmoop.2021.100170] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is an ultra-rare, translocated, vascular sarcoma. EHE clinical behavior is variable, ranging from that of a low-grade malignancy to that of a high-grade sarcoma and it is marked by a high propensity for systemic involvement. No active systemic agents are currently approved specifically for EHE, which is typically refractory to the antitumor drugs used in sarcomas. The degree of uncertainty in selecting the most appropriate therapy for EHE patients and the lack of guidelines on the clinical management of the disease make the adoption of new treatments inconsistent across the world, resulting in suboptimal outcomes for many EHE patients. To address the shortcoming, a global consensus meeting was organized in December 2020 under the umbrella of the European Society for Medical Oncology (ESMO) involving >80 experts from several disciplines from Europe, North America and Asia, together with a patient representative from the EHE Group, a global, disease-specific patient advocacy group, and Sarcoma Patient EuroNet (SPAEN). The meeting was aimed at defining, by consensus, evidence-based best practices for the optimal approach to primary and metastatic EHE. The consensus achieved during that meeting is the subject of the present publication. This consensus paper provides key recommendations on the management of epithelioid hemangioendothelioma (EHE). Recommendations followed a consensus meeting between experts and a representative of the EHE advocacy group and SPAEN. Authorship includes a multidisciplinary group of experts from different institutions from Europe, North America and Asia.
Collapse
Affiliation(s)
- S Stacchiotti
- Adult Mesenchymal Tumor and Rare Cancer Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - A B Miah
- The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - A M Frezza
- Adult Mesenchymal Tumor and Rare Cancer Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - C Messiou
- Department of Radiology, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - C Morosi
- Radiology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A Caraceni
- Palliative Care Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - C R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, USA
| | - J Bajpai
- Medical Oncology Department, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - E Baldini
- Department of Radiation Oncology, Dana-Farber Cancer Center/Brigham and Women's Hospital, Boston, USA
| | - S Bauer
- Department of Medical Oncology, West German Cancer Center, Sarcoma Center, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - R Biagini
- Orthopaedic Department, Regina Elena National Cancer Institute, Rome, Italy
| | - S Bielack
- Klinikum Stuttgart - Olgahospital, Zentrum für Kinder-, Jugend- und Frauenmedizin, Stuttgart Cancer Center, Pädiatrische Onkologie, Hämatologie, Immunologie, Stuttgart, Germany
| | - J Y Blay
- Department of Medical Oncology, Centre Leon Berard, Université Claude Bernard Lyon, Unicancer, Lyon, France
| | - S Bonvalot
- Department of Surgical Oncology, Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | | | - J V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - K Boye
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - T Brodowicz
- Medical University Vienna & General Hospital Department of Internal Medicine 1/Oncology, Vienna, Austria
| | - D Callegaro
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - E De Alava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain; Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | | | - A Dufresne
- Department of Medical Oncology, Centre Leon Berard, Université Claude Bernard Lyon, Unicancer, Lyon, France
| | - M Eriksson
- Department of Oncology, Skane University Hospital and Lund University, Lund, Sweden
| | - C Errani
- Orthopaedic Service, Musculoskeletal Oncology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A Fedenko
- Medical Oncology Division, P.A. Herzen Cancer Research Institute, Moscow, Russian Federation
| | - V Ferraresi
- Sarcomas and Rare Tumors Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - A Ferrari
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - C D M Fletcher
- Department of Pathology Brigham & Women's Hospital, Boston, USA
| | - X Garcia Del Muro
- University of Barcelona and Genitourinary Cancer and Sarcoma Unit Institut Català d'Oncologia, Hospitalet, Barcelona, Spain
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - R A Gladdy
- University of Toronto and Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - F Gouin
- Department of Surgery, Centre Leon Berard, Lyon, France
| | - G Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - J Gutkovich
- The EHE Foundation, Wisconsin, USA; NUY Langone Medical Center, New York, USA
| | - R Haas
- Department of Radiotherapy, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Radiotherapy, the Leiden University Medical Center, Leiden, the Netherlands
| | - N Hindi
- Group of Advanced Therapies and Biomarkers in Sarcoma, Institute of Biomedicine of Seville (IBIS, HUVR, CSIC, Universidad de Sevilla), Seville, Spain
| | - P Hohenberger
- Division of Surgical Oncology & Thoracic Surgery, Mannheim University Medical Center, University of Heidelberg, Heidelberg, Germany
| | - P Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - H Joensuu
- Department of Oncology, Helsinki University Hospital & Helsinki University, Helsinki, Finland
| | - R L Jones
- Department of Cancer, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - C Jungels
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - B Kasper
- University of Heidelberg, Mannheim University Medical Center, Sarcoma Unit, Mannheim, Germany
| | - A Kawai
- Musculoskeletal Oncology and Rehabilitation Medicine, Rare Cancer Center National Cancer Center Hospital, Tokyo, Japan
| | - A Le Cesne
- International Department, Gustave Roussy, Villejuif, France
| | - F Le Grange
- UCLH - University College London Hospitals NHS Foundation Trust, London, UK
| | - A Leithner
- Department of Orthopaedics and Trauma Medical University Graz, Graz, Austria
| | - H Leonard
- Chair of Trustees of the EHE Rare Cancer Charity (UK), Charity number 1162472
| | - A Lopez Pousa
- Medical Oncology Department, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - J Martin Broto
- Hospital Universitario Fundación Jimenez Diaz, Madrid, Spain
| | - O Merimsky
- Unit of Soft Tissue and Bone Oncology, Division of Oncology, Tel-Aviv Medical Center affiliated with Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - P Merriam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - R Miceli
- Department of Clinical Epidemiology and Trial Organisation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - O Mir
- Sarcoma Group, Gustave Roussy, Villejuif, France
| | - M Molinari
- University of Pittsburgh Medical Center, Thomas Starzl Transplant Institute, Pittsburgh, USA
| | | | - G Oldani
- Division of Abdominal Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - E Palmerini
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M A Pantaleo
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - S Patel
- Sarcoma Center, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | | - C P Raut
- Department of Surgery, Brigham and Women's Hospital, Boston, USA; Center for Sarcoma and Bone Oncology, Harvard Medical School, Boston, USA; Dana Farber Cancer Center, Harvard Medical School, Boston, USA
| | - V Ravi
- Sarcoma Center, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - A R A Razak
- Princess Margaret Cancer Centre and Sinai Healthcare System & Faculty of Medicine, University of Toronto, Toronto, Canada
| | - P Reichardt
- Helios Klinikum Berlin-Buch, Department of Oncology and Palliative Care, Berlin, Germany
| | - B P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, USA
| | - P Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Department of Soft Tissue/Bone Sarcoma and Melanoma, Warsaw, Poland
| | - A A Safwat
- Aarhus University Hospital, Aarhus, Denmark
| | - C Sangalli
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - G Sapisochin
- Multi-Organ Transplant and HPB Surgical Oncology, Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Sbaraglia
- Department of Pathology, Azienda Ospedaliera Università Padova, Padua, Italy
| | - S Scheipl
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | | | - D Strauss
- Department of Surgery, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - S J Strauss
- University College London Hospital, London, UK
| | - K Sundby Hall
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - W D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, USA
| | - A Trama
- Department of Research, Evaluative Epidemiology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A Tweddle
- Palliative Care, The Royal Marsden Hospital and The Institute of Cancer Research London
| | - W T A van der Graaf
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M A J Van De Sande
- Department of Orthopedic Surgery Bone and Soft Tissue Tumor Unit, Leiden University Medical Center, Leiden, The Netherlands
| | - W Van Houdt
- Sarcoma and Melanoma Unit, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G van Oortmerssen
- Co-Chair of Sarcoma Patients EuroNet (SPAEN), Woelfersheim, Germany & Chairman of the Dutch organisation for sarcoma patients (Patiëntenplatform Sarcomen), Guest researcher at Leiden University (Leiden Institute for Advanced Computer Science), Leiden University, Leiden, The Netherlands
| | - A J Wagner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - M Wartenberg
- Chair of the Board of Directors of Sarcoma Patients EuroNet (SPAEN), Sarcoma Patients EuroNet (SPAEN), Woelfersheim, Germany
| | - J Wood
- The Royal Marsden NHS Foundation Trust, London, UK
| | - N Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - C Zimmermann
- Department of Supportive Care, Princess Margaret Cancer Centre and Division of Palliative Medicine, Department of Medicine, University of Toronto, Toronto, Canada
| | - P G Casali
- Adult Mesenchymal Tumor and Rare Cancer Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A P Dei Tos
- Department of Pathology, Azienda Ospedaliera Università Padova, Padua, Italy
| | - A Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
39
|
Toward a Personalized Therapy in Soft-Tissue Sarcomas: State of the Art and Future Directions. Cancers (Basel) 2021; 13:cancers13102359. [PMID: 34068344 PMCID: PMC8153286 DOI: 10.3390/cancers13102359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
Soft-tissue sarcomas are rare tumors characterized by pathogenetic, morphological, and clinical intrinsic variability. Median survival of patients with advanced tumors are usually chemo- and radio-resistant, and standard treatments yield low response rates and poor survival results. The identification of defined genomic alterations in sarcoma could represent the premise for targeted treatments. Summarizing, soft-tissue sarcomas can be differentiated into histotypes with reciprocal chromosomal translocations, with defined oncogenic mutations and complex karyotypes. If the latter are improbably approached with targeted treatments, many suggest that innovative therapies interfering with the identified fusion oncoproteins and altered pathways could be potentially resolutive. In most cases, the characteristic genetic signature is discouragingly defined as "undruggable", which poses a challenge for the development of novel pharmacological approaches. In this review, a summary of genomic alterations recognized in most common soft-tissue sarcoma is reported together with current and future therapeutic opportunities.
Collapse
|
40
|
Merritt N, Garcia K, Rajendran D, Lin ZY, Zhang X, Mitchell KA, Borcherding N, Fullenkamp C, Chimenti MS, Gingras AC, Harvey KF, Tanas MR. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. eLife 2021; 10:62857. [PMID: 33913810 PMCID: PMC8143797 DOI: 10.7554/elife.62857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next-generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers. The proliferation of human cells is tightly regulated to ensure that enough cells are made to build and repair organs and tissues, while at the same time stopping cells from dividing uncontrollably and damaging the body. To get the right balance, cells rely on physical and chemical cues from their environment that trigger the biochemical signals that regulate two proteins called TAZ and YAP. These proteins control gene activity by regulating the rate at which genes are copied to produce proteins. If this process becomes dysregulated, cells can grow uncontrollably, causing cancer. In cancer cells, it is common to find TAZ and YAP fused to other proteins. In epithelioid hemangioendothelioma, a rare cancer that grows in the blood vessels, cancerous growth can be driven by a version of TAZ fused to the protein CAMTA1, or a version of YAP fused to the protein TFE3. While the role of TAZ and YAP in promoting gene activity is known, it is unclear how CAMTA1 and TFE3 contribute to cell growth becoming dysregulated. Merritt, Garcia et al. studied sarcoma cell lines to show that these two fusion proteins, TAZ-CAMTA1 and YAP-TFE3, change the pattern of gene activity seen in the cells compared to TAZ or YAP alone. An analysis of molecules that interact with the two fusion proteins identified a complex called ATAC as the cause of these changes. This complex adds chemical markers to DNA-packaging proteins, which control which genes are available for activation. The fusion proteins combine the ability of TAZ and YAP to control gene activity and the ability of CAMTA1 and TFE3 to make DNA more accessible, allowing the fusion proteins to drive uncontrolled cancerous growth. Similar TAZ and YAP fusion proteins have been found in other cancers, which can activate genes and potentially alter DNA packaging. Targeting drug development efforts at the proteins that complex with TAZ and YAP fusion proteins may lead to new therapies.
Collapse
Affiliation(s)
- Nicole Merritt
- Department of Pathology, University of Iowa, Iowa City, United States
| | - Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States
| | - Dushyandi Rajendran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | | | - Katrina A Mitchell
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, United States
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, United States.,Cancer Biology Graduate Program, University of Iowa, Iowa City, United States.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States.,Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States
| |
Collapse
|
41
|
Desai C, Thomason J, Kohlmeyer JL, Reisetter AC, Ahirwar P, Jahanseir K, Leidinger M, Ofori-Amanfo G, Fritchie K, Velu SE, Breheny P, Quelle DE, Tanas MR. Prognostic and therapeutic value of the Hippo pathway, RABL6A, and p53-MDM2 axes in sarcomas. Oncotarget 2021; 12:740-755. [PMID: 33889298 PMCID: PMC8057271 DOI: 10.18632/oncotarget.27928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 01/26/2023] Open
Abstract
Additional prognostic and therapeutic biomarkers effective across different histological types of sarcoma are needed. Herein we evaluate expression of TAZ and YAP, the p53-MDM2 axis, and RABL6A, a novel oncoprotein with potential ties to both pathways, in sarcomas of different histological types. Immunohistochemical staining of a tissue microarray including 163 sarcomas and correlation with clinical data showed that elevated YAP and TAZ independently predict worse overall and progression-free survival, respectively. In the absence of p53 expression, combined TAZ and YAP expression adversely affect overall, progression free, and metastasis free survival more than TAZ or YAP activation alone. RABL6A independently predicted shorter time to metastasis and was positively correlated with p53, MDM2 and YAP expression, supporting a possible functional relationship between the biomarkers. Network analysis further showed that TAZ is positively correlated with MDM2 expression. The data implicate all five proteins as clinically relevant downstream players in the Hippo pathway. Finally, a novel inhibitor of MDM2 (MA242), effectively suppressed the survival of sarcoma cell lines from different histological types regardless of p53 status. These findings suggest both independent and cooperative roles for all five biomarkers across different histological types of sarcoma in predicting patient outcomes and potentially guiding future therapeutic approaches.
Collapse
Affiliation(s)
- Chandni Desai
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,These authors contributed equally to this work
| | - Jon Thomason
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,These authors contributed equally to this work
| | - Jordan L Kohlmeyer
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.,Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Anna C Reisetter
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Khadijeh Jahanseir
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Dawn E Quelle
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.,Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
42
|
Seavey CN, Pobbati AV, Hallett A, Ma S, Reynolds JP, Kanai R, Lamar JM, Rubin BP. WWTR1(TAZ)- CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev 2021; 35:512-527. [PMID: 33766982 PMCID: PMC8015722 DOI: 10.1101/gad.348220.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Epithelioid hemangioendothelioma (EHE) is a genetically homogenous vascular sarcoma that is a paradigm for TAZ dysregulation in cancer. EHE harbors a WWTR1(TAZ)-CAMTA1 gene fusion in >90% of cases, 45% of which have no other genetic alterations. In this study, we used a first of its kind approach to target the Wwtr1-Camta1 gene fusion to the Wwtr1 locus, to develop a conditional EHE mouse model whereby Wwtr1-Camta1 is controlled by the endogenous transcriptional regulators upon Cre activation. These mice develop EHE tumors that are indistinguishable from human EHE clinically, histologically, immunohistochemically, and genetically. Overall, these results demonstrate unequivocally that TAZ-CAMTA1 is sufficient to drive EHE formation with exquisite specificity, as no other tumor types were observed. Furthermore, we fully credential this unique EHE mouse model as a valid preclinical model for understanding the role of TAZ dysregulation in cancer formation and for testing therapies directed at TAZ-CAMTA1, TAZ, and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Caleb N Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, PRISM Program, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Andrea Hallett
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Jordan P Reynolds
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Ryan Kanai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
43
|
Driskill JH, Zheng Y, Wu BK, Wang L, Cai J, Rakheja D, Dellinger M, Pan D. WWTR1(TAZ)-CAMTA1 reprograms endothelial cells to drive epithelioid hemangioendothelioma. Genes Dev 2021; 35:495-511. [PMID: 33766984 PMCID: PMC8015719 DOI: 10.1101/gad.348221.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
In this study, Driskill et al. studied whether the TAZ-CAMTA1 gene fusion is a driver of epithelioid hemangioendothelioma (EHE), a poorly understood and devastating vascular cancer. They show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors, and their findings provide the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE. Epithelioid hemangioendothelioma (EHE) is a poorly understood and devastating vascular cancer. Sequencing of EHE has revealed a unique gene fusion between the Hippo pathway nuclear effector TAZ (WWTR1) and the brain-enriched transcription factor CAMTA1 in ∼90% of cases. However, it remains unclear whether the TAZ-CAMTA1 gene fusion is a driver of EHE, and potential targeted therapies are unknown. Here, we show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors. We further show that activated TAZ resembles TAZ-CAMTA1 in driving the formation of EHE-like vascular tumors, suggesting that constitutive activation of TAZ underlies the pathological features of EHE. We show that TAZ-CAMTA1 initiates an angiogenic and regenerative-like transcriptional program in endothelial cells, and disruption of the TAZ-CAMTA1-TEAD interaction or ectopic expression of a dominant negative TEAD in vivo inhibits TAZ-CAMTA1-mediated transformation. Our study provides the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bo-Kuan Wu
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jing Cai
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Pathology and Laboratory Medicine, Children's Health, Dallas, Texas 75235, USA
| | - Michael Dellinger
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
44
|
Gigante E, Paradis V, Ronot M, Cauchy F, Soubrane O, Ganne-Carrié N, Nault JC. New insights into the pathophysiology and clinical care of rare primary liver cancers. JHEP Rep 2021; 3:100174. [PMID: 33205035 PMCID: PMC7653076 DOI: 10.1016/j.jhepr.2020.100174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocholangiocarcinoma, fibrolamellar carcinoma, hepatic haemangioendothelioma and hepatic angiosarcoma represent less than 5% of primary liver cancers. Fibrolamellar carcinoma and hepatic haemangioendothelioma are driven by unique somatic genetic alterations (DNAJB1-PRKCA and CAMTA1-WWTR1 fusions, respectively), while the pathogenesis of hepatocholangiocarcinoma remains more complex, as suggested by its histological diversity. Histology is the gold standard for diagnosis, which remains challenging even in an expert centre because of the low incidences of these liver cancers. Resection, when feasible, is the cornerstone of treatment, together with liver transplantation for hepatic haemangioendothelioma. The role of locoregional therapies and systemic treatments remains poorly studied. In this review, we aim to describe the recent advances in terms of diagnosis and clinical management of these rare primary liver cancers.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- AFP, alpha-fetoprotein
- APHE, arterial phase hyperenhancement
- CA19-9, carbohydrate antigen 19-9
- CCA, cholangiocarcinoma
- CEUS, contrast-enhanced ultrasound
- CK, cytokeratin
- CLC, cholangiolocellular carcinoma
- EpCAM, epithelial cell adhesion molecule
- FISH, fluorescence in situ hybridisation
- FLC, fibrolamellar carcinoma
- Fibrolamellar carcinoma
- HAS, hepatic angiosarcoma
- HCC, hepatocellular carcinoma
- HEH, hepatic epithelioid haemangioendothelioma
- HepPar1, hepatocyte specific antigen antibody
- Hepatic angiosarcoma
- Hepatic hemangioendothelioma
- Hepatocellular carcinoma
- Hepatocholangiocarcinoma
- IHC, immunohistochemistry
- LI-RADS, liver imaging reporting and data system
- LT, liver transplantation
- Mixed tumor
- RT-PCR, reverse transcription PCR
- SIRT, selective internal radiation therapy
- TACE, transarterial chemoembolisation
- WHO, World Health Organization
- cHCC-CCA, combined hepatocholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
Collapse
Affiliation(s)
- Elia Gigante
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
| | - Valérie Paradis
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service d'anatomie pathologique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Maxime Ronot
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de radiologie, Hôpital Beaujon, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - François Cauchy
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Olivier Soubrane
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Nathalie Ganne-Carrié
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | - Jean-Charles Nault
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| |
Collapse
|
45
|
Recurrent YAP1 and MAML2 Gene Rearrangements in Retiform and Composite Hemangioendothelioma. Am J Surg Pathol 2021; 44:1677-1684. [PMID: 32991341 DOI: 10.1097/pas.0000000000001575] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retiform and composite hemangioendotheliomas (CHEs) are both locally aggressive, rarely metastasizing vascular neoplasms characterized by arborizing vascular channels lined by endothelial cells with a hobnail morphology. CHE displays additional cytologic and architectural components, including often vacuolated epithelioid cells, solid areas, or features reminiscent of well-differentiated angiosarcoma. Triggered by an index case of a soft tissue retiform hemangioendothelioma (RHE) which revealed a YAP1-MAML2 gene fusion by targeted RNA sequencing, we sought to investigate additional cases in this morphologic spectrum for this genetic abnormality. A total of 24 cases, 13 RHE and 11 CHE involving skin and soft tissue were tested by fluorescence in situ hybridization using custom BAC probes for rearrangements involving these genes. An additional visceral CHE with neuroendocrine differentiation was tested by targeted RNA sequencing. Among the soft tissue cohort, 5/13 (38%) RHE and 3/11 (27%) CHE showed YAP1 gene rearrangements, with 5 cases showing a YAP1-MAML2 fusion, including all 3 CHE. The single neuroendocrine CHE showed the presence of a PTBP1-MAML2 fusion. All YAP1-positive CHE lesions occurred in female children at acral sites, compared with fusion-negative cases which occurred in adults, with a wide anatomic distribution. YAP1-positive RHE occurred preferentially in males and lower limb, compared with negative cases. These results suggest that RHE and CHE represent a morphologic continuum, sharing abnormalities in YAP1 and MAML2 genes. In contrast, the neuroendocrine CHE occurring in a 37-year-old male harbored a distinct PTBP1-MAML2 fusion and showed aggressive clinical behavior (pancreatic mass with multiple liver and lung metastases). These preliminary findings raise the possibility that neuroendocrine CHE may be genetically distinct from the conventional RHE/CHE spectrum. Further studies are needed to investigate the pathogenetic relationship of fusion-negative cases with this subset and, less likely, with other members of the HE family of tumors.
Collapse
|
46
|
Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 2021; 475:205-221. [PMID: 33428889 DOI: 10.1016/j.ydbio.2020.12.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
YAP1 is a transcriptional co-activator whose activity is controlled by the Hippo signaling pathway. In addition to important functions in normal tissue homeostasis and regeneration, YAP1 has also prominent functions in cancer initiation, aggressiveness, metastasis, and therapy resistance. In this review we are discussing the molecular functions of YAP1 and its roles in cancer, with a focus on the different mechanisms of de-regulation of YAP1 activity in human cancers, including inactivation of upstream Hippo pathway tumor suppressors, regulation by intersecting pathways, miRNAs, and viral oncogenes. We are also discussing new findings on the function and biology of the recently identified family of YAP1 gene fusions, that constitute a new type of activating mutation of YAP1 and that are the likely oncogenic drivers in several subtypes of human cancers. Lastly, we also discuss different strategies of therapeutic inhibition of YAP1 functions.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| |
Collapse
|
47
|
Wang X, Hu LP, Qin WT, Yang Q, Chen DY, Li Q, Zhou KX, Huang PQ, Xu CJ, Li J, Yao LL, Wang YH, Tian GA, Yang JY, Yang MW, Liu DJ, Sun YW, Jiang SH, Zhang XL, Zhang ZG. Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nat Commun 2021; 12:174. [PMID: 33420030 PMCID: PMC7794439 DOI: 10.1038/s41467-020-20447-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechanisms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1-deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA-activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immunosuppressive P2RX1-negative neutrophils. Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive metastatic disease characterized by an immunosuppressive microenvironment. Here the authors show that a subset of P2RX1-negative neutrophils with immunosuppressive properties accumulate in PDAC metastatic liver tissues and promote tumor growth.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei-Ting Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - De-Yu Chen
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kai-Xia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pei-Qi Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chun-Jie Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lin-Li Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
48
|
Driskill JH, Pan D. The Hippo Pathway in Liver Homeostasis and Pathophysiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:299-322. [PMID: 33234023 DOI: 10.1146/annurev-pathol-030420-105050] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of the regenerative capacity of the liver have converged on the Hippo pathway, a serine/threonine kinase cascade discovered in Drosophila and conserved from unicellular organisms to mammals. Genetic studies of mouse and rat livers have revealed that the Hippo pathway is a key regulator of liver size, regeneration, development, metabolism, and homeostasis and that perturbations in the Hippo pathway can lead to the development of common liver diseases, such as fatty liver disease and liver cancer. In turn, pharmacological targeting of the Hippo pathway may be utilized to boost regeneration and to prevent the development and progression of liver diseases. We review current insights provided by the Hippo pathway into liver pathophysiology. Furthermore, we present a path forward for future studies to understand how newly identified components of the Hippo pathway may control liver physiology and how the Hippo pathway is regulated in the liver.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , .,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ,
| |
Collapse
|
49
|
Szulzewsky F, Arora S, Hoellerbauer P, King C, Nathan E, Chan M, Cimino PJ, Ozawa T, Kawauchi D, Pajtler KW, Gilbertson RJ, Paddison PJ, Vasioukhin V, Gujral TS, Holland EC. Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes Dev 2020; 34:1051-1064. [PMID: 32675324 PMCID: PMC7397849 DOI: 10.1101/gad.338681.120] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several YAP1 gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the YAP1 gene fusions YAP1-MAMLD1, YAP1-FAM118B, YAP1-TFE3, and YAP1-SS18 are oncogenic in mice. Using reporter assays, RNA-seq, ChIP-seq, and loss-of-function mutations, we can show that all of these YAP1 fusion proteins exert TEAD-dependent YAP activity, while some also exert activity of the C'-terminal fusion partner. The YAP activity of the different YAP1 fusions is resistant to negative Hippo pathway regulation due to constitutive nuclear localization and resistance to degradation of the YAP1 fusion proteins. Genetic disruption of the TEAD-binding domain of these oncogenic YAP1 fusions is sufficient to inhibit tumor formation in vivo, while pharmacological inhibition of the YAP1-TEAD interaction inhibits the growth of YAP1 fusion-expressing cell lines in vitro. These results highlight TEAD-dependent YAP activity found in these gene fusions as critical for oncogenesis and implicate these YAP functions as potential therapeutic targets in YAP1 fusion-positive tumors.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Claire King
- Department of Oncology, Cambridge Cancer Center, Cambridge CB2 0RE, England
| | - Erica Nathan
- Department of Oncology, Cambridge Cancer Center, Cambridge CB2 0RE, England
| | - Marina Chan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | - Tatsuya Ozawa
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | | | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
50
|
Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020; 19:480-494. [PMID: 32555376 DOI: 10.1038/s41573-020-0070-z] [Citation(s) in RCA: 526] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The Hippo pathway is an evolutionarily conserved signalling pathway with key roles in organ development, epithelial homeostasis, tissue regeneration, wound healing and immune modulation. Many of these roles are mediated by the transcriptional effectors YAP and TAZ, which direct gene expression via control of the TEAD family of transcription factors. Dysregulated Hippo pathway and YAP/TAZ-TEAD activity is associated with various diseases, most notably cancer, making this pathway an attractive target for therapeutic intervention. This Review highlights the key findings from studies of Hippo pathway signalling across biological processes and diseases, and discusses new strategies and therapeutic implications of targeting this pathway.
Collapse
|