1
|
Wang Q, Zhu M, Li W, Guo Y, Lou H, Zhang J, Xu Y, Zeng B, Wen X, Ji X, Xie L. CBX7 promotes choroidal neovascularization by activating the HIF-1α/VEGF pathway in choroidal vascular endothelial cells. Exp Eye Res 2024; 247:110057. [PMID: 39179168 DOI: 10.1016/j.exer.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Vascular endothelial growth factor (VEGF) signaling is crucial for choroidal neovascularization (CNV), a major pathological feature of neovascular age-related macular degeneration (nAMD). Gene transcription of VEGF is mainly regulated by hypoxia-inducible factor 1-alpha (HIF-1α). The chromobox (CBX) family polycomb protein (Pc) subgroup includes CBX2, CBX4, CBX6, CBX7, and CBX8. CBX4 enhances hypoxia-induced VEGF expression and angiogenesis in hepatocellular carcinoma (HCC) cells by increasing HIF-1α's transcriptional activity. The objective of the study was to examine the functions of members of the CBX family Pc subgroup in choroidal vascular endothelial cells (CVECs) during CNV. CBX4 and CBX7 expression was up-regulated in hypoxic human choroidal vascular endothelial cells (HCVECs). In HCVECs, CBX7 facilitated HIF-1α transcription and expression, while CBX4 did not. In HCVECs, CBX7 stimulated HIF-1α's nuclear translocation and transcriptional activity, which in turn stimulated VEGF transcription and expression. The CBX7/HIF-1α/VEGF pathway promoted the migration, proliferation, and tube formation of HCVECs. The CBX7/HIF-1α/VEGF pathway was up-regulated in CVECs and in the mouse model with laser-induced CNV. Mouse CNV was lessened by the blockade of CBX7 through the down-regulation of HIF-1α/VEGF. In conclusion, CBX7 enhanced pro-angiogenic behaviors of hypoxic CVECs by up-regulating the HIF-1α/VEGF pathway, which contributing to the formation of mouse laser-induced CNV.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, 215000, China
| | - Wendie Li
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, 315100, China
| | - Yang Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hui Lou
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yiqian Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Bingqing Zeng
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xinghao Wen
- Suzhou Medical College of Soochow University, Suzhou, 215006, China
| | - Xiaoyan Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
2
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Xia W, Huang J, Sun C, Shen F, Yang K. MicroRNA‑1224 inhibits cell proliferation by downregulating CBX3 expression in chordoma. Oncol Lett 2024; 27:262. [PMID: 38646496 PMCID: PMC11027112 DOI: 10.3892/ol.2024.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
MicroRNAs (miRNAs/miRs) have abnormal expression in numerous tumors and are closely related to tumor development and resistance to radiotherapy and chemotherapy. However, there are few studies assessing the role and mechanism of miRNA in chordoma. The sequencing data of three pairs of chordoma and notochord tissues from the GSE56183 dataset were analyzed in the present study. Cell proliferation was assessed in vitro using Cell Counting Kit-8. Bioinformatics analysis and the dual luciferase reporter assay were used to evaluate the regulatory relationship between miR-1224 and chromobox 3 (CBX3) in chordoma. The results demonstrated that miR-1224 had a significantly lower expression level in chordoma tissues and cell lines. Overexpression of miR-1224 inhibited proliferation in the chordoma cells, while the knockdown of miR-1224 promoted proliferation of the chordoma cells. Bioinformatics analysis and the dual luciferase reporter assay confirmed that CBX3 was a direct target gene of miR-1224 and that miR-1224 induced the proliferation of chordoma cells through the inhibition of CBX3. In summary, miR-1224 reduced the proliferation of chordoma cells through inhibition of CBX3, which provides a theoretical basis for selecting a novel therapeutic target for chordoma.
Collapse
Affiliation(s)
- Wei Xia
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jihe Huang
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Chunhua Sun
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Fei Shen
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Kejia Yang
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| |
Collapse
|
4
|
Bosso G, Cipressa F, Tullo L, Cenci G. Co-amplification of CBX3 with EGFR or RAC1 in human cancers corroborated by a conserved genetic interaction among the genes. Cell Death Discov 2023; 9:317. [PMID: 37633946 PMCID: PMC10460438 DOI: 10.1038/s41420-023-01598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Chromobox Protein 3 (CBX3) overexpression is a common event occurring in cancer, promotes cancer cell proliferation and represents a poor prognosis marker in a plethora of human cancers. Here we describe that a wide spectrum of human cancers harbors a co-amplification of CBX3 gene with either EGFR or RAC1, which yields a statistically significant increase of both mRNA and protein levels of CBX3, EGFR and RAC1. We also reveal that the simultaneous overexpression of CBX3, RAC1 and EGFR gene products correlates with a worse prognosis compared to the condition when CBX3, RAC1 and EGFR are singularly upregulated. Furthermore, we also show that a co-occurrence of low-grade amplification, in addition to high-grade amplification, between CBX3 and EGFR or RAC1 is associated with a reduced patient lifespan. Finally, we find that CBX3 and RAC1/EGFR genetically interact in the model organism Drosophila melanogaster, suggesting that the simultaneous overexpression as well as well the co-occurrence of high- or low-grade copy number alterations in these genes is not accidental and could reflect evolutionarily conserved functional relationships.
Collapse
Affiliation(s)
- Giuseppe Bosso
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| | - Francesca Cipressa
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Liliana Tullo
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Fondazione Cenci Bolognetti, Istituto Pasteur Italia, Rome, Italy.
| |
Collapse
|
5
|
Crosstalk of miRNAs with signaling networks in bladder cancer progression: Therapeutic, diagnostic and prognostic functions. Pharmacol Res 2022; 185:106475. [DOI: 10.1016/j.phrs.2022.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
|
6
|
Expression and Prognostic Value of Chromobox Family Proteins in Esophageal Cancer. Genes (Basel) 2022; 13:genes13091582. [PMID: 36140750 PMCID: PMC9498422 DOI: 10.3390/genes13091582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Esophageal cancer (EC) is one of the most common human malignant tumors worldwide. Chromobox (CBX) family proteins are significant components of epigenetic regulatory complexes. It is reported that CBXs play critical roles in the oncogenesis and development of various tumors. Nonetheless, their functions and specific roles in EC remain vague and obscure. Methods and Materials: We used multiple bioinformatics tools, including Oncomine, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), UALCAN, Kaplan–Meier plotter, cBioPortal, Metascape, TIMER2 and TISIDB, to investigate the expression profile, gene alterations and prognostic roles of CBX family proteins, as well as their association with clinicopathologic parameters, immune cells and immune regulators. In addition, RT-qPCR, Western blot, CCK8, colony formation, wound healing and transwell assays were performed to investigate the biological functions of CBX3 in EC cells. Results: CBX3 and CBX5 were overexpressed in EC compared to normal tissues. Survival analysis revealed that high expression of CBX1 predicted worse disease-free survival (DFS) in EC patients. Functionally, CBXs might participate in mismatch repair, spliceosome, cell cycle, the Fanconi anemia pathway, tight junction, the mRNA surveillance pathway and the Hippo signaling pathway in EC development. Furthermore, CBXs were related to distinct immune cells infiltration and immune regulators. Additionally, depletion of CBX3 inhibited the proliferation, migration and invasion abilities of EC cells. Conclusions: Our study comprehensively investigated the expression pattern, prognostic value, and gene alterations of CBXs in EC, as well as their relationships with clinicopathologic variables, immune cells infiltration and immune regulators. These results suggested that CBX family proteins, especially CBX3, might be potential biomarkers in the progression of EC.
Collapse
|
7
|
Zhang P, Yang X, Zha Z, Zhu Y, Zhang G, Li G. CBX3 regulated by miR-139 promotes the development of HCC by regulating cell cycle progression. Cell Cycle 2022; 21:1740-1752. [PMID: 35471148 PMCID: PMC9302499 DOI: 10.1080/15384101.2022.2068329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a major primary liver cancer, is one of the most lethal malignancies worldwide. Increasing evidence has demonstrated that chromobox protein homolog 3 (CBX3) functions as an oncogene in different cancers. However, its expression profiles and biological functions in HCC remain unknown. Data on CBX3 expression in HCC acquired from the GEO and TCGA databases were analyzed. The biological functions of CBX3 in HCC were examined by in vitro experiments. Bioinformatics analysis, qRT-PCR and western blotting were performed to explore the mechanism of CBX3 in HCC. CBX3 mRNA was upregulated in HCC tissues, and overexpression of CBX3 mRNA was negatively correlated with malignancies and poor prognosis in HCC patients. CBX3 knockdown decreased growth, migration and invasion of HCC cells in vitro. Moreover, bioinformatics analysis and experimental observation indicated that CBX3 expression was correlated with cell cycle regulatory proteins in HCC cells. Finally, starBase predicted that miR-139 could directly target CBX3 in HCC. Confirmatory experiments verified that miR-139 overexpression attenuated HCC cell proliferation and migration, and these effects could be reversed by overexpressing CBX3. Our results showed that the miR-139/CBX3 axis may be involved in HCC development by regulating cell cycle progression and may be a promising target in the treatment of HCC.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| | - Zhongming Zha
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| | - Yumeng Zhu
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| | - Guoqiang Zhang
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China.,Department of Luoyang, Digestive Diseases Institute, Digestive Disease Center of Luoyang City, Henan, Zhengzhou, China
| | - Guotao Li
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| |
Collapse
|
8
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
9
|
Jeon YH, Kim GW, Kim SY, Yi SA, Yoo J, Kim JY, Lee SW, Kwon SH. Heterochromatin Protein 1: A Multiplayer in Cancer Progression. Cancers (Basel) 2022; 14:cancers14030763. [PMID: 35159030 PMCID: PMC8833910 DOI: 10.3390/cancers14030763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of epigenetic mechanisms as well as genomic mutations contribute to the initiation and progression of cancer. In addition to histone code writers, including histone lysine methyltransferase (KMT), and histone code erasers, including histone lysine demethylase (KDM), histone code reader proteins such as HP1 are associated with abnormal chromatin regulation in human diseases. Heterochromatin protein 1 (HP1) recognizes histone H3 lysine 9 methylation and broadly affects chromatin biology, such as heterochromatin formation and maintenance, transcriptional regulation, DNA repair, chromatin remodeling, and chromosomal segregation. Molecular functions of HP1 proteins have been extensively studied, although their exact roles in diseases require further study. Here, we comprehensively review the studies that have revealed the altered expression of HP1 and its functions in tumorigenesis. In particular, the distinctive effects of each HP1 subtype, namely HP1α, HP1β, and HP1γ, have been thoroughly explored in various cancer types. We also highlight how HP1 can serve as a potential biomarker for cancer prognosis and therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - So Yeon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Ji Yoon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
- Correspondence: ; Tel.: +82-32-749-4513
| |
Collapse
|
10
|
Wang H, Zhao W, Wang J, Zhang Z. Clinicopathological significance of CBX3 in colorectal cancer: An intensive expression study based on formalin-fixed and paraffin-embedded tissues. Pathol Int 2022; 72:107-116. [PMID: 35048461 DOI: 10.1111/pin.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
CBX3 is an isoform of the heterochromatin protein 1 family, which is involved in carcinogenesis and promotes the progression of certain types of cancer. The expression level and clinicopathological significances of CBX3 in colorectal cancer (CRC) are still not well reported. In this study, we examined CBX3 protein expression in formalin-fixed and paraffin-embedded normal mucosae, hyperplastic polyps, low-and high-grade adenomas, and CRC tissue samples using immunohistochemistry. The associations of CBX3 expression levels with clinicopathological parameters, mismatch repair (MMR) protein expression, and kirsten rat sarcoma viral oncogene homolog (KRAS) and B-raf proto-oncogene (BRAF) mutations were analyzed. Our results showed that CBX3 protein was negatively expressed in normal mucosae and hyperplastic polyps, as well as in most low-grade adenomas. Interestingly, CBX3 protein was positively expressed in most high-grade adenomas and CRC tissues. CBX3 expression level was associated with tumor differentiation (p = 0.012), lymph node metastasis (p = 0.024), TNM stage (p = 0.008) and survival (p = 0.029). CBX3 expression was associated with MMR protein expression (p = 0.011) and KRAS mutation (p = 0.013), but not with BRAF mutation (p = 0.097). Our data suggest that CBX3 may be used as a molecular marker in CRC to evaluate tumor differentiation, lymph node metastasis, and pathological stage.
Collapse
Affiliation(s)
- Hai Wang
- Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyue Zhao
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiandong Wang
- Department of Pathology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zhiyuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Huang Z, Liu J, Yang J, Yan Y, Yang C, He X, Huang R, Tan M, Wu D, Yan J, Shen B. PDE4B Induces Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Is Transcriptionally Suppressed by CBX7. Front Cell Dev Biol 2021; 9:783050. [PMID: 34977026 PMCID: PMC8716816 DOI: 10.3389/fcell.2021.783050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Urinary bladder cancer (UBC) is a common malignant tumor with high incidence. Advances in the diagnosis and treatment of this disease demand the identification of novel therapeutic targets. Multiple studies demonstrated that PDE4B level was upregulated in malignancies and high PDE4B expression was correlated with poor outcomes. Herein, we identified that PDE4B was a potential therapeutic target in UBC. We confirmed that PDE4B expression was correlated with aggressive clinicopathological characteristics and unfavorable prognosis. Functional studies demonstrated that ectopic expression of PDE4B promoted UBC cells proliferation, migration and invasion, whereas PDE4B depletion suppressed cancer cell aggressiveness. We also identified CBX7 as a regulator of PDE4B to suppress the expression of PDE4B at the transcription level in a PRC1-dependent manner. Moreover, our results indicated that PDE4B induced epithelial-to-mesenchymal transition (EMT) in UBC cells via β-catenin pathway, whereas inhibition of PDE4B by its small molecule inhibitor, rolipram, effectively reversed the PDE4B overexpression-induced effects. To sum up, our results indicated that PDE4B acts as an oncogene by promoting UBC cell migration and invasion via β-catenin/EMT pathway.
Collapse
Affiliation(s)
- Zhengnan Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiakuan Liu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jiale Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| | - Bing Shen
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| |
Collapse
|
12
|
Cao D, Cao X, Jiang Y, Xu J, Zheng Y, Kang D, Xu C. Circulating exosomal microRNAs as diagnostic and prognostic biomarkers in patients with diffuse large B-cell lymphoma. Hematol Oncol 2021; 40:172-180. [PMID: 34874565 PMCID: PMC9299807 DOI: 10.1002/hon.2956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023]
Abstract
Exosomal microRNAs (miRNAs) are potential biomarkers for a variety of tumors, but have not yet been studied in diffuse large B-cell lymphoma (DLBCL). Here, we investigated the use of exosomal miRNAs in DLBCL diagnosis and prognosis. A total of 256 individuals, including 133 DLBCL patients, 94 healthy controls (HCs), and 29 non-DLBCL concurrent controls (CCs), were enrolled. Exosomal miRNAs were profiled in the screening stage using microarray analysis, and miRNA candidates were confirmed in training, testing, and external testing stages using qRT-PCR. Follow-up information on the DLBCL patients was collected, and miRNAs were used to develop diagnostic and prognostic models for these patients. Five exosomal miRNAs (miR-379-5p, miR-135a-3p, miR-4476, miR-483-3p, and miR-451a) were differentially expressed between DLBCL patients and HCs with areas under the receiver operating characteristic curve (AUC) of 0.86, 0.90, and 0.86 for the training, testing, and external testing stages, respectively. Four exosomal miRNAs (miR-379-5p, miR-135a-3p, miR-4476, and miR-451a) were differentially expressed between patients with DLBCL and CCs, with an AUC of 0.78. One miRNA (miR-451a) was significantly associated with both progression-free survival (PFS) and overall survival (OS) of DLBCL patients, R analysis indicated the combination of miR-451a with international prognostic index was a better predictor of PFS and OS for these patients. Our study suggests that subsets of circulating exosomal miRNAs can be useful noninvasive biomarkers for the diagnosis of DLBCL and that the use of circulating exosomal miRNAs improves the identification of patients with newly diagnosed DLBCL with poor outcomes.
Collapse
Affiliation(s)
- Di Cao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Cao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.,Department of Hematology, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Juan Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Deying Kang
- Department of Evidence-Based Medicine and Clinical Epidemiology, Sichuan University, Chengdu, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Smoking-associated upregulation of CBX3 suppresses ARHGAP24 expression to activate Rac1 signaling and promote tumor progression in lung adenocarcinoma. Oncogene 2021; 41:538-549. [PMID: 34785774 PMCID: PMC8782721 DOI: 10.1038/s41388-021-02114-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023]
Abstract
Although tobacco smoking is a risk factor for lung adenocarcinoma (LUAD), the mechanisms by which tobacco smoking induces LUAD development remain elusive. Histone methylation levels in human bronchial epithelial cells have been reported to increase after exposure to cigarettes. In this study, we explored the mechanisms regulating histone methylation in LUAD in response to smoking. We found that the histone H3K9 methylation reader CBX3 was upregulated in current smokers with LUAD, and that CBX3 overexpression promoted LUAD progression. Functional enrichment analyses revealed that CBX3 regulated the activation of Rho GTPases in LUAD. We also found that by forming a complex with TRIM28, TRIM24, and RBBP4, CBX3 repressed the expression of ARHGAP24 and increased the amount of active Rac1 in LUAD cells. Collectively, these results suggest that smoking associated upregulation of CBX3 promotes LUAD progression by activating the ARHGAP24/Rac1 pathway. Hence, the CBX3/ARHGAP24/Rac1 axis may represent a promising therapeutic target in smoking-induced LUAD.
Collapse
|
14
|
Long J, Long T, Li Y, Yuan P, Liu K, Li J, Cheng L. A Functional Polymorphism in Accessible Chromatin Region Confers Risk of Non-Small Cell Lung Cancer in Chinese Population. Front Oncol 2021; 11:698993. [PMID: 34552866 PMCID: PMC8450516 DOI: 10.3389/fonc.2021.698993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background The disease-associated non-coding variants identified by genome-wide association studies (GWASs) were enriched in open chromatin regions (OCRs) and implicated in gene regulation. Genetic variants in OCRs thus may exert regulatory functions and contribute to non-small cell lung cancer (NSCLC) susceptibility. Objective To fine map potential functional variants in GWAS loci that contribute to NSCLC predisposition using chromatin accessibility and histone modification data and explore their functions by population study and biochemical experimental analyses. Methods We mapped the chromatin accessible regions of lung tissues using data of assay for transposase-accessible chromatin using sequencing (ATAC-seq) in The Cancer Genome Atlas (TCGA) and prioritized potential regulatory variants within lung cancer GWAS loci by aligning with histone signatures using data of chromatin immunoprecipitation assays followed by sequencing (ChIP-seq) in the Encyclopedia of DNA Elements (ENCODE). A two-stage case–control study with 1,830 cases and 2,001 controls was conducted to explore the associations between candidate variants and NSCLC risk in Chinese population. Bioinformatic annotations and biochemical experiments were performed to further reveal the potential functions of significant variants. Results Sixteen potential functional single-nucleotide polymorphisms (SNPs) were selected as candidates from bioinformatics analyses. Three variants out of the 16 candidate SNPs survived after genotyping in stage 1 case–control study, and only the results of SNP rs13064999 were successfully validated in the analyses of stage 2 case–control study. In combined analyses, rs13064999 was significantly associated with NSCLC risk [additive model; odds ratio (OR) = 1.17; 95%CI, 1.07–1.29; p = 0.001]. Functional annotations indicated its potential enhancer bioactivity, and dual-luciferase reporter assays revealed a significant increase in luciferase activity for the reconstructed plasmid with rs13064999 A allele, when compared to the one with wild-type G allele (pA549 < 0.001, pSK-MES-1 = 0.004). Further electrophoretic mobility shift assays (EMSA) and super-shift assays confirmed a stronger affinity of HP1γ for the binding motif containing SNP rs13064999 A allele. Conclusion These findings suggested that the functional variant rs13064999, identified by the integration of ATAC-seq and ChIP-seq data, contributes to the susceptibility of NSCLC by affecting HP1γ binding, while the exact biological mechanism awaits further exploration.
Collapse
Affiliation(s)
- Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Luo Y, Qu X, Kan D, Cai B. The microRNA-451a/chromosome segregation 1-like axis suppresses cell proliferation, migration, and invasion and induces apoptosis in nasopharyngeal carcinoma. Bioengineered 2021; 12:6967-6980. [PMID: 34516344 PMCID: PMC8806603 DOI: 10.1080/21655979.2021.1975018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MicroRNA-451a (miR-451a) has been implicated in the initiation and progression of multiple cancers. However, the regulatory mechanisms underlying its function in nasopharyngeal carcinoma (NPC) are poorly understood. Thus, we investigated in detail the role of the microRNA-451a/chromosome segregation 1-like (miR-45a/CSE1L) axis and its regulatory mechanism in NPC. We examined the levels of miR-451a and CSE1L in NPC, and assessed the effects of miR-451a and CSE1L on NPC by cell functional experiments. Furthermore, we elucidated the direct regulatory effect of miR-451a on CSE1L by the luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation and validated our observations by calculating the Pearson's correlation coefficient. We found that miR-451a was down-regulated in NPC cells, and its over-expression attenuated cell proliferation, migration, and invasion, and tumor growth in 5-8 F and SUNE-1 cells and promoted apoptosis. Moreover, CSE1L was the direct gene target of miR-451a, and its over-expression abrogated miR-451a-dependent inhibition of malignancy in 5-8 F and SUNE-1 cells. The Pearson's correlation coefficient indicated a negative correlation between CSE1L and miR-451a. miR-451a serves as a tumor suppressor and targets CSE1L. miR-451a suppresses CSE1L expression, thereby reducing proliferation, invasion, and migration and increasing apoptosis of NPC cells.
Collapse
Affiliation(s)
- Yi Luo
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Xiu Qu
- Department of Pain Treatment, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Dan Kan
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Binlin Cai
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Feng Y, Gao D, Cao H, Chen L. Qi Ling Inhibits Progression of Androgen-Independent Prostate Cancer via Negative Regulation of TRIM66/HP1γ/AR Axis. Complement Med Res 2021; 28:492-500. [PMID: 34077947 DOI: 10.1159/000509388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/14/2020] [Indexed: 11/19/2022]
Abstract
AIM This study aimed to understand the molecular mechanism underlying the therapeutic effect of Qi Ling (QL) against androgen-independent prostate cancer. METHODS The relative expression of TRIM66 in prostate tumor was interrogated by microarray. Real-time polymerase chain reaction and Western blotting were performed to determine the transcript abundances and protein expressions of TRIM66, HP1γ, AR, c-Myc, and GAPDH. Cell proliferation and apoptosis were analyzed by cell counting kit-8 method and flow cytometry. The regulatory action of c-Myc on TRIM66 was interrogated with luciferase reporter plasmid and the direct binding was demonstrated by chromatin immunoprecipitation. The secretory prostate-specific antigen was quantified by enzyme-linked immunosorbent assay. RESULTS TRIM66 was aberrantly overexpressed in prostate cancer and associated with unfavorable prognosis. TRIM66/HP1γ/AR was upregulated during the androgen-independent transition in hormone-deprived medium. The TRIM66 level positively linked to cell proliferation and negatively linked to cell apoptosis in androgen-independent prostate cancer cells. QL treatment specifically inhibited c-Myc and therefore directly downregulated TRIM66 via binding to its promoter. Ectopic introduction of TRIM66 significantly reversed the anti-tumor effects of QL against androgen-independent prostate cancer. CONCLUSION Our study uncovered the importance of downregulated TRIM66/HP1γ/AR signaling in mediating the anti-tumor properties of QL.
Collapse
Affiliation(s)
- Yigeng Feng
- Surgical Department I (Urology Department), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwen Gao
- Department of Ultrasound, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongwen Cao
- Surgical Department I (Urology Department), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Chen
- Surgical Department I (Urology Department), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
CBX7 suppresses urinary bladder cancer progression via modulating AKR1B10-ERK signaling. Cell Death Dis 2021; 12:537. [PMID: 34035231 PMCID: PMC8149849 DOI: 10.1038/s41419-021-03819-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023]
Abstract
The chromobox (CBX) proteins mediate epigenetic gene silencing and have been implicated in the cancer development. By analyzing eight CBX family members in TCGA dataset, we found that chromobox 7 (CBX7) was the most strikingly downregulated CBX family member in urinary bladder cancer (UBC), as compared to normal tissues. Though dysregulation of CBX7 has been reported in multiple cancers, its specific role and clinical relevance in UBC remain unclear. Herein, we found that frequent downregulation of CBX7 in UBC specimens, which was due to its promoter hypermethylation, was correlated with poor prognosis. The ectopic expression of CBX7 suppressed UBC cell proliferation, migration, invasion, and cancer stemness, whereas CBX7 depletion promoted cancer cell aggressiveness. Importantly, CBX7 overexpression in UBC cells inhibited tumorigenicity, whereas CBX7 depletion promoted the tumor development, indicating its tumor-suppressive role in UBC. Using RNA-seq and chromosome immunoprecipitation (ChIP) assays, we identified aldo-keto reductase family 1 member 10 (AKR1B10) as a novel downstream target of CBX7, which was negatively modulated by CBX7 in a PRC1-dependent manner and involved in stimulating ERK signaling. Consistently, AKR1B10 overexpression induced cancer cell aggressiveness, whereas suppression of AKR1B10 by siRNA or its small molecular inhibitor, oleanolic acid, reversed the CBX7 deficiency-induced cellular effects. AKR1B10 overexpression was negatively associated with CBX7 downregulation and predicted poor clinical outcomes in UBC patients. Taken together, our results indicate that CBX7 functions as a tumor suppressor to downregulate AKR1B10 and further inactivates ERK signaling. This CBX7/AKR1B10/ERK signaling axis may provide a new therapeutic strategy against UBC.
Collapse
|
18
|
Zhu HY, Gao YJ, Wang Y, Liang C, Zhang ZX, Chen Y. LncRNA CRNDE promotes the progression and angiogenesis of pancreatic cancer via miR-451a/CDKN2D axis. Transl Oncol 2021; 14:101088. [PMID: 33882369 PMCID: PMC8081992 DOI: 10.1016/j.tranon.2021.101088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
CRNDE was up-regulated in pancreatic cancer. CRNDE promoted the progression and angiogenesis of pancreatic cancer. CRNDE functioned as a sponge for miR-451a in pancreatic cancer cells. MiR-451a directly interacted with CDKN2D and regulated CDKN2D expression. CRNDE regulated pancreatic cancer progression via miR-451a/CDKN2D axis.
Background The lncRNA colorectal neoplasia differentially expressed (lncRNA CRNDE) has been reported to play a pivotal role in various cancers. However, the expression and function of CRNDE in pancreatic cancer remain unclear. The objective of this study was to investigate the effects of CRNDE on pancreatic cancer and the underlying mechanisms. Methods The expression of CRNDE in pancreatic cancer tissues and cell lines was determined by RT-qPCR. Proliferation and angiogenesis were detected by MTT, colony formation, transwell and tube formation assays in vitro and in vivo. ELISA assay was used to detect the secretion of VEGFA. IHC was performed to test the expression levels of Ki67 and CD31. The binding sites between CRNDE, CDKN2D and miR-451a were predicted by bioinformatics analysis. Dual luciferase reporter and RNA immunoprecipitation assays were conducted to confirm the interaction with each other. Results The results showed that CRNDE was significantly up-regulated in pancreatic cancer tissues as well as cell lines. CRNDE overexpression promoted the progression and angiogenesis of pancreatic cancer cells in vitro and in vivo. Moreover, we identified that CRNDE functioned as a sponge for miR-451a and CRNDE overexpression inhibited the expression of miR-451a. Furthermore, we confirmed that miR-451a directly interacted with CDKN2D and negatively regulated CDKN2D expression. In addition, CRNDE was found to positively regulate CDKN2D expression and mediate pancreatic cancer cell proliferation and angiogenesis through miR-451a/CDKN2D axis. Conclusion CRNDE modulates cell proliferation and angiogenesis via miR-451a/CDKN2D axis in pancreatic cancer, which provides a potential therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Hong-Yan Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China; Department of General Surgery, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China; Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| | - Yu-Jie Gao
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen 518055, Guangdong Province, China
| | - Yong Wang
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| | - Chi Liang
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| | - Zi-Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| | - Yu Chen
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China.
| |
Collapse
|
19
|
Fan B, Jin X, Ding Q, Cao C, Shi Y, Zhu H, Zhou W. Expression of miR-451a in Prostate Cancer and Its Effect on Prognosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:772-779. [PMID: 34183927 PMCID: PMC8219609 DOI: 10.18502/ijph.v50i4.6002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: To investigate the expression of miR-451a in prostate cancer tissues and its effect on prognosis. Methods: Each of 78 specimens of prostate cancer tissues and corresponding adjacent normal tissues were collected from patients in Changshu Hospital Affiliated to Soochow University, Changshu, China from Apr 2014 to Jun 2015. Real-time quantitative RT-PCR (qRT-PCR) was used to detect the expression of miR-451a in tissues. The relationship between the expression of miR-451a and clinical pathological parameters was analyzed. The median expression of miR-451a in the experimental group was used to distinguish the high and low expressions of miR-451a in the experimental group. Kaplan-Meier was used to analyze the survival of miR-451a high and low expression groups. Results: The expressions of miR-451a in the patient’s tissues and serum were decreased, and the correlation analysis found that they were positively correlated. ROC curve analysis showed that miR-451a had a high clinical value in the diagnosis of prostate cancer and the area under the curve was 0.921. The incidence of stage III+IV lymph node metastasis, Gleason score of >7 points and a serum Prostate-specific antigen (PSA) level of >20 ng/ml in patients of the low expression group increased significantly. The 5-yr survival rate of patients with low expression was significantly lower than that of those with high expression (P=0.005). MiR-451a was an independent factor affecting the prognosis of patients. Conclusion: miR-451a is lowly expressed in prostate cancer, and patients with low expression have a poor prognosis.
Collapse
Affiliation(s)
- Bo Fan
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Xiaohua Jin
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Qi Ding
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Cheng Cao
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Yi Shi
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Hailiang Zhu
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Wenjun Zhou
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| |
Collapse
|
20
|
Decruyenaere P, Offner F, Vandesompele J. Circulating RNA biomarkers in diffuse large B-cell lymphoma: a systematic review. Exp Hematol Oncol 2021; 10:13. [PMID: 33593440 PMCID: PMC7885416 DOI: 10.1186/s40164-021-00208-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype of non-Hodgkin's lymphomas (NHL). DLBCL is an aggressive malignancy that displays a great heterogeneity in terms of morphology, genetics and biological behavior. While a sustained complete remission is obtained in the majority of patients with standard immunochemotherapy, patients with refractory of relapsed disease after first-line treatment have a poor prognosis. This patient group represents an important unmet need in lymphoma treatment. In recent years, improved understanding of the underlying molecular pathogenesis had led to new classification and prognostication tools, including the development of cell-free biomarkers in liquid biopsies. Although the majority of studies have focused on the use of cell-free fragments of DNA (cfDNA), there has been an increased interest in circulating-free coding and non-coding RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), as well as RNA encapsulated in extracellular vesicles or tumor-educated platelets (TEPs). We performed a systematic search in PubMed to identify articles that evaluated circulating RNA as diagnostic, subtype, treatment response or prognostic biomarkers in a human DLBCL population. A total of 35 articles met the inclusion criteria. The aim of this systematic review is to present the current understanding of circulating RNA molecules as biomarker in DLBCL and to discuss their future potential.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Lin H, Zhao X, Xia L, Lian J, You J. Clinicopathological and Prognostic Significance of CBX3 Expression in Human Cancer: a Systematic Review and Meta-analysis. DISEASE MARKERS 2020; 2020:2412741. [PMID: 33273987 PMCID: PMC7676940 DOI: 10.1155/2020/2412741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chromebox protein homolog 3 (CBX3) as a member of the heterochromatin-associated protein 1 (HP1) family has been reported to be overexpressed in human cancer tissues. Numerous studies have shown the relationship between the CBX3 expression and clinicopathological factor or prognosis in malignant tumors, but their results are inconsistent. To address these results, a meta-analysis was described to investigate the prognostic value and clinicopathological significance of CBX3 expression in human malignant neoplasms. METHODS PubMed, Web of Science, Embase, and Chinese National Knowledge Infrastructure (CNKI) were used to search eligible literatures, including publications prior to September 2019. The role of CBX3 in cancer prognosis and clinicopathological characteristics was assessed by pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Eleven studies with 1682 cancer patients were enrolled in this meta-analysis. This analysis demonstrated that the patients' increased CBX3 expression was significantly associated with poor overall survival (OS) (univariate analysis: HR = 1.81, 95% CI 1.46-2.25; multivariate analysis: HR = 1.95, 95% CI 1.63-2.34). Subgroups analysis by tumor type also indicated that high expression of CBX3 was correlated with poor OS in tongue squamous cell carcinoma (HR = 3.31, 95% CI 2.03-5.39), lung cancer (HR = 1.66, 95% CI 1.21-2.29), genitourinary cancer (HR = 2.03, 95% CI 1.15-3.58), and digestive cancer (HR = 1.48, 95% CI 1.23-1.79). For clinicopathological features, high expression of CBX3 was associated with lymph node metastasis (OR = 2.96, 95% CI 1.42-6.20) and lager tumor size (OR = 1.60, 95% CI 1.12-2.28). CONCLUSION The results of this meta-analysis indicated that CBX3 expression may be a novel biomarker for predicting patient prognosis and clinicopathological parameters in multiple human cancer.
Collapse
Affiliation(s)
- Hexin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Laboratory of Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xin Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lu Xia
- Laboratory of Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Jiabian Lian
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of laboratory medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jun You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Laboratory of Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Identification of the Roles of Chromobox Family Members in Gastric Cancer: A Study Based on Multiple Datasets. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5306509. [PMID: 33344640 PMCID: PMC7732380 DOI: 10.1155/2020/5306509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
Background As the important components in polycomb repressive complexes 1 (PRC1) and heterochromatin protein 1 (HP1), Chromobox (CBX) family members are involved in epigenetic regulatory function, transcriptional repression, and other cellular metabolisms. Increasing studies have indicated significant associations between CBX and tumorigenesis, which is a progression in different types of cancers. However, the information about the roles of each CBX in gastric cancer is extremely limited. Methods We explored CBX mRNA expression, corrections with clinicopathological parameters, protein expression, prognostic values, enrichment analysis with several databases including Oncomine, Human Protein Atlas, UALCAN, Kaplan-Meier plotter, cBioPortal, GeneMANIA, and Enrichr. Results In our study, comparing to the normal tissues, higher mRNA expression of CBX1/2/3/4/5/8 and lower mRNA expression of CBX7 were found in GC tissues while upregulations of CBX1/2/3/4/5/8 and downregulations of CBX7 were indicated to be significantly correlated to the nodal metastasis status and individual cancer stages in GC patients. As for protein level, the expression of CBX2/3/4/5/6 was higher and the expression of CBX7 was lower in the GC tissues than those in the normal. What is more, higher mRNA expression of CBX1/5/6/8 and lower mRNA expression of CBX7 were markedly correlated to poor outcomes of OS and FP in GC patients. Besides, high mutation rate of CBXs (42%) was observed in GC patients. Conclusions We suggest that CBX5/7 may serve as potential therapeutic targets for GC while CBX1/8 may serve as potential prognostic indicators for GC.
Collapse
|
23
|
Liu B, Sun W, Gao W, Li L, Cao Z, Yang X, Liu J, Guo Y. microRNA-451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis. BMC Cancer 2020; 20:1019. [PMID: 33087088 PMCID: PMC7579823 DOI: 10.1186/s12885-020-07523-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The downregulation of microRNA (miR)-451a has been reported in bladder cancer (BCa) tissues. Herein, we elucidated the role of miR-451a in BCa with the involvement of DNA methyltransferase 3B (DNMT3B). METHODS We first screened the differentially expressed miRNAs from the serum of 12 BCa patients and 10 healthy controls in the BCa database GSE113486. Subsequently, we detected miR-451a expression and CpG island methylation of the promoter in BCa cells T24 and 5637 with DNMT3B knockdown. The downstream mRNAs of miR-451a were predicted by bioinformatics and KEGG enrichment analysis. Afterwards, the expression patterns of DNMT3B, miR-451a and erythropoietin-producing hepatocellular receptor tyrosine kinase class A2 (EPHA2) were altered in BCa cells to test the ability of cell proliferation, apoptosis, migration as well as invasion. Finally, the effect of miR-451a and DNMT3B was evaluated in vivo. RESULTS miR-451a was significantly reduced in serum of BCa patients and cell lines. Moreover, the expression of DNMT3B in BCa cells was significantly increased, thus promoting methylation of the miR-451a promoter, resulting in miR-451a inhibition. Additionally, we found that miR-451a targeted and negatively regulated EPHA2, while EPHA2 could activate the PI3K/AKT signaling, driving BCa cell growth and metastasis. CONCLUSIONS Our study proposed and demonstrated that miR-451a downregulation mediated by DNMT3B is critical for proliferation, migration, and invasion of BCa, which may be beneficial for developing more effective therapies against BCa.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Wuyue Gao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Liqiang Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Zhenxue Cao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Xiaohuai Yang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Jianmin Liu
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China
| | - Yuanyuan Guo
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, People's Republic of China.
| |
Collapse
|
24
|
Dalangood S, Zhu Z, Ma Z, Li J, Zeng Q, Yan Y, Shen B, Yan J, Huang R. Identification of glycogene-type and validation of ST3GAL6 as a biomarker predicts clinical outcome and cancer cell invasion in urinary bladder cancer. Theranostics 2020; 10:10078-10091. [PMID: 32929335 PMCID: PMC7481430 DOI: 10.7150/thno.48711] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Urinary bladder cancer (UBC) is one of the most common causes of morbidity and mortality worldwide characterized by a high risk of invasion and metastasis; however, the molecular classification biomarkers and underlying molecular mechanisms for UBC patient stratification on clinical outcome need to be investigated. Methods: A systematic transcriptomic analysis of 185 glycogenes in the public UBC datasets with survival information and clinicopathological parameters were performed using unsupervised hierarchical clustering. The gene signature for glycogene-type classification was identified using Limma package in R language, and correlated to 8 known molecular features by Gene Set Variation Analysis (GSVA). The clinical relevance and function of a glycogene was characterized by immunohistochemistry in UBC patient samples, and quantitative RT-PCR, Western blotting, promoter activity, MAL II blotting, immunofluorescence staining, wound healing, and transwell assays in UBC cells. Results: A 14-glycogene signature for glycogene-type classification was identified. Among them, ST3GAL6, a glycotransferase to transfer sialic acid to 3'-hydroxyl group of a galactose residue, showed a significant negative association with the subtype with luminal feature in UBC patients (n=2,130 in total). Increased ST3GAL6 was positively correlated to tumor stage, grade, and survival in UBCs from public datasets or our cohort (n=52). Transcription factor GATA3, a luminal-specific marker for UBC, was further identified as a direct upstream regulator of ST3GAL6 to negatively regulate its transactivation. ST3GAL6 depletion decreased MAL II level, cell invasion and migration in 5637 and J82 UBC cells. ST3GAL6 could reverse the effects of GATA3 on global sialylation and cell invasion in SW780 cells. Conclusions: Herein, we successfully identified a novel 14-gene signature for glycogene-type classification of UBC patients. ST3GAL6 gene, from this signature, was demonstrated as a potential biomarker for poor outcomes and cell invasion in UBCs.
Collapse
Affiliation(s)
- Sumiya Dalangood
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Zhu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Zhihui Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxuan Li
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Qinghe Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Ruimin Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Yan YL, Huang ZN, Zhu Z, Cui YY, Li MQ, Huang RM, Yan J, Shen B. Downregulation of TET1 Promotes Bladder Cancer Cell Proliferation and Invasion by Reducing DNA Hydroxymethylation of AJAP1. Front Oncol 2020; 10:667. [PMID: 32528872 PMCID: PMC7253684 DOI: 10.3389/fonc.2020.00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Ten-eleven translocation 1 (TET1) is a member of methylcytosine dioxygenase, which catalyzes 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) to promote the demethylation process. The dysregulated TET1 protein and 5 hmC level were reported to either suppress or promote carcinogenesis in a cancer type-dependent manner. Currently, the role of TET1 in the development of urinary bladder cancer (UBC) and its underlying molecular mechanisms remain unclear. Herein, we found that TET1 expression was downregulated in UBC specimens compared with normal urothelium and was inversely related to tumor stage and grade and overall survival, suggesting its negative association with UBC progression. TET1 silencing in UBC cells increased cell proliferation and invasiveness while the ectopic expression of wild-type TET1-CD, but not its enzymatic inactive mutant, reversed these effects and suppressed tumorigenicity in vivo. In addition, as a direct regulator of TET1 activity, vitamin C treatment increased 5 hmC level and inhibited the anchorage-independent growth and tumorigenicity of UBC cells. Furthermore, we found that TET1 maintained the hypomethylation in the promoter of the AJAP1 gene, which codes for adherens junction-associated protein 1. The downregulation of AJAP1 reversed TET1-CD-induced nuclear translocation of β-catenin, thus inhibiting the expression of its downstream genes. In human UBC specimens, AJAP1 is frequently downregulated and positively associated with TET1. Notably, low expression levels of both TET1 and AJAP1 predict poor prognosis in UBC patients. In conclusion, we found that the frequently downregulated TET1 level reduces the hydroxymethylation of AJAP1 promoter and subsequently activates β-catenin signaling to promote UBC development. The downregulation of both TET1 and AJAP1 might be a promising prognostic biomarker for UBC patients.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zheng-Nan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Zhu
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yang-Yan Cui
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Mei-Qian Li
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Rui-Min Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Kumar A, Kono H. Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Biophys Rev 2020; 12:387-400. [PMID: 32144738 PMCID: PMC7242596 DOI: 10.1007/s12551-020-00663-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
Isoforms of heterochromatin protein 1 (HP1) have been known to perform a multitude of functions ranging from gene silencing, gene activation to cell cycle regulation, and cell differentiation. This functional diversity arises from the dissimilarities coded in protein sequence which confers different biophysical and biochemical properties to individual structural elements of HP1 and thereby different behavior and interaction patterns. Hence, an understanding of various interactions of the structural elements of HP1 will be of utmost importance to better elucidate chromatin dynamics in its presence. In this review, we have gathered available information about interactions of HP1 both within and with itself as well as with chromatin elements. Also, the possible implications of these interactions are discussed.
Collapse
Affiliation(s)
- Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|
27
|
Jeon J, Olkhov-Mitsel E, Xie H, Yao CQ, Zhao F, Jahangiri S, Cuizon C, Scarcello S, Jeyapala R, Watson JD, Fraser M, Ray J, Commisso K, Loblaw A, Fleshner NE, Bristow RG, Downes M, Vesprini D, Liu S, Bapat B, Boutros PC. Temporal Stability and Prognostic Biomarker Potential of the Prostate Cancer Urine miRNA Transcriptome. J Natl Cancer Inst 2020; 112:247-255. [PMID: 31161221 PMCID: PMC7073919 DOI: 10.1093/jnci/djz112] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 03/01/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of noninvasive tests for the early detection of aggressive prostate tumors is a major unmet clinical need. miRNAs are promising noninvasive biomarkers: they play essential roles in tumorigenesis, are stable under diverse analytical conditions, and can be detected in body fluids. METHODS We measured the longitudinal stability of 673 miRNAs by collecting serial urine samples from 10 patients with localized prostate cancer. We then measured temporally stable miRNAs in an independent training cohort (n = 99) and created a biomarker predictive of Gleason grade using machine-learning techniques. Finally, we validated this biomarker in an independent validation cohort (n = 40). RESULTS We found that each individual has a specific urine miRNA fingerprint. These fingerprints are temporally stable and associated with specific biological functions. We identified seven miRNAs that were stable over time within individual patients and integrated them with machine-learning techniques to create a novel biomarker for prostate cancer that overcomes interindividual variability. Our urine biomarker robustly identified high-risk patients and achieved similar accuracy as tissue-based prognostic markers (area under the receiver operating characteristic = 0.72, 95% confidence interval = 0.69 to 0.76 in the training cohort, and area under the receiver operating characteristic curve = 0.74, 95% confidence interval = 0.55 to 0.92 in the validation cohort). CONCLUSIONS These data highlight the importance of quantifying intra- and intertumoral heterogeneity in biomarker development. This noninvasive biomarker may usefully supplement invasive or expensive radiologic- and tissue-based assays.
Collapse
Affiliation(s)
- Jouhyun Jeon
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | - Honglei Xie
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Cindy Q Yao
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Fang Zhao
- Lunenfeld-Tannenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sahar Jahangiri
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Carmelle Cuizon
- Lunenfeld-Tannenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Seville Scarcello
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Renu Jeyapala
- Lunenfeld-Tannenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - John D Watson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jessica Ray
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Kristina Commisso
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Andrew Loblaw
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Neil E Fleshner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | | | - Danny Vesprini
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Stanley Liu
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bharati Bapat
- Lunenfeld-Tannenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Paul C Boutros
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
- Department of Urology, University of California, Los Angeles, Los Angeles, CA
- Broad Stem Cell Research Centre, University of California, Los Angeles, Los Angeles, CA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
28
|
Tao L, Shu-Ling W, Jing-Bo H, Ying Z, Rong H, Xiang-Qun L, Wen-Jie C, Lin-Fu Z. MiR-451a attenuates doxorubicin resistance in lung cancer via suppressing epithelialmesenchymal transition (EMT) through targeting c-Myc. Biomed Pharmacother 2020; 125:109962. [PMID: 32106373 DOI: 10.1016/j.biopha.2020.109962] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is still a major obstacle for lung cancer treatment. Increasing studies have demonstrated that microRNAs (miRNAs) are essential meditators of chemoresistance during cancer progression. MiR-451a is reported to be a tumor suppressor during cancer development. However, its effects on lung cancer and drug resistance in lung cancer are still unclear. In the study, the results showed that miR-451a exhibited a significant role in suppressing the drug resistance in lung cancer cells when treated with doxorubicin (DOX) through alleviating epithelialmesenchymal transition (EMT), as evidenced by the markedly reduced expression of N-cadherin and Vimentin, while the enhanced expression of E-cadherin. In addition, miR-451a over-expression markedly promoted the sensitivity of lung cancer cells to DOX treatments, and also disrupted the EMT of lung cancer cells. Mechanistically, miR-451a was found to directly target c-Myc to affect the EMT and drug resistance in lung cancer cells in response to DOX incubation. Furthermore, c-Myc knockdown markedly elevated the sensitivity of lung cancer cells to DOX, whereas over-expressing c-Myc markedly reversed the anti-tumor role of DOX, which was slightly diminished by miR-451a mimic. The in vivo experiments confirmed that miR-451a promoted the sensitivity of lung cancer cells-derived tumors to DOX treatment by reducing c-Myc. Therefore, our results revealed a new insight into DOX resistance of lung cancer cells and miR-451a could be considered as a potential therapeutic target to overcome drug resistance in lung cancer.
Collapse
Affiliation(s)
- Li Tao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Respiratory Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Wang Shu-Ling
- Department of Respiratory Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Hao Jing-Bo
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Zhang Ying
- Department of Respiratory Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Hu Rong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, China
| | - Liu Xiang-Qun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Cui Wen-Jie
- Department of Respiratory Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zhou Lin-Fu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
29
|
Mathison A, Milech De Assuncao T, Dsouza NR, Williams M, Zimmermann MT, Urrutia R, Lomberk G. Discovery, expression, cellular localization, and molecular properties of a novel, alternative spliced HP1γ isoform, lacking the chromoshadow domain. PLoS One 2020; 15:e0217452. [PMID: 32027651 PMCID: PMC7004349 DOI: 10.1371/journal.pone.0217452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
By reading the H3K9Me3 mark through their N-terminal chromodomain (CD), HP1 proteins play a significant role in cancer-associated processes, including cell proliferation, differentiation, chromosomal stability, and DNA repair. Here, we used a combination of bioinformatics-based methodologies, as well as experimentally-derived datasets, that reveal the existence of a novel short HP1γ (CBX3) isoform, named here sHP1γ, generated by alternative splicing of the CBX3 locus. The sHP1γ mRNA encodes a protein composed of 101 residues and lacks the C-terminal chromoshadow domain (CSD) that is required for dimerization and heterodimerization in the previously described 183 a. a HP1γ protein. Fold recognition, order-to-disorder calculations, threading, homology-based molecular modeling, docking, and molecular dynamic simulations show that the sHP1γ is comprised of a CD flanked by intrinsically disordered regions (IDRs) with an IDR-CD-IDR domain organization and likely retains the ability to bind to the H3K9Me3. Both qPCR analyses and mRNA-seq data derived from large-scale studies confirmed that sHP1γ mRNA is expressed in the majority of human tissues at approximately constant ratios with the chromoshadow domain containing isoform. However, sHP1γ mRNA levels appear to be dysregulated in different cancer types. Thus, our data supports the notion that, due to the existence of functionally different isoforms, the regulation of HP1γ-mediated functions is more complex than previously anticipated.
Collapse
Affiliation(s)
- Angela Mathison
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Thiago Milech De Assuncao
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nikita R. Dsouza
- Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Monique Williams
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Raul Urrutia
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Gwen Lomberk
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
30
|
Liu J, Fang T, Li M, Song Y, Li J, Xue Z, Li J, Bu D, Liu W, Zeng Q, Zhang Y, Yun S, Huang R, Yan J. Pao Pereira Extract Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by inhibiting 5α-Reductase. Sci Rep 2019; 9:19703. [PMID: 31873149 PMCID: PMC6928012 DOI: 10.1038/s41598-019-56145-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in the urinary system of elderly men. Pao extract is an herbal preparation of the bark of the Amazon rainforest tree Pao Pereira (Geissospermum vellosii), which was reported to inhibit prostate cancer cell proliferation. Herein we investigated the therapeutic potential of Pao extract against BPH development in a testosterone-induced BPH rat model. The administration of testosterone induced the prostate enlargement, compared with the sham operated group with vehicle treatment. The BPH/Pao group showed reduced prostate weight comparable with BPH/finasteride group. Notably, Pao treatment did not significantly reduce body weights and sperm number of rats, compared with the control group. Furthermore, Pao extract treatment reduced the proliferative index in prostate glands and testosterone-induced expression levels of AR, as well as androgen-associated proteins such as SRD5A1 and PSA. Moreover, Pao extract and its active component, flavopereirine, induced cytotoxicity on human prostate epithelial RWPE-1 cells in a dose- and time- dependent manner with G2/M arrest. Consistently, Pao extract and flavopereirine suppressed the expression levels of SRD5A1, AR and PSA, respectively. Together, these data demonstrated that Pao extract suppresses testosterone-induced BPH development through inhibiting AR activity and expression, and suggested that Pao extract may be a promising and relative safe agent for BPH.
Collapse
Affiliation(s)
- Jiakuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Tian Fang
- Department of Comparative Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Meiqian Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Yuting Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Junzun Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Zesheng Xue
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Jiaxuan Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Dandan Bu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Qinghe Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yidan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China.,Department of Bioscience and Bioengineering, School of Chemistry and Life Science, Jinling College of Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jun Yan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, Jiangsu, China.
| |
Collapse
|
31
|
Zhong X, Kan A, Zhang W, Zhou J, Zhang H, Chen J, Tang S. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:5483-5497. [PMID: 31375643 PMCID: PMC6710055 DOI: 10.18632/aging.102132] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023]
Abstract
HP1γ, encoded by CBX3, is associated with cancer progression and patient prognosis. However, the prognostic value and functions of CBX3/HP1γ in hepatocellular carcinoma (HCC) remain unclear. Here, we performed a bioinformatics analysis using the Oncomine, TCGA and Human Protein Atlas databases, the Kaplan-Meier plotter, and the UALCAN web-portal to explore the expression and prognostic significance of CBX3/HP1γ in patients with different cancers, including liver cancer. HCC tissues and microarrays containing 354 samples were examined using immunohistochemical staining, quantitative real-time polymerase chain reaction, and Western blotting. CBX3-overexpression HCC cell lines were tested in proliferation assays to determine the function of CBX3/HP1γ. We found that CBX3/HP1γ was upregulated in many cancers and was associated with poor prognosis. Our results also revealed that CBX3/HP1γ is elevated in HCC tissues and is associated with malignant clinicopathological characteristics. Kaplan-Meier and Cox regression analyses verified that high CBX3/HP1γ expression is an independent and significant prognostic factor for reduced overall survival in HCC patients. Moreover, invitro functional assays showed that CBX3/HP1γ overexpression promotes HCC cell proliferation. These findings suggest that CBX3/HP1γ is an important oncogene in HCC that might act as a useful biomarker for prognosis and targeted therapy.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Anna Kan
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huayong Zhang
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
- Department of Thyroid and Breast Surgery, The Fifth Affiliated Hospital of Sun Yat sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
32
|
Uchida A, Seki N, Mizuno K, Yamada Y, Misono S, Sanada H, Kikkawa N, Kumamoto T, Suetsugu T, Inoue H. Regulation of KIF2A by Antitumor miR-451a Inhibits Cancer Cell Aggressiveness Features in Lung Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11020258. [PMID: 30813343 PMCID: PMC6406917 DOI: 10.3390/cancers11020258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
In the human genome, miR-451a is encoded close to the miR-144 on chromosome region 17q11.2. Our previous study showed that both strands of pre-miR-144 acted as antitumor miRNAs and were involved in lung squamous cell carcinoma (LUSQ) pathogenesis. Here, we aimed to investigate the functional significance of miR-451a and to identify its targeting of oncogenic genes in LUSQ cells. Downregulation of miR-451a was confirmed in LUSQ clinical specimens, and low expression of miR-451a was significantly associated with poor prognosis of LUSQ patients (overall survival: p = 0.035, disease-free survival: p = 0.029). Additionally, we showed that ectopic expression of miR-451a significantly blocked cancer cell aggressiveness. In total, 15 putative oncogenic genes were shown to be regulated by miR-451a in LUSQ cells. Among these targets, high kinesin family member 2A (KIF2A) expression was significantly associated with poor prognosis (overall survival: p = 0.043, disease-free survival: p = 0.028). Multivariate analysis showed that KIF2A expression was an independent prognostic factor in patients with LUSQ (hazard ratio = 1.493, p = 0.034). Aberrant KIF2A expression promoted the malignant transformation of this disease. Analytic strategies based on antitumor miRNAs and their target oncogenes are effective tools for identification of novel molecular pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| |
Collapse
|
33
|
Alam H, Li N, Dhar SS, Wu SJ, Lv J, Chen K, Flores ER, Baseler L, Lee MG. HP1γ Promotes Lung Adenocarcinoma by Downregulating the Transcription-Repressive Regulators NCOR2 and ZBTB7A. Cancer Res 2018; 78:3834-3848. [PMID: 29764865 DOI: 10.1158/0008-5472.can-17-3571] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/09/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
Abstract
Lung adenocarcinoma is a major form of lung cancer, which is the leading cause of cancer death. Histone methylation reader proteins mediate the effect of histone methylation, a hallmark of epigenetic and transcriptional regulation of gene expression. However, their roles in lung adenocarcinoma are poorly understood. Here, our bioinformatic screening and analysis in search of a lung adenocarcinoma-promoting histone methylation reader protein show that heterochromatin protein 1γ (HP1γ; also called CBX3) is among the most frequently overexpressed and amplified histone reader proteins in human lung adenocarcinoma, and that high HP1γ mRNA levels are associated with poor prognosis in patients with lung adenocarcinoma. In vivo depletion of HP1γ reduced K-RasG12D-driven lung adenocarcinoma and lengthened survival of mice bearing K-RasG12D-induced lung adenocarcinoma. HP1γ and its binding activity to methylated histone H3 lysine 9 were required for the proliferation, colony formation, and migration of lung adenocarcinoma cells. HP1γ directly repressed expression of the transcription-repressive regulators NCOR2 and ZBTB7A. Knockdown of NCOR2 or ZBTB7A significantly restored defects in proliferation, colony formation, and migration in HP1γ-depleted lung adenocarcinoma cells. Low NCOR2 or ZBTB7A mRNA levels were associated with poor prognosis in patients with lung adenocarcinoma and correlated with high HP1γ mRNA levels in lung adenocarcinoma samples. NCOR2 and ZBTB7A downregulated expression of tumor-promoting factors such as ELK1 and AXL, respectively. These findings highlight the importance of HP1γ and its reader activity in lung adenocarcinoma tumorigenesis and reveal a unique lung adenocarcinoma-promoting mechanism in which HP1γ downregulates NCOR2 and ZBTB7A to enhance expression of protumorigenic genes.Significance: Direct epigenetic repression of the transcription-repressive regulators NCOR2 and ZBTB7A by the histone reader protein HP1γ leads to activation of protumorigenic genes in lung adenocarcinoma. Cancer Res; 78(14); 3834-48. ©2018 AACR.
Collapse
Affiliation(s)
- Hunain Alam
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Li
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shilpa S Dhar
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah J Wu
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Jie Lv
- Institute for Academic Medicine, the Methodist Hospital Research Institute, Houston, Texas.,Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, the Methodist Hospital Research Institute, Houston, Texas.,Weill Cornell Medical College, Cornell University, New York, New York
| | - Kaifu Chen
- Institute for Academic Medicine, the Methodist Hospital Research Institute, Houston, Texas.,Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, the Methodist Hospital Research Institute, Houston, Texas.,Weill Cornell Medical College, Cornell University, New York, New York
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Laura Baseler
- Department of Veterinary Medicine and Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|