1
|
Delgado T, Emerson J, Hong M, Keillor JW, Johnson GVW. Pharmacological Inhibition of Astrocytic Transglutaminase 2 Facilitates the Expression of a Neurosupportive Astrocyte Reactive Phenotype in Association with Increased Histone Acetylation. Biomolecules 2024; 14:1594. [PMID: 39766301 PMCID: PMC11673777 DOI: 10.3390/biom14121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury. Recently, it has been demonstrated that ablation of astrocytic transglutaminase 2 (TG2) shifts reactive astrocytes towards a phenotype that improves neuronal injury outcomes both in vitro and in vivo. Additionally, in an in vivo mouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopied the neurosupportive effects of TG2 deletion in astrocytes. In this study, we extended our comparisons of VA4 treatment and TG2 deletion to provide insights into the mechanisms by which TG2 attenuates neurosupportive astrocytic function after injury. Using a neuron-astrocyte co-culture model, we found that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix, as we previously showed for astrocytic TG2 deletion. We hypothesize that TG2 mediates its influence on astrocytic phenotype through transcriptional regulation, and our previous RNA sequencing suggests that TG2 is primarily transcriptionally repressive in astrocytes, although it can facilitate both up- and downregulation of gene expression. Therefore, we asked whether VA4 inhibition could alter TG2's interaction with Zbtb7a, a transcription factor that we previously identified as a functionally relevant TG2 nuclear interactor. We found that VA4 significantly decreased the interaction of TG2 and Zbtb7a. Additionally, we assessed the effect of TG2 deletion and VA4 treatment on transcriptionally permissive histone acetylation and found significantly greater acetylation in both experimental groups. Consistent with these findings, our present proteomic analysis further supports the predominant transcriptionally repressive role of TG2 in astrocytes. Our proteomic data additionally unveiled pronounced changes in lipid and antioxidant metabolism in astrocytes with TG2 deletion or inhibition, which likely contribute to the enhanced neurosupportive function of these astrocytes.
Collapse
Affiliation(s)
- Thomas Delgado
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Jacen Emerson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Matthew Hong
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N6N5, Canada;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA; (T.D.); (J.E.); (M.H.)
| |
Collapse
|
2
|
Meshram DD, Fanutti C, Pike CVS, Coussons PJ. Membrane Association of the Short Transglutaminase Type 2 Splice Variant (TG2-S) Modulates Cisplatin Resistance in a Human Hepatocellular Carcinoma (HepG2) Cell Line. Curr Issues Mol Biol 2024; 46:4251-4270. [PMID: 38785527 PMCID: PMC11119602 DOI: 10.3390/cimb46050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with complex carcinogenesis. Although there has been significant progress in the treatment of HCC over the past decades, drug resistance to chemotherapy remains a major obstacle in its successful management. In this study, we were able to reduce chemoresistance in cisplatin-resistant HepG2 cells by either silencing the expression of transglutaminase type 2 (TG2) using siRNA or by the pre-treatment of cells with the TG2 enzyme inhibitor cystamine. Further analysis revealed that, whereas the full-length TG2 isoform (TG2-L) was almost completely cytoplasmic in its distribution, the majority of the short TG2 isoform (TG2-S) was membrane-associated in both parental and chemoresistant HepG2 cells. Following the induction of cisplatin toxicity in non-chemoresistant parental cells, TG2-S, together with cisplatin, quickly relocated to the cytosolic fraction. Conversely, no cytosolic relocalisation of TG2-S or nuclear accumulation cisplatin was observed, following the identical treatment of chemoresistant cells, where TG2-S remained predominantly membrane-associated. This suggests that the deficient subcellular relocalisation of TG2-S from membranous structures into the cytoplasm may limit the apoptic response to cisplatin toxicity in chemoresistant cells. Structural analysis of TG2 revealed the presence of binding motifs for interaction of TG2-S with the membrane scaffold protein LC3/LC3 homologue that could contribute to a novel mechanism of chemotherapeutic resistance in HepG2 cells.
Collapse
Affiliation(s)
- Dipak D. Meshram
- Cancer Cell Biology Subgroup, Biomedical Research Group, School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (D.D.M.); (C.F.); (C.V.S.P.)
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Cristina Fanutti
- Cancer Cell Biology Subgroup, Biomedical Research Group, School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (D.D.M.); (C.F.); (C.V.S.P.)
| | - Claire V. S. Pike
- Cancer Cell Biology Subgroup, Biomedical Research Group, School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (D.D.M.); (C.F.); (C.V.S.P.)
| | - Peter J. Coussons
- Cancer Cell Biology Subgroup, Biomedical Research Group, School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (D.D.M.); (C.F.); (C.V.S.P.)
| |
Collapse
|
3
|
Buccarelli M, Castellani G, Fiorentino V, Pizzimenti C, Beninati S, Ricci-Vitiani L, Scattoni ML, Mischiati C, Facchiano F, Tabolacci C. Biological Implications and Functional Significance of Transglutaminase Type 2 in Nervous System Tumors. Cells 2024; 13:667. [PMID: 38667282 PMCID: PMC11048792 DOI: 10.3390/cells13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Claudio Tabolacci
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
4
|
Liu J, Mouradian MM. Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2364. [PMID: 38397040 PMCID: PMC10888553 DOI: 10.3390/ijms25042364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
5
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
6
|
Gates EWJ, Prince-Hallée A, Heidari Y, Sedighi A, Keillor JW. High-Affinity Fluorogenic Substrate for Tissue Transglutaminase Reveals Enzymatic Hysteresis. Biochemistry 2023; 62:3085-3095. [PMID: 37856791 DOI: 10.1021/acs.biochem.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Transglutaminases (TGases) are a family of calcium-dependent enzymes primarily known for their ability to cross-link proteins. Transglutaminase 2 (TG2) is one isozyme in this family whose role is multifaceted. TG2 can act not only as a typical transamidase through its catalytic core but also as a G-protein via its GTP binding site. These two discrete activities are tightly regulated by both environmental stimuli and redox reactions. Ubiquitously expressed in humans, TG2 has been implicated in numerous disease pathologies that require extensive investigation. The catalytic activity of TG2 can be monitored through various mechanisms, including hydrolysis, transamidation, or cleavage of isopeptide bonds. Activity assays are required to monitor the activity of this isozyme not only for studying its transamidation reaction but also for validation of therapeutics designed to abolish this activity. Herein, we present the design, synthesis, and evaluation of a new TG2 activity substrate based on a previously optimized inhibitor scaffold. The substrate APH7 exhibits excellent affinity, selectivity, and reactivity with TG2 (KM = 3.0 μM). Furthermore, its application also allowed the discovery of unique hysteresis at play within the catalytic activity and inhibition reactivity of TG2.
Collapse
Affiliation(s)
- Eric W J Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Adrien Prince-Hallée
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Yasaman Heidari
- Dalriada Drug Discovery, Mississauga, Ontario L5N 8G4, Canada
| | | | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Gallo M, Ferrari E, Terrazzan A, Brugnoli F, Spisni A, Taccioli C, Aguiari G, Trentini A, Volinia S, Keillor JW, Bergamini CM, Bianchi N, Pertinhez TA. Metabolic characterisation of transglutaminase 2 inhibitor effects in breast cancer cell lines. FEBS J 2023; 290:5411-5433. [PMID: 37597264 DOI: 10.1111/febs.16931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Italy
| | | | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Alessandro Trentini
- Department of Environmental Sciences and Prevention, University of Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Carlo M Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | | | | |
Collapse
|
8
|
Chen X, Adhikary G, Newland JJ, Xu W, Keillor JW, Weber DJ, Eckert RL. Transglutaminase 2 Binds to the CD44v6 Cytoplasmic Domain to Stimulate CD44v6/ERK1/2 Signaling and Maintain an Aggressive Cancer Phenotype. Mol Cancer Res 2023; 21:922-932. [PMID: 37227250 DOI: 10.1158/1541-7786.mcr-23-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Transglutaminase 2 (TG2) is a key cancer cell survival protein in many cancer types. As such, efforts are underway to characterize the mechanism of TG2 action. In this study, we report that TG2 stimulates CD44v6 activity to enhance cancer cell survival via a mechanism that involves formation of a TG2/CD44v6/ERK1/2 complex that activates ERK1/2 signaling to drive an aggressive cancer phenotype. TG2 and ERK1/2 bind to the CD44v6 C-terminal intracellular cytoplasmic domain to activate ERK1/2 and stimulate cell proliferation and invasion. This is the same region that binds to ERM proteins and ankyrin to activate CD44v6-dependent cell proliferation, invasion, and migration. We further show that treatment with hyaluronan (HA), the physiologic CD44v6 ligand, stimulates CD44v6 activity, as measured by ERK1/2 activation, but that this response is severely attenuated in TG2 or CD44v6 knockdown or knockout cells. Moreover, treatment with TG2 inhibitor reduces tumor growth and that is associated with reduced CD44v6 level and ERK1/2 activity, and reduced stemness and epithelial-mesenchymal transition (EMT). These changes are replicated in CD44v6 knockout cells. These findings suggest that a unique TG2/CD44v6/ERK1/2 complex leads to increased ERK1/2 activity to stimulate an aggressive cancer phenotype and stimulate tumor growth. These findings have important implications for cancer stem cell maintenance and suggest that cotargeting of TG2 and CD44v6 with specific inhibitors may be an effective anticancer treatment strategy. IMPLICATIONS TG2 and CD44v6 are important procancer proteins. TG2 and ERK1/2 bind to the CD44v6 C-terminal domain to form a TG2/CD44v6/ERK1/2 complex that activates ERK1/2 to stimulate the cancer phenotype.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - John J Newland
- Department of Surgery Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - David J Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
9
|
Gates EWJ, Calvert ND, Cundy NJ, Brugnoli F, Navals P, Kirby A, Bianchi N, Adhikary G, Shuhendler AJ, Eckert RL, Keillor JW. Cell-Impermeable Inhibitors Confirm That Intracellular Human Transglutaminase 2 Is Responsible for the Transglutaminase-Associated Cancer Phenotype. Int J Mol Sci 2023; 24:12546. [PMID: 37628729 PMCID: PMC10454375 DOI: 10.3390/ijms241612546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an Nε(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme. The pleiotropic nature of TG2 and multi-faceted activities have resulted in TG2 being implicated in numerous disease pathologies including celiac disease, fibrosis, and cancer. Targeted TG2 therapies have not been selective for subcellular localization, such that currently no tools exist to selectively target extracellular over intracellular TG2. Herein, we have designed novel TG2-selective inhibitors that are not only highly potent and irreversible, but also cell impermeable, targeting only extracellular TG2. We have also further derivatized the scaffold to develop probes that are intrinsically fluorescent or bear an alkyne handle, which target both intra- and extracellular TG2, in order to facilitate cellular labelling and pull-down assays. The fluorescent probes were internalized and imaged in cellulo, and provide the first implicit experimental evidence that by comparison with their cell-impermeable analogues, it is specifically intracellular TG2, and presumably its G-protein activity, that contributes to transglutaminase-associated cancer progression.
Collapse
Affiliation(s)
- Eric W. J. Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicholas D. Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicholas J. Cundy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44021 Ferrara, Italy; (F.B.); (N.B.)
| | - Pauline Navals
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Alexia Kirby
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44021 Ferrara, Italy; (F.B.); (N.B.)
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.A.); (R.L.E.)
| | - Adam J. Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.A.); (R.L.E.)
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| |
Collapse
|
10
|
Valdivia A, Vagadia PP, Guo G, O'Brien E, Matei D, Schiltz GE. Discovery and Characterization of PROTACs Targeting Tissue Transglutaminase (TG2). J Med Chem 2023. [PMID: 37449845 PMCID: PMC10388319 DOI: 10.1021/acs.jmedchem.2c01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional enzyme involved in the cross-linking of extracellular matrix proteins, formation of complexes with fibronectin (FN) and integrins, and GTP hydrolysis. TG2 is activated in several pathological conditions, including cancer. We recently described a novel series of ligands that bind to TG2 and inhibit its interaction with FN. Because TG2 acts via multiple mechanisms, we set out to pursue a targeted protein degradation strategy to abolish TG2's myriad functions. Here, we report the synthesis and characterization of a series of VHL-based degraders that reduce TG2 in ovarian cancer cells in a proteasome-dependent manner. Degradation of TG2 resulted in significantly reduced cancer cell adhesion and migration in vitro in scratch-wound and migration assays. These results strongly indicate that further development of more potent and in vivo efficient TG2 degraders could be a new strategy for reducing the dissemination of ovarian and other cancers.
Collapse
Affiliation(s)
- Andres Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Purav P Vagadia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Guangxu Guo
- WuXi AppTec, Shanghai 200131, People's Republic of China
| | - Eilidh O'Brien
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Jesse Brown VA Medical Center, Chicago, Illinois 60612, United States
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
11
|
Jambrovics K, Botó P, Pap A, Sarang Z, Kolostyák Z, Czimmerer Z, Szatmari I, Fésüs L, Uray IP, Balajthy Z. Transglutaminase 2 associated with PI3K and PTEN in a membrane-bound signalosome platform blunts cell death. Cell Death Dis 2023; 14:217. [PMID: 36977701 PMCID: PMC10050012 DOI: 10.1038/s41419-023-05748-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Atypically expressed transglutaminase 2 (TG2) has been identified as a poor prognostic factor in a variety of cancers. In this study, we evaluated the contribution of TG2 to the prolonged cell survival of differentiated acute promyelocytic leukaemia (APL) cells in response to the standard treatment with combined retinoic acid (ATRA) and arsenic trioxide (ATO). We report that one advantage of ATRA + ATO treatment compared to ATRA alone diminishes the amount of activated and non-activated CD11b/CD18 and CD11c/CD18 cell surface integrin receptors. These changes suppress ATRA-induced TG2 docking on the cytosolic part of CD18 β2-integrin subunits and reduce cell survival. In addition, TG2 overexpresses and hyperactivates the phosphatidylinositol-3-kinase (PI3K), phospho-AKT S473, and phospho-mTOR S2481 signalling axis. mTORC2 acts as a functional switch between cell survival and death by promoting the full activation of AKT. We show that TG2 presumably triggers the formation of a signalosome platform, hyperactivates downstream mTORC2-AKT signalling, which in turn phosphorylates and inhibits the activity of FOXO3, a key pro-apoptotic transcription factor. In contrast, the absence of TG2 restores basic phospho-mTOR S2481, phospho-AKT S473, PI3K, and PTEN expression and activity, thereby sensitising APL cells to ATO-induced cell death. We conclude, that atypically expressed TG2 may serve as a hub, facilitating signal transduction via signalosome formation by the CD18 subunit with both PI3K hyperactivation and PTEN inactivation through the PI3K-PTEN cycle in ATRA-treated APL cells.
Collapse
Affiliation(s)
- Károly Jambrovics
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Pál Botó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Zsuzsanna Kolostyák
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Istvan Szatmari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Iván P Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Zoltán Balajthy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary.
| |
Collapse
|
12
|
Cundy NJ, Arciszewski J, Gates EWJ, Acton SL, Passley KD, Awoonor-Williams E, Boyd EK, Xu N, Pierson É, Fernandez-Ansieta C, Albert MR, McNeil NMR, Adhikary G, Eckert RL, Keillor JW. Novel irreversible peptidic inhibitors of transglutaminase 2. RSC Med Chem 2023; 14:378-385. [PMID: 36846375 PMCID: PMC9945859 DOI: 10.1039/d2md00417h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Transglutaminase 2 (TG2), also referred to as tissue transglutaminase, plays crucial roles in both protein crosslinking and cell signalling. It is capable of both catalysing transamidation and acting as a G-protein, these activities being conformation-dependent, mutually exclusive, and tightly regulated. The dysregulation of both activities has been implicated in numerous pathologies. TG2 is expressed ubiquitously in humans and is localized both intracellularly and extracellularly. Targeted TG2 therapies have been developed but have faced numerous hurdles including decreased efficacy in vivo. Our latest efforts in inhibitor optimization involve the modification of a previous lead compound's scaffold by insertion of various amino acid residues into the peptidomimetic backbone, and derivatization of the N-terminus with substituted phenylacetic acids, resulting in 28 novel irreversible inhibitors. These inhibitors were evaluated for their ability to inhibit TG2 in vitro and their pharmacokinetic properties, and the most promising candidate 35 (k inact/K I = 760 × 103 M-1 min-1) was tested in a cancer stem cell model. Although these inhibitors display exceptional potency versus TG2, with k inact/K I ratios nearly ten-fold higher than their parent compound, their pharmacokinetic properties and cellular activity limit their therapeutic potential. However, they do serve as a scaffold for the development of potent research tools.
Collapse
Affiliation(s)
- Nicholas J Cundy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Jane Arciszewski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Eric W J Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Sydney L Acton
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Kyle D Passley
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Ernest Awoonor-Williams
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Elizabeth K Boyd
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Nancy Xu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Élise Pierson
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | | | - Marie R Albert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Nicole M R McNeil
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore Maryland 21201 USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore Maryland 21201 USA
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
13
|
Mader L, Watt SKI, Iyer HR, Nguyen L, Kaur H, Keillor JW. The war on hTG2: warhead optimization in small molecule human tissue transglutaminase inhibitors. RSC Med Chem 2023; 14:277-298. [PMID: 36846370 PMCID: PMC9945866 DOI: 10.1039/d2md00378c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Human tissue transglutaminase (hTG2) is a multifunctional enzyme with protein cross-linking and G-protein activity, both of which have been implicated in the progression of diseases such as fibrosis and cancer stem cell propagation when dysregulated, prompting the development of small molecule targeted covalent inhibitors (TCIs) possessing a crucial electrophilic 'warhead'. In recent years there have been significant advances in the library of warheads available for the design of TCIs; however, the exploration of warhead functionality in hTG2 inhibitors has remained relatively stagnant. Herein, we describe a structure-activity relationship study entailing rational design and synthesis for systematic variation of the warhead on a previously reported small molecule inhibitor scaffold, and rigorous kinetic evaluation of inhibitory efficiency, selectivity, and pharmacokinetic stability. This study reveals a strong influence on the kinetic parameters k inact and K I with even subtle variation in warhead structure, suggesting that the warhead plays a significant role in not only reactivity, but also binding affinity, which consequently extends to isozyme selectivity. Warhead structure also influences in vivo stability, which we model by measuring intrinsic reactivity with glutathione, as well as stability in hepatocytes and in whole blood, giving insight into degradation pathways and relative therapeutic potential of different functional groups. This work provides fundamental structural and reactivity information highlighting the importance of strategic warhead design for the development of potent hTG2 inhibitors.
Collapse
Affiliation(s)
- Lavleen Mader
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Sarah K I Watt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Harish R Iyer
- Dalriada Drug Discovery Mississauga Ontario L5N 8G4 Canada
| | - Linh Nguyen
- Dalriada Drug Discovery Mississauga Ontario L5N 8G4 Canada
| | - Harpreet Kaur
- Dalriada Drug Discovery Mississauga Ontario L5N 8G4 Canada
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
14
|
Peptidic Inhibitors and a Fluorescent Probe for the Selective Inhibition and Labelling of Factor XIIIa Transglutaminase. Molecules 2023; 28:molecules28041634. [PMID: 36838622 PMCID: PMC9960274 DOI: 10.3390/molecules28041634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Factor XIIIa (FXIIIa) is a transglutaminase of major therapeutic interest for the development of anticoagulants due to its essential role in the blood coagulation cascade. While numerous FXIIIa inhibitors have been reported, they failed to reach clinical evaluation due to their lack of metabolic stability and low selectivity over transglutaminase 2 (TG2). Furthermore, the chemical tools available for the study of FXIIIa activity and localization are extremely limited. To combat these shortcomings, we designed, synthesised, and evaluated a library of 21 novel FXIIIa inhibitors. Electrophilic warheads, linker lengths, and hydrophobic units were varied on small molecule and peptidic scaffolds to optimize isozyme selectivity and potency. A previously reported FXIIIa inhibitor was then adapted for the design of a probe bearing a rhodamine B moiety, producing the innovative KM93 as the first known fluorescent probe designed to selectively label active FXIIIa with high efficiency (kinact/KI = 127,300 M-1 min-1) and 6.5-fold selectivity over TG2. The probe KM93 facilitated fluorescent microscopy studies within bone marrow macrophages, labelling FXIIIa with high efficiency and selectivity in cell culture. The structure-activity trends with these novel inhibitors and probes will help in the future study of the activity, inhibition, and localization of FXIIIa.
Collapse
|
15
|
The Impact of Nε-Acryloyllysine Piperazides on the Conformational Dynamics of Transglutaminase 2. Int J Mol Sci 2023; 24:ijms24021650. [PMID: 36675164 PMCID: PMC9865645 DOI: 10.3390/ijms24021650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
In addition to the classic functions of proteins, such as acting as a biocatalyst or binding partner, the conformational states of proteins and their remodeling upon stimulation need to be considered. A prominent example of a protein that undergoes comprehensive conformational remodeling is transglutaminase 2 (TGase 2), the distinct conformational states of which are closely related to particular functions. Its involvement in various pathophysiological processes, including fibrosis and cancer, motivates the development of theranostic agents, particularly based on inhibitors that are directed toward the transamidase activity. In this context, the ability of such inhibitors to control the conformational dynamics of TGase 2 emerges as an important parameter, and methods to assess this property are in great demand. Herein, we describe the application of the switchSENSE® principle to detect conformational changes caused by three irreversibly binding Nε-acryloyllysine piperazides, which are suitable radiotracer candidates of TGase 2. The switchSENSE® technique is based on DNA levers actuated by alternating electric fields. These levers are immobilized on gold electrodes with one end, and at the other end of the lever, the TGase 2 is covalently bound. A novel computational method is introduced for describing the resulting lever motion to quantify the extent of stimulated conformational TGase 2 changes. Moreover, as a complementary biophysical method, native polyacrylamide gel electrophoresis was performed under similar conditions to validate the results. Both methods prove the occurrence of an irreversible shift in the conformational equilibrium of TGase 2, caused by the binding of the three studied Nε-acryloyllysine piperazides.
Collapse
|
16
|
Chen X, Adhikary G, Newland JJ, Xu W, Ma E, Naselsky W, Eckert RL. The transglutaminase 2 cancer cell survival factor maintains mTOR activity to drive an aggressive cancer phenotype. Mol Carcinog 2023; 62:90-100. [PMID: 35848131 PMCID: PMC9771885 DOI: 10.1002/mc.23446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Transglutaminase 2 (TG2) is an important cancer stem-like cell survival protein that is highly expressed in epidermal squamous cell carcinoma and drives an aggressive cancer phenotype. In the present study, we show that TG2 knockdown or inactivation results in a reduction in mammalian target of rapamycin (mTOR) level and activity in epidermal cancer stem-like cells which are associated with reduced spheroid formation, invasion, and migration, and reduced cancer stem cell and epithelial-mesenchymal transition (EMT) marker expression. Similar changes were observed in both cultured cells and tumors. mTOR knockdown or treatment with rapamycin phenocopies the reduction in spheroid formation, invasion, and migration, and cancer stem cell and EMT marker expression. Moreover, mTOR appears to be a necessary mediator of TG2 action, as a forced expression of constitutively active mTOR in TG2 knockdown cells partially restores the aggressive cancer phenotype and cancer stem cell and EMT marker expression. Tumor studies show that rapamycin reduces tumor growth and cancer stem cell marker expression and EMT. These studies suggest that TG2 stimulates mTOR activity to stimulate cancer cell stemness and EMT and drive aggressive tumor growth.
Collapse
Affiliation(s)
- Xi Chen
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - John J. Newland
- Surgery - Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Emily Ma
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Warren Naselsky
- Surgery - Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L. Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Dermatology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Canella R, Brugnoli F, Gallo M, Keillor JW, Terrazzan A, Ferrari E, Grassilli S, Gates EWJ, Volinia S, Bertagnolo V, Bianchi N, Bergamini CM. A Multidisciplinary Approach Establishes a Link between Transglutaminase 2 and the Kv10.1 Voltage-Dependent K + Channel in Breast Cancer. Cancers (Basel) 2022; 15:cancers15010178. [PMID: 36612174 PMCID: PMC9818547 DOI: 10.3390/cancers15010178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Since the multifunctionality of transglutaminase 2 (TG2) includes extra- and intracellular functions, we investigated the effects of intracellular administration of TG2 inhibitors in three breast cancer cell lines, MDA-MB-231, MDA-MB-436 and MDA-MB-468, which are representative of different triple-negative phenotypes, using a patch-clamp technique. The first cell line has a highly voltage-dependent a membrane current, which is low in the second and almost absent in the third one. While applying a voltage protocol to responsive single cells, injection of TG2 inhibitors triggered a significant decrease of the current in MDA-MB-231 that we attributed to voltage-dependent K+ channels using the specific inhibitors 4-aminopyridine and astemizole. Since the Kv10.1 channel plays a dominant role as a marker of cell migration and survival in breast cancer, we investigated its relationship with TG2 by immunoprecipitation. Our data reveal their physical interaction affects membrane currents in MDA-MB-231 but not in the less sensitive MDA-MB-436 cells. We further correlated the efficacy of TG2 inhibition with metabolic changes in the supernatants of treated cells, resulting in increased concentration of methyl- and dimethylamines, representing possible response markers. In conclusion, our findings highlight the interference of TG2 inhibitors with the Kv10.1 channel as a potential therapeutic tool depending on the specific features of cancer cells.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Eric W. J. Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455854
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Sima LE, Matei D, Condello S. The Outside-In Journey of Tissue Transglutaminase in Cancer. Cells 2022; 11:cells11111779. [PMID: 35681474 PMCID: PMC9179582 DOI: 10.3390/cells11111779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue transglutaminase (TG2) is a member of the transglutaminase family that catalyzes Ca2+-dependent protein crosslinks and hydrolyzes guanosine 5′-triphosphate (GTP). The conformation and functions of TG2 are regulated by Ca2+ and GTP levels; the TG2 enzymatically active open conformation is modulated by high Ca2+ concentrations, while high intracellular GTP promotes the closed conformation, with inhibition of the TG-ase activity. TG2’s unique characteristics and its ubiquitous distribution in the intracellular compartment, coupled with its secretion in the extracellular matrix, contribute to modulate the functions of the protein. Its aberrant expression has been observed in several cancer types where it was linked to metastatic progression, resistance to chemotherapy, stemness, and worse clinical outcomes. The N-terminal domain of TG2 binds to the 42 kDa gelatin-binding domain of fibronectin with high affinity, facilitating the formation of a complex with β-integrins, essential for cellular adhesion to the matrix. This mechanism allows TG2 to interact with key matrix proteins and to regulate epithelial to mesenchymal transition and stemness. Here, we highlight the current knowledge on TG2 involvement in cancer, focusing on its roles translating extracellular cues into activation of oncogenic programs. Improved understanding of these mechanisms could lead to new therapeutic strategies targeting this multi-functional protein.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
19
|
Structure-activity relationships of N-terminal variants of peptidomimetic tissue transglutaminase inhibitors. Eur J Med Chem 2022; 232:114172. [DOI: 10.1016/j.ejmech.2022.114172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
|
20
|
Aguiari G, Crudele F, Taccioli C, Minotti L, Corrà F, Keillor JW, Grassilli S, Cervellati C, Volinia S, Bergamini CM, Bianchi N. Dysregulation of Transglutaminase type 2 through GATA3 defines aggressiveness and Doxorubicin sensitivity in breast cancer. Int J Biol Sci 2022; 18:1-14. [PMID: 34975314 PMCID: PMC8692156 DOI: 10.7150/ijbs.64167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022] Open
Abstract
The role of transglutaminase type 2 in cell physiology is related to protein transamidation and signal transduction (affecting extracellular, intracellular and nuclear processes) aided by the expression of truncated isoforms and of two lncRNAs with regulatory functions. In breast cancer TG2 is associated with disease progression supporting motility, epithelial-mesenchymal transition, invasion and drug resistance. The aim of his work is to clarify these issues by emphasizing the interconnections among TGM2 variants and transcription factors associated with an aggressive phenotype, in which the truncated TGH isoform correlates with malignancy. TGM2 transcripts are upregulated by several drugs in MCF-7, but only Doxorubicin is effective in MDA-MB-231 cells. These differences reflect the expression of GATA3, as demonstrated by silencing, suggesting a link between this transcription factor and gene dysregulation. Of note, NC9, an irreversible inhibitor of enzymatic TG2 activities, emerges to control NF-ĸB and apoptosis in breast cancer cell lines, showing potential for combination therapies with Doxorubicin.
Collapse
Affiliation(s)
- Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Crudele
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Linda Minotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio Corrà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44124 Ferrara FE, Italy
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44124 Ferrara FE, Italy
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Rorke EA, Adhikary G, Szmacinski H, Lakowicz JR, Weber DJ, Godoy-Ruiz R, Puranik P, Keillor JW, Gates EW, Eckert RL. Sulforaphane covalently interacts with the transglutaminase 2 cancer maintenance protein to alter its structure and suppress its activity. Mol Carcinog 2022; 61:19-32. [PMID: 34610184 PMCID: PMC8665039 DOI: 10.1002/mc.23356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023]
Abstract
Type 2 transglutaminase (TG2) functions as an important cancer cell survival protein in a range of cancers including epidermal squamous cell carcinoma. TG2 exists in open and closed conformations each of which has a distinct and mutually exclusive activity. The closed conformation has GTP-binding/GTPase activity while the open conformation functions as a transamidase to catalyze protein-protein crosslinking. GTP-binding/GTPase activity is required for TG2 maintenance of the aggressive cancer phenotype. Thus, identifying agents that convert TG2 from the closed to the open GTP-binding/GTPase inactive conformation is an important cancer prevention/treatment strategy. Sulforaphane (SFN) is an important diet-derived cancer prevention agent that is known to possess a reactive isothiocyanate group and has potent anticancer activity. Using a biotin-tagged SFN analog (Biotin-ITC) and kinetic analysis we show that SFN covalently and irreversibly binds to recombinant TG2 to inhibit transamidase activity and shift TG2 to an open/extended conformation, leading to a partial inhibition of GTP binding. We also show that incubation of cancer cells or cancer cell extract with Biotin-ITC results in formation of a TG2/Biotin-ITC complex and that SFN treatment of cancer cells inhibits TG2 transamidase activity and shifts TG2 to an open/extended conformation. These findings identify TG2 as a direct SFN anticancer target in epidermal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ellen A. Rorke
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Gautam Adhikary
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Henryk Szmacinski
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Joseph R. Lakowicz
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - David J. Weber
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Center for Biomolecular Therapueutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Raquel Godoy-Ruiz
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Center for Biomolecular Therapueutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Purushottamachar Puranik
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Center for Biomolecular Therapueutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | | - Eric W.J Gates
- Department of Chemistry, University of Ottawa, ON, Canada
| | - Richard L. Eckert
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Center for Biomolecular Therapueutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
22
|
The Motility and Mesenchymal Features of Breast Cancer Cells Correlate with the Levels and Intracellular Localization of Transglutaminase Type 2. Cells 2021; 10:cells10113059. [PMID: 34831282 PMCID: PMC8616519 DOI: 10.3390/cells10113059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
We have investigated motility in breast cancer cell lines in association with the expression of Transglutaminase type 2 (TG2) as well as upon the administration of Doxorubicin (Dox), an active cytotoxic agent that is employed in chemotherapy. The exposure of MCF-7 cells to the drug increased TG2 levels, triggering epithelial–mesenchymal transition (EMT), thereby supporting cell motility. The effects of Dox on the movement of MCF-7 cells were counteracted by treatment with NC9, a TG2 inhibitor, which induced morphological changes and also reduced the migration of MDA-MB-231 cells exhibiting high levels of TG2. The physical association of TG2 with the cytoskeletal component vimentin appeared pivotal both in drug-treated MCF-7 and in MDA-MB-231 cells and seemed to be independent of the catalytic activity of TG2. NC9 altered the subcellular distribution of TG2 and, consequently, the co-localization of TG2 with vimentin. Furthermore, NC9 induced a nuclear accumulation of TG2 as a prelude to TG2-dependent gene expression modifications. Since enzyme activity can affect both motility and nuclear functions, targeting of this protein could represent a method to improve therapeutic interventions in breast tumors, particularly those to control progression and to limit drug resistance.
Collapse
|
23
|
Sima LE, Chen S, Cardenas H, Zhao G, Wang Y, Ivan C, Huang H, Zhang B, Matei D. Loss of host tissue transglutaminase boosts antitumor T cell immunity by altering STAT1/STAT3 phosphorylation in ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-002682. [PMID: 34593619 PMCID: PMC8487211 DOI: 10.1136/jitc-2021-002682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue transglutaminase (TG2), an enzyme overexpressed in cancer cells, promotes metastasis and resistance to chemotherapy. Its distinct effects in cancer versus the host compartments have not been elucidated. METHODS Here, by using a TG2-/- syngeneic ovarian cancer mouse model, we assessed the effects of TG2 deficiency in the host tissues on antitumor immunity and tumor progression. Multicolor flow cytometry was used to phenotype immune cell populations in the peritoneal environment. Cancer cells recovered from malignant ascites were characterized by RNA sequencing, proliferation, and apoptosis assays. RESULTS We observed that host TG2 loss delayed tumor growth and ascites accumulation and caused increased infiltration of CD8+ T cells and decreased numbers of myeloid cells in the peritoneal fluid. Tumor antigen-specific CD8+ T cell cytotoxic responses were enhanced in ascites from TG2-/- versus TG2+/+ mice and CD8+ T cell depletion caused accelerated ascites accumulation in TG2-/- mice. CD8+ T cells from tumor-bearing TG2-/- mice displayed an effector T cell phenotype, differentiated toward effector memory (Tem). Mechanistically, absence of TG2 augmented signals promoting T cell activation, such as increased cytokine-induced STAT1 and attenuated STAT3 phosphorylation in T cells. Additionally, immune-suppressive myeloid cell populations were reduced in the peritoneal milieu of TG2-/- tumor-bearing mice. In response to the more robust immune response caused by loss of TG2, cancer cells growing intraperitoneally exhibited an interferon-γ(IFN-γ) responsive gene signature and underwent apoptosis. In human specimens, stromal, not tumor, TG2 expression correlated indirectly with numbers of tumor-infiltrating lymphocytes. CONCLUSIONS Collectively, our data demonstrate decreased tumor burden, increased activation and effector function of T cells, and loss of immunosuppressive signals in the tumor microenvironment of TG2-/- mice. We propose that TG2 acts as an attenuator of antitumor T cell immunity and is a new immunomodulatory target.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Siqi Chen
- Department of Medicine; Hematology/Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hao Huang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Zhang
- Department of Medicine; Hematology/Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
24
|
Keillor JW, Johnson GVW. Transglutaminase 2 as a therapeutic target for neurological conditions. Expert Opin Ther Targets 2021; 25:721-731. [PMID: 34607527 DOI: 10.1080/14728222.2021.1989410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Transglutaminase 2 (TG2) has been implicated in numerous neurological conditions, including neurodegenerative diseases, multiple sclerosis, and CNS injury. Early studies on the role of TG2 in neurodegenerative conditions focused on its ability to 'crosslink' proteins into insoluble aggregates. However, more recent studies have suggested that this is unlikely to be the primary mechanism by which TG2 contributes to the pathogenic processes. Although the specific mechanisms by which TG2 is involved in neurological conditions have not been clearly defined, TG2 regulates numerous cellular processes through which it could contribute to a specific disease. Given the fact that TG2 is a stress-induced gene and elevated in disease or injury conditions, TG2 inhibitors may be useful neurotherapeutics. AREAS COVERED Overview of TG2 and different TG2 inhibitors. A brief review of TG2 in neurodegenerative diseases, multiple sclerosis and CNS injury and inhibitors that have been tested in different models. Database search: https://pubmed.ncbi.nlm.nih.gov prior to 1 July 2021. EXPERT OPINION Currently, it appears unlikely that inhibiting TG2 in the context of neurodegenerative diseases would be therapeutically advantageous. However, for multiple sclerosis and CNS injuries, TG2 inhibitors may have the potential to be therapeutically useful and thus there is rationale for their further development.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
25
|
Inhibition of the lncRNA Coded within Transglutaminase 2 Gene Impacts Several Relevant Networks in MCF-7 Breast Cancer Cells. Noncoding RNA 2021; 7:ncrna7030049. [PMID: 34449674 PMCID: PMC8395837 DOI: 10.3390/ncrna7030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs are nucleotide molecules that regulate transcription in numerous cellular processes and are related to the occurrence of many diseases, including cancer. In this regard, we recently discovered a polyadenylated long non-coding RNA (named TG2-lncRNA) encoded within the first intron of the Transglutaminase type 2 gene (TGM2), which is related to tumour proliferation in human cancer cell lines. To better characterize this new biological player, we investigated the effects of its suppression in MCF-7 breast cancer cells, using siRNA treatment and RNA-sequencing. In this way, we found modifications in several networks associated to biological functions relevant for tumorigenesis (apoptosis, chronic inflammation, angiogenesis, immunomodulation, cell mobility, and epithelial–mesenchymal transition) that were originally attributed only to Transglutaminase type 2 protein but that could be regulated also by TG2-lncRNA. Moreover, our experiments strongly suggest the ability of TG2-lncRNA to directly interact with important transcription factors, such as RXRα and TP53, paving the way for several regulatory loops that can potentially influence the phenotypic behaviour of MCF-7 cells. These considerations imply the need to further investigate the relative relevance of the TG2 protein itself and/or other gene products as key regulators in the organization of breast cancer program.
Collapse
|
26
|
Probing tissue transglutaminase mediated vascular smooth muscle cell aging using a novel transamidation-deficient Tgm2-C277S mouse model. Cell Death Discov 2021; 7:197. [PMID: 34326316 PMCID: PMC8322091 DOI: 10.1038/s41420-021-00543-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Tissue transglutaminase (TG2), a multifunctional protein of the transglutaminase family, has putative transamidation-independent functions in aging-associated vascular stiffening and dysfunction. Developing preclinical models will be critical to fully understand the physiologic relevance of TG2's transamidation-independent activity and to identify the specific function of TG2 for therapeutic targeting. Therefore, in this study, we harnessed CRISPR-Cas9 gene editing technology to introduce a mutation at cysteine 277 in the active site of the mouse Tgm2 gene. Heterozygous and homozygous Tgm2-C277S mice were phenotypically normal and were born at the expected Mendelian frequency. TG2 protein was ubiquitously expressed in the Tgm2-C277S mice at levels similar to those of wild-type (WT) mice. In the Tgm2-C277S mice, TG2 transglutaminase function was successfully obliterated, but the transamidation-independent functions ascribed to GTP, fibronectin, and integrin binding were preserved. In vitro, a remodeling stimulus led to the significant loss of vascular compliance in WT mice, but not in the Tgm2-C277S or TG2-/- mice. Vascular stiffness increased with age in WT mice, as measured by pulse-wave velocity and tensile testing. Tgm2-C277S mice were protected from age-associated vascular stiffening, and TG2 knockout yielded further protection. Together, these studies show that TG2 contributes significantly to overall vascular modulus and vasoreactivity independent of its transamidation function, but that transamidation activity is a significant cause of vascular matrix stiffening during aging. Finally, the Tgm2-C277S mice can be used for in vivo studies to explore the transamidation-independent roles of TG2 in physiology and pathophysiology.
Collapse
|
27
|
Mickle M, Adhikary G, Shrestha S, Xu W, Eckert RL. VGLL4 inhibits YAP1/TEAD signaling to suppress the epidermal squamous cell carcinoma cancer phenotype. Mol Carcinog 2021; 60:497-507. [PMID: 34004031 PMCID: PMC8243851 DOI: 10.1002/mc.23307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Epidermal squamous cell carcinoma (SCC) develops in response to ultraviolet light exposure and is among the most common cancers. The transglutaminase 2 cancer cell survival protein stimulates the activity of the YAP1/TEAD transcription complex to drive the expression of genes that promote aggressive epidermal SCC cell invasion, migration, and tumor formation. Therefore, we are interested in mechanisms that may inhibit these events. Vestigial-like protein-4 (VGLL4) is a transcription cofactor/tumor suppressor that inhibits several pro-cancer pathways including YAP1 signaling. Our present studies show that VGLL4 inhibits YAP1/TEAD-dependent transcription to reduce the expression of YAP1 target genes (CCND1, CYR61, and CTGF) and pro-cancer collagen genes (COL1A2 and COL3A1). We further show that loss of these YAP1 regulated genes is required for VGLL4 suppression of the cancer cell phenotype, as forced CCND1 or COL1A2 expression partially restores the aggressive cancer phenotype in VGLL4 expressing cells. Consistent with these findings, VGLL4 expression reduces tumor formation, and this is associated with reduced CCND1, CYR61, CTGF, COL1A2, and COL1A3 mRNA and protein levels, and reduced EMT marker expression. These findings indicate that VGLL4 suppresses the malignant epidermal SCC cancer phenotype by inhibiting YAP1/TEAD-dependent pro-cancer signaling.
Collapse
Affiliation(s)
- McKayla Mickle
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Suruchi Shrestha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Marlene and Stewart Greenebaum Comprehensive Cancer, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
28
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|
29
|
Transglutaminase 2 as a Marker for Inflammation and Therapeutic Target in Sepsis. Int J Mol Sci 2021; 22:ijms22041897. [PMID: 33672962 PMCID: PMC7918628 DOI: 10.3390/ijms22041897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis results in lethal organ malfunction due to dysregulated host response to infection, which is a condition with increasing prevalence worldwide. Transglutaminase 2 (TG2) is a crosslinking enzyme that forms a covalent bond between lysine and glutamine. TG2 plays important roles in diverse cellular processes, including extracellular matrix stabilization, cytoskeletal function, cell motility, adhesion, signal transduction, apoptosis, and cell survival. We have shown that the co-culture of Candida albicans and hepatocytes activates and induces the translocation of TG2 into the nucleus. In addition, the expression and activation of TG2 in liver macrophages was dramatically induced in the lipopolysaccharide-injected and cecal ligation puncture-operated mouse models of sepsis. Based on these findings and recently published research, we have reviewed the current understanding of the relationship between TG2 and sepsis. Following the genetic and pharmacological inhibition of TG2, we also assessed the evidence regarding the use of TG2 as a potential marker and therapeutic target in inflammation and sepsis.
Collapse
|
30
|
Ulukan B, Bihorac A, Sipahioglu T, Kiraly R, Fesus L, Telci D. Role of Tissue Transglutaminase Catalytic and Guanosine Triphosphate-Binding Domains in Renal Cell Carcinoma Progression. ACS OMEGA 2020; 5:28273-28284. [PMID: 33163811 PMCID: PMC7643270 DOI: 10.1021/acsomega.0c04226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional protein that can act as a cross-linking enzyme, GTPase/ATPase, protein kinase, and protein disulfide isomerase. TG2 is involved in cell adhesion, migration, invasion, and growth, as well as epithelial-mesenchymal transition (EMT). Our previous findings indicate that the increased expression of TG2 in renal cell carcinoma (RCC) results in tumor metastasis with a significant decrease in disease- and cancer-specific survival outcome. Given the importance of the prometastatic activity of TG2 in RCC, in the present study, we aim to investigate the relative contribution of TG2's transamidase and guanosine triphosphate (GTP)-binding/GTPase activity in the cell migration, invasion, EMT, and cancer stemness of RCC. For this purpose, the mouse RCC cell line RenCa was transduced with wild-type-TG2 (wt-TG2), GTP-binding deficient-form TG2-R580A, transamidase-deficient form with low GTP-binding affinity TG2-C277S, and transamidase-inactive form TG2-W241A. Our results suggested that predominantly, GTP-binding activity of TG2 is responsible for cell migration and invasion. In addition, CD marker analysis and spheroid assay confirmed that GTP binding/GTPase activity of TG2 is important in the maintenance of mesenchymal character and the cancer stem cell profile. These findings support a prometastatic role for TG2 in RCC that is dependent on the GTP binding/GTPase activity of the enzyme.
Collapse
Affiliation(s)
- Burge Ulukan
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Ajna Bihorac
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Tarik Sipahioglu
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Robert Kiraly
- Department
of Biochemistry and Molecular Biology, University
of Debrecen, Debrecen H4010, Hungary
| | - Laszlo Fesus
- Department
of Biochemistry and Molecular Biology, University
of Debrecen, Debrecen H4010, Hungary
| | - Dilek Telci
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| |
Collapse
|
31
|
Jambrovics K, Uray IP, Keillor JW, Fésüs L, Balajthy Z. Benefits of Combined All-Trans Retinoic Acid and Arsenic Trioxide Treatment of Acute Promyelocytic Leukemia Cells and Further Enhancement by Inhibition of Atypically Expressed Transglutaminase 2. Cancers (Basel) 2020; 12:cancers12030648. [PMID: 32168763 PMCID: PMC7139906 DOI: 10.3390/cancers12030648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/02/2022] Open
Abstract
Randomized trials in acute promyelocytic leukemia patients have shown that treatment with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) is superior in efficacy to monotherapy, with significantly decreased mortality. So far, there are little data available to explain the success of the ATRA and ATO combination treatment in molecular terms. We showed that ATRA- and ATO-treated cells had the same capacity for superoxide production, which was reduced by two-thirds in the combined treatment. Secreted inflammatory biomarkers (monocyte chemoattractant protein-1 [MCP-1], interleukin-1 beta [IL-1β] and tumor necrosis factor-α [TNF-α]) were significantly decreased and were further reduced in a transglutaminase 2 (TG2) expression-dependent manner. The amount of secreted TNF-α in the supernatant of NB4 TG2 knockout cells was close to 50 times lower than in ATRA-treated differentiated wild-type NB4 cells. The irreversible inhibitor of TG2 NC9 not only decreased reactive oxygen species production 28-fold, but decreased the concentration of MCP-1, IL-1β and TNF-α 8-, 15- and 61-fold, respectively in the combined ATRA + ATO-treated wild-type NB4 cell culture. We propose that atypical expression of TG2 leads to the generation of inflammation, which thereby serves as a potential target for the prevention of differentiation syndrome.
Collapse
Affiliation(s)
- Károly Jambrovics
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.J.); (L.F.)
| | - Iván P. Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.J.); (L.F.)
- MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Zoltán Balajthy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.J.); (L.F.)
- Correspondence: ; Tel.: +36-52-416-432; Fax: +36-52-314-989
| |
Collapse
|
32
|
Proteomic sift through serum and endometrium profiles unraveled signature proteins associated with subdued fertility and dampened endometrial receptivity in women with polycystic ovary syndrome. Cell Tissue Res 2020; 380:593-614. [PMID: 32052139 DOI: 10.1007/s00441-020-03171-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/10/2020] [Indexed: 01/20/2023]
Abstract
The objective of this study is to discern the proteomic differences responsible for hampering the receptivity of endometrium and subduing the fertility of females with polycystic ovary syndrome in analogy to healthy fertile females. This study was designed in collaboration with Hakeem Abdul Hameed Centenary Hospital affiliated to Jamia Hamdard, New Delhi, India. Serum samples were taken from infertile PCOS subjects (n = 6) and fertile control subjects (n = 6) whereas endometrial tissue samples were recruited from ovulatory PCOS (n = 4), anovulatory PCOS (n = 4) and normal healthy fertile control subjects (n = 4) for proteomic studies. Additionally, endometrial biopsies from healthy fertile control (n = 8), PCOS with infertility (n = 6), unexplained infertility (n = 3) and endometrial hyperplasia (n = 3) were taken for validation studies. Anthropometric, biochemical and hormonal evaluation was done for all the subjects enrolled in this study. Protein profiles were generated through 2D-PAGE and differential proteins analyzed with PD-QUEST software followed by identification with MALDI-TOF MS protein mass fingerprinting. Validation of identified proteins was done through RT-PCR relative expression analysis. Protein profiling of serum revealed differential expression of proteins involved in transcriptional regulation, embryogenesis, DNA repair, decidual cell ploidy, immunomodulation, intracellular trafficking and degradation processes. Proteins involved in cell cycle regulation, cellular transport and signaling, DNA repair, apoptotic processes and mitochondrial metabolism were found to be differentially expressed in endometrium. The findings of this study revealed proteins that hold strong candidature as potential drug targets to regulate the cellular processes implicating infertility and reduced receptivity of endometrium in women with polycystic ovary syndrome.
Collapse
|
33
|
Franzese O, Minotti L, Aguiari G, Corrà F, Cervellati C, Ferrari C, Volinia S, Bergamini CM, Bianchi N. Involvement of non-coding RNAs and transcription factors in the induction of Transglutaminase isoforms by ATRA. Amino Acids 2019; 51:1273-1288. [PMID: 31440819 DOI: 10.1007/s00726-019-02766-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023]
Abstract
The multifunctional protein Transglutaminase type 2, is associated with cancer epithelial mesenchymal transition, invasiveness, stemness and drugs resistance. Several variant isoforms and non-coding RNAs are present in cancer and this report explored the expression of these transcripts of the TGM2 gene in cancer cell lines after induction with all-trans retinoic acid. The expression of truncated variants along with two long non-coding RNAs, was demonstrated. One of these is coded from the first intron and the Last Exon Variant is constituted by a sequence corresponding to the last three exons and the 3'UTR. Analysis of ChIP-seq data, from ENCODE project, highlighted factors interacting with intronic sequences, which could interfere with the progression of RNApol II at checkpoints, during the elongation process. Some relevant transcription factors, bound in an ATRA-dependent way, were found by RNA immunoprecipitation, notably GATA3 mainly enriched to Last Exon Variant non-coding RNA. The involvement of NMD in the regulation of the ratio among these transcripts was observed, as the prevalent recovering of Last Exon Variant to phUPF1-complexes, with decrease of the binding towards other selective targets. This study contributes to identify molecular mechanisms regulating the ratio among the variants and improves the knowledge about regulatory roles of the non-coding RNAs of the TGM2 gene.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Aguiari
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Carlo Ferrari
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo M Bergamini
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy.
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy.
| |
Collapse
|
34
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Jambrovics K, Uray IP, Keresztessy Z, Keillor JW, Fésüs L, Balajthy Z. Transglutaminase 2 programs differentiating acute promyelocytic leukemia cells in all-trans retinoic acid treatment to inflammatory stage through NF-κB activation. Haematologica 2019; 104:505-515. [PMID: 30237268 PMCID: PMC6395331 DOI: 10.3324/haematol.2018.192823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Differentiation syndrome (DS) is a life-threatening complication arising during retinoid treatment of acute promyelocytic leukemia (APL). Administration of all-trans retinoic acid leads to significant changes in gene expression, among the most induced of which is transglutaminase 2, which is not normally expressed in neutrophil granulocytes. To evaluate the pathophysiological function of transglutaminase 2 in the context of immunological function and disease outcomes, such as excessive superoxide anion, cytokine, and chemokine production in differentiated NB4 cells, we used an NB4 transglutaminase knock-out cell line and a transglutaminase inhibitor, NC9, which inhibits both transamidase- and guanosine triphosphate-binding activities, to clarify the contribution of transglutaminase to the development of potentially lethal DS during all-trans retinoic acid treatment of APL. We found that such treatment not only enhanced cell-surface expression of CD11b and CD11c but also induced high-affinity states; atypical transglutaminase 2 expression in NB4 cells activated the nuclear factor kappa (κ)-light-chain-enhancer of the activated B-cell pathway, driving pathogenic processes with an inflammatory cascade through the expression of numerous cytokines, including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and monocyte chemoattractant protein 1. NC9 decreased the amount of transglutaminase 2, p65/RelA, and p50 in differentiated NB4 cells and their nuclei, leading to attenuated inflammatory cytokine synthesis. NC9 significantly inhibits transglutaminase 2 nuclear translocation but accelerates its proteasomal breakdown. This study demonstrates that transglutaminase 2 expression induced by all-trans retinoic acid treatment reprograms inflammatory signaling networks governed by nuclear factor κ-light-chain-enhancer of activated B-cell activation, resulting in overexpression of TNF-α and IL-1β in differentiating APL cells, suggesting that atypically expressed transglutaminase 2 is a promising target for leukemia treatment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- CD11 Antigens/genetics
- CD11 Antigens/metabolism
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cytokines/metabolism
- GTP-Binding Proteins/deficiency
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Gene Knockdown Techniques
- Humans
- Inflammation Mediators/metabolism
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Macrophage-1 Antigen/genetics
- Macrophage-1 Antigen/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Neoplasm Staging
- Phagocytosis
- Protein Glutamine gamma Glutamyltransferase 2
- Signal Transduction
- Transglutaminases/deficiency
- Transglutaminases/genetics
- Transglutaminases/metabolism
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
Collapse
Affiliation(s)
- Károly Jambrovics
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Iván P Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zsolt Keresztessy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- Genome Medicine and Bioinformatics Core Facility, Research Center for Molecular Medicine, University of Debrecen, Hungary
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, ON Canada
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, University of Debrecen, Hungary
| | - Zoltán Balajthy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
36
|
The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression. Med Sci (Basel) 2019; 7:medsci7020019. [PMID: 30691081 PMCID: PMC6409630 DOI: 10.3390/medsci7020019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (transglutaminase type 2; TG2) is the most ubiquitously expressed member of the transglutaminase family (EC 2.3.2.13) that catalyzes specific post-translational modifications of proteins through a calcium-dependent acyl-transfer reaction (transamidation). In addition, this enzyme displays multiple additional enzymatic activities, such as guanine nucleotide binding and hydrolysis, protein kinase, disulfide isomerase activities, and is involved in cell adhesion. Transglutaminase 2 has been reported as one of key enzymes that is involved in all stages of carcinogenesis; the molecular mechanisms of action and physiopathological effects depend on its expression or activities, cellular localization, and specific cancer model. Since it has been reported as both a potential tumor suppressor and a tumor-promoting factor, the role of this enzyme in cancer is still controversial. Indeed, TG2 overexpression has been frequently associated with cancer stem cells’ survival, inflammation, metastatic spread, and drug resistance. On the other hand, the use of inducers of TG2 transamidating activity seems to inhibit tumor cell plasticity and invasion. This review covers the extensive and rapidly growing field of the role of TG2 in cancer stem cells survival and epithelial–mesenchymal transition, apoptosis and differentiation, and formation of aggressive metastatic phenotypes.
Collapse
|
37
|
Sullivan KE, Cerione RA, Wilson KF. ALDH1A3 in CSCs. Aging (Albany NY) 2019; 9:1351-1352. [PMID: 28476022 PMCID: PMC5472733 DOI: 10.18632/aging.101236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Kelly E Sullivan
- Department of Molecular Medicine, Cornell University, Ithaca, NY 82071, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 82071, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 82071, USA
| | - Kristin F Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 82071, USA
| |
Collapse
|
38
|
Abstract
Tissue transglutaminase (tTG), also referred to as type 2 transglutaminase or Gαh, can bind and hydrolyze GTP, as well as function as a protein crosslinking enzyme. tTG is widely expressed and can be detected both inside cells and in the extracellular space. In contrast to many enzymes, the active and inactive conformations of tTG are markedly different. The catalytically inactive form of tTG adopts a compact “closed-state” conformation, while the catalytically active form of the protein adopts an elongated “open-state” conformation. tTG has long been appreciated as an important player in numerous diseases, including celiac disease, neuronal degenerative diseases, and cancer, and its roles in these diseases often depend as much upon its conformation as its catalytic activity. While its ability to promote these diseases has been traditionally thought to be dependent on its protein crosslinking activity, more recent findings suggest that the conformational state tTG adopts is also important for mediating its effects. In particular, we and others have shown that the closed-state of tTG is important for promoting cell growth and survival, while maintaining tTG in the open-state is cytotoxic. In this review, we examine the two unique conformations of tTG and how they contribute to distinct biological processes. We will also describe how this information can be used to generate novel therapies to treat diseases, with a special focus on cancer.
Collapse
|
39
|
Adhikary G, Grun D, Alexander HR, Friedberg JS, Xu W, Keillor JW, Kandasamy S, Eckert RL. Transglutaminase is a mesothelioma cancer stem cell survival protein that is required for tumor formation. Oncotarget 2018; 9:34495-34505. [PMID: 30349644 PMCID: PMC6195372 DOI: 10.18632/oncotarget.26130] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/08/2018] [Indexed: 12/26/2022] Open
Abstract
Mesothelioma is a rare cancer of the mesothelial cell layer of the pleura, peritoneum, pericardium and tunica vaginalis. It is typically caused by asbestos, notoriously resistant to chemotherapy and generally considered incurable with a poor life expectancy. Transglutaminase 2 (TG2), a GTP binding regulatory protein, is an important cancer stem cell survival and therapy resistance factor. We show that TG2 is highly expressed in human mesothelioma tumors and in mesothelioma cancer stem cells (MCS cells). TG2 knockdown or TG2 inhibitor treatment reduces MCS cell spheroid formation, matrigel invasion, migration and tumor formation. Time to tumor first appearance is doubled in TG2 knockout cells as compared to wild-type. In addition, TG2 loss is associated with reduced expression of stemness, and epithelial mesenchymal transition markers, and enhanced apoptosis. These studies indicate that TG2 is an important MCS cell survival protein and suggest that TG2 may serve as a mesothelioma cancer stem cell therapy target.
Collapse
Affiliation(s)
- Gautam Adhikary
- 1 Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Grun
- 1 Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - H. Richard Alexander
- 7 Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Joseph S. Friedberg
- 4 Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA,5 Department of Surgery and Division of General and Surgical Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wen Xu
- 1 Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Sivaveera Kandasamy
- 5 Department of Surgery and Division of General and Surgical Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L. Eckert
- 1 Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA,2 Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA,3 Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA,4 Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Katt WP, Blobel NJ, Komarova S, Antonyak MA, Nakano I, Cerione RA. A small molecule regulator of tissue transglutaminase conformation inhibits the malignant phenotype of cancer cells. Oncotarget 2018; 9:34379-34397. [PMID: 30344949 PMCID: PMC6188150 DOI: 10.18632/oncotarget.26193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
The protein crosslinking enzyme tissue transglutaminase (tTG) is an acyltransferase which catalyzes transamidation reactions between two proteins, or between a protein and a polyamine. It is frequently overexpressed in several different types of human cancer cells, where it has been shown to contribute to their growth, survival, and invasiveness. tTG is capable of adopting two distinct conformational states: a protein crosslinking active (“open”) state, and a GTP-bound, crosslinking inactive (“closed”) state. We have previously shown that the ectopic expression of mutant forms of tTG, which constitutively adopt the open conformation, are toxic to cells. This raises the possibility that strategies directed toward causing tTG to maintain an open state could potentially provide a therapeutic benefit for cancers in which tTG is highly expressed. Here, we report the identification of a small molecule, TTGM 5826, which stabilizes the open conformation of tTG. Treatment of breast and brain cancer cell lines, as well as glioma stem cells, with this molecule broadly inhibits their transformed phenotypes. Thus, TTGM 5826 represents the lead compound for a new class of small molecules that promote the toxicity of cancer cells by stabilizing the open state of tTG.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Nicolas J Blobel
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Svetlana Komarova
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Role of Transglutaminase 2 in Migration of Tumor Cells and How Mouse Models Fit. Med Sci (Basel) 2018; 6:medsci6030070. [PMID: 30200219 PMCID: PMC6164270 DOI: 10.3390/medsci6030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
A search for the "magic bullet", a molecule, the targeting abilities of which could stop the migration of tumor cells, is currently underway, but remains in the early stages. There are still many unknowns regarding the cell migration. The main approach is the employment of mouse models, that are sources of valuable information, but still cannot answer all of the questions. One of the molecules of interest is Transglutaminase 2 (TG2). It is a well-described molecule involved in numerous pathways and elevated in metastatic tumors. The question remains whether mice and humans can give the same answer considering TG2.
Collapse
|
42
|
Oteng-Pabi SK, Clouthier CM, Keillor JW. Design of a glutamine substrate tag enabling protein labelling mediated by Bacillus subtilis transglutaminase. PLoS One 2018; 13:e0197956. [PMID: 29847605 PMCID: PMC5976192 DOI: 10.1371/journal.pone.0197956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023] Open
Abstract
Transglutaminases (TGases) are enzymes that catalyse protein cross-linking through a transamidation reaction between the side chain of a glutamine residue on one protein and the side chain of a lysine residue on another. Generally, TGases show low substrate specificity with respect to their amine substrate, such that a wide variety of primary amines can participate in the modification of specific glutamine residue. Although a number of different TGases have been used to mediate these bioconjugation reactions, the TGase from Bacillus subtilis (bTG) may be particularly suited to this application. It is smaller than most TGases, can be expressed in a soluble active form, and lacks the calcium dependence of its mammalian counterparts. However, little is known regarding this enzyme and its glutamine substrate specificity, limiting the scope of its application. In this work, we designed a FRET-based ligation assay to monitor the bTG-mediated conjugation of the fluorescent proteins Clover and mRuby2. This assay allowed us to screen a library of random heptapeptide glutamine sequences for their reactivity with recombinant bTG in bacterial cells, using fluorescence assisted cell sorting. From this library, several reactive sequences were identified and kinetically characterized, with the most reactive sequence (YAHQAHY) having a kcat/KM value of 19 ± 3 μM-1 min-1. This sequence was then genetically appended onto a test protein as a reactive 'Q-tag' and fluorescently labelled with dansyl-cadaverine, in the first demonstration of protein labelling mediated by bTG.
Collapse
Affiliation(s)
- Samuel K. Oteng-Pabi
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
| | - Christopher M. Clouthier
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
Lei Z, Chai N, Tian M, Zhang Y, Wang G, Liu J, Tian Z, Yi X, Chen D, Li X, Yu P, Hu H, Xu B, Jian C, Bian Z, Guo H, Wang J, Peng S, Nie Y, Huang N, Hu S, Wu K. Novel peptide GX1 inhibits angiogenesis by specifically binding to transglutaminase-2 in the tumorous endothelial cells of gastric cancer. Cell Death Dis 2018; 9:579. [PMID: 29785022 PMCID: PMC5962530 DOI: 10.1038/s41419-018-0594-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 04/12/2018] [Indexed: 12/28/2022]
Abstract
The clinical application of GX1, an optimal gastric cancer (GC) targeting peptide, is greatly limited because its receptor in the GC vasculature is unknown. In this study, we screened the candidate receptor of GX1, transglutaminase-2(TGM2), by co-immunoprecipitation (co-IP) combined with mass spectrometry. We found that TGM2 was up-regulated in GC vascular endothelial cells and that GX1 receptor expression was suppressed correspondingly after TGM2 downregulation. A highly consistent co-localization of GX1 receptor and TGM2 was detected at both the cellular and tissue levels. High TGM2 expression was evident in GC tissues from patients with poor prognosis. After TGM2 downregulation, the GX1-mediated inhibition of proliferation and migration and the induction of the apoptosis of GC vascular endothelial cells were weakened or even reversed. Finally, we observed that GX1 could inhibit the GTP-binding activity of TGM2 by reducing its intracellular distribution and downregulating its downstream molecular targets (nuclear factor-kappa B, NF-κB; hypoxia-inducible factor 1-α, HIF1α) in GC vascular endothelial cells. Our study confirms that peptide GX1 can inhibit angiogenesis by directly binding to TGM2, subsequently reducing the GTP-binding activity of TGM2 and thereby suppressing its downstream pathway(NF-κB/HIF1α). Our conclusions suggest that GX1/TGM2 may provide a new target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Zhijie Lei
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Na Chai
- Department of Radiology, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Miaomiao Tian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Ying Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Guodong Wang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Jian Liu
- Department of Radiology, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Zuhong Tian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Xiaofang Yi
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Di Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Xiaowei Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Pengfei Yu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Hao Hu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Bing Xu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Chao Jian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Zhenyuan Bian
- Department of Hepatobiliary Surgery, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Jinpeng Wang
- Department of Orthopedics, Xjing Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Shiming Peng
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Niu Huang
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China.
| | - Sijun Hu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| |
Collapse
|
44
|
Spotlight on the transglutaminase 2 gene: a focus on genomic and transcriptional aspects. Biochem J 2018; 475:1643-1667. [PMID: 29764956 DOI: 10.1042/bcj20170601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023]
Abstract
The type 2 isoenzyme is the most widely expressed transglutaminase in mammals displaying several intra- and extracellular activities depending on its location (protein modification, modulation of gene expression, membrane signalling and stabilization of cellular interactions with the extracellular matrix) in relation to cell death, survival and differentiation. In contrast with the appreciable knowledge about the regulation of the enzymatic activities, much less is known concerning its inducible expression, which is altered in inflammatory and neoplastic diseases. In this context, we first summarize the gene's basic features including single-nucleotide polymorphism characterization, epigenetic DNA methylation and identification of regulatory regions and of transcription factor-binding sites at the gene promoter, which could concur to direct gene expression. Further aspects related to alternative splicing events and to ncRNAs (microRNAs and lncRNAs) are involved in the modulation of its expression. Notably, this important gene displays transcriptional variants relevant for the protein's function with the occurrence of at least seven transcripts which support the synthesis of five isoforms with modified catalytic activities. The different expression of the TG2 (type 2 transglutaminase) variants might be useful for dictating the multiple biological features of the protein and their alterations in pathology, as well as from a therapeutic perspective.
Collapse
|
45
|
Wodtke R, Hauser C, Ruiz-Gómez G, Jäckel E, Bauer D, Lohse M, Wong A, Pufe J, Ludwig FA, Fischer S, Hauser S, Greif D, Pisabarro MT, Pietzsch J, Pietsch M, Löser R. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure–Activity Relationships, and Pharmacokinetic Profiling. J Med Chem 2018; 61:4528-4560. [DOI: 10.1021/acs.jmedchem.8b00286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert Wodtke
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Christoph Hauser
- Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Straße 24, 50931 Köln, Germany
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Elisabeth Jäckel
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - David Bauer
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Martin Lohse
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - Alan Wong
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Johanna Pufe
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Fischer
- Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sandra Hauser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Dieter Greif
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jens Pietzsch
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Markus Pietsch
- Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Straße 24, 50931 Köln, Germany
| | - Reik Löser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| |
Collapse
|
46
|
Condello S, Sima L, Ivan C, Cardenas H, Schiltz G, Mishra RK, Matei D. Tissue Tranglutaminase Regulates Interactions between Ovarian Cancer Stem Cells and the Tumor Niche. Cancer Res 2018; 78:2990-3001. [PMID: 29510995 DOI: 10.1158/0008-5472.can-17-2319] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/15/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Cancer progression and recurrence are linked to a rare population of cancer stem cells (CSC). Here, we hypothesized that interactions with the extracellular matrix drive CSC proliferation and tumor-initiating capacity and investigated the functions of scaffold protein tissue transglutaminase (TG2) in ovarian CSC. Complexes formed by TG2, fibronectin (FN), and integrin β1 were enriched in ovarian CSC and detectable in tumors. A function-inhibiting antibody against the TG2 FN-binding domain suppressed complex formation, CSC proliferation as spheroids, tumor-initiating capacity, and stemness-associated Wnt/β-catenin signaling. Disruption of the interaction between TG2 and FN also blocked spheroid formation and the response to Wnt ligands. TG2 and the Wnt receptor Frizzled 7 (Fzd7) form a complex in cancer cells and tumors, leading to Wnt pathway activation. Protein docking and peptide inhibition demonstrate that the interaction between TG2 and Fzd7 overlaps with the FN-binding domain of TG2. These results support a new function of TG2 in ovarian CSC, linked to spheroid proliferation and tumor-initiating capacity and mediated through direct interactions with Fzd7. We propose this complex as a new stem cell target.Significance: These findings reveal a new mechanism by which ovarian CSCs interact with the tumor microenvironment, promoting cell proliferation and tumor initiation. Cancer Res; 78(11); 2990-3001. ©2018 AACR.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Livia Sima
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gary Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
- Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
47
|
Katt WP, Antonyak MA, Cerione RA. The diamond anniversary of tissue transglutaminase: a protein of many talents. Drug Discov Today 2018; 23:575-591. [PMID: 29362136 PMCID: PMC5864117 DOI: 10.1016/j.drudis.2018.01.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/28/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Tissue transglutaminase (tTG) is capable of binding and hydrolyzing GTP, as well as catalyzing an enzymatic transamidation reaction that crosslinks primary amines to glutamine residues. tTG adopts two vastly different conformations, depending on whether it is functioning as a GTP-binding protein or a crosslinking enzyme. It has been shown to have important roles in several different aspects of cancer progression, making it an attractive target for therapeutic intervention. Here, we highlight many of the major findings involving tTG since its discovery 60 years ago, and describe recent drug discovery efforts that target specific activities or conformations of this unique protein.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| |
Collapse
|
48
|
Dong J, Wu T, Xiao Y, Chen L, Xu L, Li M, Zhao M. Target-triggered transcription machinery for ultra-selective and sensitive fluorescence detection of nucleoside triphosphates in one minute. Biosens Bioelectron 2017; 100:333-340. [PMID: 28942346 DOI: 10.1016/j.bios.2017.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/17/2017] [Indexed: 01/02/2023]
Abstract
Nucleoside triphosphates (NTPs) play important roles in living organisms. However, no fluorescent assays are currently available to simply and rapidly detect multiple NTPs with satisfactory selectivity, sensitivity and low cost. Here we demonstrate for the first time a target-triggered in-vitro transcription machinery for ultra-selective, sensitive and instant fluorescence detection of multiple NTPs. The machinery assembles RNA polymerase, DNA template and non-target NTPs to convert the target NTP into equivalent RNA signal sequences which are monitored by the fluorescence enhancement of molecular beacon. The machinery offers excellent selectivity for the target NTP against NDP, NMP and dNTP. Notably, to accelerate the kinetics of the machinery while maintain its high specificity, we investigated the sequence of DNA templates systematically and established a set of guidelines for the design of the optimum DNA templates, which allowed for instant detection of the target NTP at fmol level in less than 1min. Furthermore, the machinery could be transformed into logic gates to study the coeffects of two NTPs in biosynthesis and real-time monitoring systems to reflect the distribution of NTP in nucleotide pools. These results provide very useful and low-cost tools for both biochemical tests and point-of-care analysis.
Collapse
Affiliation(s)
- Jiantong Dong
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tongbo Wu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Xiao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lu Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Xu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengyuan Li
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
49
|
Akbar A, McNeil NMR, Albert MR, Ta V, Adhikary G, Bourgeois K, Eckert RL, Keillor JW. Structure-Activity Relationships of Potent, Targeted Covalent Inhibitors That Abolish Both the Transamidation and GTP Binding Activities of Human Tissue Transglutaminase. J Med Chem 2017; 60:7910-7927. [PMID: 28858494 DOI: 10.1021/acs.jmedchem.7b01070] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human tissue transglutaminase (hTG2) is a multifunctional enzyme. It is primarily known for its calcium-dependent transamidation activity that leads to formation of an isopeptide bond between glutamine and lysine residues found on the surface of proteins, but it is also a GTP binding protein. Overexpression and unregulated hTG2 activity have been associated with numerous human diseases, including cancer stem cell survival and metastatic phenotype. Herein, we present a series of targeted covalent inhibitors (TCIs) based on our previously reported Cbz-Lys scaffold. From this structure-activity relationship (SAR) study, novel irreversible inhibitors were identified that block the transamidation activity of hTG2 and allosterically abolish its GTP binding ability with a high degree of selectivity and efficiency (kinact/KI > 105 M-1 min-1). One optimized inhibitor (VA4) was also shown to inhibit epidermal cancer stem cell invasion with an EC50 of 3.9 μM, representing a significant improvement over our previously reported "hit" NC9.
Collapse
Affiliation(s)
- Abdullah Akbar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Nicole M R McNeil
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Marie R Albert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Viviane Ta
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Karine Bourgeois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa , 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
50
|
Szondy Z, Korponay-Szabó I, Király R, Sarang Z, Tsay GJ. Transglutaminase 2 in human diseases. Biomedicine (Taipei) 2017; 7:15. [PMID: 28840829 PMCID: PMC5571667 DOI: 10.1051/bmdcn/2017070315] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Transglutaminase 2 (TG2) is an inducible transamidating acyltransferase that catalyzes Ca(2+)-dependent protein modifications. In addition to being an enzyme, TG2 also serves as a G protein for several seven transmembrane receptors and acts as a co-receptor for integrin β1 and β3 integrins distinguishing it from other members of the transglutaminase family. TG2 is ubiquitously expressed in almost all cell types and all cell compartments, and is also present on the cell surface and gets secreted to the extracellular matrix via non-classical mechanisms. TG2 has been associated with various human diseases including inflammation, cancer, fibrosis, cardiovascular disease, neurodegenerative diseases, celiac disease in which it plays either a protective role, or contributes to the pathogenesis. Thus modulating the biological activities of TG2 in these diseases will have a therapeutic value.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Dental Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Ilma Korponay-Szabó
- Department of Pediatrics and Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary - Celiac Disease Center, Heim Pál Children's Hospital, Budapest 1089, Hungary
| | - Robert Király
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan - School of medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|