1
|
Niu Y, Zhou T, Li Y. Update on the Progress of Musashi-2 in Malignant Tumors. FRONT BIOSCI-LANDMRK 2025; 30:24928. [PMID: 39862069 DOI: 10.31083/fbl24928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 01/27/2025]
Abstract
Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors. In recent years, research on the MSI protein has advanced, and many novel viewpoints and drug resistance attempts have been derived; for example, tumor protein p53 mutations and MSI-binding proteins lead to resistance to protein arginine N-methyltransferase 5-targeted therapy in lymphoma patients. Moreover, the high expression of MSI2 in pancreatic cancer might suppress its development and progression. As a significant member of the MSI family, MSI2 is closely associated with multiple malignant tumors, including hematological disorders, common abdominal tumors, and other tumor types (e.g., glioblastoma, breast cancer). MSI2 is highly expressed in the majority of tumors and is related to a poor disease prognosis. However, its specific expression levels and regulatory mechanisms may differ based on the tumor type. This review summarizes the research progress related to MSI2 in recent years, including its occurrence, migration mechanism, and drug resistance, as well as the prospect of developing tumor immunosuppressants and biomarkers.
Collapse
Affiliation(s)
- Yiting Niu
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Tao Zhou
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Yanjun Li
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Schmeing S, Hart P'. Challenges in Therapeutically Targeting the RNA-Recognition Motif. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1877. [PMID: 39668490 PMCID: PMC11638515 DOI: 10.1002/wrna.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The RNA recognition motif (RRM) is the most common RNA binding domain found in the human proteome. RRM domains provide RNA-binding proteins with sequence specific RNA recognition allowing them to participate in RNA-centric processes such as mRNA maturation, translation initiation, splicing, and RNA degradation. They are drivers of various diseases through overexpression or mutation, making them attractive therapeutic targets and addressing these proteins through their RRM domains with chemical compounds is gaining ever more attention. However, it is still very challenging to find selective and potent RNA-competitors due to the small size of the domain and high structural conservation of its RNA binding interface. Despite these challenges, a selection of compounds has been reported for several RRM containing proteins, but often with limited biophysical evidence and low selectivity. A solution to selectively targeting RRM domains might be through avoiding the RNA-binding surface altogether, but rather look for composite pockets formed with other proteins or for protein-protein interaction sites that regulate the target's activity but are less conserved. Alternative modalities, such as oligonucleotides, peptides, and molecular glues, are exciting new approaches to address these challenging targets and achieve the goal of therapeutic intervention at the RNA regulatory level.
Collapse
Affiliation(s)
- Stefan Schmeing
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
3
|
Wang R, Kato F, Watson RY, Beedle AM, Call JA, Tsunoda Y, Noda T, Tsuchiya T, Kashima M, Hattori A, Ito T. The RNA-binding protein Msi2 regulates autophagy during myogenic differentiation. Life Sci Alliance 2024; 7:e202302016. [PMID: 38373797 PMCID: PMC10876439 DOI: 10.26508/lsa.202302016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
Skeletal muscle development is a highly ordered process orchestrated transcriptionally by the myogenic regulatory factors. However, the downstream molecular mechanisms of myogenic regulatory factor functions in myogenesis are not fully understood. Here, we identified the RNA-binding protein Musashi2 (Msi2) as a myogenin target gene and a post-transcriptional regulator of myoblast differentiation. Msi2 knockdown in murine myoblasts blocked differentiation without affecting the expression of MyoD or myogenin. Msi2 overexpression was also sufficient to promote myoblast differentiation and myocyte fusion. Msi2 loss attenuated autophagosome formation via down-regulation of the autophagic protein MAPL1LC3/ATG8 (LC3) at the early phase of myoblast differentiation. Moreover, forced activation of autophagy effectively suppressed the differentiation defects incurred by Msi2 loss. Consistent with its functions in myoblasts in vitro, mice deficient for Msi2 exhibited smaller limb skeletal muscles, poorer exercise performance, and muscle fiber-type switching in vivo. Collectively, our study demonstrates that Msi2 is a novel regulator of mammalian myogenesis and establishes a new functional link between muscular development and autophagy regulation.
Collapse
Affiliation(s)
- Ruochong Wang
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Futaba Kato
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Rio Yasui Watson
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
- Department of Pharmaceutical Sciences, SUNY Binghamton University, New York, NY, USA
| | - Jarrod A Call
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA, USA
| | - Yugo Tsunoda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, and Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Japan
| | - Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan
- Department of Molecular Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Ayuna Hattori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Takahiro Ito
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
5
|
Dolcemascolo R, Heras-Hernández M, Goiriz L, Montagud-Martínez R, Requena-Menéndez A, Ruiz R, Pérez-Ràfols A, Higuera-Rodríguez RA, Pérez-Ropero G, Vranken WF, Martelli T, Kaiser W, Buijs J, Rodrigo G. Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria. eLife 2024; 12:RP91777. [PMID: 38363283 PMCID: PMC10942595 DOI: 10.7554/elife.91777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Applied Mathematics, Polytechnic University of ValenciaValenciaSpain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | | | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRLSesto FiorentinoItaly
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of FlorenceSesto FiorentinoItaly
| | - R Anahí Higuera-Rodríguez
- Dynamic Biosensors GmbHPlaneggGermany
- Department of Physics, Technical University of MunichGarchingGermany
| | - Guillermo Pérez-Ropero
- Ridgeview Instruments ABUppsalaSweden
- Department of Chemistry – BMC, Uppsala UniversityUppsalaSweden
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles – Vrije Universiteit BrusselBrusselsBelgium
| | | | | | - Jos Buijs
- Ridgeview Instruments ABUppsalaSweden
- Department of Immunology, Genetics, and Pathology, Uppsala UniversityUppsalaSweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
6
|
Liu C, Chen H, Cao S, Guo J, Liu Z, Long S. RNA-binding MSI proteins and their related cancers: A medicinal chemistry perspective. Bioorg Chem 2024; 143:107044. [PMID: 38134522 DOI: 10.1016/j.bioorg.2023.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Musashi1 and Musashi2 are RNA-binding proteins originally found in drosophila, in which they play a crucial developmental role. These proteins are pivotal in the maintenance and differentiation of stem cells in other organisms. Research has confirmed that the Musashi proteins are highly involved in cell signal-transduction pathways such as Notch and TGF-β. These signaling pathways are related to the induction and development of cancers, such as breast cancer, leukemia, hepatoma and liver cancer. In this review we focus on how Musashi proteins interact with molecules in different signaling pathways in various cancers and how they affect the physiological functions of these pathways. We further illustrate the status quo of Musashi proteins-targeted therapies and predict the target RNA regions that Musashi proteins interact with, in the hope of exploring the prospect of the design of Musashi protein-targeted medicines.
Collapse
Affiliation(s)
- Chenxin Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Haiyan Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
7
|
Sicking M, Falke I, Löblein MT, Eich HT, Götte M, Greve B, Troschel FM. The Musashi RNA-binding proteins in female cancers: insights on molecular mechanisms and therapeutic relevance. Biomark Res 2023; 11:76. [PMID: 37620963 PMCID: PMC10463710 DOI: 10.1186/s40364-023-00516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
RNA-binding proteins have increasingly been identified as important regulators of gene expression given their ability to bind distinct RNA sequences and regulate their fate. Mounting evidence suggests that RNA-binding proteins are involved in the onset and progression of multiple malignancies, prompting increasing interest in their potential for therapeutic intervention.The Musashi RNA binding proteins Musashi-1 and Musashi-2 were initially identified as developmental factors of the nervous system but have more recently been found to be ubiquitously expressed in physiological tissues and may be involved in pathological cell behavior. Both proteins are increasingly investigated in cancers given dysregulation in multiple tumor entities, including in female malignancies. Recent data suggest that the Musashi proteins serve as cancer stem cell markers as they contribute to cancer cell proliferation and therapy resistance, prompting efforts to identify mechanisms to target them. However, as the picture remains incomplete, continuous efforts to elucidate their role in different signaling pathways remain ongoing.In this review, we focus on the roles of Musashi proteins in tumors of the female - breast, endometrial, ovarian and cervical cancer - as we aim to summarize current knowledge and discuss future perspectives.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Isabel Falke
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Maria T Löblein
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Th Eich
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
8
|
Wang L, Chen Z, Chen D, Kan B, He Y, Cai H. Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells. Oncol Lett 2023; 25:145. [PMID: 36936029 PMCID: PMC10018273 DOI: 10.3892/ol.2023.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Farnesyl diphosphate synthase (FDPS), an essential enzyme involved in the mevalonate pathway, is implicated in various diseases, including multiple types of cancer. As an RNA-binding protein (RBP), FDPS is also involved in transcriptional and post-transcriptional regulation. However, to the best of our knowledge, transcriptome-wide targets of FDPS still remain unknown. In the present study, FDPS expression patterns in pan-cancer were analyzed. In addition, it was investigated how FDPS overexpression (FDPS-OE) regulates the transcriptome in HeLa cells. FDPS-OE increased the proliferation rate in HeLa cells by MTT assay. Using transcriptome-wide high throughput sequencing and bioinformatics analysis, it was found that FDPS upregulated the expression levels of genes enriched in cell proliferation and extracellular matrix organization, including the laminin subunit γ2, interferon-induced proteins with tetratricopeptide repeats 2 and matrix metallopeptidase 19 genes. According to alternative splicing (AS) analysis, FDPS modulated the splicing patterns of the bone morphogenic protein 1, semaphorin 4D, annexin A2 and sirtuin 2 genes, which are enriched in the cell cycle and DNA repair, and are related to cell proliferation. To corroborate the FDPS-regulated transcriptome findings, FDPS was overexpressed in human osteosarcoma cells. Differentially expressed genes and regulated AS genes in the cells were both validated by reverse transcription-quantitative PCR. The results suggested that, as an emerging RBP, FDPS may serve an important role in transcriptome profiles by altering gene expression and regulating AS. FDPS also affected the cell proliferation rate. These findings broaden the understanding of the molecular functions of FDPS, and the potential of FDPS as a target in therapy should be investigated.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhigang Chen
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yangfang He
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hanqing Cai
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Correspondence to: Dr Hanqing Cai, Department of Endocrinology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
9
|
Li YT, Liu CJ, Kao JH, Lin LF, Tu HC, Wang CC, Huang PH, Cheng HR, Chen PJ, Chen DS, Wu HL. Metastatic tumor antigen 1 contributes to hepatocarcinogenesis posttranscriptionally through RNA-binding function. Hepatology 2023; 77:379-394. [PMID: 35073601 DOI: 10.1002/hep.32356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Both nuclear and cytoplasmic overexpression of metastatic tumor antigen 1 (MTA1) contributes to tumorigenesis of HCC. Most studies have focused on nuclear MTA1 whose function is mainly a chromatin modifier regulating the expression of various cancer-promoting genes. By contrast, the molecular mechanisms of cytoplasmic MTA1 in carcinogenesis remain elusive. Here, we reveal a role of MTA1 in posttranscriptional gene regulation. APPROACH AND RESULTS We conducted the in vitro and in vivo RNA-protein interaction assays indicating that MTA1 could bind directly to the 3'-untranslated region of MYC RNA. Mutation at the first glycine of the conserved GXXG loop within a K-homology II domain-like structure in MTA1 (G78D) resulted in the loss of RNA-binding activity. We used gain- and loss-of-function strategy showing that MTA1, but not the G78D mutant, extended the half-life of MYC and protected it from the lethal -7-mediated degradation. The G78D mutant exhibited lower activity in promoting tumorigenesis than wild-type in vitro and in vivo. Furthermore, RNA-immunoprecipitation sequencing analysis demonstrated that MTA1 binds various oncogenesis-related mRNAs besides MYC . The clinical relevance of cytoplasmic MTA1 and its interaction with MYC were investigated using HBV-HCC cohorts with or without early recurrence. The results showed that higher cytoplasmic MTA1 level and MTA1- MYC interaction were associated with early recurrence. CONCLUSIONS MTA1 is a generic RNA-binding protein. Cytoplasmic MTA1 and its binding to MYC is associated with early recurrence in patients with HBV-HCC. This function enables it to regulate gene expression posttranscriptionally and contributes to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Chun-Jen Liu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Jia-Horng Kao
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Li-Feng Lin
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Hui-Chu Tu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Chih-Chiang Wang
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Po-Hsi Huang
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Huei-Ru Cheng
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Pei-Jer Chen
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Ding-Shinn Chen
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
- Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Hui-Lin Wu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
10
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
11
|
Jiang L, Xue S, Xu J, Fu X, Wei J, Zhang C. Prognostic value of Musashi 2 (MSI2) in cancer patients: A systematic review and meta-analysis. Front Oncol 2022; 12:969632. [PMID: 36530989 PMCID: PMC9751961 DOI: 10.3389/fonc.2022.969632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2023] Open
Abstract
Musashi 2 (MSI2) is an RNA-binding protein that regulates mRNA translation of numerous intracellular targets and plays an important role in the development of cancer. However, the prognostic value of MSI2 in various cancers remains controversial. Herein, we conducted this meta-analysis including 21 studies with 2640 patients searched from PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure databases, and WanFang databases to accurately assess the prognostic significance of MSI2 in various cancers. Our results indicated that high MSI2 expression was significantly related to poor overall survival (HR = 1.84, 95% CI: 1.66-2.05, P < 0.001) and disease-free survival (HR = 1.73, 95% CI: 1.35-2.22, P < 0.001). In addition, MSI2 positive expression was associated with certain phenotypes of tumor aggressiveness, such as clinical stage, depth of invasion, lymph node metastasis, liver metastasis and tumor size. In conclusion, elevated MSI2 expression is closely correlated with poor prognosis in various cancers, and may serve as a potential molecular target for cancer patients.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Anesthesiology, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiaoyang Fu
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jing Wei
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
12
|
Sun YT, Cai JH, Bao S. Overexpression of lncRNA HCP5 in human umbilical cord mesenchymal stem cell-derived exosomes promoted the proliferation and inhibited the apoptosis of ovarian granulosa cells via the musashi RNA-binding protein 2/oestrogen receptor alpha 1 axis. Endocr J 2022; 69:1117-1129. [PMID: 35545536 DOI: 10.1507/endocrj.ej21-0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
HCP5 has been reported to be downregulated in ovarian granulosa cells (OGCs) and to facilitate cell proliferation. Human umbilical cord mesenchymal stem cell exosome (hucMSCs-exo) treatment can prevent OGCs apoptosis in vitro. However, the functional mechanism of HCP5 and hucMSCs-exo requires further exploration. Fluorescence-activated cell sorting (FACS) was performed to measure the expression of markers related to hucMSCs. The osteogenic and adipogenic potential of hucMSCs was measured by alkaline phosphatase (ALP) and Alizarin red and by oil red-O staining, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect the mRNA and protein levels, respectively. Cell proliferation and apoptosis were measured by Cell Counting Kit-8 (CCK-8) assay, colony formation assay and flow cytometry. The interaction of HCP5/musashi RNA-binding protein 2 (MSI2) and oestrogen receptor alpha 1 (ESR1) mRNA was analysed using RNA pulldown and RIP assays. HucMSCs and exosomes were successfully isolated and identified. HucMSC-derived exosomes promoted the proliferation of OGCs and ESR1 expression and inhibited cell apoptosis. HCP5 overexpression in exosomes further enhanced these effects. MSI2 knockdown led to the opposite results. HCP5 targeted MSI2, and MSI2 knockdown reduced the decreases in HCP5 and ESR1 expression. Mechanistically, HCP5 in HucMSC-derived exosomes promoted ESR1 expression by binding to MSI2, which promoted the proliferation of OGCs.
Collapse
Affiliation(s)
- Yu-Ting Sun
- Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Jun-Hong Cai
- Central Laboratory, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, Hainan Province, China
| |
Collapse
|
13
|
Chen Y, Qin H, Zheng L. Research progress on RNA-binding proteins in breast cancer. Front Oncol 2022; 12:974523. [PMID: 36059653 PMCID: PMC9433872 DOI: 10.3389/fonc.2022.974523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women and has a high incidence rate and mortality. Abnormal regulation of gene expression plays an important role in breast cancer occurrence and development. RNA-binding proteins (RBPs) are one kind of the key regulators for gene expression. By interacting with RNA, RBPs are widely involved in RNA cutting, transport, editing, intracellular localization, and translation regulation. RBPs are important during breast cancer occurrence and progression by engaging in many aspects, like proliferation, migration, invasion, and stemness. Therefore, comprehensively understanding the role of RBPs in breast cancer progression can facilitate early diagnosis, timely treatment, and long-term survival and quality of life of breast cancer patients.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
[Advances in research of Musashi2 in solid tumors]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:448-456. [PMID: 35426812 PMCID: PMC9010998 DOI: 10.12122/j.issn.1673-4254.2022.03.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RNA binding protein (RBP) plays a key role in gene regulation and participate in RNA translation, modification, splicing, transport and other important biological processes. Studies have shown that abnormal expression of RBP is associated with a variety of diseases. The Musashi (Msi) family of mammals is an evolutionarily conserved and powerful RBP, whose members Msi1 and Msi2 play important roles in the regulation of stem cell activity and tumor development. The Msi family members regulate a variety of biological processes by binding and regulating mRNA translation, stability and downstream cell signaling pathways, and among them, Msi2 is closely related to embryonic growth and development, maintenance of tumor stem cells and development of hematological tumors. Accumulating evidence has shown that Msi2 also plays a crucial role in the development of solid tumors, mainly by affecting the proliferation, invasion, metastasis and drug resistance of tumors, involving Wnt/β-catenin, TGF-β/SMAD3, Akt/mTOR, JAK/STAT, Numb and their related signaling pathways (Notch, p53, and Hedgehog pathway). Preclinical studies of Msi2 gene as a therapeutic target for tumor have achieved preliminary results. This review summarizes the molecular structure, physiological function, role of Msi2 in the development and progression of various solid tumors and the signaling pathways involved.
Collapse
|
15
|
Zou H, Luo J, Guo Y, Liu Y, Wang Y, Deng L, Li P. RNA-binding protein complex LIN28/MSI2 enhances cancer stem cell-like properties by modulating Hippo-YAP1 signaling and independently of Let-7. Oncogene 2022; 41:1657-1672. [PMID: 35102250 PMCID: PMC8913359 DOI: 10.1038/s41388-022-02198-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The RNA binding protein LIN28 directly modulates the stability and translation of target mRNAs independently of Let-7; however, the key downstream targets of LIN28 in this process are largely unknown. Here, we revealed that Hippo signaling effector YAP1 functioned as a key downstream regulator of LIN28 to modulate the cancer stem cell (CSC)-like properties and tumor progressions in triple negative breast cancer (TNBC). LIN28 was overexpressed in BC tissues and cell lines, and significantly correlated with poorer overall survivals in patients. Ectopic LIN28 expression enhanced, while knockdown of LIN28A inhibited the CSC-like properties, cell growth and invasive phenotypes of TNBC cells in vitro and in vivo. Transcriptome analysis demonstrated LIN28 overexpression significantly induced the expressions of YAP1 downstream genes, while reduced the transcripts of YAP1 upstream kinases, such as MST1/2 and LATS1/2, and knockdown of LIN28A exhibited the opposite effects. Furthermore, constitutive activation of YAP1 in LIN28 knockdown TNBC cells could rescue the cell growth and invasive phenotypes in vitro and in vivo. Mechanistically, instead of the dependence of Let-7, LIN28 recruited RNA binding protein MSI2 in a manner dependent on the LIN28 CSD domain and MSI2 RRM domain, to directly induce the mRNA decay of YAP1 upstream kinases, leading to the inhibition of Hippo pathway and activation of YAP1, which eventually gave rise to increased CSC populations, enhanced tumor cell growth and invasive phenotypes. Accordingly, co-upregulations of LIN28 and MSI2 in TNBC tissues were strongly associated with YAP1 protein level and tumor malignance. Taken together, our findings unravel a novel LIN28/MSI2-YAP1 regulatory axis to induce the CSC-like properties, tumor growth and metastasis, independently of Let-7, which may serve as a potential therapeutic strategy for the treatment of a subset of TNBC with LIN28 overexpression.
Collapse
Affiliation(s)
- Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yuhong Liu
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Zhang W, Liu L, Zhao S, Chen L, Wei Y, Chen W, Ge F. Research progress on RNA‑binding proteins in breast cancer (Review). Oncol Lett 2022; 23:121. [PMID: 35261635 PMCID: PMC8867207 DOI: 10.3892/ol.2022.13241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignancy among women, and the abnormal regulation of gene expression serves an important role in its occurrence and development. However, the molecular mechanisms underlying gene expression are highly complex and heterogeneous, and RNA-binding proteins (RBPs) are among the key regulatory factors. RBPs bind targets in an environment-dependent or environment-independent manner to influence mRNA stability and the translation of genes involved in the formation, progression, metastasis and treatment of breast cancer. Due to the growing interest in these regulators, the present review summarizes the most influential studies concerning RBPs associated with breast cancer to elucidate the role of RBPs in breast cancer and to assess how they interact with other key pathways to provide new molecular targets for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
17
|
Qin T, Cheng Y, Wang X. RNA-binding proteins as drivers of AML and novel therapeutic targets. Leuk Lymphoma 2022; 63:1045-1057. [PMID: 35075986 DOI: 10.1080/10428194.2021.2008381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acute myeloid leukemia (AML) is a group of genetically complex and heterogeneous invasive hematological malignancies with a low 5-year overall survival rate of 30%, which highlights the urgent need for improved treatment measures. RNA-binding proteins (RBPs) regulate the abundance of isoforms of related proteins by regulating RNA splicing, translation, stability, and localization, thereby affecting cell differentiation and self-renewal. It is increasingly believed that RBPs are essential for normal hematopoiesis, and RBPs play a key role in hematological tumors, especially AML, by acting as oncogenes or tumor suppressors. In addition, targeting an RBP that is significantly related to AML can trigger the apoptosis of leukemic stem cells or promote the proliferation of stem and progenitor cells by modulating the expression of important pathway regulatory factors such as HOXA9, MYC, and CDKN1A. Accordingly, RBPs involved in normal myeloid differentiation and the occurrence of AML may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Tingyu Qin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Yuan H, Yan L, Wu M, Shang Y, Guo Q, Ma X, Zhang X, Zhu Y, Wu Z, Lobie PE, Zhu T. Analysis of the estrogen receptor-associated lncRNA landscape identifies a role for ERLC1 in breast cancer progression. Cancer Res 2021; 82:391-405. [PMID: 34810200 DOI: 10.1158/0008-5472.can-21-1155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Estrogen receptor alpha (ERα) plays a vital role in the development of normal breast tissue and in breast cancer. By cross-analyzing The Cancer Genome Atlas (TCGA) database, ERα-regulated long noncoding RNA 1 (ERLC1) was identified as a long noncoding RNA exhibiting a strong association with ERα signaling and high specificity of expression in breast tissue. ERLC1 was transcriptionally activated by ERα, and ERLC1 stabilized the ESR1 transcript by sequestering miR-129 and tethering FXR1 to maintain a positive feedback loop that potentiated ERα signaling. ERLC1 was elevated in tamoxifen-resistant breast cancer cells, where ERLC1 depletion restored sensitivity to tamoxifen and increased the efficacy of palbociclib or fulvestrant therapy. Collectively, these data warrant further investigation of ERLC1 as a modulator of therapeutic response and potential therapeutic target in ER+ breast cancer.
Collapse
Affiliation(s)
- Hui Yuan
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Linlin Yan
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mingming Wu
- Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China
| | - Yinzhong Shang
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | - Xin Ma
- Cell Biology, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiao Zhang
- School of Life Sciences, University of Science and Technology of China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University
| | | | - Peter E Lobie
- Centre for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University
| | - Tao Zhu
- Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
19
|
Yu P, Zhu L, Cui K, Du Y, Zhang C, Ma W, Guo J. B4GALNT2 Gene Promotes Proliferation, and Invasiveness and Migration Abilities of Model Triple Negative Breast Cancer (TNBC) Cells by Interacting With HLA-B Protein. Front Oncol 2021; 11:722828. [PMID: 34589428 PMCID: PMC8473878 DOI: 10.3389/fonc.2021.722828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
B4GALNT2 gene encodes the enzyme β1,4-N-acetylgalactosaminyltransferase 2 that biosynthesizes the histo-blood group antigen Sda, which is expressed on the surface of erythrocytes and in body secretions. Analysis of The Cancer Genome Atlas (TCGA) database revealed that this gene was highly expressed in breast cancer tissues in comparison with adjacent healthy ones. In-vitro lentivirus-assisted B4GALNT2 gene knockdown experiments in model triple negative breast cancer (TNBC) cell lines (HCC1937 and MDA-MB-231) showed inhibition in cell proliferation, decrease in cell viability, promotion of cell apoptosis and inhibitions in cell migration and invasiveness abilities in comparison with empty lentivirus transfectant controls. Also, in cell cycle tests, the number of cells in the G1 phase increased, in the S phase decreased and did not change in the G2/M phase (indicative of the presence of a block in the G1 phase). In-vivo tumor formation experiments in mice revealed that knockdown of the B4GALNT2 gene in MDA-MB-231 cells inhibited their proliferation. Using co-immunoprecipitation (Co-IP) mass spectroscopy-assisted analysis, it was found that HLA-B protein [a product of the human leukocyte antigen (HLA) class I gene] interacts with B4GALNT2 protein. In-vitro overexpression of HLA-B in B4GALNT2-knocked down MDA-MB-231 cell lines significantly recovered the cell proliferation, viability and migration ability of B4GALNT2 gene. These indicate that HLA-B is one of the interaction proteins in the downstream pathway of the B4GALNT2 gene.
Collapse
Affiliation(s)
- Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Zhu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaojie Zhang
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Zhou L, Han X, Li W, Wang N, Yao L, Zhao Y, Zhang L. N6-methyladenosine Demethylase FTO Induces the Dysfunctions of Ovarian Granulosa Cells by Upregulating Flotillin 2. Reprod Sci 2021; 29:1305-1315. [PMID: 34254281 DOI: 10.1007/s43032-021-00664-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is often accompanied by overweight/obesity and insulin resistance. The dysfunctions of ovarian granulosa cells (GCs) are closely linked with the pathogenesis of PCOS. Fat mass and obesity-associated gene (FTO), an N6-methyladenosine (m6A) demethylase, has been reported to be implicated in the risks and insulin resistance of PCOS. However, the roles of FTO in the development of GCs along with its m6A-related regulatory mechanisms are poorly defined. Cell proliferative ability was detected by MTT assay. Cell apoptotic rate was measured via flow cytometry. Insulin resistance was assessed by GLUT4 transport potential. The mRNA and protein levels of FTO and flotillin 2 (FLOT2) were determined by RT-qPCR and western blot assays, respectively. FLOT2 was screened out to be a potential FTO target through differential expression analysis for the GSE95728 dataset and target prediction analysis by POSTAR2 and STARBASE databases. The interaction between FTO and FLOT2 was analyzed by RNA immunoprecipitation (RIP) assay. The effect of FTO upregulation on FLOT2 m6A level was measured by methylated RIP (meRIP) assay. FLOT2 mRNA stability was examined by actinomycin D assay. FTO overexpression facilitated cell proliferation, hindered cell apoptosis, and induced insulin resistance in GCs. FTO promoted FLOT2 expression by reducing m6A level on FLOT2 mRNA and increasing FLOT2 mRNA stability. FLOT2 loss weakened the effects of FTO overexpression on cell proliferation/apoptosis and insulin resistance in GCs. FTO induced the dysfunctions of GCs by upregulating FLOT2, suggesting that FTO/FLOT2 might play a role in the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiao Han
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Wei Li
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Ning Wang
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Lan Yao
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Yunhe Zhao
- Department of Gynaecology and Obstetrics, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Liqun Zhang
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
21
|
Kharin L, Bychkov I, Karnaukhov N, Voloshin M, Fazliyeva R, Deneka A, Frantsiyants E, Kit O, Golemis E, Boumber Y. Prognostic role and biologic features of Musashi-2 expression in colon polyps and during colorectal cancer progression. PLoS One 2021; 16:e0252132. [PMID: 34237057 PMCID: PMC8266110 DOI: 10.1371/journal.pone.0252132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The RNA-binding protein Musashi-2 (MSI2) controls the translation of proteins that support stem cell identity and lineage determination and is associated with progression in some cancers. We assessed MSI2 as potential clinical biomarker in colorectal cancer (CRC) and tubulovillous adenoma (TA) of colon mucosa. METHODS We assessed 125 patients, of whom 20 had polyps of the colon (TAs), and 105 had CRC. Among 105 patients with CRC, 45 had stages I-III; among metastatic CRC (mCRC) patients, 31 had synchronous and 29 metachronous liver metastases. We used immunohistochemistry to measure MSI2 expression in matching specimens of normal tissue versus TAs, primary CRC tumors, and metastases, correlating expression to clinical outcomes. We analyzed the biological effects of depleting MSI2 expression in human CRC cells. RESULTS MSI2 expression was significantly elevated in polyps versus primary tissue, and further significantly elevated in primary tumors and metastases. MSI2 expression correlated with decreased progression free survival (PFS) and overall survival (OS), higher tumor grade, and right-side localization (p = 0.004) of tumors. In metastases, high MSI2 expression correlated with E-cadherin expression. Knockdown of MSI2 in CRC cells suppressed proliferation, survival and clonogenic capacity, and decreased expression of TGFβ1, E-cadherin, and ZO1. CONCLUSION Elevated expression of MSI2 is associated with pre-cancerous TAs in the colonic mucosa, suggesting it is an early event in transformation. MSI2 expression is further elevated during CRC progression, and associated with poor prognosis. Depletion of MSI2 reduces CRC cell growth. These data imply a causative role of MSI2 overexpression at multiple stages of CRC formation and progression.
Collapse
Affiliation(s)
- Leonid Kharin
- National Medical Research Center of Oncology, Rostov-on-Don, Russian Federation
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Igor Bychkov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Nikolay Karnaukhov
- National Medical Research Center of Oncology, Rostov-on-Don, Russian Federation
| | - Mark Voloshin
- Rostov State Medical University, Rostov-on-Don, Russian Federation
| | - Rushaniya Fazliyeva
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Elena Frantsiyants
- National Medical Research Center of Oncology, Rostov-on-Don, Russian Federation
| | - Oleg Kit
- National Medical Research Center of Oncology, Rostov-on-Don, Russian Federation
| | - Erica Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Yanis Boumber
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Kazan Federal University, Kazan, Russian Federation
- Department of Hematology/Oncology, Section of Thoracic Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
22
|
Bi X, Lou P, Song Y, Sheng X, Liu R, Deng M, Yang X, Li G, Yuan S, Zhang H, Jiao B, Zhang B, Xue L, Liu Z, Plikus MV, Ren F, Gao S, Zhao L, Yu Z. Msi1 promotes breast cancer metastasis by regulating invadopodia-mediated extracellular matrix degradation via the Timp3-Mmp9 pathway. Oncogene 2021; 40:4832-4845. [PMID: 34155343 DOI: 10.1038/s41388-021-01873-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
Metastasis is the main cause of death in breast cancer patients. The initial step of metastasis is invadopodia-mediated extracellular matrix (ECM) degradation, which enables local breast tumor cells to invade surrounding tissues. However, the molecular mechanism underlying invadopodia-mediated metastasis remains largely unknown. Here we found that the RNA-binding protein Musashi1 (Msi1) exhibited elevated expression in invasive breast tumors and promoted lung metastasis of mammary cancer cells. Suppression of Msi1 reduced invadopodia formation in mammary cancer cells. Furthermore, Msi1 deficiency decreased the expression and activity of Mmp9, an important enzyme in ECM degradation. Mechanistically, Msi1 directly suppressed Timp3, an endogenous inhibitor of Mmp9. In clinical breast cancer specimens, TIMP3 and MSI1 levels were significantly inversely correlated both in normal breast tissue and breast cancer tissues and associated with overall survival in breast cancer patients. Taken together, our findings demonstrate that the MSI1-TIMP3-MMP9 cascade is critical for invadopodia-mediated onset of metastasis in breast cancer, providing novel insights into a promising therapeutic strategy for breast cancer metastasis.
Collapse
Affiliation(s)
- Xueyun Bi
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock and Research Center for Animal Genetic Resources of Mongolia Plateau College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaole Sheng
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruiqi Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Min Deng
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xu Yang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shukai Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Honglei Zhang
- Center for Scientific Research, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bing Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lixiang Xue
- Medical Research Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Zhengquan Yu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Dong W, Liu X, Yang C, Wang D, Xue Y, Ruan X, Zhang M, Song J, Cai H, Zheng J, Liu Y. Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin Transl Med 2021; 11:e411. [PMID: 34047477 PMCID: PMC8114150 DOI: 10.1002/ctm2.411] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Abnormal energy metabolism, including enhanced aerobic glycolysis and lipid synthesis, is a well-established feature of glioblastoma (GBM) cells. Thus, targeting the cellular glycolipid metabolism can be a feasible therapeutic strategy for GBM. This study aimed to evaluate the roles of MSI2, SNORD12B, and ZBTB4 in regulating the glycolipid metabolism and proliferation of GBM cells. MSI2 and SNORD12B expression was significantly upregulated and ZBTB4 expression was significantly low in GBM tissues and cells. Knockdown of MSI2 or SNORD12B or overexpression of ZBTB4 inhibited GBM cell glycolipid metabolism and proliferation. MSI2 may improve SNORD12B expression by increasing its stability. Importantly, SNORD12B increased utilization of the ZBTB4 mRNA transcript distal polyadenylation signal in alternative polyadenylation processing by competitively combining with FIP1L1, which decreased ZBTB4 expression because of the increased proportion of the 3' untranslated region long transcript. ZBTB4 transcriptionally suppressed the expression of HK2 and ACLY by binding directly to the promoter regions. Additionally, ZBTB4 bound the MSI promoter region to transcriptionally suppress MSI2 expression, thereby forming an MSI2/SNORD12B/FIP1L1/ZBTB4 feedback loop to regulate the glycolipid metabolism and proliferation of GBM cells. In conclusion, MSI2 increased the stability of SNORD12B, which regulated ZBTB4 alternative polyadenylation processing by competitively binding to FIP1L1. Thus, the MSI2/SNORD12B/FIP1L1/ZBTB4 positive feedback loop plays a crucial role in regulating the glycolipid metabolism of GBM cells and provides a potential drug target for glioma treatment.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Xiaobai Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Chunqing Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Di Wang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yixue Xue
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Xuelei Ruan
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Mengyang Zhang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Jian Song
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Heng Cai
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Jian Zheng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yunhui Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| |
Collapse
|
24
|
Palacios F, Yan XJ, Ferrer G, Chen SS, Vergani S, Yang X, Gardner J, Barrientos JC, Rock P, Burack R, Kolitz JE, Allen SL, Kharas MG, Abdel-Wahab O, Rai KR, Chiorazzi N. Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia 2021; 35:1037-1052. [PMID: 33504942 PMCID: PMC8024198 DOI: 10.1038/s41375-020-01115-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
Progression of chronic lymphocytic leukemia (CLL) results from the expansion of a small fraction of proliferating leukemic B cells. When comparing the global gene expression of recently divided CLL cells with that of previously divided cells, we found higher levels of genes involved in regulating gene expression. One of these was the oncogene Musashi 2 (MSI2), an RNA-binding protein that induces or represses translation. While there is an established role for MSI2 in normal and malignant stem cells, much less is known about its expression and role in CLL. Here we report for the first time ex vivo and in vitro experiments that MSI2 protein levels are higher in dividing and recently divided leukemic cells and that downregulating MSI2 expression or blocking its function eliminates primary human and murine CLL and mature myeloid cells. Notably, mature T cells and hematopoietic stem and progenitor cells are not affected. We also confirm that higher MSI2 levels correlate with poor outcome markers, shorter time-to-first-treatment, and overall survival. Thus, our data highlight an important role for MSI2 in CLL-cell survival and proliferation and associate MSI2 with poor prognosis in CLL patients. Collectively, these findings pinpoint MSI2 as a potentially valuable therapeutic target in CLL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents
- Apoptosis/drug effects
- Biomarkers, Tumor
- Caspase 3/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Survival/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Disease Models, Animal
- Gene Expression
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Molecular Targeted Therapy
- Prognosis
- RNA, Small Interfering
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xiao-Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey Gardner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaqueline C Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Philip Rock
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Richard Burack
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Jonathan E Kolitz
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Steven L Allen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA.
| |
Collapse
|
25
|
Sun J, Sheng W, Ma Y, Dong M. Potential Role of Musashi-2 RNA-Binding Protein in Cancer EMT. Onco Targets Ther 2021; 14:1969-1980. [PMID: 33762829 PMCID: PMC7982713 DOI: 10.2147/ott.s298438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Local invasion and distant metastasis are the key hallmarks in the aggressive progression of malignant tumors, including the ability of cancer cells to detach from the extracellular matrix overcome apoptosis, and disseminate into distant sites. It is generally believed that this malignant behavior is stimulated by epithelial-mesenchymal transition (EMT). Musashi (MSI) RNA-binding proteins, belonging to the evolutionarily conserved RNA-binding proteins (RBP) family, were originally discovered to regulate asymmetric cell division during embryonic development. Recently, Musashi-2 (MSI2), as a key member of MSI family, has been prevalently reported to be tightly associated with the advanced clinical stage of several cancers. Multiple oncogenic signaling pathways mediated by MSI2 play vital roles in EMT. Here, we systematically reviewed the detailed role and signal networks of MSI2 in regulating cancer development, especially in EMT signal transduction, involving EGF, TGF-β, Notch, and Wnt pathways.
Collapse
Affiliation(s)
- Jian Sun
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuteng Ma
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
26
|
Lan D, Jin X, Li M, He L. The expression and clinical significance of signal transducer and activator of transcription 3, tumor necrosis factor α induced protein 8-like 2, and runt-related transcription factor 1 in breast cancer patients. Gland Surg 2021; 10:1125-1134. [PMID: 33842256 PMCID: PMC8033044 DOI: 10.21037/gs-21-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND This study explored the expression and clinical significance of signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor α induced protein 8-like 2 (TIPE2), and runt-related transcription factor 1 (RUNX1) in breast cancer tissue. METHODS From October 2014 to October 2017, 68 breast cancer patients (68 breast cancer tissue specimens) who underwent a radical mastectomy in our hospital were set as the observation group and the corresponding normal tissue 3 cm away from the cancer tissue was selected as the control group. The expression levels of STAT3, TIPE2, and RUNX1 in the two groups were compared via immunohistochemical staining. Multiple logistic regression was then used to analyze the related risk factors affecting the 2-year prognosis of breast cancer patients. The receiver operating characteristic (ROC) curve was then plotted and the area under the ROC curve was calculated. The predictive values of STAT3, TIPE2, and RUNX1, and the predictive value of the three transcription factors combined on the 2-year prognostic survival of breast cancer patients were determined. RESULTS (I) In the observation group, the positive expression of STAT3 and the negative expression of TIPE2 and RUNX1 were significantly higher than those in the control group (P<0.05). (II) Of the 68 patients, 51 survived within 2 years and 17 patients died. Positive STAT3 expression, negative TIPE2 expression, negative RUNX1 expression, poor histological differentiation, TNM stage III-IV, and distant metastasis were all identified as factors that can affect the 2-year prognosis of breast cancer patients (P<0.05). (III) The ROC curve analysis examining the 2-year prognostic survival of breast cancer patients showed that the area under the curve achieved the largest value when the predictive values of STAT3, TIPE2, RUNX1 were combined. CONCLUSIONS The levels of STAT3, TIPE2, and RUNX1 expression in breast cancer tissues were significantly different from that in adjacent normal tissues. This suggested that the combined detection of STAT3, TIPE2, and RUNX1 may improve the rate of early breast cancer diagnosis. Furthermore, STAT3, TIPE2, and RUNX1 may be useful in evaluating the prognosis of the patients with breast cancer.
Collapse
Affiliation(s)
- Daitian Lan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xuchu Jin
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- Department of Thyroid and Breast Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| | - Maode Li
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Li He
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- Department of Thyroid and Breast Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Topchu I, Karnaukhov N, Mazitova A, Yugai V, Voloshin M, Tikhomirova M, Kit O, Frantsiyants E, Kharin L, Airapetova T, Ratner E, Sabirov A, Abramova Z, Serebriiskii I, Boumber Y, Deneka A. Musashi 2 (MSI2) expression as an independent prognostic biomarker in non-small cell lung cancer (NSCLC). J Thorac Dis 2021; 13:1370-1379. [PMID: 33841930 PMCID: PMC8024834 DOI: 10.21037/jtd-20-2787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Musashi-2 (MSI2) is a member of RNA-binding protein family that regulates mRNA translation of numerous intracellular targets and influences maintenance of stem cell identity. This study assessed MSI2 as a potential clinical biomarker in non-small cell lung cancer (NSCLC). Methods The current study included 40 patients with NSCLC, of whom one presented with stage 1, 14 presented with stage II, 15 presented with stage III, and 10 patients had stage IV. All patients received standard of care treatments. All patient samples were obtained before treatment started. We used immunohistochemical (IHC) approach to measure MSI2 protein expression in matching specimens of normal lung versus tumor tissues, and primary versus metastatic tumors, followed by correlative analysis in relation to clinical outcomes. In parallel, clinical correlative analysis of MSI2 mRNA expression was performed in silico using publicly available datasets (TCGA/ICGC and KM plots). Results MSI2 protein expression in patient samples was significantly elevated in NSCLC primary tumors versus normal lung tissue (P=0.03). MSI2 elevated expression positively correlated with a decreased progression free survival (PFS) (P=0.026) combined for all stages and with overall survival (OS) at stage IV (P=0.013). Elevated MSI2 expression on RNA level was confirmed in primary tumor versus normal tissue samples in TCGA dataset (P<0.0001), and positively correlated with decreased OS (P=0.02). No correlation was observed between MSI2 expression and age, sex, smoking, and treatment type. Conclusions Elevated MSI2 expression in primary NSCLC tumors is associated with poor prognosis and can be used as a novel potential prognostic biomarker in NSCLC patients. Future studies in an extended patient cohort are warranted.
Collapse
Affiliation(s)
- Iuliia Topchu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Kazan Federal University, Kazan, Russian Federation
| | - Nikolai Karnaukhov
- National Medical Research Center of Oncology, Rostov-on-Don, Russia, Russian Federation
| | - Alexandra Mazitova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Kazan Federal University, Kazan, Russian Federation
| | | | - Mark Voloshin
- National Medical Research Center of Oncology, Rostov-on-Don, Russia, Russian Federation
| | | | - Oleg Kit
- National Medical Research Center of Oncology, Rostov-on-Don, Russia, Russian Federation
| | - Elena Frantsiyants
- National Medical Research Center of Oncology, Rostov-on-Don, Russia, Russian Federation
| | - Leonid Kharin
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,National Medical Research Center of Oncology, Rostov-on-Don, Russia, Russian Federation
| | - Tamara Airapetova
- National Medical Research Center of Oncology, Rostov-on-Don, Russia, Russian Federation
| | - Ekaterina Ratner
- Tatarstan Regional Clinical Cancer Center, Kazan, Russian Federation
| | - Alexey Sabirov
- Tatarstan Regional Clinical Cancer Center, Kazan, Russian Federation
| | | | - Iliya Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Kazan Federal University, Kazan, Russian Federation
| | - Yanis Boumber
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Kazan Federal University, Kazan, Russian Federation.,Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.,Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
28
|
Xiang Y, Zhou S, Hao J, Zhong C, Ma Q, Sun Z, Wei C. Development and validation of a prognostic model for kidney renal clear cell carcinoma based on RNA binding protein expression. Aging (Albany NY) 2020; 12:25356-25372. [PMID: 33229623 PMCID: PMC7803486 DOI: 10.18632/aging.104137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Dysregulated expression of RNA-binding proteins (RBPs) is strongly associated with the development and progression of multiple tumors. However, little is known about the role of RBPs in kidney renal clear cell carcinoma (KIRC). In this study, we examined RBP expression profiles using The Cancer Genome Atlas database and identified 133 RBPs that were differentially expressed in KIRC and non-tumor tissues. We then systematically analyzed the potential biological functions of these RBPs and established PPIs. Based on Lasso regression and Cox survival analyses, we constructed a risk model that could independently and accurately predict prognosis based on seven RBPs (NOL12, PABPC1L, RNASE2, RPL22L1, RBM47, OASL, and YBX3). Survival times were shorter in patients with high risk scores for cohorts stratified by different characteristics. Gene set enrichment analysis was also performed to further understand functional differences between high- and low-risk groups. Finally, we developed a clinical nomogram with a concordance index of 0.792 for estimating 3- and 5-year survival probabilities. Our results demonstrate that this risk model could potentially improve individualized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yuzhu Xiang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Shengcai Zhou
- Department of Urology, Yiyuan County People's Hospital, Zibo 256100, Shandong, China
| | - Jian Hao
- Department of Urology, Xintai People's Hospital, Xintai 271200, Shandong, China
| | - Chunhong Zhong
- Department of Central Sterile Supply, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Qimei Ma
- Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhuolun Sun
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chunxiao Wei
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
29
|
Mughees M, Samim M, Sharma Y, Wajid S. Identification of protein targets and the mechanism of the cytotoxic action of Ipomoea turpethum extract loaded nanoparticles against breast cancer cells. J Mater Chem B 2020; 7:6048-6063. [PMID: 31549130 DOI: 10.1039/c9tb00824a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The shortcomings of the currently available anti-breast cancer agents compel the development of the safer targeted drug delivery for the treatment of breast cancer. The aim of the present study was to evaluate the anti-breast cancer potential of Ipomoea turpethum extract loaded nanoparticles (NIPAAM-VP-AA) against breast cancer, together with the identification of the key proteins responsible for the caused cytotoxicity. For this, we explored the tumor microenvironment for targeted drug delivery and synthesized (temperature and pH responsive) double triggered polymeric nanoparticles by the free radical mechanism and characterized them by DLS and TEM. The extract which emerged as the best extract, i.e. root extract, was loaded on the nanoparticles and the cytotoxicity was evaluated in breast cancer cell lines (MCF-7 and MDA-MB-231) by various cytotoxic assays like MTT assay, CFSE cell proliferation assay, apoptosis assay, cell cycle study and DAPI nuclear staining. The key protein targets responsible for the caused cytotoxicity were identified by nano-LC-MS/MS analysis. The proteome analysis revealed that most of the significantly differentially expressed proteins have a role in proliferation, vesicular trafficking, apoptosis and tumor suppression. Finally, the interaction among the highly differentially expressed proteins was identified by using the STRING online tool, which showed that I. turpethum nanoparticles caused apoptosis in MCF-7 and MDA MB-231 cells by targeting nucleolysin TIAR, serine/threonine-protein phosphatase PP1 and ubiquitin-60S ribosomal protein L40.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India.
| | | | | | | |
Collapse
|
30
|
Kim SJ, Ju JS, Kang MH, Won JE, Kim YH, Raninga PV, Khanna KK, Győrffy B, Pack CG, Han HD, Lee HJ, Gong G, Shin Y, Mills GB, Eyun SI, Park YY. RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC. Theranostics 2020; 10:7974-7992. [PMID: 32724453 PMCID: PMC7381744 DOI: 10.7150/thno.45037] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women. TNBC (Triple-negative breast cancer) has limited treatment options and still lacks viable molecular targets, leading to poor outcomes. Recently, RNA-binding proteins (RBPs) have been shown to play crucial roles in human cancers, including BC, by modulating a number of oncogenic phenotypes. This suggests that RBPs represent potential molecular targets for BC therapy. Methods: We employed genomic data to identify RBPs specifically expressed in TNBC. NONO was silenced in TNBC cell lines to examine cell growth, colony formation, invasion, and migration. Gene expression profiles in NONO-silenced cells were generated and analyzed. A high-throughput screening for NONO-targeted drugs was performed using an FDA-approved library. Results: We found that the NONO RBP is highly expressed in TNBC and is associated with poor patient outcomes. NONO binds to STAT3 mRNA, increasing STAT3 mRNA levels in TNBC. Surprisingly, NONO directly interacts with STAT3 protein increasing its stability and transcriptional activity, thus contributing to its oncogenic function. Importantly, high-throughput drug screening revealed that auranofin is a potential NONO inhibitor and inhibits cell growth in TNBC. Conclusions: NONO is an RBP upstream regulator of both STAT3 RNA and protein levels and function. It represents an important and clinically relevant promoter of growth and resistance of TNBCs. NONO is also therefore a potential therapeutic target in TNBC.
Collapse
|
31
|
Li M, Li AQ, Zhou SL, Lv H, Wei P, Yang WT. RNA-binding protein MSI2 isoforms expression and regulation in progression of triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:92. [PMID: 32448269 PMCID: PMC7245804 DOI: 10.1186/s13046-020-01587-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The RNA-binding protein Musashi-2 (MSI2) has been implicated in the tumorigenesis and tumor progression of some human cancers. MSI2 has also been reported to suppress tumor epithelial-to-mesenchymal transition (EMT) progression in breast cancer, and low MSI2 expression is associated with poor outcomes for breast cancer patients; however, the underlying mechanisms have not been fully investigated. This study investigated the expression and phenotypic functions of two major alternatively spliced MSI2 isoforms (MSI2a and MSI2b) and the potential molecular mechanisms involved in triple-negative breast cancer (TNBC) progression. METHODS The Illumina sequencing platform was used to analyze the mRNA transcriptomes of TNBC and normal tissues, while quantitative reverse transcription-polymerase chain reaction and immunohistochemistry validated MSI2 isoform expression in breast cancer tissues. The effects of MSI2a and MSI2b on TNBC cells were assayed in vitro and in vivo. RNA immunoprecipitation (RIP) and RNA sequencing were performed to identify the potential mRNA targets of MSI2a, and RIP and luciferase analyses were used to confirm the mRNA targets of MSI2. RESULTS MSI2 expression in TNBC tissues was significantly downregulated compared to that in normal tissues. In TNBC, MSI2a expression was associated with poor overall survival of patients. MSI2a overexpression in vitro and in vivo inhibited TNBC cell invasion as well as extracellular signal-regulated kinase 1/2 (ERK1/2) activity. However, MSI2b overexpression had no significant effects on TNBC cell migration. Mechanistically, MSI2a expression promoted TP53INP1 mRNA stability by its interaction with the 3'-untranslated region of TP53INP1 mRNA. Furthermore, TP53INP1 knockdown reversed MSI2a-induced suppression of TNBC cell invasion, whereas ectopic expression of TP53INP1 and inhibition of ERK1/2 activity blocked MSI2 knockdown-induced TNBC cell invasion. CONCLUSIONS The current study demonstrated that MSI2a is the predominant functional isoform of MSI2 proteins in TNBC, that its downregulation is associated with TNBC progression and poor prognosis and that MSI2a expression inhibited TNBC invasion by stabilizing TP53INP1 mRNA and inhibiting ERK1/2 activity. Overall, our study provides new insights into the isoform-specific roles of MSI2a and MSI2b in the tumor progression of TNBC, allowing for novel therapeutic strategies to be developed for TNBC.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - An-Qi Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shu-Ling Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Institute of Pathology, Fudan University, Shanghai, China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Institute of Pathology, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Mitobe Y, Iino K, Takayama KI, Ikeda K, Suzuki T, Aogi K, Kawabata H, Suzuki Y, Horie-Inoue K, Inoue S. PSF Promotes ER-Positive Breast Cancer Progression via Posttranscriptional Regulation of ESR1 and SCFD2. Cancer Res 2020; 80:2230-2242. [PMID: 32213542 DOI: 10.1158/0008-5472.can-19-3095] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Endocrine therapy is standard treatment for estrogen receptor (ER)-positive breast cancer, yet long-term treatment often causes acquired resistance, which results in recurrence and metastasis. Recent studies have revealed that RNA-binding proteins (RBP) are involved in tumorigenesis. Here, we demonstrate that PSF/SFPQ is an RBP that potentially predicts poor prognosis of patients with ER-positive breast cancer by posttranscriptionally regulating ERα (ESR1) mRNA expression. Strong PSF immunoreactivity correlated with shorter overall survival in patients with ER-positive breast cancer. PSF was predominantly expressed in a model of tamoxifen-resistant breast cancer cells, and depletion of PSF attenuated proliferation of cultured cells and xenografted tumors. PSF expression was significantly associated with estrogen signaling. PSF siRNA downregulated ESR1 mRNA by inhibiting nuclear export of the RNA. Integrative analyses of microarray and RNA immunoprecipitation sequencing also identified SCFD2, TRA2B, and ASPM as targets of PSF. Among the PSF targets, SCFD2 was a poor prognostic indicator of breast cancer and SCFD2 knockdown significantly suppressed breast cancer cell proliferation. Collectively, this study shows that PSF plays a pathophysiologic role in ER-positive breast cancer by posttranscriptionally regulating expression of its target genes such as ESR1 and SCFD2. Overall, PSF and SCFD2 could be potential diagnostic and therapeutic targets for primary and hormone-refractory breast cancers. SIGNIFICANCE: This study defines oncogenic roles of RNA-binding protein PSF, which exhibits posttranscriptional regulation in ER-positive breast cancer.
Collapse
Affiliation(s)
- Yuichi Mitobe
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kaori Iino
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kenjiro Aogi
- Department of Surgery, National Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan. .,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
33
|
Cheng C, Ding Q, Zhang Z, Wang S, Zhong B, Huang X, Shao Z. PTBP1 modulates osteosarcoma chemoresistance to cisplatin by regulating the expression of the copper transporter SLC31A1. J Cell Mol Med 2020; 24:5274-5289. [PMID: 32207235 PMCID: PMC7205786 DOI: 10.1111/jcmm.15183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is the main obstacle of treatment in patients with osteosarcoma. RNA‐binding protein PTBP1 has been identified as an oncogene in various cancers. However, the role of PTBP1 in osteosarcoma, especially in chemoresistant osteosarcoma, and the underlying mechanism remain unclear. In this study, we aimed to explore the functions of PTBP1 in chemoresistance of osteosarcoma. We found that PTBP1 was significantly increased in chemotherapeutically insensitive osteosarcoma tissues and cisplatin‐resistant osteosarcoma cell lines (MG‐63CISR and U‐2OSCISR) as compared to chemotherapy‐sensitive osteosarcoma tissues and cell lines. Knock‐down of PTBP1 can enhance the anti‐proliferation and apoptosis‐induced effects of cisplatin in MG‐63CISR and U‐2OSCISR cells. Moreover, PTBP1 knock‐down significantly up‐regulated the expression of the copper transporter SLC31A1, as indicated by transcriptome sequencing. Through RNA immunoprecipitation, dual‐luciferase reporter assay and RNA stability detection, we confirmed that PTBP1 binds to SLC31A1 mRNA and regulates the expression level of SLC31A1 by affecting mRNA stability. Additionally, SLC31A1 silencing abrogated the chemosensitizing effect of PTBP1 knock‐down in MG‐63CISR and U‐2OSCISR cells. Using a nude mouse xenograft model, we further confirmed that PTBP1 knock‐down enhanced chemoresistant osteosarcoma responsiveness to cisplatin treatment in vivo. Collectively, the present study suggests that PTBP1 is a crucial determinant of chemoresistance in osteosarcoma.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangyu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binlong Zhong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Knockdown of Musashi RNA Binding Proteins Decreases Radioresistance but Enhances Cell Motility and Invasion in Triple-Negative Breast Cancer. Int J Mol Sci 2020; 21:ijms21062169. [PMID: 32245259 PMCID: PMC7139790 DOI: 10.3390/ijms21062169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022] Open
Abstract
The therapeutic potential of Musashi (MSI) RNA-binding proteins, important stemness-associated gene expression regulators, remains insufficiently understood in breast cancer. This study identifies the interplay between MSI protein expression, stem cell characteristics, radioresistance, cell invasiveness and migration. MSI-1, MSI-2 and Notch pathway elements were investigated via quantitative polymerase chain reaction (qPCR) in 19 triple-negative breast cancer samples. Measurements were repeated in MDA-MB-231 cells after MSI-1 and -2 siRNA-mediated double knockdown, with further experiments performed after MSI silencing. Flow cytometry helped quantify expression of CD44 and leukemia inhibitory factor receptor (LIFR), changes in apoptosis and cell cycle progression. Proliferation and irradiation-induced effects were assessed using colony formation assays. Radiation-related proteins were investigated via Western blots. Finally, cell invasion assays and digital holographic microscopy for cell migration were performed. MSI proteins showed strong correlations with Notch pathway elements. MSI knockdown resulted in reduction of stem cell marker expression, cell cycle progression and proliferation, while increasing apoptosis. Cells were radiosensitized as radioresistance-conferring proteins were downregulated. However, MSI-silencing-mediated LIFR downregulation resulted in enhanced cell invasion and migration. We conclude that, while MSI knockdown results in several therapeutically desirable consequences, enhanced invasion and migration need to be counteracted before knockdown advantages can be fully exploited.
Collapse
|
35
|
Roy S, Kumar R, Mittal V, Gupta D. Classification models for Invasive Ductal Carcinoma Progression, based on gene expression data-trained supervised machine learning. Sci Rep 2020; 10:4113. [PMID: 32139710 PMCID: PMC7057992 DOI: 10.1038/s41598-020-60740-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Early detection of breast cancer and its correct stage determination are important for prognosis and rendering appropriate personalized clinical treatment to breast cancer patients. However, despite considerable efforts and progress, there is a need to identify the specific genomic factors responsible for, or accompanying Invasive Ductal Carcinoma (IDC) progression stages, which can aid the determination of the correct cancer stages. We have developed two-class machine-learning classification models to differentiate the early and late stages of IDC. The prediction models are trained with RNA-seq gene expression profiles representing different IDC stages of 610 patients, obtained from The Cancer Genome Atlas (TCGA). Different supervised learning algorithms were trained and evaluated with an enriched model learning, facilitated by different feature selection methods. We also developed a machine-learning classifier trained on the same datasets with training sets reduced data corresponding to IDC driver genes. Based on these two classifiers, we have developed a web-server Duct-BRCA-CSP to predict early stage from late stages of IDC based on input RNA-seq gene expression profiles. The analysis conducted by us also enables deeper insights into the stage-dependent molecular events accompanying IDC progression. The server is publicly available at http://bioinfo.icgeb.res.in/duct-BRCA-CSP.
Collapse
Affiliation(s)
- Shikha Roy
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rakesh Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vaibhav Mittal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
36
|
Wang M, Sun XY, Zhou YC, Zhang KJ, Lu YZ, Liu J, Huang YC, Wang GZ, Jiang S, Zhou GB. Suppression of Musashi‑2 by the small compound largazole exerts inhibitory effects on malignant cells. Int J Oncol 2020; 56:1274-1283. [PMID: 32319553 DOI: 10.3892/ijo.2020.4993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/30/2020] [Indexed: 12/24/2022] Open
Abstract
RNA‑binding protein Musashi‑2 (MSI2) serves as a regulator of numerous pivotal biological processes associated with cancer initiation, development and resistance to treatment, and may represent a promising drug target. However, whether MSI2 inhibition is of value in antitumor treatment remains to be determined. The present study demonstrated that MSI2 was upregulated in non‑small cell lung cancer (NSCLC) and was inversely associated with the clinical outcome of the patients. Molecular docking analysis demonstrated that the small compound largazole binds to and may be a potential inhibitor of MSI2. Largazole markedly decreased the protein and mRNA levels of MSI2 and suppressed its downstream mammalian target of rapamycin signaling pathway. Largazole also inhibited the proliferation and induced apoptosis of NSCLC and chronic myeloid leukemia (CML) cells (including bone marrow mononuclear cells harvested from CML patients). These results indicate that MSI2 is an emerging therapeutic target for NSCLC and CML, and the MSI2 inhibitor largazole may hold promise as a treatment for these malignancies.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiao-Yan Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, P.R. China
| | - Kuo-Jun Zhang
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong-Zhi Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, P.R. China
| | - Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
37
|
Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, Sun J, Wang G, Zhou L, Dong M. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:16. [PMID: 31952541 PMCID: PMC6967093 DOI: 10.1186/s13046-020-1521-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
Abstract
Background Our previous study showed Musashi2 (MSI2) promoted chemotherapy resistance and pernicious biology of pancreatic cancer (PC) by down-regulating Numb and p53. We further explored the novel molecular mechanism involving its oncogenic role in PC development. Methods We investigated the potential role and mechanism of MSI2 in EGF-induced EMT in PC in vitro and vivo. Results EGF enhanced EGFR (epidermal growth factor receptor) phosphorylation, induced EMT and activated ZEB1-ERK/MAPK signaling in 2 PC cells. However, MSI2 silencing reversed EGF stimulated function, including inhibiting EGF-promoted EMT-like cell morphology and EGF-enhanced cell invasion and migration. Meanwhile, MSI2 silencing inhibited EGF-enhanced EGFR phosphorylation at tyrosine 1068 and reversed EGF-induced change of the key proteins in EMT and ZEB1-ERK/MAPK signaling (ZEB1, E-cad, ZO-1, β-catenin, pERK and c-Myc). Additionally, MSI2 was co-stained and co-immunoprecipitated with ZEB1, pERK and c-Myc in PC cells by IF and co-IP, implying a close interaction between them. In vivo, MSI2 silencing inhibited pancreatic tumor size in situ and distant liver metastases. A close relationship of MSI2 with EMT and ZEB1-ERK/MAPK signaling were also observed in vivo and human PC samples, which coordinately promoted the poor prognosis of PC patients. Conclusions MSI2 promotes EGF-induced EMT in PC via ZEB1-ERK/MAPK signaling.
Collapse
Affiliation(s)
- Weiwei Sheng
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Xiaoyang Shi
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Yiheng Lin
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Chao Jia
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Rongxian Cao
- Department of General Surgery, the People's Hospital of Liaoning province, Shenyang, 110034, China
| | - Jian Sun
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China
| | - Guosen Wang
- Department of General Surgery, the First Hospital of Nanchang University, NanChang, 330006, China
| | - Lei Zhou
- Department of General Surgery, the Central Hospital of JingZhou City, JingZhou, 434020, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
38
|
Zhao J, Zhang Y, Liu XS, Zhu FM, Xie F, Jiang CY, Zhang ZY, Gao YL, Wang YC, Li B, Xia SJ, Han BM. RNA-binding protein Musashi2 stabilizing androgen receptor drives prostate cancer progression. Cancer Sci 2020; 111:369-382. [PMID: 31833612 PMCID: PMC7004550 DOI: 10.1111/cas.14280] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
The androgen receptor (AR) pathway is critical for prostate cancer carcinogenesis and development; however, after 18‐24 months of AR blocking therapy, patients invariably progress to castration‐resistant prostate cancer (CRPC), which remains an urgent problem to be solved. Therefore, finding key molecules that interact with AR as novel strategies to treat prostate cancer and even CRPC is desperately needed. In the current study, we focused on the regulation of RNA‐binding proteins (RBPs) associated with AR and determined that the mRNA and protein levels of AR were highly correlated with Musashi2 (MSI2) levels. MSI2 was upregulated in prostate cancer specimens and significantly correlated with advanced tumor grades. Downregulation of MSI2 in both androgen sensitive and insensitive prostate cancer cells inhibited tumor formation in vivo and decreased cell growth in vitro, which could be reversed by AR overexpression. Mechanistically, MSI2 directly bound to the 3′‐untranslated region (UTR) of AR mRNA to increase its stability and, thus, enhanced its transcriptional activity. Our findings illustrate a previously unknown regulatory mechanism in prostate cancer cell proliferation regulated by the MSI2‐AR axis and provide novel evidence towards a strategy against prostate cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Sheng Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Ming Zhu
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xie
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Ye Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,First Clinical Medical College of Nanjing Medical University, Jiangsu, China
| | - Ying-Li Gao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Chuan Wang
- Department of Urology, Weifang Traditional Chinese Medicine Hospital, Shandong, China
| | - Bin Li
- Unit of Molecular Immunology, Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Wang X, Wang R, Bai S, Xiong S, Li Y, Liu M, Zhao Z, Wang Y, Zhao Y, Chen W, Billiar TR, Cheng B. Musashi2 contributes to the maintenance of CD44v6+ liver cancer stem cells via notch1 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:505. [PMID: 31888685 PMCID: PMC6936093 DOI: 10.1186/s13046-019-1508-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) contribute to hepatocellular carcinoma (HCC) development, metastasis, and drug resistance. MSI2 and Notch1 signaling are involved in the maintenance of CSCs. However, it is unknown whether MSI2 and Notch1 are involved in the maintenance of CD44v6+ LCSCs. Therefore, we investigated the clinical significance and function of MSI2 and its relationship with Notch1 signaling in the maintenance of stemness properties in CD44v6+ LCSCs. METHODS The expression of MSI2 and CD44v6 were detected by fresh specimens and a HCC tissue microarray. The tissue microarray containing 82 HCC samples was used to analyze the correlation between CD44v6 and MSI2. CD44v6+/- cells were isolated using microbeads sorting. We explored the roles of MSI2 and Notch1 signaling in CD44v6+ LCSCs by sphere formation assay, transwell assay, clone formation assay in vitro, and xenograft tumor models in vivo. A Notch RT2 PCR Array, Co-immunoprecipitation, and RNA-immunoprecipitation were used to further investigate the molecular mechanism of MSI2 in activating Notch1 signaling. RESULTS Here, we found MSI2 expression was positively correlated with high CD44v6 expression in HCC tissues, and further correlated with tumor differentiation. CD44v6+ cells isolated from HCC cell lines exhibited increased self-renewal, proliferation, migration and invasion, resistance to Sorafenib and tumorigenic capacity. Both MSI2 and Notch1 signaling were elevated in sorted CD44v6+ cells than CD44v6- cells and played essential roles in the maintenance of stemness of CD44v6+ LCSCs. Mechanically, MSI2 directly bound to Lunatic fringe (LFNG) mRNA and protein, resulting in Notch1 activation. CONCLUSIONS Our results demonstrated that MSI2 maintained the stemness of CD44v6+ LCSCs by activating Notch1 signaling through the interaction with LFNG, which could be a potential molecular target for stem cell-targeted therapy for liver cancer.
Collapse
Affiliation(s)
- Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Yawen Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Zhenxiong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030.
| |
Collapse
|
40
|
Immunohistochemical Analysis Revealed a Correlation between Musashi-2 and Cyclin-D1 Expression in Patients with Oral Squamous Cells Carcinoma. Int J Mol Sci 2019; 21:ijms21010121. [PMID: 31878037 PMCID: PMC6981452 DOI: 10.3390/ijms21010121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Aim: Musashi 2 (MSI2), which is an RNA-binding protein, plays a fundamental role in the oncogenesis of several cancers. The aim of this study is to investigate the expression of MSI2 in Oral Squamous Cell Carcinoma (OSCC) and evaluate its correlation to clinic-pathological variables and prognosis. Materials and Methods: A bioinformatic analysis was performed on data downloaded from The Cancer Genome Atlas (TCGA) database. The MSI2 expression data were analysed for their correlation with clinic-pathological and prognostic features. In addition, an immmunohistochemical evaluation of MSI2 expression on 108 OSCC samples included in a tissue microarray and 13 healthy mucosae samples was performed. Results: 241 patients’ data from TCGA were included in the final analysis. No DNA mutations were detected for the MSI2 gene, but a hyper methylated condition of the gene emerged. MSI2 mRNA expression correlated with Grading (p = 0.009) and overall survival (p = 0.045), but not with disease free survival (p = 0.549). Males presented a higher MSI2 mRNA expression than females. The immunohistochemical evaluation revealed a weak expression of MSI2 in both OSCC samples and in healthy oral mucosae. In addition, MSI2 expression directly correlated with Cyclin-D1 expression (p = 0.022). However, no correlation has been detected with prognostic outcomes (overall and disease free survival). Conclusions: The role of MSI2 expression in OSCC seems to be not so closely correlated with prognosis, as in other human neoplasms. The correlation with Cyclin-D1 expression suggests an indirect role that MSI2 might have in the proliferation of OSCC cells, but further studies are needed to confirm such results.
Collapse
|
41
|
Wang ZL, Wang C, Liu W, Ai ZL. Upregulation of microRNA-143-3p induces apoptosis and suppresses proliferation, invasion, and migration of papillary thyroid carcinoma cells by targeting MSI2. Exp Mol Pathol 2019; 112:104342. [PMID: 31738908 DOI: 10.1016/j.yexmp.2019.104342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Abstract
As a tumor-associated biological molecule, microRNA-143-3p (miR-143-3p) is implicated in the progression of papillary thyroid carcinoma (PTC). We conducted this study to elucidate the effects of miR-143-3p mediated by Musashi RNA binding protein 2 (MSI2) on the biological activities of PTC cells. The K1 cells with the lowest miR-143-3p expression were selected for the experiments. The targeting relationship between miR-143-3p and MSI2 was verified. The biological functions of miR-143-3p and MSI2 with respect to K1 cell proliferation, cycle distribution, apoptosis, invasion, migration, and tumorigenesis were studied using gain- and loss-of-function assays both in vitro and in vivo. MSI2 was verified to be a target gene of miR-143-3p. Cells treated with upregulation of miR-143-3p or silencing of MSI2 exhibited significantly decreased the expression of Bcl-2, PCNA, MCM2, Ki67, MSI2, MMP-2, and MMP-9. This was accompanied by inhibited cell proliferation, cell invasion, and migration, as well as a significant increase in Bax expression, cell cycle arrest, and cell apoptosis. More importantly, the tumor inhibitory effects of upregulated miR-143-3p were also confirmed in the tumor xenografts in nude mice. Our results indicate that upregulation of miR-143-3p suppresses the progression of PTC by impeding cell growth, invasion, and migration via downregulation of MSI2, highlighting the potential of miR-143-3p as a target for future PTC treatment.
Collapse
Affiliation(s)
- Zheng-Lin Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Wei Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhi-Long Ai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
42
|
Lan L, Xing M, Kashipathy M, Douglas J, Gao P, Battaile K, Hanzlik R, Lovell S, Xu L. Crystal and solution structures of human oncoprotein Musashi-2 N-terminal RNA recognition motif 1. Proteins 2019; 88:573-583. [PMID: 31603583 PMCID: PMC7079100 DOI: 10.1002/prot.25836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/16/2019] [Accepted: 09/28/2019] [Indexed: 01/03/2023]
Abstract
Musashi‐2 (MSI2) belongs to Musashi family of RNA binding proteins (RBP). Like Musashi‐1 (MSI1), it is overexpressed in a variety of cancers and is a promising therapeutic target. Both MSI proteins contain two N‐terminal RNA recognition motifs and play roles in posttranscriptional regulation of target mRNAs. Previously, we have identified several inhibitors of MSI1, all of which bind to MSI2 as well. In order to design MSI2‐specific inhibitors and compare the differences of binding mode of the inhibitors, we set out to solve the structure of MSI2‐RRM1, the key motif that is responsible for the binding. Here, we report the crystal structure and the first NMR solution structure of MSI2‐RRM1, and compare these to the structures of MSI1‐RBD1 and other RBPs. A high degree of structural similarity was observed between the crystal and solution NMR structures. MSI2‐RRM1 shows a highly similar overall folding topology to MSI1‐RBD1 and other RBPs. The structural information of MSI2‐RRM1 will be helpful for understanding MSI2‐RNA interaction and for guiding rational drug design of MSI2‐specific inhibitors.
Collapse
Affiliation(s)
- Lan Lan
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Minli Xing
- Bio-NMR Core Facility, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Maithri Kashipathy
- Protein Structure Laboratory, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Justin Douglas
- Bio-NMR Core Facility, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Philip Gao
- Protein Production Group, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Kevin Battaile
- IMCA-CAT, Hauptman Woodward Medical Research Institute, Argonne, Illinois
| | - Robert Hanzlik
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas
| | - Scott Lovell
- Protein Structure Laboratory, NIH COBRE in Protein Structure and Function, The University of Kansas, Lawrence, Kansas
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.,Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
43
|
Terasaka T, Kim T, Dave H, Gangapurkar B, Nicholas DA, Muñoz O, Terasaka E, Li D, Lawson MA. The RNA-Binding Protein ELAVL1 Regulates GnRH Receptor Expression and the Response to GnRH. Endocrinology 2019; 160:1999-2014. [PMID: 31188427 PMCID: PMC6660905 DOI: 10.1210/en.2019-00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023]
Abstract
Gonadotropin secretion, which is elicited by GnRH stimulation of the anterior pituitary gonadotropes, is a critical feature of reproductive control and the maintenance of fertility. In addition, activation of the GnRH receptor (GnRHR) regulates transcription and translation of multiple factors that regulate the signaling response and synthesis of gonadotropins. GnRH stimulation results in a broad redistribution of mRNA between active and inactive polyribosomes within the cell, but the mechanism of redistribution is not known. The RNA-binding protein embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) binds to AU-rich elements in mRNA and is one of the most abundant mRNA-binding proteins in eukaryotic cells. It is known to serve as a core component of RNA-binding complexes that direct the fate of mRNA. In LβT2 gonadotropes, we showed that ELAVL1 binds to multiple mRNAs encoding factors that are crucial for gonadotropin synthesis and release. Association with some mRNAs is GnRH sensitive but does not correlate with abundance of binding. We also showed MAPK-dependent changes in intracellular localization of ELAVL1 in response to GnRH stimulation. Knockdown of ELAVL1 gene expression resulted in reduced Lhb and Gnrhr mRNA levels, reduced cell surface expression of GnRHR, and reduced LH secretion in response to GnRH stimulation. Overall, these observations not only support the role of ELAVL1 in GnRHR-mediated regulation of gene expression and LH secretion but also indicate that other factors may contribute to the precise fate of mRNA in response to GnRH stimulation of gonadotropes.
Collapse
Affiliation(s)
- Tomohiro Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Hiral Dave
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Bhakti Gangapurkar
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Dequina A Nicholas
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Oscar Muñoz
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Eri Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Danmei Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Mark A Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
- Correspondence: Mark A. Lawson, PhD, University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Mail Code 0674, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
44
|
Minuesa G, Albanese SK, Xie W, Kazansky Y, Worroll D, Chow A, Schurer A, Park SM, Rotsides CZ, Taggart J, Rizzi A, Naden LN, Chou T, Gourkanti S, Cappel D, Passarelli MC, Fairchild L, Adura C, Glickman JF, Schulman J, Famulare C, Patel M, Eibl JK, Ross GM, Bhattacharya S, Tan DS, Leslie CS, Beuming T, Patel DJ, Goldgur Y, Chodera JD, Kharas MG. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun 2019; 10:2691. [PMID: 31217428 PMCID: PMC6584500 DOI: 10.1038/s41467-019-10523-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
The MUSASHI (MSI) family of RNA binding proteins (MSI1 and MSI2) contribute to a wide spectrum of cancers including acute myeloid leukemia. We find that the small molecule Ro 08-2750 (Ro) binds directly and selectively to MSI2 and competes for its RNA binding in biochemical assays. Ro treatment in mouse and human myeloid leukemia cells results in an increase in differentiation and apoptosis, inhibition of known MSI-targets, and a shared global gene expression signature similar to shRNA depletion of MSI2. Ro demonstrates in vivo inhibition of c-MYC and reduces disease burden in a murine AML leukemia model. Thus, we identify a small molecule that targets MSI's oncogenic activity. Our study provides a framework for targeting RNA binding proteins in cancer.
Collapse
Affiliation(s)
- Gerard Minuesa
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Steven K Albanese
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Wei Xie
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yaniv Kazansky
- Weill Cornell Medical College, Tri-Institutional MD-PhD Program, Rockefeller University and Sloan Kettering Institute, New York, NY, 10065, USA
| | - Daniel Worroll
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Arthur Chow
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Sun-Mi Park
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Christina Z Rotsides
- Chemical Biology Program, Sloan Kettering Institute and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - James Taggart
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrea Rizzi
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Levi N Naden
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Timothy Chou
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Saroj Gourkanti
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Maria C Passarelli
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medical College, Tri-Institutional MD-PhD Program, Rockefeller University and Sloan Kettering Institute, New York, NY, 10065, USA
| | - Lauren Fairchild
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - Jessica Schulman
- Hematologic Oncology Tissue Bank, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christopher Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph K Eibl
- Northern Ontario School of Medicine, Sudbury, ON, P3E 2C6, Canada
| | - Gregory M Ross
- Northern Ontario School of Medicine, Sudbury, ON, P3E 2C6, Canada
| | | | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Thijs Beuming
- Schrödinger, Inc., 120 West 45th Street, New York, NY, 10036, USA
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
45
|
Wang K, Li L, Fu L, Yuan Y, Dai H, Zhu T, Zhou Y, Yuan F. Integrated Bioinformatics Analysis the Function of RNA Binding Proteins (RBPs) and Their Prognostic Value in Breast Cancer. Front Pharmacol 2019; 10:140. [PMID: 30881302 PMCID: PMC6405693 DOI: 10.3389/fphar.2019.00140] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background and Purpose: Breast cancer is one of the leading causes of death among women. RNA binding proteins (RBPs) play a vital role in the progression of many cancers. Functional investigation of RBPs may contribute to elucidating the mechanisms underlying tumor initiation, progression, and invasion, therefore providing novel insights into future diagnosis, treatment, and prognosis. Methods: We downloaded RNA sequencing data from the cancer genome atlas (TCGA) by UCSC Xena and identified relevant RBPs through an integrated bioinformatics analysis. We then analyzed biological processes of differentially expressed genes (DEGs) by DAVID, and established their interaction networks and performed pathway analysis through the STRING database to uncover potential biological effects of these RBPs. We also explored the relationship between these RBPs and the prognosis of breast cancer patients. Results: In the present study, we obtained 1092 breast tumor samples and 113 normal controls. After data analysis, we identified 90 upregulated and 115 downregulated RBPs in breast cancer. GO and KEGG pathway analysis indicated that these significantly changed genes were mainly involved in RNA processing, splicing, localization and RNA silencing, DNA transposition regulation and methylation, alkylation, mitochondrial gene expression, and transcription regulation. In addition, some RBPs were related to histone H3K27 methylation, estrogen response, inflammatory mediators, and translation regulation. Our study also identified five RBPs associated with breast cancer prognosis. Survival analysis found that overexpression of DCAF13, EZR, and MRPL13 showed worse survival, but overexpression of APOBEC3C and EIF4E3 showed better survival. Conclusion: In conclusion, we identified key RBPs of breast cancer through comprehensive bioinformatics analysis. These RBPs were involved in a variety of biological and molecular pathways in breast cancer. Furthermore, we identified five RBPs as a potential prognostic biomarker of breast cancer. Our study provided novel insights to understand breast cancer at a molecular level.
Collapse
Affiliation(s)
- Ke Wang
- Clinical Laboratory, Yongchuan People's Hospital of Chongqing, Chongqing, China
| | - Ling Li
- Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fu
- Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yongqiang Yuan
- Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hongying Dai
- Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Tianjin Zhu
- Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxi Zhou
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing, China
| | - Fang Yuan
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing, China
| |
Collapse
|
46
|
D'Agostino VG, Sighel D, Zucal C, Bonomo I, Micaelli M, Lolli G, Provenzani A, Quattrone A, Adami V. Screening Approaches for Targeting Ribonucleoprotein Complexes: A New Dimension for Drug Discovery. SLAS DISCOVERY 2019; 24:314-331. [PMID: 30616427 DOI: 10.1177/2472555218818065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) are pleiotropic factors that control the processing and functional compartmentalization of transcripts by binding primarily to mRNA untranslated regions (UTRs). The competitive and/or cooperative interplay between RBPs and an array of coding and noncoding RNAs (ncRNAs) determines the posttranscriptional control of gene expression, influencing protein production. Recently, a variety of well-recognized and noncanonical RBP domains have been revealed by modern system-wide analyses, underlying an evolving classification of ribonucleoproteins (RNPs) and their importance in governing physiological RNA metabolism. The possibility of targeting selected RNA-protein interactions with small molecules is now expanding the concept of protein "druggability," with new implications for medicinal chemistry and for a deeper characterization of the mechanism of action of bioactive compounds. Here, taking SF3B1, HuR, LIN28, and Musashi proteins as paradigmatic case studies, we review the strategies applied for targeting RBPs, with emphasis on the technological advancements to study protein-RNA interactions and on the requirements of appropriate validation strategies to parallel high-throughput screening (HTS) efforts.
Collapse
Affiliation(s)
- Vito Giuseppe D'Agostino
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Denise Sighel
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Chiara Zucal
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Isabelle Bonomo
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Mariachiara Micaelli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Graziano Lolli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Provenzani
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Quattrone
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Valentina Adami
- 2 University of Trento, HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| |
Collapse
|
47
|
Zhan Y, Chen Z, Li Y, He A, He S, Gong Y, Li X, Zhou L. Long non-coding RNA DANCR promotes malignant phenotypes of bladder cancer cells by modulating the miR-149/MSI2 axis as a ceRNA. J Exp Clin Cancer Res 2018; 37:273. [PMID: 30419948 PMCID: PMC6233575 DOI: 10.1186/s13046-018-0921-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/28/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Accumulating evidences have indicated that long non-coding RNAs (lncRNAs) are potential biomarkers that play key roles in tumor development and progression. Differentiation antagonizing non-protein noding RNA (DANCR) is a novel lncRNA that acts as a potential biomarker and is involved in the development of cancers. However, the clinical significance and molecular mechanism of DANCR in bladder cancer is still unknown. METHODS The relative expression level of DANCR was determined by Real-Time qPCR in a total of 106 patients with urothelial bladder cancer and in different bladder cancer cell lines. Loss-of-function experiments were performed to investigate the biological roles of DANCR on bladder cancer cell proliferation, migration, invasion and tumorigenicity. Comprehensive transcriptional analysis, RNA-FISH, dual-luciferase reporter assay and western blot were performed to explore the molecular mechanisms underlying the functions of DANCR. RESULTS In this study, we found that DANCR was significantly up-regulated in bladder cancer. Moreover, increased DANCR expression was positively correlated with higher histological grade and advanced TNM stage. Further experiments demonstrated that knockdown of DANCR inhibited malignant phenotypes and epithelial-mesenchymal transition (EMT) of bladder cancer cells. Mechanistically, we found that DANCR was distributed mostly in the cytoplasm and DANCR functioned as a miRNA sponge to positively regulate the expression of musashi RNA binding protein 2 (MSI2) through sponging miR-149 and subsequently promoted malignant phenotypes of bladder cancer cells, thus playing an oncogenic role in bladder cancer pathogenesis. CONCLUSION This study is the first to demonstrate that DANCR plays a critical regulatory role in bladder cancer cell and DANCR may serve as a potential diagnostic biomarker and therapeutic target of bladder cancer.
Collapse
Affiliation(s)
- Yonghao Zhan
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, No. 8 Xishiku street, Beijing, 100034 China
| | - Zhicong Chen
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, No. 8 Xishiku street, Beijing, 100034 China
| | - Yifan Li
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, No. 8 Xishiku street, Beijing, 100034 China
| | - Anbang He
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, No. 8 Xishiku street, Beijing, 100034 China
| | - Shiming He
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, No. 8 Xishiku street, Beijing, 100034 China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, No. 8 Xishiku street, Beijing, 100034 China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, No. 8 Xishiku street, Beijing, 100034 China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, No. 8 Xishiku street, Beijing, 100034 China
| |
Collapse
|
48
|
Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semin Cancer Biol 2018; 52:56-73. [DOI: 10.1016/j.semcancer.2017.08.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
|
49
|
Xu M, Fang S, Song J, Chen M, Zhang Q, Weng Q, Fan X, Chen W, Wu X, Wu F, Tu J, Zhao Z, Ji J. CPEB1 mediates hepatocellular carcinoma cancer stemness and chemoresistance. Cell Death Dis 2018; 9:957. [PMID: 30237545 PMCID: PMC6148052 DOI: 10.1038/s41419-018-0974-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells within tumors that are believed to possess pluripotent properties and thought to be responsible for tumor initiation, progression, relapse and metastasis. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1), a sequence-specific RNA-binding protein that regulates mRNA polyadenylation and translation, has been linked to cancer progression and metastasis. However, the involvement of CPEB1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we have demonstrated that CPEB1 directly regulates sirtuin 1 (SIRT1) mRNA to mediate cancer stemness in HCC. Cancer stemness was analyzed by self-renewal ability, chemoresistance, metastasis, expression of stemness-related genes and CSC marker-positive cell populations. The results indicate that CPEB1 is downregulated in HCC. Overexpression of CPEB1 dramatically reduced HCC cell stemness, whereas silencing CPEB1 enhances it. Using site-directed mutagenesis, a luciferase reporter assay, and immunoprecipitation, we found that CPEB1 could directly target the 3′-UTR of SIRT1, control poly(A) tail length and suppress its translation to mediate cancer stemness in vitro and in vivo. Overall, our findings suggest that the negative regulation between CPEB1 and SIRT1 contributes to the suppression of cancer stemness in HCC. CPEB1 may have potential as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Qianqian Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Xiaoxi Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Xulu Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China.
| |
Collapse
|
50
|
Dong P, Xiong Y, Hanley SJB, Yue J, Watari H. Musashi-2, a novel oncoprotein promoting cervical cancer cell growth and invasion, is negatively regulated by p53-induced miR-143 and miR-107 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:150. [PMID: 29073938 PMCID: PMC5659032 DOI: 10.1186/s13046-017-0617-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/09/2017] [Indexed: 01/16/2023]
Abstract
Background Although previous studies have shown promise for targeting Musashi RNA-binding protein 2 (MSI-2) in diverse tumors, the role and mechanism of MSI-2 for cervical cancer (CC) progression and the regulation of MSI-2 expression remains unclear. Methods Using gene expression and bioinformatic analysis, together with gain- and loss-of-function assays, we identified MSI-2 as a novel oncogenic driver and a poor prognostic marker in CC. We explored the regulation of c-FOS by MSI-2 via RNA-immunoprecipitation and luciferase assay, and confirmed a direct inhibition of MSI-2 by miR-143/miR-107 using luciferase assay. We assessed the effect of a natural antibiotic Mithramycin A on p53, miR-143/miR-107 and MSI-2 expression in CC cells. Results MSI-2 mRNA is highly expressed in CC tissues and its overexpression correlates with lower overall survival. MSI-2 promotes CC cell growth, invasiveness and sphere formation through directly binding to c-FOS mRNA and by increasing c-FOS protein expression. Furthermore, miR-143/miR-107 are two tumor suppressor miRNAs that directly bind and inhibit MSI-2 expression in CC cells, and downregulation of miR-143/miR-107 associates with poor patient prognosis. Importantly, we found that p53 decreases the expression of MSI-2 through elevating miR-143/miR-107 levels, and treatment with a natural antibiotic Mithramycin A increased p53 and miR-143/miR-107 expression and reduced MSI-2 expression, resulting in the inhibition of CC cell proliferation, invasion and sphere formation. Conclusions These results suggest that MSI-2 plays a crucial role in promoting the aggressive phenotypes of CC cells, and restoration of miR-143/miR-107 by Mithramycin A via activation of p53 may represent a novel therapeutic approach for CC.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| |
Collapse
|