1
|
Waissengrin B, Reckamp KL. An evaluation of patritumab deruxtecan for the treatment of EGFR-mutated non-small cell lung cancer. Expert Opin Biol Ther 2025. [PMID: 40374579 DOI: 10.1080/14712598.2025.2507833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/28/2025] [Accepted: 05/14/2025] [Indexed: 05/17/2025]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) mutations represent targetable alterations in non-small cell lung cancer (NSCLC). The treatment landscape in the frontline setting for patients with advanced EGFR-mutated NSCLC is evolving with increasing treatment options. EGFR tyrosine kinase inhibitors (TKIs) have significantly improved outcomes, but resistance inevitably develops, necessitating alternative strategies. AREAS COVERED Patritumab deruxtecan is a novel antibody-drug conjugate targeted human epidermal growth factor receptor-3 (HER3), delivering a topoisomerase-I inhibitor payload to HER3-expressing cancer cells. Phase I and II studies have demonstrated efficacy in patients with EGFR-mutant NSCLC with disease progression after prior therapies, including third-generation EGFR TKIs and platinum-based chemotherapy. The phase-II trial reported an objective response rate of 39% and a median progression-free survival of 5.5 months. Patritumab deruxtecan is associated with notable toxicities, including grade 3 and higher hematologic adverse events, gastrointestinal toxicity, and interstitial lung disease (ILD). ILD occurred in 5.3% of patients in the Phase-II study. Early detection and management are crucial to minimizing the risk of complications. EXPERT OPINION Patients with advanced EGFR-mutant NSCLC who have received TKI therapy and chemotherapy have limited treatment options. Patritumab deruxtecan demonstrates clinical activity in this population with manageable side effects, addressing an unmet need for patients.
Collapse
|
2
|
Imam IA, Al Adawi S, Liu X, Ellingson S, Brainson CF, Moseley HNB, Zinner R, Zhang S, Shao Q. L858R/L718Q and L858R/L792H Mutations of EGFR Inducing Resistance Against Osimertinib by Forming Additional Hydrogen Bonds. Proteins 2025; 93:673-683. [PMID: 39494831 PMCID: PMC12036761 DOI: 10.1002/prot.26761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Acquired resistance to first-line treatments in various cancers both promotes cancer recurrence as well as limits effective treatment. This is true for epidermal growth factor receptor (EGFR) mutations, for which secondary EGFR mutations are one of the principal mechanisms conferring resistance to the covalent inhibitor osimertinib. Thus, it is very important to develop a deeper understanding of the secondary mutational resistance mechanisms associated with EGFR mutations arising in tumors treated with osimertinib to expedite the development of innovative therapeutic drugs to overcome acquired resistance. This work uses all-atom molecular dynamics (MD) simulations to investigate the conformational variation of two reported EGFR mutants (L858R/L718Q and L858R/L792H) that resist osimertinib. The wild-type EGFR kinase domain and the L858R mutant are used as the reference. Our MD simulation results revealed that both the L718Q and L792H secondary mutations induce additional hydrogen bonds between the residues in the active pocket and the residues with the water molecules. These additional hydrogen bonds reduce the exposure area of C797, the covalent binding target of osimertinib. The additional hydrogen bonds also influence the binding affinity of the EGFR kinase domain by altering the secondary structure and flexibility of the amino acid residues in the domain. Our work highlights how the two reported mutations may alter both residue-residue and residue-solvent hydrogen bonds, affecting protein binding properties, which could be helpful for future drug discovery.
Collapse
Affiliation(s)
- Ibrahim A. Imam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Shatha Al Adawi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Sally Ellingson
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- College of Medicine, Division of Biomedical Informatics University of Kentucky, Lexington, Kentucky, USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Hunter N. B. Moseley
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ralph Zinner
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Shulin Zhang
- College of Medicine, Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Sindhi K, Kanugo A. Recent Developments in Nanotechnology and Immunotherapy for the Diagnosis and Treatment of Pancreatic Cancer. Curr Pharm Biotechnol 2025; 26:143-168. [PMID: 38415488 DOI: 10.2174/0113892010284407240212110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer kills millions of people worldwide each year and is one of the most prevalent causes of mortality that requires prompt therapy. A large number of people suffering from pancreatic cancer are detected at an advanced stage, with incurable and drug-resistant tumor, hence the overall survival rate of pancreatic cancer is less. The advance phase of this cancer is generated because of expression of the cancer-causing gene, inactivation of the tumorsuppressing gene, and deregulation of molecules in different cellular signalling pathways. The prompt diagnosis through the biomarkers significantly evades the progress and accelerates the survival rates. The overexpression of Mesothelin, Urokinase plasminogen activator, IGFR, Epidermal growth factor receptor, Plectin-1, Mucin-1 and Zinc transporter 4 were recognized in the diagnosis of pancreatic cancer. Nanotechnology has led to the development of nanocarriersbased formulations (lipid, polymer, inorganic, carbon based and advanced nanocarriers) which overcome the hurdles of conventional therapy, chemotherapy and radiotherapy which causes toxicity to adjacent healthy tissues. The biocompatibility, toxicity and large-scale manufacturing are the hurdles associated with the nanocarriers-based approaches. Currently, Immunotherapybased techniques emerged as an efficient therapeutic alternative for the prevention of cancer. Immunological checkpoint targeting techniques have demonstrated significant efficacy in human cancers. Recent advancements in checkpoint inhibitors, adoptive T cell therapies, and cancer vaccines have shown potential in overcoming the immune evasion mechanisms of pancreatic cancer cells. Combining these immunotherapeutic approaches with nanocarriers holds great promise in enhancing the antitumor response and improving patient survival.
Collapse
Affiliation(s)
- Komal Sindhi
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
| | - Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
- Department of Pharmaceutical Quality Assurance, SVKM Institute of Pharmacy, Dhule, 424001, India
| |
Collapse
|
4
|
Kraemer S, Schneider DJ, Paterson C, Perry D, Westacott MJ, Hagar Y, Katilius E, Lynch S, Russell TM, Johnson T, Astling DP, DeLisle RK, Cleveland J, Gold L, Drolet DW, Janjic N. Crossing the Halfway Point: Aptamer-Based, Highly Multiplexed Assay for the Assessment of the Proteome. J Proteome Res 2024; 23:4771-4788. [PMID: 39038188 PMCID: PMC11536431 DOI: 10.1021/acs.jproteome.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Measuring responses in the proteome to various perturbations improves our understanding of biological systems. The value of information gained from such studies is directly proportional to the number of proteins measured. To overcome technical challenges associated with highly multiplexed measurements, we developed an affinity reagent-based method that uses aptamers with protein-like side chains along with an assay that takes advantage of their unique properties. As hybrid affinity reagents, modified aptamers are fully comparable to antibodies in terms of binding characteristics toward proteins, including epitope size, shape complementarity, affinity and specificity. Our assay combines these intrinsic binding properties with serial kinetic proofreading steps to allow highly effective partitioning of stable specific complexes from unstable nonspecific complexes. The use of these orthogonal methods to enhance specificity effectively overcomes the severe limitation to multiplexing inherent to the use of sandwich-based methods. Our assay currently measures half of the unique proteins encoded in the human genome with femtomolar sensitivity, broad dynamic range and exceptionally high reproducibility. Using machine learning to identify patterns of change, we have developed tests based on measurement of multiple proteins predictive of current health states and future disease risk to guide a holistic approach to precision medicine.
Collapse
Affiliation(s)
- Stephan Kraemer
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel J. Schneider
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Clare Paterson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Darryl Perry
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Matthew J. Westacott
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Yolanda Hagar
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Evaldas Katilius
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Sean Lynch
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Theresa M. Russell
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Ted Johnson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - David P. Astling
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Robert Kirk DeLisle
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Jason Cleveland
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Larry Gold
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel W. Drolet
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Nebojsa Janjic
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| |
Collapse
|
5
|
Li Y, Lin H, Hong H, Li D, Gong L, Zhao J, Wang Z, Wu Z. Multivalent Rhamnose-Modified EGFR-Targeting Nanobody Gains Enhanced Innate Fc Effector Immunity and Overcomes Cetuximab Resistance via Recruitment of Endogenous Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307613. [PMID: 38286668 PMCID: PMC10987161 DOI: 10.1002/advs.202307613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Cetuximab resistance is a significant challenge in cancer treatment, requiring the development of novel therapeutic strategies. In this study, a series of multivalent rhamnose (Rha)-modified nanobody conjugates are synthesized and their antitumor activities and their potential to overcome cetuximab resistance are investigated. Structure-activity relationship studies reveal that the multivalent conjugate D5, bearing sixteen Rha haptens, elicits the most potent innate fragment crystallizable (Fc) effector immunity in vitro and exhibits an excellent in vivo pharmacokinetics by recruiting endogenous antibodies. Notably, it is found that the optimal conjugate D5 represents a novel entity capable of reversing cetuximab-resistance induced by serine protease (PRSS). Moreover, in a xenograft mouse model, conjugate D5 exhibits significantly improved antitumor efficacy compared to unmodified nanobodies and cetuximab. The findings suggest that Rha-Nanobody (Nb) conjugates hold promise as a novel therapeutic strategy for the treatment of cetuximab-resistant tumors by enhancing the innate Fc effector immunity and enhancing the recruitment of endogenous antibodies to promote cancer cell clearance by innate immune cells.
Collapse
Affiliation(s)
- Yanchun Li
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Han Lin
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Haofei Hong
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Dan Li
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Liang Gong
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Jie Zhao
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Zheng Wang
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| |
Collapse
|
6
|
Sayin AZ, Abali Z, Senyuz S, Cankara F, Gursoy A, Keskin O. Conformational diversity and protein-protein interfaces in drug repurposing in Ras signaling pathway. Sci Rep 2024; 14:1239. [PMID: 38216592 PMCID: PMC10786864 DOI: 10.1038/s41598-023-50913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
We focus on drug repurposing in the Ras signaling pathway, considering structural similarities of protein-protein interfaces. The interfaces formed by physically interacting proteins are found from PDB if available and via PRISM (PRotein Interaction by Structural Matching) otherwise. The structural coverage of these interactions has been increased from 21 to 92% using PRISM. Multiple conformations of each protein are used to include protein dynamics and diversity. Next, we find FDA-approved drugs bound to structurally similar protein-protein interfaces. The results suggest that HIV protease inhibitors tipranavir, indinavir, and saquinavir may bind to EGFR and ERBB3/HER3 interface. Tipranavir and indinavir may also bind to EGFR and ERBB2/HER2 interface. Additionally, a drug used in Alzheimer's disease can bind to RAF1 and BRAF interface. Hence, we propose a methodology to find drugs to be potentially used for cancer using a dataset of structurally similar protein-protein interface clusters rather than pockets in a systematic way.
Collapse
Affiliation(s)
- Ahenk Zeynep Sayin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey
| | - Zeynep Abali
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Simge Senyuz
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Fatma Cankara
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
7
|
Ahn M, Lee T, Kim KS, Lee S, Na K. Synergistic Approach of Antibody-Photosensitizer Conjugate Independent of KRAS-Mutation and Its Downstream Blockade Pathway in Colorectal Cancer. Adv Healthc Mater 2023; 12:e2302374. [PMID: 37722358 DOI: 10.1002/adhm.202302374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Here, a novel approach is presented to improve the efficacy of antibody-drug conjugates (ADC) by integrating antibody-mediated immunotherapy and photodynamic therapy (PDT) in a combination therapy system utilizing an antibody-photosensitizer conjugate (APC) platform based on a poloxamer polymer linker. To specifically target Kirsten rat sarcoma 2 viral oncogene homolog (KRAS)-mutated cancer cells, an antibody antiepidermal growth factor receptor (EGFR), cetuximab, with a poloxamer linker coupled with the photosensitizer chlorin e6 through click chemistry (cetuximab-maleimide-poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-chlorine e6 conjugate, CMPXC) is synthesized. CMPXC is cytotoxic upon laser treatment, achieving a 90% cell death by suppressing KRAS downstream signaling pathways associated with ERK and AKT proteins, confirmed using RNA sequencing analysis. In KRAS-mutated colorectal cancer mouse models, CMPXC significantly enhances antitumor efficacy compared with cetuximab treatment alone, resulting in an 86% reduction in tumor growth. Furthermore, CMPXC treatment leads to a 2.24- and 1.75-fold increase in dendritic and priming cytotoxic T cells, respectively, highlighting the immune-activating potential of this approach. The findings suggest that the APC platform addresses the challenges associated with ADC development and EGFR-targeted therapy, including the synergistic advantages of antibody-mediated immunotherapy and PDT.
Collapse
Affiliation(s)
- Minji Ahn
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Taebum Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sanghee Lee
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
8
|
Liu N, Kang Y, Qu N, Kong C, Han Y. Clinical perspectives and outcomes of the giant breast phyllodes tumor and sarcoma: a real-world retrospective study. BMC Cancer 2023; 23:801. [PMID: 37635229 PMCID: PMC10463853 DOI: 10.1186/s12885-023-11279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Giant breast malignant phyllodes tumor or sarcoma (GBPS) are rare entities with diameter larger than 10 cm and variously histological pleomorphisms. This disease poses a significant threat to the quality of life of individuals, and its prognosis remains unclear. This study aimed to explore the differential diagnosis, treatment, and prognosis of GBPS in a real-world retrospective cohort. METHODS We collected GBPS (diameter > 10 cm, n = 10) and BPS (diameter ≤ 10 cm, n = 126) from patients diagnosed with sarcoma or malignant phyllodes tumor between 2008 and 2022. We analyzed clinical characteristics, histological status, treatment, and local recurrence using the Fisher's exact test between GBPS (diameter > 10 cm) and BPS (diameter ≤ 10 cm) cohort. We described overall survival (OS) and disease-free survival (DFS) using Kaplan-Meier curves and identified risk factors for local recurrence using logistic regression. The tumor size, age at diagnosis, and differential immunohistochemistry markers of breast sarcoma or phyllodes tumor to determine the prognosis of GBPS. RESULTS In our retrospective analysis of breast malignancies, we identified 10 cases of GBPS and 126 cases of BPS, corresponding to a GBPS prevalence of 0.17% (10/6000). The median age was 38.5 years (inter-quartile range, IQR: 28.25-48.5 years). During the follow-up of period (median: 80.5 months, IQR: 36.75-122 months), the local recurrence (LR) rate was 40% and 20.6%, respectively. Clinical characteristics of young age (HR:2.799, 95%CI -00.09276-0.017, p < 0.05) and cytological characteristics of marked stromal atypia (HR:0.88, 95% CI 0.39-1.40, p < 0.05) were risk factors for the poor prognosis of GBPS by COX regression model analysis. The Kaplan-Meier curves of GBPS 5-year disease-free survival (DFS) and overall survival (OS) were 31.5 months and 40 months, respectively, and were not associated with adjuvant radiation or chemotherapy. CONCLUSION We recommend mastectomy with a clear surgical margin as the preferred treatment for GBPS. Age and stromal atypia are significantly associated with recurrence. Adjuvant radiation therapy is advised; however, there was no improvement in overall survival. There is no consensus on the effectiveness of adjuvant chemotherapy and genetic methods, highlighting the need for further research into this aggressive tumor. We recommend a multidisciplinary approach involving a dedicated team for the management of GBPS.
Collapse
Affiliation(s)
- Naiquan Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ye Kang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ningxin Qu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chenhui Kong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ye Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
9
|
Phuong DTL, Van Phuong N, Le Tuan N, Cong NT, Hang NT, Thanh LN, Hue VT, Vuong NQ, Ha NTT, Popova M, Trusheva B, Bankova V. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Activities of Ethanol Extract and Chemical Constituents Isolated from Homotrigona apicalis Propolis-In Vitro and Molecular Docking Studies. Life (Basel) 2023; 13:1682. [PMID: 37629539 PMCID: PMC10455239 DOI: 10.3390/life13081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The chemical investigation of Homotrigona apicalis propolis collected in Binh Dinh province, Vietnam, led to the isolation of nine compounds, including four sesquiterpenes: spathulenol (1), 1αH,5βH-aromandendrane-4β,10α-diol (2), 1β,6α-dihydroxy-4(15)-eudesmene (3), and 1βH,5βH-aromandendrane-4α,10β-diol (4); three triterpenes: acetyl oleanolic acid (5), 3α-hydroxytirucalla-8,24-dien-21-oic acid (6), and ursolic acid (7); and two xanthones: cochinchinone A (8) and α-mangostin (9). Sesquiterpens 1-4 and triterpene 6 were isolated for the first time from stingless bee propolis. Plants in the Cratoxylum and Aglaia genus were suggested as resin sources of the propolis sample. In the antibacterial activity evaluation, the EtOH extract only showed moderate activity on S. aureus, while the isolated compounds 7-9 showed good antibacterial activity, with IC50 values of 0.56 to 17.33 µg/mL. The EtOH extract displayed selective cytotoxicity against the A-549 cancer cell line, with IC50 values of 22.82 ± 0.86 µg/mL, and the xanthones 8 and 9 exhibited good activity against the KB, HepG-2, and A-549 cancer cell lines, with IC50 values ranging from 7.55 ± 0.25 µg/mL to 29.27 ± 2.07 µg/mL. The cytotoxic effects of xanthones 8 and 9 were determined by the inhibition of the EGFR and HER2 pathways using a molecular docking study. Compounds 8 and 9 displayed strong binding affinity with EFGR and HER2, with values of -9.3 to -9.9 kcal/mol. Compounds 5, 8, and 9 showed potential α-glucosidase inhibitory activities, which were further confirmed by computational studies. The binding energies of compounds 5, 8, and 9 were lower than that of arcabose.
Collapse
Affiliation(s)
| | - Nguyen Van Phuong
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
| | - Nguyen Le Tuan
- Faculty of Natural Sciences, Quy Nhon University, Binh Dinh 55000, Vietnam;
| | - Nguyen Thanh Cong
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
- Department of Pharmacy, Dai Nam University, Hanoi 10000, Vietnam
| | - Nguyen Thu Hang
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
| | - Le Nguyen Thanh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Vu Thi Hue
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Nguyen Quoc Vuong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Nguyen Thi Thu Ha
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| |
Collapse
|
10
|
Tito C, Genovese I, Giamogante F, Benedetti A, Miglietta S, Barazzuol L, Cristiano L, Iaiza A, Carolini S, De Angelis L, Masciarelli S, Nottola SA, Familiari G, Petrozza V, Lauriola M, Tamagnone L, Ilari A, Calì T, Valdivia HH, Valdivia CR, Colotti G, Fazi F. Sorcin promotes migration in cancer and regulates the EGF-dependent EGFR signaling pathways. Cell Mol Life Sci 2023; 80:202. [PMID: 37442828 PMCID: PMC10345051 DOI: 10.1007/s00018-023-04850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.
Collapse
Affiliation(s)
- Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Ilaria Genovese
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Anna Benedetti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Selenia Miglietta
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessia Iaiza
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Sabatino Carolini
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Tamagnone
- Department of Life Science and Public Health, Histology and Embryology Unit - Catholic University of the Sacred Hearth, Fondazione Policlinico Gemelli - IRCCS, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Hector H. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Carmen R. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| |
Collapse
|
11
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Rahman HM, Abdel-Aziz M. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: a critical review. RSC Adv 2023; 13:18825-18853. [PMID: 37350862 PMCID: PMC10282734 DOI: 10.1039/d3ra02347h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is the second most common cause of morbidity and mortality among cancer types worldwide, with non-small cell lung cancer (NSCLC) representing the majority of most cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are among the most commonly used targeted therapy to treat NSCLC. Recent years have seen the evaluation of many synthetic EGFR TKIs, most of which showed therapeutic activity in pertinent models and were classified as first, second, and third-generation. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are ineffective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism. This review covers the fourth-generation EGFR-TKIs' most recent design with their essential binding interactions, the clinical difficulties, and the potential outcomes of treating patients with EGFR mutation C797S resistant to third-generation EGFR-TKIs was also discussed. Moreover, the utilization of various therapeutic strategies, including multi-targeting drugs and combination therapies, has also been reviewed.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA) Assiut 2014101 Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
12
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
13
|
Antibody-drug conjugates in lung cancer: dawn of a new era? NPJ Precis Oncol 2023; 7:5. [PMID: 36631624 PMCID: PMC9834242 DOI: 10.1038/s41698-022-00338-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of fastest growing classes of oncology drugs in modern drug development. By harnessing the powers of both cytotoxic chemotherapy and targeted therapy, ADCs are unique in offering the potential to deliver highly potent cytotoxic agents to cancer cells which express a pre-defined cell surface target. In lung cancer, the treatment paradigm has shifted dramatically in recent years, and now ADCs are now joining the list as potential options for lung cancer patients. Since 2020, the first ADC for NSCLC patients has been FDA-approved (trastuzumab deruxtecan) and two ADCs have been granted FDA Breakthrough Therapy Designation, currently under evaluation (patritumab deruxtecan, telisotuzumab vedotin). Furthermore, several early-phase trials are assessing various novel ADCs, either as monotherapy or in combinations with advanced lung cancer, and more selective and potent ADCs are expected to become therapeutic options in clinic soon. In this review, we discuss the structure and mechanism of action of ADCs, including insights from pre-clinical work; we summarize the ADCs' recent progress in lung cancer, describe toxicity profiles of ADCs, and explore strategies designed to enhance ADC potency and overcome resistance. In addition, we discuss novel ADC strategies of interest in lung cancer, including non-cytotoxic payloads, such as immunomodulatory and anti-apoptotic agents.
Collapse
|
14
|
Dual-responsive nanoparticles loading bevacizumab and gefitinib for molecular targeted therapy against non-small cell lung cancer. Acta Pharmacol Sin 2023; 44:244-254. [PMID: 35705687 DOI: 10.1038/s41401-022-00930-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 01/18/2023]
Abstract
The combination of vascular endothelial growth factor (VEGF) inhibitors and tyrosine kinase inhibitors (TKIs) is newly available for molecular targeted therapy against non-small cell lung cancer (NSCLC) in clinic. However, the therapeutic benefits remain unsatisfying due to the poor drug delivery to targets of interest. In this study, we developed bevacizumab-coated gefitinib-loaded nanoparticles (BCGN) with dual-responsive drug release for inhibiting tumor angiogenesis and phosphorylation of epidermal growth factor receptor (EGFR). Through an exogenous corona strategy, bevacizumab is easily coated on gefitinib-loaded nanoparticles via electrostatic interaction. After intravenous injection, BCGN are efficiently accumulated in NSCLC tumors as confirmed by dual-model imaging. Bevacizumab is released from BCGN upon oxidation in tumor microenvironment, whereas gefitinib is released after being internalized by tumor cells and disassembled in reduction cytoplasm. The dual-responsive release of bevacizumab and gefitinib significantly inhibits tumor growth in both A549 and HCC827 human NSCLC models. Our approach provides a promising strategy to improve combinational molecular targeted therapy of NSCLC with precisely controlled drug release.
Collapse
|
15
|
Zhang W, Han X, Yang L, Song Y, Xie L, Gai W, Wang Y, Shi Y. Safety, pharmacokinetics and efficacy of SCT200, an anti-EGFR monoclonal antibody in patients with wild-type KRAS/NRAS/BRAF metastatic colorectal cancer: a phase I dose-escalation and dose-expansion study. BMC Cancer 2022; 22:1104. [PMID: 36307775 PMCID: PMC9617324 DOI: 10.1186/s12885-022-10147-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background An over-expression of the epidermal growth factor receptor (EGFR) has been observed in colorectal cancer and is associated with aggressive disease and poor prognosis. SCT200 is a newly developed recombinant, fully humanized, anti-EGFR monoclonal antibody. This study aimed to evaluate its safety, tolerability, pharmacokinetics (PK), and efficacy in patients with wild-type KRAS/NRAS/BRAF metastatic colorectal cancer (mCRC). Methods This phase I study comprising dose-escalation phase and dose-expansion phase. SCT200 was administrated intravenously to groups of three to six patients. An every 3-week dosing cycle (0.5–15.0 mg/kg) and multiple dosing schedule were evaluated. Blood samples were collected at preset intervals for PK assessment, radiological imaging was used for efficacy assessment, and continuous safety monitoring was performed in each group during the study. Results From December 16, 2014 to December 31, 2018, fifty-six patients with wild-type KRAS/NRAS/BRAF mCRC receiving ≥ 1 dose of SCT200 were evaluated. Among them, 44.6% (25/56) of the patients failed at least two prior lines of chemotherapy. No dose-limiting toxicities occurred in any group. All of the patients experienced treatment-emergent adverse events (TEAEs). 96.4% (54/56) of patients experienced treatment-related adverse events (TRAEs), and 26.8% (15/56) of patients with Grade ≥ 3 TRAEs. No serious TRAEs were observed. The most common TRAEs were dermotoxicity and hypomagnesemia. PK analysis showed non-linear PK in the range of 0.5 - 8.0 mg/kg of single dose SCT200, the clearance decreased, and the elimination half-life (T1/2) prolonged following dose increase. In the multiple-dose period, the clearance decreased, peak concentration increased, and T1/2 prolonged during prolonged drug administration, and a steady state was reached after five consecutive dose of 6.0 mg/kg quaque week (QW). The objective response rate (ORR) was 30.4% (17/56, 95% confidence interval [CI], 18.8%–44.1%). The ORR in the dose-expansion group (6.0 mg/kg QW) was 48.0% (12/25, 95% CI, 27.8%–68.7%), the median progression-free survival was 5.2 months (95%CI, 3.6–5.5), and the median overall survival was 20.2 months (95%CI, 12.1-not reached). Conclusions SCT200 showed favorable safety, PK profile, and preliminary efficacy for patients with wild-type KRAS/NRAS/BRAF mCRC. Trial registration This study was registered with ClinicalTrials.gov (NCT02211443). Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10147-9.
Collapse
|
16
|
The role of mixed lineage kinase 3 (MLK3) in cancers. Pharmacol Ther 2022; 238:108269. [DOI: 10.1016/j.pharmthera.2022.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
17
|
Choi YS, Kim MJ, Choi EA, Kim S, Lee EJ, Park MJ, Kim MJ, Kim YW, Ahn HS, Jung JY, Jang G, Kim Y, Kim H, Kim K, Kim JY, Hong SM, Kim SC, Chang S. Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proc Natl Acad Sci U S A 2022; 119:e2119048119. [PMID: 35858411 PMCID: PMC9335190 DOI: 10.1073/pnas.2119048119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatography, Liquid
- Epithelial-Mesenchymal Transition
- Gene Knockdown Techniques
- Humans
- Mice
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Proteomics
- Secretome
- Tandem Mass Spectrometry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun A. Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Min Ji Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Hyori Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
18
|
Yang X, Yuan C, Wang H, Wang Y, Liu M, Li Z, Zhang J. Changes in serum angiogenic factors among patients with acute pain and subacute pain. Front Mol Neurosci 2022; 15:960460. [PMID: 35909446 PMCID: PMC9335149 DOI: 10.3389/fnmol.2022.960460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Screening serum biomarkers for acute and subacute pain is important for precise pain management. This study aimed to examine serum levels of angiogenic factors in patients with acute and subacute pain as potential biomarkers. Serum samples were collected from 12 healthy controls, 20 patients with postherpetic neuralgia (PHN), 4 with low back pain (LBP), and 1 with trigeminal neuralgia (TN). Pain intensity in these patients was evaluated using the visual analog scale (VAS). The serum concentrations of 11 angiogenic biomarkers were examined by Milliplex Map Human Angiogenesis Magnetic Bead Panel 2. The pain assessment from VAS showed that all patients showed moderate and severe pain. Among 11 angiogenic factors, osteopontin (OPN), thrombospondin-2 (TSP-2), soluble platelet endothelial cell adhesion molecule-1 (sPECAM-1), soluble urokinase-type plasminogen activator receptor (suPAR), and soluble epidermal growth factor receptors (sErbB2) were up-regulated and soluble interleukin-6 receptor α (sIL-6Rα) were down-regulated in patients with pain compared to the healthy participants (all P-values were < 0.005). Moreover, a linear regression model showed that the serum OPN concentration was correlated with pain intensity in patients with PHN (P = 0.03). There was no significant difference between the serum concentration of soluble epidermal growth factor receptors, sErbB3, soluble AXL, tenascin, and soluble neuropilin-1 in patients with acute and subacute pain and that of healthy controls. The results of this study provided new valuable insights into our understanding of angiogenic factors that may contribute to as mechanistic biomarkers of pain, and reveal the pathophysiological mechanism of pain. Clinical Trial Registration:www.chictr.org.cn, identifier ChiCTR2200061775.
Collapse
Affiliation(s)
- Xuewei Yang
- Department of Anesthesiology and Pain Medical Center, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Chunmei Yuan
- Department of Anesthesiology and Pain Medical Center, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Huanling Wang
- Department of Anesthesiology and Pain Medical Center, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Yunxia Wang
- Department of Anesthesiology and Pain Medical Center, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Mei Liu
- Department of Anesthesiology and Pain Medical Center, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
| | - Jun Zhang
- Department of Anesthesiology and Pain Medical Center, Tianjin Union Medical Center, Nankai University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Jun Zhang,
| |
Collapse
|
19
|
Lu HL, Jie GL, Wu YL. Epidermal growth factor receptor-targeted therapy for the treatment of non-small cell lung cancer: A review of phase II and III trials. Expert Opin Emerg Drugs 2022; 27:111-126. [PMID: 35385682 DOI: 10.1080/14728214.2022.2063836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION EGFR is one of the most common driver gene mutations in lung cancer. EGFR-TKI monotherapy and EGFR-TKI combined with chemotherapy or anti-angiogenesis drugs have significantly prolonged the survival of patients with EGFR-mutant NSCLC. However, disease progression caused by acquired resistance to EGFR-TKIs is inevitable. And patients with EGFR exon 20ins showed limited efficacy to EGFR-TKIs. AREAS COVERED In this review, we initially evaluated the efficacy of existing treatments for EGFR-mutant NSCLC. Second, we reviewed the ongoing phase II and III clinical trials, provide the latest results, discuss the scientific rationale of these trials and the potential development issues. EXPERT OPINION The application of EGFR-TKIs has greatly changed the therapeutic strategies for advanced and resected NSCLC with EGFR mutations, and the 5-year OS rate for advanced NSCLC was close to 40%. The current research direction for the treatment of patients with EGFR mutations focuses on the following three aspects: uncommon EGFR mutation subtypes NSCLC, brain metastases, and EGFR TKI-based combination therapy. Future studies on EGFR-mutant NSCLC therapy will focus on overcoming EGFR-TKI-related resistance, preventing drug resistance in advance, and developing bispecific antibody drugs. ADCs may be the promising strategy for patients with acquired resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Hong-Lian Lu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Guang-Ling Jie
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yi-Long Wu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
20
|
Kolesar J, Peh S, Thomas L, Baburaj G, Mukherjee N, Kantamneni R, Lewis S, Pai A, Udupa KS, Kumar An N, Rangnekar VM, Rao M. Integration of liquid biopsy and pharmacogenomics for precision therapy of EGFR mutant and resistant lung cancers. Mol Cancer 2022; 21:61. [PMID: 35209919 PMCID: PMC8867675 DOI: 10.1186/s12943-022-01534-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The advent of molecular profiling has revolutionized the treatment of lung cancer by comprehensively delineating the genomic landscape of the epidermal growth factor receptor (EGFR) gene. Drug resistance caused by EGFR mutations and genetic polymorphisms of drug metabolizing enzymes and transporters impedes effective treatment of EGFR mutant and resistant lung cancer. This review appraises current literature, opportunities, and challenges associated with liquid biopsy and pharmacogenomic (PGx) testing as precision therapy tools in the management of EGFR mutant and resistant lung cancers. Liquid biopsy could play a potential role in selection of precise tyrosine kinase inhibitor (TKI) therapies during different phases of lung cancer treatment. This selection will be based on the driver EGFR mutational status, as well as monitoring the development of potential EGFR mutations arising during or after TKIs treatment, since some of these new mutations may be druggable targets for alternative TKIs. Several studies have identified the utility of liquid biopsy in the identification of EGFR driver and acquired resistance with good sensitivities for various blood-based biomarkers. With a plethora of sequencing technologies and platforms available currently, further evaluations using randomized controlled trials (RCTs) in multicentric, multiethnic and larger patient cohorts could enable optimization of liquid-based assays for the detection of EGFR mutations, and support testing of CYP450 enzymes and drug transporter polymorphisms to guide precise dosing of EGFR TKIs.
Collapse
Affiliation(s)
- Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Spencer Peh
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nayonika Mukherjee
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raveena Kantamneni
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Pai
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Naveena Kumar An
- Department of Surgical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vivek M Rangnekar
- Markey Cancer Centre and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
21
|
Botticelli A, Pomati G, Marchetti P. Target therapy in cancer treatment. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
22
|
Fu D, Li C, Huang Y. Lipid-Polymer Hybrid Nanoparticle-Based Combination Treatment with Cisplatin and EGFR/HER2 Receptor-Targeting Afatinib to Enhance the Treatment of Nasopharyngeal Carcinoma. Onco Targets Ther 2021; 14:2449-2461. [PMID: 33859480 PMCID: PMC8044085 DOI: 10.2147/ott.s286813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is one of the most prevalent carcinomas among the Cantonese population of South China and Southeast Asia (responsible for 8% of all cancers in China alone). Although concurrent platinum-based chemotherapy and radiotherapy have been successful, metastatic NPC remains difficult to treat, and the failure rate is high. Methods Thus, we developed stable lipid–polymer hybrid nanoparticles (NPs) containing cisplatin (CDDP) and afatinib (AFT); these drugs act synergistically to counter NPC. The formulated nanoparticles were subjected to detailed in vitro and in vivo analysis. Results We found that CDDP and AFT exhibited synergistic anticancer efficacy at a specific molar ratio. NPs were more effective than a free drug cocktail (a combination) in reducing cell viability, enhancing apoptosis, inhibiting cell migration, and blocking cell cycling. Cell viability after CDDP monotherapy was as high as 85.1%, but CDDP+AFT (1/1 w/w) significantly reduced viability to 39.5%. At 1 µg/mL, AFT/CDDP-loaded lipid–polymer hybrid NPs (ACD-LP) were significantly more cytotoxic than the CDDP+AFT cocktail, indicating the superiority of the NP system. Conclusion The NPs significantly delayed tumor growth compared with either CDDP or AFT monotherapy and were not obviously toxic. Overall, the results suggest that AFT/CDDP-loaded lipid–polymer hybrid NPs exhibit great potential as a treatment for NPC.
Collapse
Affiliation(s)
- Dehui Fu
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Chao Li
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Yongwang Huang
- Department of Ear-Nose-Throat (ENT), The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| |
Collapse
|
23
|
Chen R, Huang Y, Wang L, Zhou J, Tan Y, Peng C, Yang P, Peng W, Li J, Gu Q, Sheng Y, Wang Y, Shao G, Zhang Q, Sun Y. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: toward colorectal cancer treatment. Biomater Sci 2021; 9:2279-2294. [PMID: 33538278 DOI: 10.1039/d0bm01904f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-functionalized targeted nanocarriers to deliver chemotherapeutics have been widely explored. However, it remains highly desirable to understand and apply the antitumor potential of antibodies integrated in hybrid composite nanoplatforms. Herein, mesoporous silica nanoparticles, a supported lipid bilayer and cetuximab were integrated to fabricate a hybrid nanoplatform for effectively encapsulating and selectively delivering 5-fluorouracil (5-FU) against colorectal cancer (CRC) cells. The specially designed nanoplatform exhibited superior properties, such as satisfying size distribution, dispersity and stability, drug encapsulation, controlled release, and cellular uptake. Interestingly, the modification of cetuximab onto nanoplatforms without drug loading can significantly inhibit the migration and invasion of CRC cells through suppressing the epidermal growth factor receptor (EGFR)-associated signaling pathway. Furthermore, delivery of 5-FU by using this nanoplatform can remarkably induce cytotoxicity, cell cycle arrest, and cell apoptosis for CRC cells with high EGFR expression. Overall, this nanostructured platform can dramatically improve the tumor killing effects of encapsulated chemotherapeutics and present antimigration effects derived from the antibody modified on it. Moreover, in vivo biodistribution experiments demonstrated the superior tumor targeting ability of the targeted nanoparticles. Thus, this targeted nanoplatform has substantial potential in combinational therapy of antibodies and chemotherapy agents against colorectal cancer.
Collapse
Affiliation(s)
- Ranran Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cho J. Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective. BMB Rep 2020. [PMID: 32172728 PMCID: PMC7118354 DOI: 10.5483/bmbrep.2020.53.3.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.
Collapse
Affiliation(s)
- Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
25
|
Hosono H, Takei J, Ohishi T, Sano M, Asano T, Sayama Y, Nakamura T, Yanaka M, Kawada M, Harada H, Kaneko MK, Kato Y. Anti‑EGFR monoclonal antibody 134‑mG2a exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Int J Mol Med 2020; 46:1443-1452. [PMID: 32945346 PMCID: PMC7447320 DOI: 10.3892/ijmm.2020.4700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
The epidermal growth factor receptor (EGFR), a transmembrane receptor and member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases, is a critical mediator of cell growth and differentiation. EGFR forms homo- or heterodimers with other HER family members to activate downstream signaling cascades in a number of cancer cells. In a previous study, the authors established an anti-EGFR monoclonal antibody (mAb), EMab-134, by immunizing mice with the ectodomain of human EGFR. EMab-134 binds specifically to endogenous EGFR and can be used to detect receptor on oral cancer cell lines by flow cytometry and western blot analysis; this antibody is also effective for the immunohistochemical evaluation of oral cancer tissues. In the present study, the subclass of EMab-134 was converted from IgG1 to IgG2a (134-mG2a) to facilitate antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). The dissociation constants (KDs) of EMab-134 and 134-mG2a against EGFR-expressing CHO-K1 (CHO/EGFR) cells were deter-mined by flow cytometry to be 3.2×10−9 M and 2.1×10−9 M, respectively; these results indicate that 134-mG2a has a higher binding affinity than EMab-134. The 134-mG2a antibody was more sensitive than EMab-134 with respect to antigen detection in oral cancer cells in both western blot analysis and immunohistochemistry applications. Analysis in vitro revealed that 134-mG2a contributed to high levels of ADCC and CDC in experiments targeting CHO/EGFR, HSC-2, and SAS cells. Moreover, the in vivo administration of 134-mG2a significantly inhibited the development of CHO/EGFR, HSC-2, and SAS mouse xenografts in comparison to the results observed in response to EMab-134. Taken together, the findings of the present study demonstrate that the newly-formulated 134-mG2a is useful for detecting EGFR by flow cytometry, western blot analysis and immunohistochemistry. Furthermore, the in vivo results suggested that it may also be useful as part of a therapeutic regimen for patients with EGFR-expressing oral cancer.
Collapse
Affiliation(s)
- Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Mika Kato Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
26
|
Li J, Chen Z, Chen F, Xie G, Ling Y, Peng Y, Lin Y, Luo N, Chiang CM, Wang H. Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein. Nucleic Acids Res 2020; 48:5684-5694. [PMID: 32356894 PMCID: PMC7261189 DOI: 10.1093/nar/gkaa269] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Studies on biological functions of N6-methyladenosine (m6A) modification in mRNA have drawn significant attention in recent years. Here we describe the construction and characterization of a CRISPR-Cas13b-based tool for targeted demethylation of specific mRNA. A fusion protein, named dm6ACRISPR, was created by linking a catalytically inactive Type VI-B Cas13 enzyme from Prevotella sp. P5-125 (dPspCas13b) to m6A demethylase AlkB homolog 5 (ALKBH5). dm6ACRISPR specifically demethylates m6A of targeted mRNA such as cytochrome b5 form A (CYB5A) to increase its mRNA stability. It can also demethylate β-catenin-encoding CTNNB1 mRNA that contains multiple m6A sites to trigger its translation. In addition, the dm6ACRISPR system incurs efficient demethylation of targeted epitranscriptome transcripts with limited off-target effects. Targeted demethylation of transcripts coding for oncoproteins such as epidermal growth factor receptor (EGFR) and MYC can suppress proliferation of cancer cells. Together, we provide a programmable and in vivo manipulation tool to study mRNA modification of specific genes and their related biological functions.
Collapse
Affiliation(s)
- Jiexin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Feng Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Guoyou Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yuyi Ling
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yanxi Peng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yu Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital,Southern Medical University, Guangzhou, Guangdong 510006, China
| | - Nan Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
27
|
Cellular processes involved in lung cancer cells exposed to direct current electric field. Sci Rep 2020; 10:5289. [PMID: 32210363 PMCID: PMC7093422 DOI: 10.1038/s41598-020-62332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/06/2020] [Indexed: 11/08/2022] Open
Abstract
With the rapid breakthrough of electrochemical treatment of tumors, electric field (EF)-sensitive genes, previously rarely exploited, have become an emerging field recently. Here, we reported our work for the identification of EF-sensitive genes in lung cancer cells. The gene expression profile (GSE33845), in which the human lung cancer CL1-0 cells were treated with a direct current electric field (dcEF) (300 mV/mm) for 2 h, was retrieved from GEO database. Differentially expressed genes (DEGs) were acquired, followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) and protein-protein interaction (PPI) analysis. Hub genes were acquired and analyzed by various tools including the Human Protein Atlas, Kaplan-Meier analysis, Cytoscape, FunRich, Oncomine and cBioPortal. Subsequently, three-dimensional protein models of hub genes were modeled by Modeller 9.20 and Rosetta 3.9. Finally, a 100 ns molecular dynamics simulation for each hub protein was performed with GROMACS 2018.2. A total of 257 DEGs were acquired and analyzed by GO, KEGG and PPI. Then, 10 hub genes were obtained, and the signal pathway analysis showed that two inflammatory pathways were activated: the FoxO signaling pathway and the AGE-RAGE signaling pathway. The molecular dynamic analysis including RMSD and the radius of gyration hinted that the 3D structures of hub proteins were built. Overall, our work identified EF-sensitive genes in lung cancer cells and identified that the inflammatory state of tumor cells may be involved in the feedback mechanism of lung cancer cells in response to electric field stimulation. In addition, qualified three-dimensional protein models of hub genes were also constructed, which will be helpful in understanding the complex effects of dcEF on human lung cancer CL1-0 cells.
Collapse
|
28
|
Takei J, Kaneko MK, Ohishi T, Kawada M, Harada H, Kato Y. A novel anti-EGFR monoclonal antibody (EMab-17) exerts antitumor activity against oral squamous cell carcinomas via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Oncol Lett 2020; 19:2809-2816. [PMID: 32218834 PMCID: PMC7068343 DOI: 10.3892/ol.2020.11384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases; it is a transmembrane receptor involved in cell growth and differentiation. EGFR homodimers or heterodimers in combination with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many types of cancer, including oral squamous cell carcinoma (OSCC). The present study produced novel anti-EGFR monoclonal antibodies (mAbs) possessing antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), and investigated antitumor activity. Mice were immunized with an EGFR-overexpressed glioblastoma cell line, LN229 (LN229/EGFR), after which ELISA was performed using recombinant EGFR. mAbs were subsequently selected according to their efficacy for LN229/EGFR, as determined via flow cytometry. After determining the subclass of mAbs, the EMab-17 (IgG2a, kappa) clone exhibited ADCC and CDC activities against two OSCC cell lines, HSC-2 and SAS. Furthermore, EMab-17 exerted antitumor activities against mouse xenograft models using HSC-2 and SAS, indicating that EMab-17 may be used in an antibody-based therapy for EGFR-expressing OSCC.
Collapse
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mika Kato Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka 410-0301, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka 410-0301, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
29
|
Lu K, Feng F, Yang Y, Liu K, Duan J, Liu H, Yang J, Wu M, Liu C, Chang Y. High-throughput screening identified miR-7-2-3p and miR-29c-3p as metastasis suppressors in gallbladder carcinoma. J Gastroenterol 2020; 55:51-66. [PMID: 31562534 DOI: 10.1007/s00535-019-01627-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/01/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is one of the most aggressive and lethal tumors, with extremely high metastatic activity and poor prognosis. Previously we have studied miRNAs that promote metastasis and progression of GBC, the aim of present study was to systematically elucidate the metastasis suppressor miRNAs in GBC. METHODS A novel designed high-throughput screening method that combined high content screening (HCS) and miRNA microarray analysis was conducted to filter out anti-metastatic miRNAs of GBC. Frozen samples were analyzed for the expression of goal miRNAs by real-time PCR. The biological functions of miRNAs were studied by transwell, immunoblot. Liver metastasis model via spleen injection was further examined in nude mice. Kaplan-Meier and Cox regression analyses were used to analyze the effect of goal miRNAs on overall survival. The target genes and interaction network of goal miRNAs were determined by whole transcriptome genome sequencing. RESULTS Out of the miRNAs library, a series of prominent metastatic suppressor miRNA candidates were filtered out. Among them, miR-7-2-3p and miR-29c-3p were discovered downregulated in GBC, and upregulation of them could reverse epithelial-mesenchymal transition and decrease the metastasis ability of GBC cells in vitro and in vivo, which was dominated by the miRNA-mRNA-lncRNA co-expression network. And DCLK1 and SLC36A1 are the direct target genes of miR-7-2-3p and miR-29c-3p. Moreover, the deficiency of miR-7-2-3p and miR-29c-3p was closely associated with poor prognosis of GBC patients. CONCLUSIONS Our findings indicate that miR-7-2-3p and miR-29c-3p play crucial roles in the pathogenesis and worse prognosis of GBCs, which may serve as prognosis biomarkers and promise potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Kai Lu
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Feiling Feng
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Yingcheng Yang
- Organ Transplantation Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Kai Liu
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Jicheng Duan
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Hu Liu
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Jiahe Yang
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Mengchao Wu
- Hepatic Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Chen Liu
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
| | - Yanxin Chang
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
30
|
Yu Y, Suryo Rahmanto Y, Shen YA, Ardighieri L, Davidson B, Gaillard S, Ayhan A, Shi X, Xuan J, Wang TL, Shih IM. Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBioMedicine 2019; 47:184-194. [PMID: 31492560 PMCID: PMC6796592 DOI: 10.1016/j.ebiom.2019.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Spleen tyrosine kinase (SYK) is frequently upregulated in recurrent ovarian carcinomas, for which effective therapy is urgently needed. SYK phosphorylates several substrates, but their translational implications remain unclear. Here, we show that SYK interacts with EGFR and ERBB2, and directly enhances their phosphorylation. METHODS We used immunohistochemistry and immunoblotting to assess SYK and EGFR phosphorylation in ovarian serous carcinomas. Association with survival was determined by Kaplan-Meier analysis and the log-rank test. To study its role in EGFR signaling, SYK activity was modulated using a small molecule inhibitor, a syngeneic knockout, and an active kinase inducible system. We applied RNA-seq and phosphoproteomic mass spectrometry to investigate the SYK-regulated EGF-induced transcriptome and downstream substrates. FINDINGS Induced expression of constitutively active SYK130E reduced cellular response to EGFR/ERBB2 inhibitor, lapatinib. Expression of EGFRWT, but not SYK non-phosphorylatable EGFR3F mutant, resulted in paclitaxel resistance, a phenotype characteristic to SYK active ovarian cancers. In tumor xenografts, SYK inhibitor reduces phosphorylation of EGFR substrates. Compared to SYKWT cells, SYKKO cells have an attenuated EGFR/ERBB2-transcriptional activity and responsiveness to EGF-induced transcription. In ovarian cancer tissues, pSYK (Y525/526) levels showed a positive correlation with pEGFR (Y1187). Intense immunoreactivity of pSYK (Y525/526) correlated with poor overall survival in ovarian cancer patients. INTERPRETATION These findings indicate that SYK activity positively modulates the EGFR pathway, providing a biological foundation for co-targeting SYK and EGFR. FUND: Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, NIH/NCI, Ovarian Cancer Research Foundation Alliance, HERA Women's Cancer Foundation and Roseman Foundation. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript and eventually in the decision to submit the manuscript.
Collapse
Affiliation(s)
- Yu Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America.
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Yao-An Shen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Laura Ardighieri
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu and Hiroshima Universities Schools of Medicine, Hamamatsu 431-3192, Japan
| | - Xu Shi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| |
Collapse
|
31
|
Park JE, Jin MH, Hur M, Nam AR, Bang JH, Won J, Oh DY, Bang YJ. GC1118, a novel anti-EGFR antibody, has potent KRAS mutation-independent antitumor activity compared with cetuximab in gastric cancer. Gastric Cancer 2019; 22:932-940. [PMID: 30815759 DOI: 10.1007/s10120-019-00943-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND EGFR overexpression in gastric cancer (GC) has been reported in about 30% of patients. However, the anti-EGFR antibodies cetuximab and panitumumab have failed to improve overall survival of GC patients in combination with cytotoxic chemotherapy compared with chemotherapy alone. GC1118, a novel anti-EGFR antibody with a distinct binding epitope compared with cetuximab or panitumumab, has not been tested in GC. METHODS GC cell lines, SNU-1, SNU-5, SNU-16, SNU-216, SNU-484, SNU-601, SNU-620, SNU-638, SNU-668, SNU-719, AGS, MKN-45, NCI-N87, and KATO-III, were employed to test the effect of cetuximab or GC1118 alone, and combined with the cytotoxic agent cisplatin or 5-fluorouracil (5-FU). Cells were also treat with or without high-affinity ligands EGF 20 ng/ml or HB-EGF 100 ng/ml. RESULTS GC1118 exhibited a more potent growth inhibition effect in the majority of cell lines than cetuximab in MTT assay, regardless of the KRAS mutation status of cell lines. Co-treatment of GC1118 and cisplatin or 5-FU inhibited colony formation and migration to a greater extent, even following EGFR ligand stimulation. Ligand-induced p-AKT and p-ERK upregulation were more potently inhibited by combination treatment with GC1118 and chemotherapeutic agents compared with cetuximab plus chemotherapeutic agents. GC1118 also showed more potent anti-tumor effects compared with cetuximab in a mouse xenograft model. CONCLUSION Taken together, GC1118 alone or in combination with cytotoxic chemotherapeutic agents exerted more potent anti-tumor effects than cetuximab in GC cells, regardless of KRAS status. These findings support the further clinical development of GC1118 for the treatment of GC.
Collapse
Affiliation(s)
- Ji Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Minkyu Hur
- MOGAM Institute for Biomedical Research, Yongin, Gyeonggi-do, South Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jonghwa Won
- MOGAM Institute for Biomedical Research, Yongin, Gyeonggi-do, South Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
32
|
Oh DY, Lee KW, Han SW, Kim JW, Shin JW, Jo SJ, Won J, Hahn S, Lee H, Kim WH, Bang YJ. A First-in-Human Phase I Study of GC1118, a Novel Anti-Epidermal Growth Factor Receptor Antibody, in Patients with Advanced Solid Tumors. Oncologist 2019; 24:1037-e636. [PMID: 31164456 PMCID: PMC6693725 DOI: 10.1634/theoncologist.2019-0294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022] Open
Abstract
LESSONS LEARNED GC1118 is a novel fully human anti-epidermal growth factor receptor (EGFR) antibody with unique binding epitopes and different ligand-binding inhibitory activity compared with cetuximab or panitumumab.GC1118 showed promising antitumor activity, especially in patients with colorectal cancer resistant to prior EGFR antibody. Skin toxicities were more common and diarrhea was less frequent compared with other anti-EGFR antibodies. BACKGROUND GC1118 is a novel monoclonal antibody targeting epidermal growth factor receptor (EGFR) with more potent ligand inhibition than cetuximab or panitumumab. We conducted a first-in-human, phase I study of GC118 in patients with refractory solid tumors. METHODS In the dose escalation part, GC1118 was administered on days 1, 8, 15, and 22, followed by a 2-week rest, during which dose-limiting toxicities (DLTs) were evaluated. In the expansion part, patients were enrolled into three cohorts (Cohort 1 [C1], patients with colorectal cancer [CRC] without prior anti-EGFR treatment; Cohort 2 [C2], patients with CRC with tumors resistant to anti-EGFR therapy; Cohort 3 [C3], EGFR-overexpressing gastric cancer). RESULTS In the dose escalation part, 24 patients were treated at five dose levels: 0.3, 1.0, 3.0, 4.0, and 5.0 mg/kg. In the 5.0 mg/kg cohort, two patients experienced DLTs (skin toxicities). The maximum-tolerated dose (MTD) was 4.0 mg/kg. Common adverse events were skin toxicities. In the expansion part, 39 patients were enrolled. In Cohort 1, stable disease (SD) was observed in 58%; in Cohort 2, partial response (PR) 17% and SD 8%; in Cohort 3, PR 8% and SD 17%. CONCLUSION GC1118 showed promising antitumor activity and was well tolerated. Infrequent diarrhea compared with other anti-EGFR antibodies might be advantageous for further development.
Collapse
Affiliation(s)
- Do-Youn Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seong-Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jonghwa Won
- GC Pharma, Yongin, Korea
- Mogam Institute for Biomedical Research, Yongin, Korea
| | - Seokyung Hahn
- Division of Medical Statistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
33
|
Zhu H, Zhao L, Li Z, Wen B, Qiu C, Liu M, Xu Z, Hu S, Li H. Preparation and characterization of humanized nanobodies targeting the dimer interface of epidermal growth factor receptor (EGFR). Protein Expr Purif 2019; 157:57-62. [DOI: 10.1016/j.pep.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
|
34
|
Liu R, Kong Y, Sun P, Li F, Shi X. Correlation between methylation of the caveolin‐1 gene and of caveolin‐1 messenger ribonucleic acid, and protein levels and human epidermal growth factor receptor 2 protein expression in adenocarcinomas of the esophagogastric junction. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ruizhen Liu
- The First People's Hospital of Wu'an Wu'an Hebei China
| | - Yi Kong
- The First People's Hospital of Wu'an Wu'an Hebei China
| | - Pengbo Sun
- The First People's Hospital of Wu'an Wu'an Hebei China
| | - Faliang Li
- The First People's Hospital of Wu'an Wu'an Hebei China
| | - Xiaopeng Shi
- The First People's Hospital of Wu'an Wu'an Hebei China
| |
Collapse
|
35
|
Tang Y, Hu Y, Liu W, Chen L, Zhao Y, Ma H, Yang J, Yang Y, Liao J, Cai J, Chen Y, Liu N. A radiopharmaceutical [ 89Zr]Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo. Nucl Med Biol 2019; 70:23-31. [PMID: 30826708 DOI: 10.1016/j.nucmedbio.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The potential of the positron-emitting zirconium-89 (89Zr) (t1/2 = 78.4 h) has been recently reported for immune positron emission tomography (immunoPET) radioimmunoconjugates design. In our work, we explored the optimized preparation of [89Zr]Zr-DFO-nimotuzumab, and evaluated 89Zr-labeled monoclonal antibody (mAb) construct for targeted imaging of epidermal growth factor receptor (EGFR) overexpressed in glioma. METHODS To optimize the radiolabeling efficiency of 89Zr with DFO-nimotuzumab, multiple immunoconjugates and radiolabeling were performed. Radiolabeling yield, radiochemical purity, stability, and activity assay were investigated to characterize [89Zr]Zr-DFO-nimotuzumab for chemical and biological integrity. The in vivo behavior of this tracer was studied in mice bearing subcutaneous U87MG (EGFR-positive) tumors received a 3.5 ± 0.2 MBq/dose using PET/CT imaging. One group mice bearing subcutaneous U87MG (EGFR-positive) tumors received [89Zr]Zr-DFO-nimotuzumab (3.5 ± 0.2 MBq, ~3 μg) (nonblocking) for immunoPET; the other group had 30 μg predose (blocking) of cold nimotuzumab 24 h prior to [89Zr]Zr-DFO-nimotuzumab. RESULTS [89Zr]Zr-DFO-nimotuzumab was prepared with high radiochemical yield (>90%), radiochemical purity (>99%), and specific activity (115 ± 0.8 MBq/mg). In vitro validation showed that [89Zr]Zr-DFO-nimotuzumab had an initial immunoreactive fraction of 0.99 ± 0.05 and remained active for up to 5 days. A biodistribution study revealed excellent stability of [89Zr]Zr-DFO-nimotuzumab in vivo compared with 89Zr as a bone seeker. High uptake in the liver and heart and modest penetration in the brain were observed, with no significant accumulation of activity in other organs. ImmunoPET studies also indicated prominent image contrast that remarkably high uptake up to ~20%ID/g for nonblocking and ~2%ID/g for blocking in tumor between 12 and 120 h after administration. CONCLUSION These studies developed a radiopharmaceutical [89Zr]Zr-DFO-nimotuzumab with optimized synthesis. The potential utility of [89Zr]Zr-DFO-nimotuzumab in assessing EGFR status in glioma was demonstrated in this study.
Collapse
Affiliation(s)
- Yu Tang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China; Department of Nuclear Medicine, Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, PR China; Chengdu New Radiomedicine Technology Co. Ltd., Chengdu 610000, PR China
| | - Yingjiang Hu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Lin Chen
- Department of Nuclear Medicine, Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, PR China
| | - Yan Zhao
- Department of Nuclear Medicine, Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, PR China
| | - Huan Ma
- Chengdu New Radiomedicine Technology Co. Ltd., Chengdu 610000, PR China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiming Cai
- Chengdu New Radiomedicine Technology Co. Ltd., Chengdu 610000, PR China
| | - Yue Chen
- Department of Nuclear Medicine, Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
36
|
pH-driven conformational switch between non-canonical DNA structures in a C-rich domain of EGFR promoter. Sci Rep 2019; 9:1210. [PMID: 30718769 PMCID: PMC6362134 DOI: 10.1038/s41598-018-37968-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
EGFR is an oncogene that encodes for a trans-membrane tyrosine kinase receptor. Its mis-regulation is associated to several human cancers that, consistently, can be treated by selective tyrosine kinase inhibitors. The proximal promoter of EGFR contains a G-rich domain located at 272 bases upstream the transcription start site. We previously proved it folds into two main interchanging G-quadruplex structures, one of parallel and one of hybrid topology. Here we present the first evidences supporting the ability of the complementary C-rich strand (EGFR-272_C) to assume an intramolecular i-Motif (iM) structure that, according to the experimental conditions (pH, presence of co-solvent and salts), can coexist with a different arrangement we referred to as a hairpin. The herein identified iM efficiently competes with the canonical pairing of the two complementary strands, indicating it as a potential novel target for anticancer therapies. A preliminary screening for potential binders identified some phenanthroline derivatives as able to target EGFR-272_C at multiple binding sites when it is folded into an iM.
Collapse
|
37
|
Phase 1b Study of Trebananib Plus Paclitaxel and Trastuzumab in Patients With HER2-Positive Locally Recurrent or Metastatic Breast Cancer. Clin Breast Cancer 2018; 19:47-57. [PMID: 30420181 DOI: 10.1016/j.clbc.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Trebananib, a peptide-Fc fusion protein, blocks angiogenesis by inhibiting binding of angiopoietin-1/2 to the receptor tyrosine kinase Tie2. Trebananib plus trastuzumab and paclitaxel was evaluated in human epidermal growth factor receptor 2-positive breast cancer in an open-label phase 1b clinical study. PATIENTS AND METHODS Women with human epidermal growth factor receptor 2-positive breast cancer received weekly paclitaxel (80 mg/m2), trastuzumab (8 mg/m2 then 6 mg/kg every 3 weeks), and intravenous trebananib (10 mg/kg or 30 mg/kg weekly) beginning week 2. The primary end point was the incidence of dose-limiting toxicities. Secondary end points included incidence of adverse events (AEs), pharmacokinetics, and tumor response (objective response and duration of response). RESULTS Forty women were enrolled; 2 experienced dose-limiting toxicities (grade 3 ocular transient ischemic attack [10 mg/kg cohort] and grade 3 elevation in γ-glutamyl transferase [30 mg/kg cohort]). The most common treatment-emergent AEs were peripheral edema (n = 28), diarrhea (n = 27), alopecia (n = 26), fatigue (n = 24), and nausea (n = 24). Maximum observed concentration and area under the concentration-time curve increased proportionally with the trebananib dose. Objective response was confirmed in 31 patients. In the 10 mg/kg cohort, 16 patients (80%) experienced partial response, and none experienced complete response. In the 30 mg/kg cohort, 12 patients (71%) experienced partial response and 3 (18%) experienced complete response. Median (95% confidence interval) duration of response in the 10 and 30 mg/kg cohorts was 12.6 (4.3-20.2) and 16.6 (8.2-not estimable) months, respectively. CONCLUSION This phase 1b study showed that trebananib was tolerated with manageable AEs at a dose up to 30 mg/kg weekly. Trebananib demonstrated anticancer activity, as indicated by objective response and duration of response.
Collapse
|
38
|
Farooqi AA, Jabeen S, Attar R, Yaylim I, Xu B. Quercetin‐mediated regulation of signal transduction cascades and microRNAs: Natural weapon against cancer. J Cell Biochem 2018; 119:9664-9674. [DOI: 10.1002/jcb.27488] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology Institute of Biomedical and Genetic Engineering Islamabad Pakistan
| | - Saima Jabeen
- Department of Zoology University of Gujrat, Sub‐Campus Rawalpindi Pakistan
| | - Rukset Attar
- Department of Obstetrics and Gynecology Yeditepe University Hospital Istanbul Turkey
| | - Ilhan Yaylim
- Department of Molecular Medicine Aziz Sancar Institute of Experimental Medicine, Istanbul University Istanbul Turkey
| | - Baojun Xu
- Food Science and Technology Program, Division of Science and Technology, Beijing Normal University‐Hong Kong Baptist University United International College Zhuhai China
| |
Collapse
|
39
|
Muta Y, Fujita Y, Sumiyama K, Sakurai A, Taketo MM, Chiba T, Seno H, Aoki K, Matsuda M, Imajo M. Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine. Nat Commun 2018; 9:2174. [PMID: 29872037 PMCID: PMC5988836 DOI: 10.1038/s41467-018-04527-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Acting downstream of many growth factors, extracellular signal-regulated kinase (ERK) plays a pivotal role in regulating cell proliferation and tumorigenesis, where its spatiotemporal dynamics, as well as its strength, determine cellular responses. Here, we uncover the ERK activity dynamics in intestinal epithelial cells (IECs) and their association with tumour characteristics. Intravital imaging identifies two distinct modes of ERK activity, sustained and pulse-like activity, in IECs. The sustained and pulse-like activities depend on ErbB2 and EGFR, respectively. Notably, activation of Wnt signalling, the earliest event in intestinal tumorigenesis, augments EGFR signalling and increases the frequency of ERK activity pulses through controlling the expression of EGFR and its regulators, rendering IECs sensitive to EGFR inhibition. Furthermore, the increased pulse frequency is correlated with increased cell proliferation. Thus, ERK activity dynamics are defined by composite inputs from EGFR and ErbB2 signalling in IECs and their alterations might underlie tumour-specific sensitivity to pharmacological EGFR inhibition. The ERK signalling pathway regulates homeostasis of the intestinal epithelium. Here the authors identify two modes of ERK activity generated independently from EGFR and ErbB2 receptor and whose balance in cancer is shifted by Wnt pathway activation, resulting in enhanced sensitivity to EGFR inhibitors.
Collapse
Affiliation(s)
- Yu Muta
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8051, Japan.,Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshihisa Fujita
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, Quantitative Biology Center, RIKEN, Osaka, 565-0874, Japan
| | - Atsuro Sakurai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Kansai Electric Power Hospital, Osaka, 553-0003, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8051, Japan.,Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Masamichi Imajo
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
40
|
Lu Q, Dai X, Zhang P, Tan X, Zhong Y, Yao C, Song M, Song G, Zhang Z, Peng G, Guo Z, Ge Y, Zhang K, Li Y. Fe 3O 4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells. Int J Nanomedicine 2018; 13:2491-2505. [PMID: 29719396 PMCID: PMC5922298 DOI: 10.2147/ijn.s157935] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe3O4@Au magnetic nanoparticles (Fe3O4@Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. Methods The core-shell Fe3O4@Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe3O4@Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe3O4@Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. Results The inhibitory and apoptotic rates of Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Conclusion Our studies illustrated that Fe3O4@Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future.
Collapse
Affiliation(s)
- Qianling Lu
- Department of Neurology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Dai
- Department of Neurology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Zhang
- Department of Neurology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Tan
- Department of Emergency, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuejiao Zhong
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Yao
- Office of Academic Research, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Atush, China
| | - Mei Song
- Office of Academic Research, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Atush, China
| | - Guili Song
- Office of Academic Research, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Atush, China
| | - Zhenghai Zhang
- Office of Academic Research, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Atush, China
| | - Gang Peng
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhirui Guo
- Department of Geratology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaoqi Ge
- Department of General Practice, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kangzhen Zhang
- Department of General Practice, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuntao Li
- Department of General Practice, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Elucidation of the critical epitope of an anti-EGFR monoclonal antibody EMab-134. Biochem Biophys Rep 2018; 14:54-57. [PMID: 29872734 PMCID: PMC5986659 DOI: 10.1016/j.bbrep.2018.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a type-1 transmembrane receptor tyrosine kinase, which activates the downstream signaling cascades in many tumors, such as oral and lung cancers. We previously developed EMab-134, a novel anti-EGFR monoclonal antibody (mAb), which reacts with endogenous EGFR-expressing cancer cell lines and normal cells independent of glycosylation in Western blotting, flow cytometry, and immunohistochemical analysis. EMab-134 showed very high sensitivity (94.7%) to oral squamous cell carcinomas in immunohistochemical analysis. In this study, we performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of EMab-134. A blocking peptide (375–394 amino acids of EGFR) neutralized the EMab-134 reaction against oral cancer cells in flow cytometry and immunohistochemistry. The minimum epitope of EMab-134 was found to be the 377-RGDSFTHTPP−386 sequence. Our findings can be applied for the production of more functional anti-EGFR mAbs that in turn can be used for antitumor treatments. We previously produced EMab-134, a novel sensitive and specific anti-EGFR mAb. EMab-134 is useful in Western blot, flow cytometry, and IHC analyses. A blocking peptide neutralized EMab-134 reaction against oral cancer cells. The minimum epitope of EMab-134 was found to be 375-RGDSFTHTPP−384 sequence.
Collapse
|
42
|
Itai S, Yamada S, Kaneko MK, Chang YW, Harada H, Kato Y. Establishment of EMab-134, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody for Detecting Squamous Cell Carcinoma Cells of the Oral Cavity. Monoclon Antib Immunodiagn Immunother 2017; 36:272-281. [PMID: 29090976 PMCID: PMC6975130 DOI: 10.1089/mab.2017.0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, activates downstream signaling cascades in many tumors. In this study, we established novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We immunized mice with a combination of the extracellular domain of EGFR and EGFR-overexpressing LN229 glioblastoma cells (LN229/EGFR) and performed the first screening using enzyme-linked immunosorbent assay. Next, we selected mAbs using flow cytometry. Among 156 established clones, two mAbs, EMab-51 (IgG1, kappa) and EMab-134 (IgG1, kappa), reacted with EGFR in Western blot analysis; EMab-134 showed a much higher sensitivity compared with EMab-51. We compared the binding affinities of EMab-51 and EMab-134 using flow cytometry; the calculated KD values for EMab-51 and EMab-134 against SAS cells/HSC-2 cells were 9.2 × 10−9 M/9.9 × 10−9 M and 2.6 × 10−9 M/8.3 × 10−9 M, respectively, indicating that EMab-134 has a higher affinity to EGFR-expressing cells. Immunohistochemical analysis of EMab-51 and EMab-134 showed sensitive and specific reactions against oral cancer cells; EMab-134 demonstrated a much higher sensitivity (36/38 cases; 94.7%) to oral squamous cell carcinomas compared with EMab-51 (6/38 cases; 15.8%). This novel anti-EGFR mAb, EMab-134, could be advantageous for detecting EGFR in the pathological analysis of EGFR-expressing cancers.
Collapse
Affiliation(s)
- Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan .,2 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Yao-Wen Chang
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Hiroyuki Harada
- 2 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan .,3 New Industry Creation Hatchery Center, Tohoku University , Sendai, Japan
| |
Collapse
|
43
|
Phyllodes tumors with and without fibroadenoma-like areas display distinct genomic features and may evolve through distinct pathways. NPJ Breast Cancer 2017; 3:40. [PMID: 29043292 PMCID: PMC5638820 DOI: 10.1038/s41523-017-0042-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/16/2017] [Accepted: 09/14/2017] [Indexed: 12/30/2022] Open
Abstract
Breast fibroepithelial lesions (fibroadenomas and phyllodes tumors) are underpinned by recurrent MED12 exon 2 mutations, which are more common in fibroadenomas and benign phyllodes tumors. TERT promoter hotspot mutations have been documented in phyllodes tumors, and found to be more frequent in borderline and malignant lesions. Several lines of evidence suggest that a subset of phyllodes tumors might arise from fibroadenomas. Here we sought to investigate the genetic differences between phyllodes tumors with fibroadenoma-like areas vs. those without. We retrieved data for 16 borderline/ malignant phyllodes tumors, including seven phyllodes tumors with fibroadenoma-like areas and nine phyllodes tumors without fibroadenoma-like areas, which had been previously subjected to targeted capture massively parallel sequencing. Whilst MED12 exon 2 mutations were significantly more frequent in tumors with fibroadenoma-like areas (71 vs. 11%), an enrichment in genetic alterations targeting bona fide cancer genes was found in those without fibroadenoma-like areas, in particular in EGFR mutations and amplifications (78 vs. 14%). No significant difference in the frequency of TERT genetic alterations was observed (71% in cases with fibroadenoma-like areas vs 56% in those without fibroadenoma-like areas). Our data suggest that the development of phyllodes tumors might follow two different evolutionary pathways: a MED12-mutant pathway that involves the progression from a fibroadenoma to a malignant phyllodes tumor; and a MED12-wild-type pathway, where malignant phyllodes tumors arise de novo through the acquisition of genetic alterations targeting cancer genes. Additional studies are warranted to confirm our observations and define whether the outcome differs between both pathways.
Collapse
|
44
|
Itai S, Kaneko MK, Fujii Y, Yamada S, Nakamura T, Yanaka M, Saidoh N, Handa S, Chang YW, Suzuki H, Harada H, Kato Y. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2017; 36:214-219. [PMID: 28891752 PMCID: PMC7001460 DOI: 10.1089/mab.2017.0028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG1, kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.
Collapse
Affiliation(s)
- Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yuki Fujii
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Noriko Saidoh
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yao-Wen Chang
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, Sendai Medical Center, Miyagi, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Miyagi, Japan
- New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| |
Collapse
|
45
|
Umeda Y, Hasegawa Y, Otsuka M, Ariki S, Takamiya R, Saito A, Uehara Y, Saijo H, Kuronuma K, Chiba H, Ohnishi H, Sakuma Y, Takahashi H, Kuroki Y, Takahashi M. Surfactant protein D inhibits activation of non-small cell lung cancer-associated mutant EGFR and affects clinical outcomes of patients. Oncogene 2017; 36:6432-6445. [PMID: 28745320 DOI: 10.1038/onc.2017.253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/21/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase inhibitor (TKI)-sensitive and TKI-resistant mutations of epidermal growth factor receptor (EGFR) are associated with lung adenocarcinoma. EGFR mutants were previously shown to exhibit ligand-independent activation. We have previously demonstrated that pulmonary surfactant protein D (SP-D, SFTPD) suppressed wild-type EGFR signaling by blocking ligand binding to EGFR. We herein demonstrate that SFTPD downregulates ligand-independent signaling in cells harboring EGFR mutations such as TKI-sensitive exon 19 deletion (Ex19del) and L858R mutation as well as TKI-resistant T790M mutation, subsequently suppressing cellular growth and motility. Lectin blotting and ligand blotting in lung cancer cell lines suggested that EGFR mutants express oligomannose-type N-glycans and interact with SFTPD directly. Cross-linking assay indicated that SFTPD inhibits ligand-independent dimerization of EGFR mutants. We also demonstrated that SFTPD reduced dimerization-independent phosphorylation of Ex19del and T790M EGFR mutants using point mutations that disrupted the asymmetric dimer interface. It was confirmed that SFTPD augmented the viability-suppressing effects of EGFR-TKIs. Furthermore, retrospective analysis of 121 patients with lung adenocarcinoma to examine associations between serum SFTPD levels and clinical outcome indicated that in TKI-treated patients with lung cancer harboring EGFR mutations, including Ex19del or L858R, high serum SFTPD levels correlated with a lower number of distant metastases and prolonged overall survival and progression-free survival. These findings suggest that SFTPD downregulates both TKI-sensitive and -resistant EGFR mutant signaling, and SFTPD level is correlated with clinical outcome. These findings illustrate the use of serum SFTPD level as a potential marker to estimate the efficacy of EGFR-TKIs.
Collapse
Affiliation(s)
- Y Umeda
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Y Hasegawa
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Departments of Biochemistry, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - M Otsuka
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - S Ariki
- Departments of Biochemistry, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - R Takamiya
- Departments of Biochemistry, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - A Saito
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Departments of Biochemistry, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Y Uehara
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Departments of Biochemistry, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - H Saijo
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - K Kuronuma
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - H Chiba
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - H Ohnishi
- Departments of Public Health, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Y Sakuma
- Departments of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - H Takahashi
- Departments of Respiratory Medicine and Allergology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Y Kuroki
- Departments of Biochemistry, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - M Takahashi
- Departments of Biochemistry, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
46
|
Cyprian FS, Al-Antary N, Al Moustafa AE. HER-2/Epstein-Barr virus crosstalk in human gastric carcinogenesis: A novel concept of oncogene/oncovirus interaction. Cell Adh Migr 2017; 12:1-4. [PMID: 28562165 DOI: 10.1080/19336918.2017.1330244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the fourth most common cancer and the second leading cause of cancer deaths worldwide. Additionally, it is well-known that metastatic cancer disease is a major cause of morbidity and mortality in cancer patients. Several investigations reported that HER-2 (ErbB-2 receptor) and Epstein-Barr virus (EBV) are important etiological factors in human gastric cancer, where either oncogene/oncovirus alone can derive a major event of cancer progression and metastasis via epithelial-mesenchymal transition (EMT). Herein, we discuss, for the first time, the possibility of HER-2/EBV-oncoproteins interaction in human gastric cancer initiation and/or progression.
Collapse
Affiliation(s)
| | | | - Ala-Eddin Al Moustafa
- a College of Medicine , Qatar University , Doha , Qatar.,b Biomedical Research Centre , Qatar University , Doha , Qatar.,c Oncology Department , McGill University , Montreal , Quebec , Canada.,d Syrian Research Cancer Centre of the Syrian Society Against Cancer , Aleppo , Syria
| |
Collapse
|