1
|
Magesh V, Sekar R, AlZahrani A, Balasubramanian R, Abdelsalam SA, Rajendran P. HES1 in cancer: a key player in tumorigenesis and its prognostic significance. Mol Genet Genomics 2025; 300:49. [PMID: 40392313 DOI: 10.1007/s00438-025-02259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
The dysregulation of transcriptional regulators is a critical feature in the progression of many malignancies. Hairy and enhancer of split homolog-1 (HES1), a member of the basic helix-loop-helix (bHLH) gene family, has emerged as a key player in tumorigenesis due to its regulatory roles in multiple cellular pathways. This review aims to systematically explore the relevance of HES1 in cancer development, emphasizing its activation through major signaling pathways such as Notch, Hedgehog, hypoxia, and Wnt, and its contribution to advanced tumor progression. Numerous studies have demonstrated that HES1 upregulates genes associated with stemness, proliferation, and metastasis, and its expression correlates with poor clinicopathological features, including enhanced tumor proliferation, self-renewal, migration, metastasis, and drug resistance. Furthermore, HES1 has been frequently identified as a downstream effector of critical oncogenic pathways, further consolidating its role in aggressive cancers. Based on current evidence, HES1 holds promise as both a prognostic biomarker and a potential therapeutic target in various lethal malignancies. A deeper understanding of HES1's molecular mechanisms could pave the way for the development of targeted interventions aimed at improving cancer outcomes.
Collapse
Affiliation(s)
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to Be University), Chennai, Tamil Nadu, India
| | - Abdullah AlZahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| |
Collapse
|
2
|
Qu L, Wang F, Wang Y, Li Z. The regulation of LRPs by miRNAs in cancer: influencing cancer characteristics and responses to treatment. Cancer Cell Int 2025; 25:182. [PMID: 40382654 PMCID: PMC12085831 DOI: 10.1186/s12935-025-03804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) family is a group of cell surface receptors that participate in a variety of biological processes, including lipid metabolism, Wnt signaling, and bone metabolism. miRNAs are small non-coding RNA molecules that regulate gene expression and play a role in many biological processes, including the occurrence and development of tumors. Accumulating evidence demonstrates that LRP members are modulated by miRNAs across multiple cancer types, influencing key oncogenic processes-including tumor cell proliferation, apoptosis suppression, extracellular matrix remodeling, cell adhesion, and angiogenesis. The LRPs, miRNAs, their upstream lncRNAs, and downstream signaling molecules often form complex signaling pathways to regulate the activity of tumor cells. However, the tissue-specific roles and mechanistic underpinnings of these pathways remain incompletely understood. When examining the emerging concept of the interaction between miRNAs and LRPs, we emphasize the significance of these complex regulatory layers in the initiation and progression of cancer. Collectively, these findings are critical for advancing our understanding of the role of the LRPs family in the occurrence and development of tumors, as well as for the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Lianyue Qu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Fan Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yuxiang Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zixuan Li
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
- Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
| |
Collapse
|
3
|
Martin J, Falaise A, Faour S, Terryn C, Hachet C, Thiébault É, Huber L, Nizet P, Rioult D, Jaffiol R, Salesse S, Dedieu S, Langlois B. Differential Modulation of Endothelial Cell Functionality by LRP1 Expression in Fibroblasts and Cancer-Associated Fibroblasts via Paracrine signals and Matrix Remodeling. Matrix Biol 2025:S0945-053X(25)00048-4. [PMID: 40379110 DOI: 10.1016/j.matbio.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
LRP1 is a multifunctional endocytosis receptor involved in the regulation of cancer cell aggressiveness, fibroblast phenotype and angiogenesis. In breast cancer microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and tumor niche composition. LRP1 expression was described in fibroblasts and CAFs but remains poorly understood regarding its impact on endothelial cell behavior and angiocrine signaling. We analyzed the angio-modulatory effect of LRP1 expression in murine embryonic fibroblasts (MEFs) and breast cancer-educated CAF2 cells. We employed conditioned media and fibroblast-derived matrices to model fibroblastic cells angiogenic effects on human umbilical vein endothelial cells (HUVEC). Neither the extracellular matrix assembled by MEFs knock-out for LRP1 (PEA-13) nor their secretome modify the migration of HUVEC as compared to wild-type. Conversely, LRP1-deficient CAF2 secretome and matrices stimulate endothelial cell migration. Using spheroids, we demonstrate that PEA-13 secretome does not affect HUVEC angio-invasion. By contrast, CAF2 secretome invalidated for LRP1 stimulates endothelial sprouting as compared to controls. In addition, it specifically stabilized peripheral VE-cadherin-mediated endothelial cell junctions. A global proteomic analysis revealed that LRP1 expression in CAFs orchestrates a specific mobilization of secreted matricial components, surface receptors and membrane-associated proteins at the endothelial cell surface, thereby illustrating the deep influence exerted by LRP1 in angiogenic signals emitted by activated fibroblasts.
Collapse
Affiliation(s)
- Julie Martin
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Auréana Falaise
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Sara Faour
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France; Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Christine Terryn
- Plate-Forme Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne-Ardenne, UFR Médecine, Reims, France
| | - Cathy Hachet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Émilie Thiébault
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Louise Huber
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Pierre Nizet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de Reims Champagne-Ardenne/INERIS, Reims, France
| | - Rodolphe Jaffiol
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Stéphanie Salesse
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| | - Stéphane Dedieu
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| | - Benoit Langlois
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| |
Collapse
|
4
|
Alemu BK, Tommasi S, Hulin JA, Meyers J, Mangoni AA. Current knowledge on the mechanisms underpinning vasculogenic mimicry in triple negative breast cancer and the emerging role of nitric oxide. Biomed Pharmacother 2025; 186:118013. [PMID: 40147105 DOI: 10.1016/j.biopha.2025.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Vasculogenic mimicry (VM) is the process by which cancer cells form vascular-like channels to support their growth and dissemination. These channels lack endothelial cells and are instead lined by the tumour cells themselves. VM was first reported in uveal melanomas but has since been associated with other aggressive solid tumours, such as triple-negative breast cancer (TNBC). In TNBC patients, VM is associated with tumour aggressiveness, drug resistance, metastatic burden, and poor prognosis. The lack of effective targeted therapies for TNBC has stimulated research on the mechanisms underpinning VM in order to identify novel druggable targets. In recent years, studies have highlighted the role of nitric oxide (NO), the NO synthesis inhibitor, asymmetric dimethylarginine (ADMA), and dimethylarginine dimethylaminohydrolase 1 (DDAH1), the key enzyme responsible for ADMA metabolism, in regulating VM. Specifically, NO inhibition through downregulation of DDAH1 and consequent accumulation of ADMA appears to be a promising strategy to suppress VM in TNBC. This review discusses the current knowledge regarding the molecular pathways underpinning VM in TNBC, anti-VM therapies under investigation, and the emerging role of NO regulation in VM.
Collapse
Affiliation(s)
- Belete Kassa Alemu
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Injibara University, College of Medicine and Health Sciences, Department of Pharmacy, Injibara, Ethiopia
| | - Sara Tommasi
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Julie-Ann Hulin
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jai Meyers
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Arduino A Mangoni
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
5
|
Kim KP, Lemmon CA. Fibrotic extracellular matrix preferentially induces a partial Epithelial-Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis. Math Biosci 2025; 381:109375. [PMID: 39832653 PMCID: PMC11925401 DOI: 10.1016/j.mbs.2025.109375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-β1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-β1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-β1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-β1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-β1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-β1-FN fibril tethering by locally reducing the TGF-β1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-β1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-β1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-β1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.
Collapse
Affiliation(s)
- Kristin P Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA.
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA.
| |
Collapse
|
6
|
Huang Q, Wang J, Ning H, Liu W, Han X. Integrin β1 in breast cancer: mechanisms of progression and therapy. Breast Cancer 2025; 32:43-59. [PMID: 39343856 DOI: 10.1007/s12282-024-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The therapy for breast cancer (BC), to date, still needs improvement. Apart from traditional therapy methods, biological therapy being explored opens up a novel avenue for BC patients. Integrin β1 (ITGβ1), one of the largest subgroups in integrin family, is a key player in cancer evolution and therapy. Recent researches progress in the relationship of ITGβ1 level and BC, finding that ITGβ1 expression evidently concerns BC progression. In this chapter, we outline diverse ITGβ1-based mechanisms regarding to the promoted effect of ITGβ1 on BC cell structure rearrangement and malignant phenotype behaviors, the unfavorable patient prognosis conferred by ITGβ1, BC therapy tolerance induced by ITGβ1, and lastly novel inhibitors targeting ITGβ1 for BC therapy. As an effective biomarker, ITGβ1 undoubtedly emerges one of targeted-therapy opportunities of BC patients in future. It is a necessity focusing on scientific and large-scale clinical trials on the validation of targeted-ITGβ1 drugs for BC patients.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Noun T, Kurdi A, Maatouk N, Talhouk R, Dohna HZ. Investigating the interplay between the mir-183/182/96 cluster and the adherens junction pathway in early-stage breast cancer. Sci Rep 2024; 14:24711. [PMID: 39433788 PMCID: PMC11494207 DOI: 10.1038/s41598-024-73632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Although the miR-183/182/96 cluster is overexpressed in breast cancer (BC), little is known about its role in the development of pre-carcinogenic lesions which harbor disrupted adherens junctions (AJ) and may promote BC. Here, we used microRNA and RNA sequencing data from The Cancer Genome Atlas (TCGA) Breast Cancer project to investigate the relationship between the miR-183/182/96 cluster and AJ signaling in early-stage BC. We found that all members of the cluster are significantly overexpressed in early-stage BC, the AJ signaling pathway is enriched for genes down-regulated in early-stage BC, and the AJ signaling pathway is enriched for experimentally validated targets of the miR-183/182/96 cluster. The expression of hsa-miR-182 correlates inversely with the mRNA expression of four of its target genes belonging to the AJ signaling pathway: WASF3, EGFR, MET, and CTNNA3. However, the correlations between hsa-miR-182 and AJ gene expression did not differ significantly between targets and non-targets of hsa-miR-182. This suggests that regulatory effects of microRNAs are less pronounced in cancer, as has been shown by other studies. Furthermore, WASF3, EGFR, and MET are oncogenes that tend to be upregulated in later BC stages, implying that the role of some AJ genes changes with different BC stages.
Collapse
Affiliation(s)
- Tala Noun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | - Heinrich Zu Dohna
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
9
|
García-Hernández AP, Sánchez-Sánchez G, Carlos-Reyes A, López-Camarillo C. Functional roles of microRNAs in vasculogenic mimicry and resistance to therapy in human cancers: an update. Expert Rev Clin Immunol 2024; 20:913-926. [PMID: 38712535 DOI: 10.1080/1744666x.2024.2352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Vasculogenic mimicry (VM) alludes to the ability of cancer cells to organize on three-dimensional channel-like structures to obtain nutrients and oxygen. This mechanism confers an aggressive phenotype, metastatic potential, and resistance to chemotherapy resulting in a poor prognosis. Recent studies have been focused on the identification of microRNAs (miRNAs) that regulate the VM representing potential therapeutic targets in cancer. AREAS COVERED An overview of the roles of miRNAs on VM development and their functional relationships with tumor microenvironment. The functions of cancer stem-like cells in VM, and resistance to therapy are also discussed. Moreover, the modulation of VM by natural compounds is explored. The clinical significance of deregulated miRNAs as potential therapeutic targets in tumors showing VM is further highlighted. EXPERT OPINION The miRNAs are regulators of protein-encoding genes involved in VM; however, their specific expression signatures with clinical value in large cohorts of patients have not been established yet. We considered that genomic profiling of miRNAs could be useful to define some hallmarks of tumors such as stemness, drug resistance, and VM in cancer patients. However, additional studies are needed to establish the relevant role of miRNAs as effective therapeutic targets in tumors that have developed VM.
Collapse
Affiliation(s)
| | | | - Angeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Ciudad de México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México
| |
Collapse
|
10
|
Sun Y, Pan J, Li Y, Hu Y, Ma J, Chen F, Zhang Y, Jiang Z, Zhang J. Restoring BARX2 in OSCC reverses partial EMT and suppresses metastasis through miR-186-5p/miR-378a-3p-dependent SERPINE2 inhibition. Oncogene 2024; 43:1941-1954. [PMID: 38719950 DOI: 10.1038/s41388-024-03053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/16/2024]
Abstract
Tumor cells undergoing partial epithelial-mesenchymal transition (pEMT) are pivotal in local invasion and lymphatic metastasis of oral squamous cell carcinoma (OSCC), yet the mechanisms behind pEMT reversal remain poorly understood. In this study, the loss of BARX2 expression was revealed during the process of oral epithelial carcinogenesis and identified to activate the pEMT program, facilitate metastasis, and be associated with poor prognosis. Restoring BARX2 expression in OSCC cell lines effectively reversed tumor pEMT, evident in E/N-Cadherin switching, reduced cell invasion, proliferation, and stemness, and inhibited murine lung metastasis. BARX2 re-expression negatively correlated with several pEMT markers, notably SERPINE2, which was enriched in the invasive OSCC front, enhancing stemness and promoting metastasis, particularly in cervical lymph nodes. Furthermore, rescuing SERPINE2 impaired the inhibitory effect of BARX2 on the pEMT programs and reconstructed ECM through re-expression of MMP1. Mechanistically, we identified that BARX2 inhibited SERPINE2 through activating miR-186-5p and miR-378a-3p. These miRNAs, upregulated by BARX2, post-transcriptionally degraded SERPINE2 mRNA via targeting specific sequences. Blocking miR-186-5p and miR-378a-3p effectively abolished the negative regulatory effect of BARX2 on SERPINE2. Overall, our findings highlight BARX2 as a partial EMT-reverser in OSCC, providing fresh therapeutic prospects for restoring BARX2 signaling to inhibit invasion and metastasis.
Collapse
Affiliation(s)
- Yanan Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Junchen Pan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Yiwei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Jiyuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Fu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Yuying Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Ziyan Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- School of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Yan L, Zhou R, Feng Y, Li R, Zhang L, Pan Y, Qiao X, Li P, Wei X, Xu C, Li Y, Niu X, Sun X, Lv Z, Tian Z. MiR-134-5p inhibits the malignant phenotypes of osteosarcoma via ITGB1/MMP2/PI3K/Akt pathway. Cell Death Discov 2024; 10:193. [PMID: 38664375 PMCID: PMC11045734 DOI: 10.1038/s41420-024-01946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Micro RNAs (miRs) have been implicated in various tumorigenic processes. Osteosarcoma (OS) is a primary bone malignancy seen in adolescents. However, the mechanism of miRs in OS has not been fully demonstrated yet. Here, miR-134-5p was found to inhibit OS progression and was also expressed at significantly lower levels in OS tissues and cells relative to normal controls. miR-134-5p was found to reduce vasculogenic mimicry, proliferation, invasion, and migration of OS cells, with miR-134-5p knockdown having the opposite effects. Mechanistically, miR-134-5p inhibited expression of the ITGB1/MMP2/PI3K/Akt axis, thus reducing the malignant features of OS cells. In summary, miR-134-5p reduced OS tumorigenesis by modulation of the ITGB1/MMP2/PI3K/Akt axis, suggesting the potential for using miR-134-5p as a target for treating OS.
Collapse
Affiliation(s)
- Lei Yan
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Ruoqi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Long Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yongchun Pan
- Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaochen Qiao
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, 689 Huitong South Road, Jinzhong, Shanxi, 030600, China
| | - Pengcui Li
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Shanxi Bethune Hospital, Shanxi, China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Yuan Li
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, China
| | - Xiaojuan Sun
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
12
|
Wu S, Yang Y, Zhang M, Khan AU, Dai J, Ouyang J. Serpin peptidase inhibitor, clade E, member 2 in physiology and pathology: recent advancements. Front Mol Biosci 2024; 11:1334931. [PMID: 38469181 PMCID: PMC10927012 DOI: 10.3389/fmolb.2024.1334931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
Serine protease inhibitors (serpins) are the most numerous and widespread multifunctional protease inhibitor superfamily and are expressed by all eukaryotes. Serpin E2 (serpin peptidase inhibitor, clade E, member 2), a member of the serine protease inhibitor superfamily is a potent endogenous thrombin inhibitor, mainly found in the extracellular matrix and platelets, and expressed in numerous organs and secreted by many cell types. The multiple functions of serpin E2 are mainly mediated through regulating urokinase-type plasminogen activator (uPA, also known as PLAU), tissue-type plasminogen activator (tPA, also known as PLAT), and matrix metalloproteinase activity, and include hemostasis, cell adhesion, and promotion of tumor metastasis. The importance serpin E2 is clear from its involvement in numerous physiological and pathological processes. In this review, we summarize the structural characteristics of the Serpin E2 gene and protein, as well as its roles physiology and disease.
Collapse
Affiliation(s)
- Shutong Wu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Xinjin Branch of Chengdu Municipal Public Security Bureau, Chengdu, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, China
| | - Meiling Zhang
- Chengdu Municipal Public Security Bureau Wenjiang Branch, Chengdu, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Voss G, Cassidy JR, Ceder Y. Functional consequences of A-to-I editing of miR-379 in prostate cancer cells. Sci Rep 2023; 13:16602. [PMID: 37789115 PMCID: PMC10547749 DOI: 10.1038/s41598-023-43775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Prostate cancer is the predominant cause of cancer in men, but there is still a lack of biomarkers and treatments for metastatic spread. The initial promise of microRNAs to provide avenues to solve these problems has been dampened by the realisation that microRNAs co-exist in multiple functionally distinct isoforms, for example due to A-to-I editing. We recently found that A-to-I-editing of microRNA-379 (miR-379) was associated with prostate cancer, and that only the unedited isoform was negatively correlated with aggressive disease. Here, we set out to decipher the biological effects of unedited and edited miR-379 in prostate cancer cells. After transfection of four different prostate cancer cell lines with isoform-specific miR-379 mimics, we performed assays for cell growth, colony formation, migration, cell-cell adhesion, and analysed epithelial-mesenchymal transition (EMT) and stemness markers. We found that unedited miR-379 affected cell growth, with a promoting function in androgen receptor (AR)-negative cells and an inhibiting effect in AR-positive cells. This is supported by our in silico analysis that found unedited miR-379 targets are predicted to be predominantly involved in cellular proliferation whereas the targets of edited miR-379 are not. We further found that both miR-379 isoforms could promote colony formation, migration, and cell-cell adhesion. Overall, our data suggests that editing of miR-379 attenuates the growth-suppressive function of unedited miR-379 in androgen-sensitive prostate cancer cells, thereby promoting tumor growth.
Collapse
Affiliation(s)
- Gjendine Voss
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - James R Cassidy
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Yvonne Ceder
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
USP22 upregulates ZEB1-mediated VEGFA transcription in hepatocellular carcinoma. Cell Death Dis 2023; 14:194. [PMID: 36906615 PMCID: PMC10008583 DOI: 10.1038/s41419-023-05699-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common solid tumor with high rate of recurrence and mortality. Anti-angiogenesis drugs have been used for the therapy of HCC. However, anti-angiogenic drug resistance commonly occurs during HCC treatment. Thus, identification of a novel VEGFA regulator would be better understanding for HCC progression and anti-angiogenic therapy resistance. Ubiquitin specific protease 22 (USP22) as a deubiquitinating enzyme, participates in a variety of biological processes in numerous tumors. While the molecular mechanism underlying the effects of USP22 on angiogenesis is still needed to be clarified. Here, our results demonstrated that USP22 acts as a co-activator of VEGFA transcription. Importantly, USP22 is involved in maintenance of ZEB1 stability via its deubiquitinase activity. USP22 was recruited to ZEB1-binding elements on the promoter of VEGFA, thereby altering histone H2Bub levels, to enhance ZEB1-mediated VEGFA transcription. USP22 depletion decreased cell proliferation, migration, Vascular Mimicry (VM) formation, and angiogenesis. Furthermore, we provided the evidence to show that knockdown of USP22 inhibited HCC growth in tumor-bearing nude mice. In addition, the expression of USP22 is positively correlated with that of ZEB1 in clinical HCC samples. Our findings suggest that USP22 participates in the promotion of HCC progression, if not all, at least partially via up-regulation of VEGFA transcription, providing a novel therapeutic target for anti-angiogenic drug resistance in HCC.
Collapse
|
15
|
Huang L, Yang Z, Kang M, Ren H, Jiang M, Tang C, Hu Y, Shen M, Lin H, Long L. Performance of Pretreatment MRI-Based Radiomics in Recombinant Human Endostatin Plus Concurrent Chemoradiotherapy Response Prediction in Nasopharyngeal Carcinoma: A Retrospective Study. Technol Cancer Res Treat 2023; 22:15330338231160619. [PMID: 37094106 PMCID: PMC10134146 DOI: 10.1177/15330338231160619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
PURPOSE To investigate the capability of an Magnetic resonance imaging (MRI) radiomics model based on pretreatment texture features in predicting the short-term efficacy of recombinant human endostatin (RHES) plus concurrent chemoradiotherapy (CCRT) for nasopharyngeal carcinoma (NPC). METHODS We retrospectively enrolled 65 patients newly diagnosed as having NPC and treated with RHES + CCRT. A total of 144 texture features were extracted from the MRI before RHES + CCRT treatment of all the NPC patients. The maximum relevance minimum redundancy (mRMR) method was used to remove redundant, irrelevant texture features, and calculate the Rad score of the primary tumor. Multivariable logistic regression was used to select the most predictive features subset, and prediction models were constructed. The performance of the 3 models in predicting the early response of RHES + CCRT for NPC was explored. RESULTS The diagnostic efficiency of combined model and radiomics model in distinguishing between the effective and the ineffective groups of patients was found to be moderate. The area under the ROC curve (AUC) of the combined model and radiomics model was 0.74 (95% confidence interval [CI]: 0.62-0.86) and 0.71 (95% CI: 0.58-0.84), respectively, with both being higher than the AUC of the clinics model (0.63, 95% CI: 0.49-0.78). Compared with the radiomics model, the combined model showed marginally improved diagnostic performance in predicting RHES + CCRT treatment response. The accuracy of combined model and radiomics model for RHES + CCRT response assessment in NPC were higher than those of the clinics model (0.723, 0.723 vs 0.677). CONCLUSION The pretreatment MRI-based radiomics may be a noninvasive and effective method for the prediction of RHES + CCRT early response in patients with NPC.
Collapse
Affiliation(s)
- Lixuan Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zongxiang Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi Province, China
| | - Hao Ren
- Department of Radiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Muliang Jiang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Cheng Tang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yao Hu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Mingjun Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi Province, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha, China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi Province, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi Province, China
| |
Collapse
|
16
|
Sahu R, Jha S, Pattanayak SP. Therapeutic silencing of mTOR by systemically administered siRNA-loaded neutral liposomal nanoparticles inhibits DMBA-induced mammary carcinogenesis. Br J Cancer 2022; 127:2207-2219. [PMID: 36261586 PMCID: PMC9726943 DOI: 10.1038/s41416-022-02011-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Mammary carcinogenesis possesses great challenges due to the lack of effectiveness of the multiple therapeutic options available. Gene therapy-based cancer treatment strategy provides more targeting accuracy, fewer side effects, and higher therapeutic efficiency. Downregulation of the oncogene mTOR by mTOR-siRNA is an encouraging approach to reduce cancer progression. However, its employment as means of therapeutic strategy has been restricted due to the unavailability of a suitable delivery system. METHODS A suitable nanocarrier system made up of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) has been developed to prevent degradation and for proficient delivery of siRNA. This was followed by in vitro and in vivo anti-breast cancer efficiency analysis of the mTOR siRNA-loaded neutral liposomal formulation (NL-mTOR-siRNA). RESULTS In our experiment, a profound reduction in MCF-7 cell growth, proliferation and invasion was ascertained following extensive downregulation of mTOR expression. NL-mTOR-siRNA suppressed tumour growth and restored morphological alterations of DMBA-induced breast cancer. In addition, neutral liposome enhanced accumulation of siRNA in mammary cancer tissues facilitating its deep cytosolic distribution within the tumour, which allows apoptosis thereby facilitating its anti-tumour potential. CONCLUSION Hence, the current study highlighted the augmented ground for therapies aiming toward cancerous cells to diminish mTOR expression by RNAi in managing mammary carcinoma.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835 215, India
| | - Shivesh Jha
- Division of Pharmacognosy and Phytochemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835 215, India
| | - Shakti Prasad Pattanayak
- Department of Pharmacy, School of Health Science, Central University of South Bihar (Gaya), Gaya, Bihar, 824 236, India.
| |
Collapse
|
17
|
Abstract
Renal fibrosis is a hallmark of end-stage chronic kidney disease. It is characterized by increased accumulation of extracellular matrix (ECM), which disrupts cellular organization and function within the kidney. Here, we review the bi-directional interactions between cells and the ECM that drive renal fibrosis. We will discuss the cells involved in renal fibrosis, changes that occur in the ECM, the interactions between renal cells and the surrounding fibrotic microenvironment, and signal transduction pathways that are misregulated as fibrosis proceeds. Understanding the underlying mechanisms of cell-ECM crosstalk will identify novel targets to better identify and treat renal fibrosis and associated renal disease.
Collapse
Affiliation(s)
- Kristin P. Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Caitlin E. Williams
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
18
|
Andreucci E, Peppicelli S, Ruzzolini J, Bianchini F, Calorini L. Physicochemical aspects of the tumour microenvironment as drivers of vasculogenic mimicry. Cancer Metastasis Rev 2022; 41:935-951. [PMID: 36224457 PMCID: PMC9758104 DOI: 10.1007/s10555-022-10067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023]
Abstract
Tumour vascularisation is vital for cancer sustainment representing not only the main source of nutrients and oxygen supply but also an escape route for single or clustered cancer cells that, once detached from the primary mass, enter the blood circulation and disseminate to distant organs. Among the mechanisms identified to contribute to tumour vascularisation, vasculogenic mimicry (VM) is gaining increasing interest in the scientific community representing an intriguing target for cancer treatment. VM indeed associates with highly aggressive tumour phenotypes and strongly impairs patient outcomes. Differently from vessels of healthy tissues, tumour vasculature is extremely heterogeneous and tortuous, impeding efficient chemotherapy delivery, and at the meantime hyperpermeable and thus extremely accessible to metastasising cancer cells. Moreover, tumour vessel disorganisation creates a self-reinforcing vicious circle fuelling cancer malignancy and progression. Because of the inefficient oxygen delivery and metabolic waste removal from tumour vessels, many cells within the tumour mass indeed experience hypoxia and acidosis, now considered hallmarks of cancer. Being strong inducers of vascularisation, therapy resistance, inflammation and metastasis, hypoxia and acidosis create a permissive microenvironment for cancer progression and dissemination. Along with these considerations, we decided to focus our attention on the relationship between hypoxia/acidosis and VM. Indeed, besides tumour angiogenesis, VM is strongly influenced by both hypoxia and acidosis, which could potentiate each other and fuel this vicious circle. Thus, targeting hypoxia and acidosis may represent a potential target to treat VM to impair tumour perfusion and cancer cell sustainment.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
19
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Perez-Oquendo M, Gibbons DL. Regulation of ZEB1 Function and Molecular Associations in Tumor Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14081864. [PMID: 35454770 PMCID: PMC9031734 DOI: 10.3390/cancers14081864] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a pleiotropic transcription factor frequently expressed in carcinomas. ZEB1 orchestrates the transcription of genes in the control of several key developmental processes and tumor metastasis via the epithelial-to-mesenchymal transition (EMT). The biological function of ZEB1 is regulated through pathways that influence its transcription and post-transcriptional mechanisms. Diverse signaling pathways converge to induce ZEB1 activity; however, only a few studies have focused on the molecular associations or functional changes of ZEB1 by post-translational modifications (PTMs). Due to the robust effect of ZEB1 as a transcription repressor of epithelial genes during EMT, the contribution of PTMs in the regulation of ZEB1-targeted gene expression is an active area of investigation. Herein, we review the pivotal roles that phosphorylation, acetylation, ubiquitination, sumoylation, and other modifications have in regulating the molecular associations and behavior of ZEB1. We also outline several questions regarding the PTM-mediated regulation of ZEB1 that remain unanswered. The areas of research covered in this review are contributing to new treatment strategies for cancer by improving our mechanistic understanding of ZEB1-mediated EMT.
Collapse
Affiliation(s)
- Mabel Perez-Oquendo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-6363
| |
Collapse
|
21
|
Marqués M, Sorolla MA, Urdanibia I, Parisi E, Hidalgo I, Morales S, Salud A, Sorolla A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers (Basel) 2022; 14:cancers14051101. [PMID: 35267409 PMCID: PMC8909618 DOI: 10.3390/cancers14051101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is a type of breast cancer that does not have a selective and effective therapy. It is known that this cancer possesses high abundance of certain proteins called transcription factors, which are essential for their growth. However, inhibiting transcription factors is very difficult with common therapeutics due to their inaccessibility inside the cell and their molecular structure. In this work, we identified the most important transcription factors for the growth of triple negative breast cancers, and that can predict worse clinical outcome. Moreover, we described different strategies that have been utilised to inhibit them. A successful inhibition of these transcription factors could reduce the mortality and convalescence associated with triple negative breast cancers. Abstract Breast cancer (BC) is the most diagnosed cancer worldwide and one of the main causes of cancer deaths. BC is a heterogeneous disease composed of different BC intrinsic subtypes such as triple-negative BC (TNBC), which is one of the most aggressive subtypes and which lacks a targeted therapy. Recent comprehensive analyses across cell types and cancer types have outlined a vast network of protein–protein associations between transcription factors (TFs). Not surprisingly, protein–protein networks central to oncogenesis and disease progression are highly altered during TNBC pathogenesis and are responsible for the activation of oncogenic programs, such as uncontrollable proliferation, epithelial-to-mesenchymal transition (EMT) and stemness. From the therapeutic viewpoint, inhibiting the interactions between TFs represents a very significant challenge, as the contact surfaces of TFs are relatively large and featureless. However, promising tools have emerged to offer a solution to the targeting problem. At the clinical level, some TF possess diagnostic and prognostic value in TNBC. In this review, we outline the recent advances in TFs relevant to TNBC growth and progression. Moreover, we highlight different targeting approaches to inhibit these TFs. Furthermore, the validity of such TFs as clinical biomarkers has been explored. Finally, we discuss how research is likely to evolve in the field.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Izaskun Urdanibia
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Serafín Morales
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
22
|
Huang H, Yang C, Zhang Q, Zhuo T, Li X, Li N, Zhu L, Luo C, Gan J, Wu Y. Long non-coding RNA FAM83A antisense RNA 1 (lncRNA FAM83A-AS1) targets microRNA-141-3p to regulate lung adenocarcinoma cell proliferation, migration, invasion, and epithelial-mesenchymal transition progression. Bioengineered 2022; 13:4964-4977. [PMID: 35164653 PMCID: PMC8973779 DOI: 10.1080/21655979.2022.2037871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The current paper investigates how long non-coding RNA (lncRNA) FAM83A antisense RNA 1 (lncRNA FAM83A-AS1) affected the epithelial-mesenchymal transformation (EMT), growth, invasion and migration of lung adenocarcinoma (LUAD) via targeting miRNA-141-3p. The GEPIA and ENCORI databases were used to analyze differences in lncRNA FAM83A-AS1 levels within LUAD samples. FAM83A-AS1 and miR-141-3p levels were assessed using qRT-PCR among 30 LUAD samples and surrounding normal tissues. In addition, we analyzed how FAM83A-AS1 affected proliferation, invasion, migration, and EMT processes of LUAD cells by targeting miR-141-3p through EdU, CCK-8 assay, scratch assay, transwell migration and invasion assay, immunofluorescence (IF) staining and WB assay. MicroRNAs targeting FAM83A-AS1 were screened using AnnoLnc2 and identified by RT-qPCR. Dual-luciferase assays were utilized to evaluate the connection between FAM83A-AS1 and miR-141-3p. FAM83A-AS1 expression was remarkably raised in lung cancer cells and tissue samples; however, miR-141-3p level markedly reduced relative to healthy samples. FAM83A-AS1 silencing suppressed EMT, growth, invasion and migration of LUAD cells. MiR-141-3p was the possible FAM83A-AS1 binding target negatively associated with FAM83A-AS1. The miR-141-3p inhibitor partly abolished the FAM83A-AS1 knockdown-induced inhibition on EMT, cell growth, invasion and migration in LUAD cells. In addition, miR-141-3p down-regulation abolished the inhibition of E-box-bound zinc finger protein 1 and 2 protein production following FAM83A-AS1 knockdown. According to our results, FAM83A-AS1/miR-141-3p axis plays an important role in LUAD occurrence and development. FAM83A-AS1 sponged miR-141-3p to down-regulate the level of the latter within LUAD and thereby encouraging LUAD development and suggesting a possible novel therapeutic approach for LUAD.
Collapse
Affiliation(s)
- Hongyu Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuyi Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qichen Zhang
- Department of the Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Zhuo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohong Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nijiao Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenyang Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinyan Gan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanbin Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Liu H, Ye H, Li X. EFFECT OF MICRORNA-138 ON EPITHELIAL-MESENCHYMAL TRANSITION AND INVASION OF BREAST CANCER CELLS BY TARGETING SEMAPHORIN 4C. Bioengineered 2021; 12:10117-10125. [PMID: 34747314 PMCID: PMC8809962 DOI: 10.1080/21655979.2021.2000733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In view of the role of miR-138 in cancer cells, we predicted the target of miR-138 and its targeting to SEMA4C by bioinformatics software and luciferase experiment. The expression levels of miR-138 in human normal breast epithelial cells and two kinds of BC cells were compared, and the transfection cells were selected. MiR-138 mimetic negative control (miR-NC), miR-138 mimic and miR-138 inhibitor were designed for cell transfection. The results showed that the expression level of miR-138 in MCF-7 cells was the lowest. The up regulation of miR-138 would lead to the high expression of E-cad and the low expression of N-cad, vim and SEMA4C, and the vitality and invasion of BC cells would decrease. The down regulation of miR-138 would lead to the low expression of E-cad and the high expression of N-cad, vim and SEMA4C, and the vitality and invasion of BC cells would increase. miR-138 targeted regulation of SEMA4C can promote the expression of N-cad, inhibit the expression of E-cad, vim and SEMA4C, reverse the EMT of BC cells, and inhibit the activity and invasion of BC cells. MiR-138 has clinical potential as a tumor marker of BC.
Collapse
Affiliation(s)
- HuiJuan Liu
- Second Ward of Breast Surgery, Shanxi Cancer Hospital,TaiYuan 030009,China
| | - Hui Ye
- Third Ward of Breast Surgery, Shanxi Cancer Hospital,TaiYuan 030009,China
| | - Xinzheng Li
- Second Ward of Breast Surgery, Shanxi Cancer Hospital,TaiYuan 030009,China
| |
Collapse
|
24
|
Tsai YM, Wu KL, Liu YW, Chang WA, Huang YC, Chang CY, Tsai PH, Liao SH, Hung JY, Hsu YL. Cooperation Between Cancer and Fibroblasts in Vascular Mimicry and N2-Type Neutrophil Recruitment via Notch2-Jagged1 Interaction in Lung Cancer. Front Oncol 2021; 11:696931. [PMID: 34485133 PMCID: PMC8415962 DOI: 10.3389/fonc.2021.696931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023] Open
Abstract
Background Angiogenesis is required for tumor development and metastasis, which is a major part in a pro-tumor microenvironment. Vascular mimicry (VM) is a process in which cancer cells, rather than endothelia, create an alternative perfusion system to support the tumor progression. Objectives To validate the role of VM and to develop a strategy to inhibit angiogenesis in lung cancer. Methods In this study, we utilized lung cancer samples to verify the existence of VM and conducted several experimental methods to elucidate the molecular pathways. Results H1299 and CL1-0 lung cancer cells were unable to form capillary-like structures. VM formation was induced by cancer-associated fibroblast (CAFs) in both in vitro and in vivo experiments. Notch2–Jagged1 cell–cell contact between cancer cells and CAFs contributes to the formation of VM networks, supported by Notch intracellular domain (NICD) 2 nuclear translocation and N2ICD target gene upregulated in lung cancer cells mixed with CAFs. The polarization of tumor-promoting N2-type neutrophil was increased by VM networks consisting of CAF and cancer cells. The intravasation of cancer cells and N2-type neutrophils were increased because of the loose junctions of VM. Disruption of cancer cell–CAF connections by a γ‐secretase inhibitor enforced the anticancer effect of anti‐vascular endothelial growth factor antibodies in a mouse model. Conclusion This study provides the first evidence that CAFs induce lung cancer to create vascular-like networks. These findings suggest a therapeutic opportunity for improving antiangiogenesis therapy in lung cancer.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wei Liu
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szi-Hui Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Yu P, Zhu X, Zhu JL, Han YB, Zhang H, Zhou X, Yang L, Xia YZ, Zhang C, Kong LY. The Chk2-PKM2 axis promotes metabolic control of vasculogenic mimicry formation in p53-mutated triple-negative breast cancer. Oncogene 2021; 40:5262-5274. [PMID: 34244606 DOI: 10.1038/s41388-021-01933-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Vasculogenic mimicry (VM) formation, which participates in the process of neovascularization, is highly activated in p53-mutated triple-negative breast cancer (TNBC). Here, we show that Chk2 is negatively correlated with VM formation in p53-mutated TNBC. Its activation by DNA-damaging agents such as cisplatin, etoposide, and DPT reduces VM formation. Mechanistically, the Chk2-PKM2 axis plays an important role in the inhibition of VM formation at the level of metabolic regulation. Chk2 promotes the Chk2-PKM2 interaction through the Chk2 SCD (SQ/TQ cluster domain) and the PKM2 C domain. Furthermore, Chk2 promotes the nuclear export of PKM2 by phosphorylating PKM2 at Ser100. P-PKM2 S100 reduces VM formation by decreasing glucose flux, and the PKM2 S100A mutation abolishes the inhibition of glucose flux and VM formation induced by Chk2 activation. Overall, this study proposes a novel strategy of VM suppression through Chk2 induction, which prevents PKM2-mediated glucose flux in p53-mutated TNBC.
Collapse
Affiliation(s)
- Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiong Zhu
- Medical and Chemical Institute, China Pharmaceutical University, Nanjing, China
| | - Jia-Le Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Bao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
26
|
Sasahira T, Kurihara-Shimomura M, Shimomura H, Kirita T. SERPINE2 is an oral cancer-promoting factor that induces angiogenesis and lymphangiogenesis. Int J Clin Oncol 2021; 26:1831-1839. [PMID: 34173120 DOI: 10.1007/s10147-021-01970-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND LEM domain containing 1 (LEMD1) is a novel factor involved in the development of oral squamous cell carcinoma (OSCC). We previously performed a microarray analysis and found that serpin peptidase inhibitor, clade E, member 2 (SERPINE2) is an LEMD1-related signal. SERPINE2 is an extracellular serine proteinase inhibitor with secretory capacity. Although SERPINE2 displays tumor-promoting properties in many cancers, some reports indicate that SRPINE2 also has a tumor-suppressing function. Therefore, there are many unclear points about its role in cancer. In this study, we investigated SERPINE2 expression in OSCC. METHODS The gene expression and secretion levels of SERPINE2 were examined in 42 frozen specimens of OSCC, and SERPINE2 immunostaining was investigated in 167 cases of OSCC. Furthermore, the effect of SERPINE2 on angiogenesis and lymphangiogenesis was analyzed using OSCC cells and endothelial cells. RESULTS In the frozen specimens, the gene expression (P < 0.0001) and secretion levels (P < 0.0001) of SERPINE2 were higher in OSCC than in the normal oral mucosa. According to the immunohistochemical analysis, SERPINE2 expression was correlated with the depth of invasion (P = 0.0163), nodal metastasis (P = 0.0085), microvessel density (P < 0.0001), and lymphovessel density (P < 0.0001). Additionally, univariate and multivariate analyses indicated that the SERPINE2 expression level was an independent poor prognostic factor for OSCC. In vitro studies using OSCC cells revealed that SERPINE2 promotes angiogenesis and lymphangiogenesis. CONCLUSION These results suggest that SRPX2 might be a useful tumor marker for OSCC.
Collapse
Affiliation(s)
- Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan. .,Department of Oral Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8‑35‑1, Sakuragaoka, Kashihara, 890‑8544, Japan.
| | - Miyako Kurihara-Shimomura
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.,Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Hiroyuki Shimomura
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.,Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
27
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
28
|
Sun Z, Shao B, Liu Z, Dang Q, Guo Y, Chen C, Guo Y, Chen Z, Liu J, Hu S, Yuan W, Zhou Q. LINC01296/miR-141-3p/ZEB1-ZEB2 axis promotes tumor metastasis via enhancing epithelial-mesenchymal transition process. J Cancer 2021; 12:2723-2734. [PMID: 33854632 PMCID: PMC8040730 DOI: 10.7150/jca.55626] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose: Tumor metastasis seriously affects the survival of patients. In recent years, some studies confirmed that long non-coding RNA (lncRNA) played an essential role in tumor progression. A few studies reported that LINC01296 acted as an oncogenic regulator of cancer. However, its in-depth specific biological mechanism in tumor metastasis is still unknown. Methods: Real-time quantitative PCR (qPCR) was performed to detect the expression of LINC01296 and miR-141-3p in NSCLC, CRC tissues and cell lines, and the dual luciferase report was used to evaluate the relationship between LINC01296, miR-141-3p and ZEB1/ZEB2 relationship. Western blot experiments are used to detect changes in protein levels. Transwell and wound healing measures migration and invasion capabilities. Results: In this study, we used non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) as the research objects, LINC01296 was found to be highly expressed in NSCLC and CRC tissues and positively related to poor prognosis. We also demonstrated LINC01296 regulated NSCLC and CRC invasion and metastasis by modulating epithelial-mesenchymal transition (EMT) by up-regulating ZEB1 and ZEB2. Consequently, LINC01296 acted as a sponge of miR-141-3p, which negatively regulates EMT process. Conclusions: The report revealed a new mechanism by which LINC01296 regulates the EMT process through miR-141-3p/ZEB1-ZEB2 axis and affects cancer metastasis.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yaxin Guo
- Department of Basic Medical, Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuying Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
29
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
30
|
Voss G, Haflidadóttir BS, Järemo H, Persson M, Catela Ivkovic T, Wikström P, Ceder Y. Regulation of cell-cell adhesion in prostate cancer cells by microRNA-96 through upregulation of E-Cadherin and EpCAM. Carcinogenesis 2021; 41:865-874. [PMID: 31738404 PMCID: PMC7359773 DOI: 10.1093/carcin/bgz191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 11/15/2022] Open
Abstract
Prostate cancer is one of the most common cancers in men, yet the biology behind lethal disease progression and bone metastasis is poorly understood. In this study, we found elevated levels of microRNA-96 (miR-96) in prostate cancer bone metastasis samples. To determine the molecular mechanisms by which miR-96 deregulation contributes to metastatic progression, we performed an Argonaute2-immunoprecipitation assay, in which mRNAs associated with cell–cell interaction were enriched. The expression of two cell adhesion molecules, E-Cadherin and EpCAM, was upregulated by miR-96, and potential targets sites were identified in the coding sequences of their mRNAs. We further showed that miR-96 enhanced cell–cell adhesion between prostate cancer cells as well as their ability to bind to osteoblasts. Our findings suggest that increased levels of miR-96 give prostate cancer cells an advantage at forming metastases in the bone microenvironment due to increased cell–cell interaction. We propose that miR-96 promotes bone metastasis in prostate cancer patients by facilitating the outgrowth of macroscopic tumours in the bone.
Collapse
Affiliation(s)
- Gjendine Voss
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Helena Järemo
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Tina Catela Ivkovic
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | - Yvonne Ceder
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Yu S, Ruan X, Liu X, Zhang F, Wang D, Liu Y, Yang C, Shao L, Liu Q, Zhu L, Lin Y, Xue Y. HNRNPD interacts with ZHX2 regulating the vasculogenic mimicry formation of glioma cells via linc00707/miR-651-3p/SP2 axis. Cell Death Dis 2021; 12:153. [PMID: 33542193 PMCID: PMC7862279 DOI: 10.1038/s41419-021-03432-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Studies have found that RNA-binding proteins (RBPs) are dysfunctional and play a significant regulatory role in the development of glioma. Based on The Cancer Genome Atlas database and the previous studies, we selected heterogeneous nuclear ribonucleoprotein (HNRNPD) as the research candidate and sought its downstream targeted genes. In the present study, HNRNPD, linc00707, and specific protein 2 (SP2) were highly expressed, while zinc fingers and homeboxes 2 (ZHX2) and miR-651-3p were remarkedly downregulated in glioma tissues and cells. HNRNPD, linc00707, and SP2 knockdown or ZHX2 and miR-651-3p overexpression suppressed glioma cells proliferation, migration, and invasion and vasculogenic mimicry (VM) formation. Knockdown of HNRNPD increased the stability of ZHX2 mRNA. ZHX2 bound to the promoter region of linc00707 and negatively regulate its expression. Linc00707 could bind with miR-651-3p, while miR-651-3p bound to the 3' untranslated region (3'UTR) of SP2 mRNA to negatively regulate its expression. The transcription factor SP2 directly bound to the promoter regions of the VM formation-related proteins MMP2, MMP9, and VE-cadherin, playing a role in promoting transcription in order to regulate the VM formation ability of glioma cells.
Collapse
Affiliation(s)
- Sifei Yu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Fangfang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qianshuo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lu Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
32
|
Lim D, Cho JG, Yun E, Lee A, Ryu HY, Lee YJ, Yoon S, Chang W, Lee MS, Kwon BS, Kim J. MicroRNA 34a-AXL Axis Regulates Vasculogenic Mimicry Formation in Breast Cancer Cells. Genes (Basel) 2020; 12:genes12010009. [PMID: 33374832 PMCID: PMC7823537 DOI: 10.3390/genes12010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Targeting the tumor vasculature is an attractive strategy for cancer treatment. However, the tumor vasculature is heterogeneous, and the mechanisms involved in the neovascularization of tumors are highly complex. Vasculogenic mimicry (VM) refers to the formation of vessel-like structures by tumor cells, which can contribute to tumor neovascularization, and is closely related to metastasis and a poor prognosis. Here, we report a novel function of AXL receptor tyrosine kinase (AXL) in the regulation of VM formation in breast cancer cells. MDA-MB-231 cells exhibited VM formation on Matrigel cultures, whereas MCF-7 cells did not. Moreover, AXL expression was positively correlated with VM formation. Pharmacological inhibition or AXL knockdown strongly suppressed VM formation in MDA-MB-231 cells, whereas the overexpression of AXL in MCF-7 cells promoted VM formation. In addition, AXL knockdown regulated epithelial–mesenchymal transition (EMT) features, increasing cell invasion and migration in MDA-MB-231 cells. Finally, the overexpression of microRNA-34a (miR-34a), which is a well-described EMT-inhibiting miRNA and targets AXL, inhibited VM formation, migration, and invasion in MDA-MB 231 cells. These results identify a miR-34a–AXL axis that is critical for the regulation of VM formation and may serve as a therapeutic target to inhibit tumor neovascularization.
Collapse
Affiliation(s)
- Dansaem Lim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
| | - Jin Gu Cho
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
| | - Eunsik Yun
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Young Joo Lee
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, 23, Seoul 02447, Korea;
| | - Sukjoon Yoon
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea;
| | - Myeong-Sok Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, 23, Seoul 02447, Korea;
- Correspondence: (B.S.K.); (J.K.); Tel.: + 82-2958-8837 (B.S.K.); +82-2710-9553 (J.K.); Fax: +82-2958-8835 (B.S.K.); +82-2-2077-7322 (J.K.)
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (D.L.); (J.G.C.); (E.Y.); (A.L.); (S.Y.); (M.-S.L.)
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (B.S.K.); (J.K.); Tel.: + 82-2958-8837 (B.S.K.); +82-2710-9553 (J.K.); Fax: +82-2958-8835 (B.S.K.); +82-2-2077-7322 (J.K.)
| |
Collapse
|
33
|
Zhang K, Zhao Q, Li Z, Fu F, Zhang H, Fu J, Zheng M, Zhang S. Clinicopathological Significances of Cancer Stem Cell-Associated HHEX Expression in Breast Cancer. Front Cell Dev Biol 2020; 8:605744. [PMID: 33425911 PMCID: PMC7785851 DOI: 10.3389/fcell.2020.605744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the transcription factor hematopoietic ally expressed homeobox/proline-rich homeodomain (HHEX/PRH) is implicated in numerous cancers. However, the association of HHEX with breast cancer (BC) remains unclear. In this study, HHEX mRNA and protein expression were analyzed using the Oncomine, UALCAN, GEPIA, TCGAportal, and HPA databases. We evaluated the effect of HHEX on clinicopathological parameters using Kaplan-Meier plotter, OncoLnc, TCGAportal, PROGgeneV2, and BC-GenExMiner. Western blotting was performed to compare the level of HHEX in breast samples of Tientsin Albino 2 mice, human breast precancerous lesions, benign breast tumors, and BC. The correlation between HHEX and cancer stem cells was investigated using the GEO (GSE52327 and GSE94865) and GEPIA datasets. Networks between HHEX and survival-related gene marker sets and microRNAs were analyzed using GEPIA, StarBase, and Cytoscape. Results of this study showed that HHEX expression in BC was significantly lower than those in breast precancerous lesions and benign breast tumors at both mRNA and protein levels. BC patients with lower HHEX expression had significantly worse overall survival and disease-free survival. Moreover, HHEX significantly affected the clinicopathology of BC. Specifically, low HHEX expression was correlated with the following groups of patients: age ≤51 years, ER-negative or PR-negative patients, HER-2 positive, triple-negative breast cancer, and basal-like BC. Immunohistochemical analysis of the breast samples showed significant differences of HHEX staining index (P < 0.001) among the three groups. To further investigate the mechanism, we determined the intersection of differentially expressed genes related to BC stem cells and those genes after HHEX expression was altered. This led to the identification of four potentially regulated genes-CXL12, BLNK, PAG1, and LPXN. Using StarBase and km-plotter, the negative regulation of HHEX expression and survival trends, including miR-130b, miR-30e, and miR-301b were joined into miRNA-HHEX-mRNA potential regulatory network. The abilities of proliferation, migration and invasion increased in MDA-MB-231 and BT-549 breast cancer cell lines after HHEX down expression and decreased after HHEX overexpression compared them in the control cells. In conclusion, these data suggest that HHEX expression is downregulated in BC and HHEX may regulate the development of BC through the stem cell-related genes.
Collapse
Affiliation(s)
- Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Nankai University School of Medicine, Nankai University, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
34
|
Jiang H, Zhou C, Zhang Z, Wang Q, Wei H, Shi W, Li J, Wang Z, Ou Y, Wang W, Wang H, Zhang Q, Sun W, Sun P, Yang S. Jagged1-Notch1-deployed tumor perivascular niche promotes breast cancer stem cell phenotype through Zeb1. Nat Commun 2020; 11:5129. [PMID: 33046710 PMCID: PMC7552407 DOI: 10.1038/s41467-020-18860-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc finger E-box binding homeobox 1 (Zeb1) has been demonstrated to participate in the acquisition of the properties of cancer stem cells (CSCs). However, it is largely unknown how signals from the tumor microenvironment (TME) contribute to aberrant Zeb1 expression. Here, we show that Zeb1 depletion suppresses stemness, colonization and the phenotypic plasticity of breast cancer. Moreover, we demonstrate that, with direct cell-cell contact, TME-derived endothelial cells provide the Notch ligand Jagged1 (Jag1) to neighboring breast CSCs, leading to Notch1-dependent upregulation of Zeb1. In turn, ectopic Zeb1 in tumor cells increases VEGFA production and reciprocally induces endothelial Jag1 in a paracrine manner. Depletion of Zeb1 disrupts this positive feedback loop in the tumor perivascular niche, which eventually lessens tumor initiation and progression in vivo and in vitro. In this work, we highlight that targeting the angiocrine Jag1-Notch1-Zeb1-VEGFA loop decreases breast cancer aggressiveness and thus enhances the efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Chen Zhou
- Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Qiong Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Huimin Wei
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Wen Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Jianjun Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Zhaoyang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Wenhao Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Quansheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, 300192, Tianjin, China
| | - Wei Sun
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China.
| |
Collapse
|
35
|
Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5:228. [PMID: 33028808 PMCID: PMC7541492 DOI: 10.1038/s41392-020-00313-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial-mesenchymal transition, acquisition properties of cancer stem cells, and trans-differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to improve patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, 611137, Chengdu, People's Republic of China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, People's Republic of China.
| |
Collapse
|
36
|
Cao D, Liang J, Feng F, Shi S, Tan Q, Wang Z. MiR-183 impeded embryo implantation by regulating Hbegf and Lamc1 in mouse uterus. Theriogenology 2020; 158:218-226. [PMID: 32980684 DOI: 10.1016/j.theriogenology.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
Embryo implantation plays a decisive role in pregnancy. While in the process of implantation, microRNA (miRNA) is an important regulatory factor in the post transcriptional level. However, the role of many miRNAs in embryo implantation remained unknown. In this study, microRNA-183 (miR-183) was found differentially expressed in mouse uterus during implantation. In vivo treatment of miR-183 agomir in the uterine horn before implantation could eliminate the number of implantation site. The localization of miR-183 in mouse uteri gradually changed from epithelial to stromal layer in early pregnancy. Mice implantation models demonstrated that the decrease of miR-183 was mainly caused by maternal factors. Loss and gain function of miR-183 in endometrial cell lines showed that miR-183 could inhibit cell migration, invasion and apoptosis. MiR-183 could inhibit embryo implantation by binding Heparin-Binding EGF-like growth factor (Hbegf) and Laminin gamma one (Lamc1), which were key genes in embryo apposition and penetration. All these evidences indicate that miR-183 plays an important role during embryo implantation. This study provides new insights into the functions of miR-183 during embryo implantation and the development of contraceptive drugs in early pregnancy.
Collapse
Affiliation(s)
- Dingren Cao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jingjie Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Fuqiang Feng
- Agricultural Economic Service Center of Wuzhen Town, Tongxiang City 314501, PR China
| | - Shuang Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
37
|
Campion O, Al Khalifa T, Langlois B, Thevenard-Devy J, Salesse S, Savary K, Schneider C, Etique N, Dedieu S, Devy J. Contribution of the Low-Density Lipoprotein Receptor Family to Breast Cancer Progression. Front Oncol 2020; 10:882. [PMID: 32850302 PMCID: PMC7406569 DOI: 10.3389/fonc.2020.00882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane receptors sharing structural homology and common repeats. These receptors specifically recognize and internalize various extracellular ligands either alone or complexed with membrane-spanning co-receptors that are then sorted for lysosomal degradation or cell-surface recovery. As multifunctional endocytic receptors, some LDLR members from the core family were first considered as potential tumor suppressors due to their clearance activity against extracellular matrix-degrading enzymes. LDLRs are also involved in pleiotropic functions including growth factor signaling, matricellular proteins, and cell matrix adhesion turnover and chemoattraction, thereby affecting both tumor cells and their surrounding microenvironment. Therefore, their roles could appear controversial and dependent on the malignancy state. In this review, recent advances highlighting the contribution of LDLR members to breast cancer progression are discussed with focus on (1) specific expression patterns of these receptors in primary cancers or distant metastasis and (2) emerging mechanisms and signaling pathways. In addition, potential diagnosis and therapeutic options are proposed.
Collapse
Affiliation(s)
- Océane Campion
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Tesnim Al Khalifa
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jessica Thevenard-Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphanie Salesse
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Katia Savary
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Nicolas Etique
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
38
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
39
|
Hepburn AC, Curry EL, Moad M, Steele RE, Franco OE, Wilson L, Singh P, Buskin A, Crawford SE, Gaughan L, Mills IG, Hayward SW, Robson CN, Heer R. Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Transl Med 2020; 9:734-745. [PMID: 32170918 PMCID: PMC7308643 DOI: 10.1002/sctm.19-0286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Primary culture of human prostate organoids and patient-derived xenografts is inefficient and has limited access to clinical tissues. This hampers their use for translational study to identify new treatments. To overcome this, we established a complementary approach where rapidly proliferating and easily handled induced pluripotent stem cells enabled the generation of human prostate tissue in vivo and in vitro. By using a coculture technique with inductive urogenital sinus mesenchyme, we comprehensively recapitulated in situ 3D prostate histology, and overcame limitations in the primary culture of human prostate stem, luminal and neuroendocrine cells, as well as the stromal microenvironment. This model now unlocks new opportunities to undertake translational studies of benign and malignant prostate disease.
Collapse
Affiliation(s)
- Anastasia C. Hepburn
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Curry
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Mohammad Moad
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
- Acute Internal MedicineUniversity Hospital of North TeesStockton on TeesUK
| | - Rebecca E. Steele
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Omar E. Franco
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Laura Wilson
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Parmveer Singh
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Adriana Buskin
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Susan E. Crawford
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Luke Gaughan
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Ian G. Mills
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Simon W. Hayward
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Craig N. Robson
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
- Department of Urology, Freeman HospitalThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
40
|
Sommerova L, Ondrouskova E, Martisova A, Zoumpourlis V, Galtsidis S, Hrstka R. ZEB1/miR-200c/AGR2: A New Regulatory Loop Modulating the Epithelial-Mesenchymal Transition in Lung Adenocarcinomas. Cancers (Basel) 2020; 12:cancers12061614. [PMID: 32570918 PMCID: PMC7352583 DOI: 10.3390/cancers12061614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process involved not only in morphogenesis and embryonic development, but also in cancer progression, whereby tumor cells obtain a more aggressive metastatic phenotype. Anterior gradient protein 2 (AGR2) maintains the epithelial phenotype and blocks the induction of EMT, thus playing an undeniable role in tumor progression. However, the mechanism through which AGR2 expression is regulated, not only during EMT, but also in the early stages of cancer development, remains to be elucidated. In the present study, we show an inverse correlation of AGR2 with ZEB1 (zinc finger enhancer binding protein, δEF1) that was verified by analysis of several independent clinical data sets of lung adenocarcinomas. We also identified the ZEB1 binding site within the AGR2 promoter region and confirmed AGR2 as a novel molecular target of ZEB1. The overexpression of ZEB1 decreased the promoter activity of the AGR2 gene, which resulted in reduced AGR2 protein level and the acquisition of a more invasive phenotype of these lung cancer cells. Conversely, silencing of ZEB1 led not only to increased levels of AGR2 protein, but also attenuated the invasiveness of tumor cells. The AGR2 knockout, vice versa, increased ZEB1 expression, indicating that the ZEB1/AGR2 regulatory axis may function in a double negative feedback loop. In conclusion, we revealed for the first time that ZEB1 regulates AGR2 at the transcriptional level, while AGR2 presence contributes to ZEB1 mRNA degradation. Thus, our data identify a new regulatory mechanism between AGR2 and ZEB1, two rivals in the EMT process, tightly associated with the development of metastasis.
Collapse
Affiliation(s)
- Lucia Sommerova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic; (L.S.); (E.O.); (A.M.)
| | - Eva Ondrouskova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic; (L.S.); (E.O.); (A.M.)
| | - Andrea Martisova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic; (L.S.); (E.O.); (A.M.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF 48 Vassileos Constantinou Ave., 11635 Athens, Greece;
| | - Sotirios Galtsidis
- Life Sciences Research Unit, University of Luxembourg, Campus Belval, Biotech 1, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic; (L.S.); (E.O.); (A.M.)
- Correspondence: ; Tel.: +420-543-133-306
| |
Collapse
|
41
|
Lappano R, Rigiracciolo DC, Belfiore A, Maggiolini M, De Francesco EM. Cancer associated fibroblasts: role in breast cancer and potential as therapeutic targets. Expert Opin Ther Targets 2020; 24:559-572. [PMID: 32249708 DOI: 10.1080/14728222.2020.1751819] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Cancer associated fibroblasts (CAFs) are the largest population of stromal cells in breast tumors. Emerging evidence has suggested that CAFs are important players not only in fostering tumor growth and spread but also in altering the tumor response to therapeutic agents. On the basis of these observations, huge efforts have been made to exploit CAFs as potential targets for breast cancer therapy.Areas covered: The current understanding of the hallmarks and biology of CAFs, their multilayered interplay with various cell populations of breast tumor microenvironment toward cancer initiation, progression, metastasis and resistance to anticancer therapies are discussed. In addition, a comprehensive overview of the CAFs-based molecular druggable targets in breast tumors is provided. The most relevant literature, in particular the studies retrieved in Medline in the last 10 years, served for this purpose.Expert opinion: The interest on CAFs as a target to fight breast cancer has becoming a hot topic for drug discovery. Indeed, several CAFs-targeted approaches are emerging as appealing therapeutic strategies in breast cancer. At pre-clinical level, this research field is speedily advancing toward the assessment of successful tactics targeting CAFs in breast cancer. Therefore, anti-CAFs therapies may display an intriguing potential to be exploited in clinical studies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | |
Collapse
|
42
|
Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol 2020; 13:19. [PMID: 32169087 PMCID: PMC7071697 DOI: 10.1186/s13045-020-00858-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Distinct from classical tumor angiogenesis, vasculogenic mimicry (VM) provides a blood supply for tumor cells independent of endothelial cells. VM has two distinct types, namely tubular type and patterned matrix type. VM is associated with high tumor grade, tumor progression, invasion, metastasis, and poor prognosis in patients with malignant tumors. Herein, we discuss the recent studies on the role of VM in tumor progression and the diverse mechanisms and signaling pathways that regulate VM in tumors. Furthermore, we also summarize the latest findings of non-coding RNAs, such as lncRNAs and miRNAs in VM formation. In addition, we review application of molecular imaging technologies in detection of VM in malignant tumors. Increasing evidence suggests that VM is significantly associated with poor overall survival in patients with malignant tumors and could be a potential therapeutic target.
Collapse
|
43
|
Wu HT, Zhong HT, Li GW, Shen JX, Ye QQ, Zhang ML, Liu J. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J Transl Med 2020; 18:51. [PMID: 32014049 PMCID: PMC6998212 DOI: 10.1186/s12967-020-02240-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/25/2020] [Indexed: 02/08/2023] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1, also termed TCF8 and δEF1) is a crucial member of the zinc finger-homeodomain transcription factor family, originally identified as a binding protein of the lens-specific δ1-crystalline enhancer and is a pivotal transcription factor in the epithelial-mesenchymal transition (EMT) process. ZEB1 also plays a vital role in embryonic development and cancer progression, including breast cancer progression. Increasing evidence suggests that ZEB1 stimulates tumor cells with mesenchymal traits and promotes multidrug resistance, proliferation, and metastasis, indicating the importance of ZEB1-induced EMT in cancer development. ZEB1 expression is regulated by multiple signaling pathways and components, including TGF-β, β-catenin, miRNA and other factors. Here, we summarize the recent discoveries of the functions and mechanisms of ZEB1 to understand the role of ZEB1 in EMT regulation in breast cancer.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hui-Ting Zhong
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Guan-Wu Li
- Open Laboratory for Tumor Molecular Biology, Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, People's Republic of China
| | - Jia-Xin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
44
|
Hernández de la Cruz ON, López-González JS, García-Vázquez R, Salinas-Vera YM, Muñiz-Lino MA, Aguilar-Cazares D, López-Camarillo C, Carlos-Reyes Á. Regulation Networks Driving Vasculogenic Mimicry in Solid Tumors. Front Oncol 2020; 9:1419. [PMID: 31993365 PMCID: PMC6970938 DOI: 10.3389/fonc.2019.01419] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Vasculogenic mimicry (VM) is a mechanism whereby cancer cells form microvascular structures similar to three-dimensional channels to provide nutrients and oxygen to tumors. Unlike angiogenesis, VM is characterized by the development of new patterned three-dimensional vascular-like structures independent of endothelial cells. This phenomenon has been observed in many types of highly aggressive solid tumors. The presence of VM has also been associated with increased resistance to chemotherapy, low survival, and poor prognosis. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNAs that regulate gene expression at the post-transcriptional level through different pathways. In recent years, these tiny RNAs have been shown to be expressed aberrantly in different human malignancies, thus contributing to the hallmarks of cancer. In this context, miRNAs and lncRNAs can be excellent biomarkers for diagnosis, prognosis, and the prediction of response to therapy. In this review, we discuss the role that the tumor microenvironment and the epithelial-mesenchymal transition have in VM. We include an overview of the mechanisms of VM with examples of diverse types of tumors. Finally, we describe the regulation networks of lncRNAs-miRNAs and their clinical impact with the VM. Knowing the key genes that regulate and promote the development of VM in tumors with invasive, aggressive, and therapy-resistant phenotypes will facilitate the discovery of novel biomarker therapeutics against cancer as well as tools in the diagnosis and prognosis of patients.
Collapse
Affiliation(s)
| | - José Sullivan López-González
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico, Mexico
| | - Raúl García-Vázquez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Yarely M. Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Marcos A. Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico, Mexico
| |
Collapse
|
45
|
Cao D, Di M, Liang J, Shi S, Tan Q, Wang Z. MicroRNA-183 in Cancer Progression. J Cancer 2020; 11:1315-1324. [PMID: 32047538 PMCID: PMC6995398 DOI: 10.7150/jca.39044] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-183(miR-183) is abnormally expressed in many kinds of tumors. It participates in the initiation and development of tumors. There are many pathways regulate the expression of miR-183. The action mechanism of miR-183 in cancer is very extensive, and contradictory conclusions are often drawn. It was upregulated in 18 kinds of cancer, downregulated in 6 kinds of cancer. In addition, there are seven types of cancer, both upregulated and downregulated reports can be found. Evidence showed that miR-183 can not only directly play the role of oncogene or antioncogene, but also regulate the expression of other oncogene or antioncogene in different cancer types. In this review, we discuss the regulator of miR-183 and summarized the expression of miR-183 in different cancers. We also counted the target genes of miR-183 and the functional roles they play. Furthermore, we focused on the roles of miR-183 in cell migration, cell invasion, epithelial-mesenchymal transition (EMT) and microangiogenesis, which play the most important roles in cancer processes. It sheds light on the likely reasons why miR-183 plays different roles in various cancers. In addition, miR-183 and its downstream effectors have the potential to be promising prognostic markers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Dingren Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Min Di
- Sir Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, 310058, P. R. China
| | - Jingjie Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shuang Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
46
|
Ming H, Chuang Q, Jiashi W, Bin L, Guangbin W, Xianglu J. Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY) 2019; 10:4141-4151. [PMID: 30580326 PMCID: PMC6326679 DOI: 10.18632/aging.101710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023]
Abstract
Naringin, a citrus bioflavonoid, has anti-inflammatory actions and cardio- and neuroprotective effects. In addition, naringin exhibits multiple antitumor actions in several cancer types, including osteosarcoma, the most common type of bone cancer. Here, we show that naringin inhibits proliferation and invasion and induces apoptosis in human osteosarcoma cells by inhibiting zinc finger E-box binding homeobox 1 (Zeb1), a transcriptional repressor of epithelial differentiation involved in tumor metastasis. Our expression analyses confirm that Zeb1 is highly expressed in osteosarcoma specimens and cell lines. The effects of naringin, which included downregulation of Cyclin D1, MMP2, and bcl-2, where reproduced by siRNA-mediated Zeb1 silencing, whereas Zeb1 overexpression increased proliferation, migration, and Cyclin D1, MMP2, and bcl-2 levels. In addition, naringin administration reduced tumor nodule formation and attenuated the expression of the above proteins in the livers of mice injected with MG63 osteosarcoma cells. Our study provides preclinical evidence for the potential therapeutic application of naringin in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- He Ming
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Qiu Chuang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Wang Jiashi
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Li Bin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Wang Guangbin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| | - Ji Xianglu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, People's Republic of China
| |
Collapse
|
47
|
Xiao W, Zhang W, Huang H, Xie Y, Zhang Y, Guo X, Jin C, Liao X, Yao S, Chen G, Song X. Cancer Targeted Gene Therapy for Inhibition of Melanoma Lung Metastasis with eIF3i shRNA Loaded Liposomes. Mol Pharm 2019; 17:229-238. [PMID: 31765158 DOI: 10.1021/acs.molpharmaceut.9b00943] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation factors 3i (eIF3i) is a proto-oncogene that is overexpressed in various tumors, reducing its expression by eIF3i shRNA is a promising strategy to inhibit tumor growth or metastasis. Tumor cell is the target of eIF3i shRNA so that tumor-site accumulation could be important for fulfilling its therapeutic effect. Thus, the iRGD modified liposome (R-LP) was rationally synthesized to enhance the antitumor effect by active targeted delivery of eIF3i shRNA to B16F10 melanoma cells. R-LP encapsulating eIF3i shRNA gene (R-LP/sheIF3i) were prepared by a film dispersion method. The transfection experiment proves that R-LP could effectively transfect B16F10 cells. R-LP/sheIF3i notably restrained the migration, invasion, and adhesion of melanoma cells in vitro. In a mouse model of lung metastasis, R-LP/sheIF3i administered by intravenous injection suppressed pulmonary metastasis of melanoma by dramatically downregulated eIF3i expression and subsequently inhibiting tumor neovascularization and tumor cells proliferation in vivo. Our results provide a basis for tumor cells targeting strategies to reduce the expression of eIF3i by RNAi in the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Wen Xiao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Weiyi Zhang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Hai Huang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Yafei Xie
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Yi Zhang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xia Guo
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Chaohui Jin
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xuelian Liao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Guo Chen
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| |
Collapse
|
48
|
Zhang X, Zhang J, Zhou H, Fan G, Li Q. Molecular Mechanisms and Anticancer Therapeutic Strategies in Vasculogenic Mimicry. J Cancer 2019; 10:6327-6340. [PMID: 31772665 PMCID: PMC6856738 DOI: 10.7150/jca.34171] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
Vasculogenic mimicry (VM) is a vascular formation mechanism used by aggressive tumor cells. VM provides an alternative pathway for adequate blood perfusion and challenges the traditional angiogenesis mechanism that depends only on endothelial cells (ECs), as VM-forming tumor cells express a mixed endothelial/tumor phenotype. VM is closely correlated with tumor invasion, migration, and progression. Hence, anticancer therapeutic strategies targeting VM biogenesis are essential. It is widely acknowledged that the VM formation mechanism involves multiple pathways. The purpose of this review is to describe the potential molecular mechanisms related to different pathways and discuss the involvement of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in VM formation. Moreover, we discuss the significance of VM in clinical practice and present new anticancer therapeutic strategies that target VM.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Jigang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Heming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| |
Collapse
|
49
|
Nakshatri H, Kumar B, Burney HN, Cox ML, Jacobsen M, Sandusky GE, D'Souza-Schorey C, Storniolo AMV. Genetic Ancestry-dependent Differences in Breast Cancer-induced Field Defects in the Tumor-adjacent Normal Breast. Clin Cancer Res 2019; 25:2848-2859. [PMID: 30718355 PMCID: PMC11216537 DOI: 10.1158/1078-0432.ccr-18-3427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic ancestry influences evolutionary pathways of cancers. However, whether ancestry influences cancer-induced field defects is unknown. The goal of this study was to utilize ancestry-mapped true normal breast tissues as controls to identify cancer-induced field defects in normal tissue adjacent to breast tumors (NATs) in women of African American (AA) and European (EA) ancestry. EXPERIMENTAL DESIGN A tissue microarray comprising breast tissues of ancestry-mapped 100 age-matched healthy women from the Komen Tissue Bank (KTB) at Indiana University (Indianapolis, IN) and tumor-NAT pairs from 100 women (300 samples total) was analyzed for the levels of ZEB1, an oncogenic transcription factor that is central to cell fate, mature luminal cell-enriched estrogen receptor alpha (ERα), GATA3, FOXA1, and for immune cell composition. RESULTS ZEB1+ cells, which were localized surrounding the ductal structures of the normal breast, were enriched in the KTB-normal of AA compared with KTB-normal of EA women. In contrast, in EA women, both NATs and tumors compared with KTB-normal contained higher levels of ZEB1+ cells. FOXA1 levels were lower in NATs compared with KTB-normal in AA but not in EA women. We also noted variations in the levels of GATA3, CD8+ T cells, PD1+ immune cells, and PDL1+ cell but not CD68+ macrophages in NATs of AA and EA women. ERα levels did not change in any of our analyses, pointing to the specificity of ancestry-dependent variations. CONCLUSIONS Genetic ancestry-mapped tissues from healthy individuals are required for proper assessment and development of cancer-induced field defects as early cancer detection markers. This finding is significant in light of recent discoveries of influence of genetic ancestry on both normal biology and tumor evolution.
Collapse
Affiliation(s)
- Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather N Burney
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary L Cox
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Anna Maria V Storniolo
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|