1
|
Gao J, Du H, Zhang Z, Duan Q, Yuan L, Duan B, Yang H, Lu K. Design and Characterization of Peptide-Based Self-Assembling Microgel for Encapsulation of Sesaminol. Foods 2025; 14:971. [PMID: 40231992 PMCID: PMC11941722 DOI: 10.3390/foods14060971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
Sesaminol is a natural functional compound of sesame with low bioaccessibility due to its high crystallinity. Here, a peptide-based self-assembly microgel was constructed to encapsulate sesaminol, reducing its crystallinity and improving its bioaccessibility. In this contribution, the peptide AcNH-Leu-Tyr-Tyr-CONH2 (LYY) was shown to form a mesoporous three-dimensional (3D) microgel through microstructure characterization. Various characterization methods revealed that the LYY peptide self-assembled through β-folds and random coils, and the primary intermolecular interactions arose from hydrogen bonding and the π-π stacking effect. Subsequently, sesaminol was encapsulated within the microgel through co-assembly. The maximum encapsulation efficiency of sesaminol was 80.8 ± 0.9%, mainly in the form of nanoparticles encapsulated in microgel by morphology characterization. The XRD results indicated that sesaminol primarily existed in an amorphous state following encapsulation. The cumulative release indicated that sesaminol had a sustained release effect in the encapsulation system. Its bioaccessibility and antioxidant levels were increased. Molecular docking indicated that the main interactions between sesaminol and the self-assembled structure were hydrogen bonding and π-π interactions. Establishing sesaminol encapsulation provides valuable data and theoretical support for the research of sesaminol and the sesame processing industry.
Collapse
Affiliation(s)
- Jinhong Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.G.); (H.D.)
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.G.); (H.D.)
| | - Zhenhong Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, China; (Z.Z.); (L.Y.)
| | - Qunpeng Duan
- School of Chemistry and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, China;
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, China; (Z.Z.); (L.Y.)
| | - Bingchao Duan
- School of Food Science and Chemical Engineering, Zhengzhou University of Technology, Zhengzhou 450044, China; (B.D.); (H.Y.)
| | - Hongyan Yang
- School of Food Science and Chemical Engineering, Zhengzhou University of Technology, Zhengzhou 450044, China; (B.D.); (H.Y.)
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.G.); (H.D.)
- School of Food Science and Chemical Engineering, Zhengzhou University of Technology, Zhengzhou 450044, China; (B.D.); (H.Y.)
| |
Collapse
|
2
|
Rosalina R, Weerapreeyakul N, Sutthanut K, Kamwilaisak K, Sakonsinsiri C. Nanocellulose-based Pickering emulsion of sesamolin manifested increased anticancer activity and necrosis in human colon cancer (HCT116) cells. Int J Biol Macromol 2025; 292:139225. [PMID: 39732237 DOI: 10.1016/j.ijbiomac.2024.139225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Sesamolin possesses limited aqueous solubility, a drawback for biological activity study in cancer cell models. This study aimed to enhance sesamolin's ability to fight cancer, as it is a bioactive compound with low water solubility found in sesame. We developed different Pickering emulsion delivery systems and tested their anticancer effects on various cancer cell types. Sesamolin was incorporated into either sesame or olive oil and subsequently formulated as oil in water (o/w) Pickering emulsions stabilized by the carboxylated cellulose nanocrystal (cCNC). The anticancer activity was determined based on cell viability and the induction of cell death mechanisms. The results demonstrated a synergistic effect of the components in the emulsion, including sesamolin, sesame oil, and olive oil, and a decrease in HCT116 viability in a concentration-dependent manner and selectively on cancer cells compared to non-cancerous Vero cells. The primary mode of cell death was predominantly ROS-induced necrosis, with no change in caspase 3/7 activity, indicating the absence of apoptosis. This study first presents the necrotic cell death mechanism induced by sesamolin. The findings reveal that the cCNC emulsion delivery system is safe and appropriate for transporting lipophilic chemicals and can overcome solubility limitations.
Collapse
Affiliation(s)
- Reny Rosalina
- Graduate School (Biomedical Sciences Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Khaetthareeya Sutthanut
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khanita Kamwilaisak
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
4
|
Rajendran R, Suman S, Divakaran SJ, Swatikrishna S, Tripathi P, Jain R, Sagar K, Rajakumari S. Sesaminol alters phospholipid metabolism and alleviates obesity-induced NAFLD. FASEB J 2024; 38:e23835. [PMID: 39037555 DOI: 10.1096/fj.202400412rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
The prevalence of obesity-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance is increasing worldwide. We previously demonstrated that sesaminol increases thermogenesis in adipocytes, improves insulin sensitivity, and mitigates obesity in mice. In this study, we demonstrated that sesaminol increased mitochondrial activity and reduced ROS production in hepatocytes. Therefore, we delve into the metabolic action of sesaminol in obesity-induced NAFLD or metabolic dysfunction-associated liver disease (MAFLD). Here, we report that sesaminol induces OXPHOS proteins and mitochondrial function in vivo. Further, our data suggest that sesaminol administration reduces hepatic triacylglycerol accumulation and LDL-C levels. Prominently, the lipidomics analyses revealed that sesaminol administration decreased the major phospholipids such as PC, PE, PI, CL, and PS to maintain membrane lipid homeostasis in the liver upon HFD challenge. Besides, SML reduced ePC and SM molecular species and increased PA levels in the HFD-fed mice. Also, sesaminol renders anti-inflammatory properties and dampens fibrosis markers in the liver. Remarkably, SML lowers the hepatic levels of ALT and AST enzymes and alleviates NAFLD in diet-induced obese mice. The molecular docking analysis identifies peroxisome proliferator-activated receptors as potential endogenous receptors for sesaminol. Together, our study demonstrates plant lignan sesaminol as a potential small molecule that alters the molecular species of major phospholipids, including sphingomyelin and ether-linked PCs in the liver tissue, improves metabolic parameters, and alleviates obesity-induced fatty liver disease in mice.
Collapse
Affiliation(s)
- Rajprabu Rajendran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sanskriti Suman
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Soumya Jaya Divakaran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sahu Swatikrishna
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Purnima Tripathi
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rashi Jain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Karan Sagar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sona Rajakumari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Gao J, Zhang L, Zhao D, Lu X, Sun Q, Du H, Yang H, Lu K. Aspergillus oryzae β-D-galactosidase immobilization on glutaraldehyde pre-activated amino-functionalized magnetic mesoporous silica: Performance, characteristics, and application in the preparation of sesaminol. Int J Biol Macromol 2024; 270:132101. [PMID: 38734354 DOI: 10.1016/j.ijbiomac.2024.132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Aspergillus oryzae β-D-galactosidase (β-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, β-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, β-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-β-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of β-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-β-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-β-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-β-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-β-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-β-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.
Collapse
Affiliation(s)
- Jinhong Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China; Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Lingli Zhang
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China
| | - Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Qiang Sun
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China
| | - Hongyan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China.
| |
Collapse
|
6
|
Li QZ, Zuo ZW, Liu Y. Recent status of sesaminol and its glucosides: Synthesis, metabolism, and biological activities. Crit Rev Food Sci Nutr 2023; 63:12043-12056. [PMID: 35821660 DOI: 10.1080/10408398.2022.2098248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesamum indicum is a major and important oilseed crop that is believed to promote human health in many countries, especially in China. Sesame seeds contain two types of lignans: lipid-soluble lignans and water-soluble glucosylated lignans. The major glucosylated lignans are sesaminol glucosides (SGs). So far, four sesaminol isomers and four SGs are identified. During the naturally occurring process of SGs production, sesaminol is generated first from two molecules of E-coniferyl alcohol, and then the sugar is added to the sesaminol one by one, leading to production of SGs. Sesaminol can be prepared from SGs, from sesamolin, and through artificial synthesis. SGs are metabolized in the liver and intestine and are then transported to other tissues. They exhibit several biological activities, most of which are based on their antioxidant and anti-inflammatory activities. In this paper, we present an overview of the current status of research on sesaminol and SGs. We have also discussed their synthesis, preparation, metabolism, and biological activities. It has been suggested that sesaminol and SGs are important biological substances with strong antioxidant properties in vitro and in vivo and are widely used in the food industry, medicine, and cosmetic products. The recovery and utilization of SGs from sesame seed cake after oil processing will generate massive economic benefits.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
7
|
Masuda M, Horinaka M, Yasuda S, Morita M, Nishimoto E, Ishikawa H, Mutoh M, Sakai T. Discovery of cancer-preventive juices reactivating RB functions. Environ Health Prev Med 2023; 28:54. [PMID: 37743524 PMCID: PMC10519803 DOI: 10.1265/ehpm.23-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Recent advances have been achieved in the genetic diagnosis and therapies against malignancies due to a better understanding of the molecular mechanisms underlying carcinogenesis. Since active preventive methods are currently insufficient, the further development of appropriate preventive strategies is desired. METHODS We searched for drinks that reactivate the functions of tumor-suppressor retinoblastoma gene (RB) products and exert anti-inflammatory and antioxidant effects. We also examined whether lactic acid bacteria increased the production of the cancer-specific anti-tumor cytokine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in human, and examined whether the RB-reactivating drinks with lactic acid bacteria decreased azoxymethane-induced rat colon aberrant crypt foci (ACF) and aberrant crypts (ACs) in vivo. RESULTS Kakadu plum juice and pomegranate juice reactivated RB functions, which inhibited the growth of human colon cancer LIM1215 cells by G1 phase arrest. These juices also exerted anti-inflammatory and antioxidant effects. Lactiplantibacillus (L.) pentosus S-PT84 was administered to human volunteers and increased the production of TRAIL. In an in vivo study, Kakadu plum juice with or without pomegranate juice and S-PT84 significantly decreased azoxymethane-induced rat colon ACF and ACs. CONCLUSIONS RB is one of the most important molecules suppressing carcinogenesis, and to the best of our knowledge, this is the first study to demonstrate that natural drinks reactivated the functions of RB. As expected, Kakadu plum juice and pomegranate juice suppressed the growth of LIM1215 cells by reactivating the functions of RB, and Kakadu plum juice with or without pomegranate juice and S-PT84 inhibited rat colon ACF and ACs. Therefore, this mixed juice has potential as a novel candidate for cancer prevention.
Collapse
Affiliation(s)
- Mitsuharu Masuda
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Shusuke Yasuda
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Mie Morita
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Emi Nishimoto
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine
| |
Collapse
|
8
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|
9
|
A Comprehensive Review on Distribution, Pharmacological Properties, and Mechanisms of Action of Sesamin. J CHEM-NY 2022. [DOI: 10.1155/2022/4236525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sesamin is a kind of fat-soluble lignan extracted from sesame seeds or other plants. It has attracted more and more attention because of its extensive pharmacological activities. In this study, we systematically summarized the pharmacological activities of sesamin including antioxidant, anti-inflammatory, anticancer, protection of liver and kidney, prevention of diabetes, hypertension, and atherosclerosis. Studies focus on the abilities of sesamin to attenuate oxidative stress by reducing the levels of ROS and MDA, to inhibit the release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, etc.), and to induce apoptosis and autophagy in cancer cells through a variety of signaling pathways such as NF-κB, JNK, p38 MAPK, PI3K/AKT, caspase-3, and p53. By inhibiting the production of ROS, sesamin can also enhance the biological activities of NO in blood vessels, improve endothelial dysfunction and hypertension, and change the process of atherosclerotic lesion formation. In line with this, the various pharmacological properties of sesamin have been discussed in this review so that we can have a deeper understanding of the pharmacological activities of sesamin and clear the future development direction of sesamin.
Collapse
|
10
|
“RB-reactivator screening” as a novel cell-based assay for discoveries of molecular targeting agents including the first-in-class MEK inhibitor trametinib (trade name: Mekinist). Pharmacol Ther 2022; 236:108234. [DOI: 10.1016/j.pharmthera.2022.108234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/10/2023]
|
11
|
Watanabe M, Boku S, Kobayashi K, Kurumida Y, Sukeno M, Masuda M, Mizushima K, Kato C, Iizumi Y, Hirota K, Naito Y, Mutoh M, Kameda T, Sakai T. A chemoproteoinformatics approach demonstrates that aspirin increases sensitivity to MEK inhibition by directly binding to RPS5. PNAS NEXUS 2022; 1:pgac059. [PMID: 36713317 PMCID: PMC9802315 DOI: 10.1093/pnasnexus/pgac059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/11/2022] [Indexed: 02/01/2023]
Abstract
MEK inhibitors are among the most successful molecularly targeted agents used as cancer therapeutics. However, to treat cancer more efficiently, resistance to MEK inhibitor-induced cell death must be overcome. Although previous genetic approaches based on comprehensive gene expression analysis or RNAi libraries led to the discovery of factors involved in intrinsic resistance to MEK inhibitors, a feasible combined treatment with the MEK inhibitor has not yet been developed. Here, we show that a chemoproteoinformatics approach identifies ligands overcoming the resistance to cell death induced by MEK inhibition as well as the target molecule conferring this resistance. First, we used natural products, perillyl alcohol and sesaminol, which induced cell death in combination with the MEK inhibitor trametinib, as chemical probes, and identified ribosomal protein S5 (RPS5) as their common target protein. Consistently, trametinib induced cell death in RPS5-depleted cancer cells via upregulation of the apoptotic proteins BIM and PUMA. Using molecular docking and molecular dynamics (MD) simulations, we then screened FDA- and EMA-approved drugs for RPS5-binding ligands and found that acetylsalicylic acid (ASA, also known as aspirin) directly bound to RPS5, resulting in upregulation of BIM and PUMA and induction of cell death in combination with trametinib. Our chemoproteoinformatics approach demonstrates that RPS5 confers resistance to MEK inhibitor-induced cell death, and that aspirin could be repurposed to sensitize cells to MEK inhibition by binding to RPS5.
Collapse
Affiliation(s)
| | - Shogen Boku
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan,Cancer Treatment Center, Kansai Medical University Hospital, 573-1010 Osaka, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 135-0064 Tokyo, Japan
| | - Yoichi Kurumida
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 135-0064 Tokyo, Japan
| | - Mamiko Sukeno
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Mitsuharu Masuda
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Chikage Kato
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 573-1010 Osaka, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 135-0064 Tokyo, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| |
Collapse
|
12
|
Zhang Y, Zhang Y, Shi XJ, Li JX, Wang LH, Xie CE, Wang YL. Chenodeoxycholic Acid Enhances the Effect of Sorafenib in Inhibiting HepG2 Cell Growth Through EGFR/Stat3 Pathway. Front Oncol 2022; 12:836333. [PMID: 35252007 PMCID: PMC8891169 DOI: 10.3389/fonc.2022.836333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a highly invasive disease with a high mortality rate. Our previous study found that Chenodeoxycholic acid (CDCA) as an endogenous metabolite can enhance the anti-tumor effect. Sorafenib has limited overall efficacy as a first-line agent in HCC, and combined with CDCA may improve its efficacy.MethodsHepG2 cells and Balb/c nude mice were used respectively for in vitro and in vivo experiments. Flow cytometry, Western blotting, HE and immunohistochemical staining and immunofluorescence were used to study the effects of CDCA combined with sorafenib on HepG2 cell growth and apoptosis-related proteins. Magnetic bead coupling, protein profiling and magnetic bead immunoprecipitation were used to find the targets of CDCA action. The effect of CDCA on EGFR/Stat3 signaling pathway was further verified by knocking down Stat3 and EGFR. Finally, fluorescence confocal, and molecular docking were used to study the binding site of CDCA to EGFR.ResultsIn this study, we found that CDCA enhanced the effect of sorafenib in inhibiting the proliferation, migration and invasion of HepG2 cells. Magnetic bead immunoprecipitation and protein profiling revealed that CDCA may enhance the effect of sorafenib by affecting the EGFR/Stat3 signaling pathway. Further results from in vitro and in vivo gene knockdown experiments, confocal experiments and molecular docking showed that CDCA enhances the efficacy of sorafenib by binding to the extracellular structural domain of EGFR.ConclusionThis study reveals the mechanism that CDCA enhances the inhibitory effect of sorafenib on HepG2 cell growth in vitro and in vivo, providing a potential new combination strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Jun Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun-Xiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Heng Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-E Xie
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yun-Liang Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yun-Liang Wang,
| |
Collapse
|
13
|
Ichikawa T, Sugamoto K, Matsuura Y, Kunitake H, Shimoda K, Morishita K. Inhibition of ATL cell proliferation by polymerized proanthocyanidin from blueberry leaves through JAK proteolysis. Cancer Sci 2022; 113:1406-1416. [PMID: 35100463 PMCID: PMC8990289 DOI: 10.1111/cas.15277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/27/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
We have previously reported that the proanthocyanidin (PAC) fraction of blueberry leaf extract (BB-PAC) inhibits the proliferation of human T lymphotropic retrovirus (HTLV-1)-infected adult T-cell leukemia (ATL) by inducing apoptosis. In the present study, we further analyzed the structure of BB-PAC and elucidated the molecular mechanism underlying the inhibitory function of HTLV-1 infected and ATL cells. After hot water extraction with fractionation with methanol-acetone, BB-PAC was found to be concentrated in fractions 4 to 7 (Fr 7). The strongest inhibition of ATL cell growth was observed with Fr7, which contained the highest BB-PAC polymerization degree of 14. The basic structure of BB-PAC is mainly B-type bonds, with A-type bonds (7.1%) and cinchonain I units as the terminal unit (6.1%). The molecular mechanism of cytotoxicity observed around Fr7 against ATL cells was the degradation of JAK1 to 3 and the dephosphorylation of STAT3/5, which occurs by proteasome-dependent proteolysis, confirming that PAC directly binds to HSP90. JAK degradation was caused by proteasome-dependent proteolysis, and we identified the direct binding of PAC to HSP90. In addition, the binding of cochaperone ATPase homolog 1 (AHA1) to HSP90, which is required for activation of the cofactor HSP90, was inhibited by BB-PAC treatment. Therefore, BB-PAC inhibited the formation of the HSP90/AHA1 complex and promoted the degradation of JAK protein due to HSP90 dysfunction. These results suggest that the highly polymerized PAC component from blueberry leaves has great potential as a preventive and therapeutic agent against HTLV-1 infected and ATL cells.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Sugamoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Yasushi Matsuura
- Miyazaki Prefectural Food Research and Development Center, Miyazaki, Japan
| | - Hisato Kunitake
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Director of Center for Collaborative Research & Community Cooperation, University of Miyazaki, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan.,Project for Advanced Medical Research and Development, Project Research Division, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
14
|
Takakura H, Horinaka M, Imai A, Aono Y, Nakao T, Miyamoto S, Iizumi Y, Watanabe M, Narita T, Ishikawa H, Mutoh M, Sakai T. Sodium salicylate and 5-aminosalicylic acid synergistically inhibit the growth of human colon cancer cells and mouse intestinal polyp-derived cells. J Clin Biochem Nutr 2022; 70:93-102. [PMID: 35400827 PMCID: PMC8921728 DOI: 10.3164/jcbn.21-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
As colon cancer is one of the most common cancers in the world, practical prevention strategies for colon cancer are needed. Recently, treatment with aspirin and/or 5-aminosalicylic acid-related agents was reported to reduce the number of intestinal polyps in patients with familial adenomatous polyposis. To evaluate the mechanism of aspirin and 5-aminosalicylic acid for suppressing the colon polyp growth, single and combined effects of 5-aminosalicylic acid and sodium salicylate (metabolite of aspirin) were tested in the two human colon cancer cells with different cyclooxygenase-2 expression levels and intestinal polyp-derived cells from familial adenomatous polyposis model mouse. The combination induced cell-cycle arrest at the G1 phase along with inhibition of cell growth and colony-forming ability in these cells. The combination reduced cyclin D1 via proteasomal degradation and activated retinoblastoma protein. The combination inhibited the colony-forming ability of mouse colonic mucosa cells by about 50% and the colony-forming ability of mouse intestinal polyp-derived cells by about 90%. The expression level of cyclin D1 in colon mucosa cells was lower than that in intestinal polyp-derived cells. These results suggest that this combination may be more effective in inhibiting cell growth of intestinal polyps through cyclin D1 down-regulation.
Collapse
Affiliation(s)
- Hideki Takakura
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Mano Horinaka
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Ayaka Imai
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Yuichi Aono
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Toshimasa Nakao
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Shingo Miyamoto
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Motoki Watanabe
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Takumi Narita
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| |
Collapse
|
15
|
Mori M, Sakamoto A, Sato Y, Kawakami R, Kawai K, Cornelissen A, Abebe B, Ghosh S, Romero ME, Kolodgie FD, Virmani R, Finn AV. Overcoming challenges in refining the current generation of coronary stents. Expert Rev Cardiovasc Ther 2021; 19:1013-1028. [PMID: 34860134 DOI: 10.1080/14779072.2021.2013810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Late stent thrombosis caused by delayed vascular healing and prolonged local inflammation were major drawbacks of 1st generation drug-eluting stents (DES). Strut design, biocompatibility of polymer, and drug-release profiles were improved in 2nd and 3rdgeneration DES. Accordingly, the indications for percutaneous coronary intervention with DES have been expanded to more complex patients and lesions. Despite these improvements, significant barriers such as greater flexibility in the duration of dual-antiplatelet therapy (DAPT) as well as reducing long-term stent-related events remain. To achieve ideal short- and long-term results, these existing limitations need to be overcome. AREAS COVERED We will discuss the current limitations of coronary DES and how they might be overcome from pathological and clinical viewpoints. EXPERT OPINION Optimizing DAPT duration after stent implantation and prevention of in-stent neoatherosclerosis are two major issues in current DES. Overcoming these drawbacks is a prerequisite toward achieving better short- and long-term clinical outcomes. New technologies including platform design, polymer types, and anti-proliferative agent itself might lead to further improvements. Although the initial experience with bioresorbable scaffold/stents (BRS) was disappointing, positive results of clinical studies regarding novel BRS are raising expectations. Overall, further device innovation is desired for overcoming the limitations of current DES.
Collapse
Affiliation(s)
| | | | - Yu Sato
- CVPath Institute, Inc, Gaithersburg, MD, USA
| | | | - Kenji Kawai
- CVPath Institute, Inc, Gaithersburg, MD, USA
| | | | | | | | | | | | | | - Aloke V Finn
- CVPath Institute, Inc, Gaithersburg, MD, USA.,School of Medicine, University of Maryland, Baltimore, Md, USA
| |
Collapse
|
16
|
Kumar A, Mishra DC, Angadi UB, Yadav R, Rai A, Kumar D. Inhibition Potencies of Phytochemicals Derived from Sesame Against SARS-CoV-2 Main Protease: A Molecular Docking and Simulation Study. Front Chem 2021; 9:744376. [PMID: 34692642 PMCID: PMC8531729 DOI: 10.3389/fchem.2021.744376] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has now spread across the nations with high mortality rates and multifaceted impact on human life. The proper treatment methods to overcome this contagious disease are still limited. The main protease enzyme (Mpro, also called 3CLpro) is essential for viral replication and has been considered as one of the potent drug targets for treating COVID-19. In this study, virtual screening was performed to find out the molecular interactions between 36 natural compounds derived from sesame and the Mpro of COVID-19. Four natural metabolites, namely, sesamin, sesaminol, sesamolin, and sesamolinol have been ranked as the top interacting molecules to Mpro based on the affinity of molecular docking. Moreover, stability of these four sesame-specific natural compounds has also been evaluated using molecular dynamics (MD) simulations for 200 nanoseconds. The molecular dynamics simulations and free energy calculations revealed that these compounds have stable and favorable energies, causing strong binding with Mpro. These screened natural metabolites also meet the essential conditions for drug likeness such as absorption, distribution, metabolism, and excretion (ADME) properties as well as Lipinski's rule of five. Our finding suggests that these screened natural compounds may be evolved as promising therapeutics against COVID-19.
Collapse
Affiliation(s)
- Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dwijesh Chandra Mishra
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa Basavanneppa Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rashmi Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
17
|
Kraus D, Glassmann A, Golletz C, Kristiansen G, Winter J, Probstmeier R. Zona Pellucida Protein 2 (ZP2) Is Expressed in Colon Cancer and Promotes Cell Proliferation. Cancers (Basel) 2021; 13:cancers13081759. [PMID: 33917056 PMCID: PMC8067760 DOI: 10.3390/cancers13081759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Our study shows ZP2 to be a new biomarker for diagnosis, best used in combination with other low abundant genes in colon cancer. Furthermore, ZP2 promotes cell proliferation via the ERK1/2-cyclinD1-signaling pathway. We demonstrate that ZP2 mRNA is expressed in a low-abundant manner with high specificity in subsets of cancer cell lines representing different cancer subtypes and also in a significant proportion of primary colon cancers. The potential benefit of ZP2 as a biomarker is discussed. In the second part of our study, the function of ZP2 in cancerogenesis has been analyzed. Since ZP2 shows an enhanced transcript level in colon cancer cells, siRNA experiments have been performed to verify the potential role of ZP2 in cell proliferation. Based on these data, ZP2 might serve as a new target molecule for cancer diagnosis and treatment in respective cancer types such as colon cancer. Abstract Background: Zona pellucida protein ZP2 has been identified as a new colon tumor biomarker. Its transcripts were specifically expressed in four out of four human colon cancer cell lines and enhanced in about 60% of primary colon cancer tissues when compared to matched healthy ones. ZP2 down-regulation by siRNA led to a decreased proliferation rate, EXOSC5 transcript, cyclin D1 protein level, and ERK1/2 phosphorylation state. Methods: Sensitivity and quantitative expression analysis of ZP2 transcripts in tumor and matched normal colon tissue was performed with respective cDNA preparations. Silencing RNA effects on colon cancer cells were examined by q-PCR, western blot, and proliferation rate experiments. Results: In a significant portion of 69 primary colon tumor samples, the molecule showed a low but specific expression, which revealed a sensitivity value of around 90% and a specificity value of 30% when matched to the respective normal counterparts. Down-regulation of ZP2 protein by siRNA led to a decreased proliferation rate, EXOSC5 and cyclin D1 level, and phosphorylation state of ERK1/2. ZP2 has also been found to be a cell membrane-bound protein. Conclusion: ZP2 shows an enhanced expression level in colon cancer tissue and, thus, can be used as a diagnostic tool, albeit in combination with other biomarkers. Its character as a membrane protein makes ZP2 even a potential target molecule for tumor therapy, especially as it positively affects colon cancer cell proliferation.
Collapse
Affiliation(s)
- Dominik Kraus
- Department of Prosthodontics, Preclinical Education and Material Sciences, University of Bonn, Welschnonnenstr 17, 53111 Bonn, Germany;
| | | | - Carsten Golletz
- Institute of Pathology, Venusberg-Campus 1, University Hospital of Bonn, 53127 Bonn, Germany; (C.G.); (G.K.)
| | - Glen Kristiansen
- Institute of Pathology, Venusberg-Campus 1, University Hospital of Bonn, 53127 Bonn, Germany; (C.G.); (G.K.)
| | - Jochen Winter
- Oral Cell Biology Group, Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-22011
| | - Rainer Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, Venusberg-Campus 1, University Hospital of Bonn, 53127 Bonn, Germany;
| |
Collapse
|
18
|
Rabdosianone I, a Bitter Diterpene from an Oriental Herb, Suppresses Thymidylate Synthase Expression by Directly Binding to ANT2 and PHB2. Cancers (Basel) 2021; 13:cancers13050982. [PMID: 33652782 PMCID: PMC7956614 DOI: 10.3390/cancers13050982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In the present study, we found the novel pleiotropic regulation of the oncogene product thymidylate synthase (TS) by a chemical biology approach to identify rabdosianone I-binding proteins. Rabdosianone I, which is extracted from a traditional Asian herb Isodon japonicus Hara for longevity, suppressed TS expression at mRNA and protein levels. We immobilized rabdosianone I onto nano-magnetic beads and identified two mitochondrial proteins, adenine nucleotide translocase 2 (ANT2) and prohibitin 2 (PHB2), as the direct targets of rabdosianone I in cancer cells. Mechanistically, the knockdown of ANT2 or PHB2 promoted proteasomal degradation of the TS protein. In addition, PHB2 reduced TS mRNA levels. Thus, we provide previously unknown mechanisms of TS regulation by ANT2 and PHB2 and propose the possibility of rabdosianone I as a promising lead compound for the discovery of a novel TS suppressor. Abstract Natural products have numerous bioactivities and are expected to be a resource for potent drugs. However, their direct targets in cells often remain unclear. We found that rabdosianone I, which is a bitter diterpene from an oriental herb for longevity, Isodon japonicus Hara, markedly inhibited the growth of human colorectal cancer cells by downregulating the expression of thymidylate synthase (TS). Next, using rabdosianone I-immobilized nano-magnetic beads, we identified two mitochondrial inner membrane proteins, adenine nucleotide translocase 2 (ANT2) and prohibitin 2 (PHB2), as direct targets of rabdosianone I. Consistent with the action of rabdosianone I, the depletion of ANT2 or PHB2 reduced TS expression in a different manner. The knockdown of ANT2 or PHB2 promoted proteasomal degradation of TS protein, whereas that of not ANT2 but PHB2 reduced TS mRNA levels. Thus, our study reveals the ANT2- and PHB2-mediated pleiotropic regulation of TS expression and demonstrates the possibility of rabdosianone I as a lead compound of TS suppressor.
Collapse
|
19
|
Alami Merrouni I, Elachouri M. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113435. [PMID: 33022340 DOI: 10.1016/j.jep.2020.113435] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is a major health problem worldwide. Drugs' side effects and high cost of treatment remain the main limitations of conventional therapy. Nowadays, developing new therapeutic strategies is necessary. Therefore, medicinal plants can be used to promote novel, safe, and potent anticancer drugs through their natural compounds. AIM OF THE STUDY This review aims to provide scientific evidence related to the anticancer activities of medicinal plants used by Moroccan people as well as approving their efficiency as an alternative cancer therapy. METHODS An ethnopharmacological review approach was conducted by analyzing Moroccan published ethnobotanical surveys from 1991 to 2019 and consulting peer-reviewed articles worldwide to investigate the pharmacological, phytochemical, and clinical effects related to the anticancer activities. Plants with anticancer proprieties were classified into four groups: (a) plants only cited as anticancer, (b) plants pharmacologically investigated, (c) plants with bioactive compounds tested as anticancer, and (d) plants clinically investigated. RESULTS A total of 103 plant species belonging to 47 botanical families used by Moroccans to treat cancer have been recorded. Aristolochia fontanesii Boiss. & Reut, Marrubium vulgare L., and Allium sativum L. are the most referred species in Morocco. Medicinal plants used for cancer treatment were classified into four groups: 48 species were used traditionally as anticancer (group a), 41 species pharmacologically investigated for their anticancer activities (group b), 32 plants with bioactive compounds tested against cancer (group c), and eight plants were clinically investigated for their anticancer effects (group d). Out of 82 plants' extracts pharmacologically tested (from plants of group b), only 24 ones show a significant cytotoxic effect. A total of seventy-seven compounds are isolated from plants of group (c). However, only six ones were clinically evaluated, and most of them exhibit a beneficial effect on cancerous patients with few side effects. CONCLUSION Medicinal plants can be a promising candidate for alternative cancer therapy. Nevertheless, it is critical to increasing the clinical trials to confirm their beneficial effect on patients with cancer. Overall, this review can serve as a database for further studies.
Collapse
Affiliation(s)
- Ilyass Alami Merrouni
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
20
|
Andargie M, Vinas M, Rathgeb A, Möller E, Karlovsky P. Lignans of Sesame ( Sesamum indicum L.): A Comprehensive Review. Molecules 2021; 26:883. [PMID: 33562414 PMCID: PMC7914952 DOI: 10.3390/molecules26040883] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.
Collapse
Affiliation(s)
- Mebeaselassie Andargie
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Maria Vinas
- Centro para Investigaciones en Granos y Semillas (CIGRAS), University of Costa Rica, 2060 San Jose, Costa Rica;
| | - Anna Rathgeb
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Evelyn Möller
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| |
Collapse
|
21
|
Sesaminol prevents Parkinson's disease by activating the Nrf2-ARE signaling pathway. Heliyon 2020; 6:e05342. [PMID: 33163674 PMCID: PMC7609457 DOI: 10.1016/j.heliyon.2020.e05342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the degeneration of substantia nigra neurons due to oxidative stress. Sesaminol has strong antioxidant and anti-cancer effects. We investigated the preventive effect on PD as a new physiological action of sesaminol produced from sesaminol glycoside using in vitro and in vivo PD models. To prepare an in vitro PD model, 6-hydroxydopamine (6-OHDA) was added to human neuroblastoma (SH-SY5Y cells). The viability of SH-SY5Y cells decreased dose-dependently following 6-OHDA treatment, but the addition of sesaminol restored viability to the control level. 6-OHDA increased intracellular reactive oxygen species production, and the addition of sesaminol significantly suppressed this increase. No Nrf2 expression in the nucleus was observed in the control group, but a slight increase was observed in the 6-OHDA group. The sesaminol group showed strong expression of Nrf2 in the cytoplasm and nucleus. NAD(P)H: quinone oxidoreductase (NQO1) activity was enhanced in the 6-OHDA group and further enhanced in the sesaminol group. Furthermore, the neurotoxine rotenone was orally administrated to mice to prepare an in vivo PD model. The motor function of rotenone-treated mice was shorter than that of the control group, but a small amount of sesaminol restored it to the control level. The intestinal motility in the rotenone group was significantly lower than that in the control group, but it remained at the control level in the sesaminol group. The expression of α-synuclein in the substantia nigra increased in the rotenone group but decreased in the sesaminol group. The rotenone group exhibited shortening and damage to the colonic mucosa, but these abnormalities of the colonic mucosa were scarcely observed in the sesaminol group. These results suggest that sesaminol has a preventative effect on PD.
Collapse
|
22
|
Ono E, Waki T, Oikawa D, Murata J, Shiraishi A, Toyonaga H, Kato M, Ogata N, Takahashi S, Yamaguchi MA, Horikawa M, Nakayama T. Glycoside-specific glycosyltransferases catalyze regio-selective sequential glucosylations for a sesame lignan, sesaminol triglucoside. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1221-1233. [PMID: 31654577 DOI: 10.1111/tpj.14586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 05/10/2023]
Abstract
Sesame (Sesamum indicum) seeds contain a large number of lignans, phenylpropanoid-related plant specialized metabolites. (+)-Sesamin and (+)-sesamolin are major hydrophobic lignans, whereas (+)-sesaminol primarily accumulates as a water-soluble sesaminol triglucoside (STG) with a sugar chain branched via β1→2 and β1→6-O-glucosidic linkages [i.e. (+)-sesaminol 2-O-β-d-glucosyl-(1→2)-O-β-d-glucoside-(1→6)-O-β-d-glucoside]. We previously reported that the 2-O-glucosylation of (+)-sesaminol aglycon and β1→6-O-glucosylation of (+)-sesaminol 2-O-β-d-glucoside (SMG) are mediated by UDP-sugar-dependent glucosyltransferases (UGT), UGT71A9 and UGT94D1, respectively. Here we identified a distinct UGT, UGT94AG1, that specifically catalyzes the β1→2-O-glucosylation of SMG and (+)-sesaminol 2-O-β-d-glucosyl-(1→6)-O-β-d-glucoside [termed SDG(β1→6)]. UGT94AG1 was phylogenetically related to glycoside-specific glycosyltransferases (GGTs) and co-ordinately expressed with UGT71A9 and UGT94D1 in the seeds. The role of UGT94AG1 in STG biosynthesis was further confirmed by identification of a STG-deficient sesame mutant that predominantly accumulates SDG(β1→6) due to a destructive insertion in the coding sequence of UGT94AG1. We also identified UGT94AA2 as an alternative UGT potentially involved in sugar-sugar β1→6-O-glucosylation, in addition to UGT94D1, during STG biosynthesis. Yeast two-hybrid assays showed that UGT71A9, UGT94AG1, and UGT94AA2 were found to interact with a membrane-associated P450 enzyme, CYP81Q1 (piperitol/sesamin synthase), suggesting that these UGTs are components of a membrane-bound metabolon for STG biosynthesis. A comparison of kinetic parameters of these UGTs further suggested that the main β-O-glucosylation sequence of STG biosynthesis is β1→2-O-glucosylation of SMG by UGT94AG1 followed by UGT94AA2-mediated β1→6-O-glucosylation. These findings together establish the complete biosynthetic pathway of STG and shed light on the evolvability of regio-selectivity of sequential glucosylations catalyzed by GGTs.
Collapse
Affiliation(s)
- Eiichiro Ono
- Suntory Global Innovation Center (SIC) Ltd., Research Institute, Soraku-gun, Kyoto, 619-0284, Japan
| | - Toshiyuki Waki
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Daiki Oikawa
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Jun Murata
- Suntory Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, 619-0284, Japan
| | - Akira Shiraishi
- Suntory Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, 619-0284, Japan
| | - Hiromi Toyonaga
- Suntory Global Innovation Center (SIC) Ltd., Research Institute, Soraku-gun, Kyoto, 619-0284, Japan
| | - Masako Kato
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8517, Japan
| | - Naoki Ogata
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8517, Japan
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | | | - Manabu Horikawa
- Suntory Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, 619-0284, Japan
| | - Toru Nakayama
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
23
|
Anti-Inflammatory and Anticancer Properties of Bioactive Compounds from Sesamum indicum L.-A Review. Molecules 2019; 24:molecules24244426. [PMID: 31817084 PMCID: PMC6943436 DOI: 10.3390/molecules24244426] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
The use of foodstuff as natural medicines has already been established through studies demonstrating the pharmacological activities that they exhibit. Knowing the nutritional and pharmacological significance of foods enables the understanding of their role against several diseases. Among the foods that can potentially be considered as medicine, is sesame or Sesamum indicum L., which is part of the Pedaliaceae family and is composed of its lignans such as sesamin, sesamol, sesaminol and sesamolin. Its lignans have been widely studied and are known to possess antiaging, anticancer, antidiabetes, anti-inflammatory and antioxidant properties. Modern chronic diseases, which can transform into clinical diseases, are potential targets of these lignans. The prime example of chronic diseases is rheumatic inflammatory diseases, which affect the support structures and the organs of the body and can also develop into malignancies. In line with this, studies emphasizing the anti-inflammatory and anticancer activities of sesame have been discussed in this review.
Collapse
|
24
|
Drug-eluting coronary stents: insights from preclinical and pathology studies. Nat Rev Cardiol 2019; 17:37-51. [PMID: 31346257 DOI: 10.1038/s41569-019-0234-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 01/02/2023]
|
25
|
Hsu JL, Leu WJ, Hsu LC, Liu SP, Zhong NS, Guh JH. Para-Toluenesulfonamide Induces Anti-tumor Activity Through Akt-Dependent and -Independent mTOR/p70S6K Pathway: Roles of Lipid Raft and Cholesterol Contents. Front Pharmacol 2018; 9:1223. [PMID: 30555320 PMCID: PMC6282052 DOI: 10.3389/fphar.2018.01223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) cells can resist many cellular stresses to ensure survival. There is an unmet medical need to fight against the multiple adaptive mechanisms in cells to achieve optimal treatment in patients. Para-toluenesulfonamide (PTS) is a small molecule that inhibited cell proliferation of PC-3 and DU-145, two CRPC cell lines, through p21- and p27-independent G1 arrest of cell cycle in which cyclin D1 was down-regulated and Rb phosphorylation was inhibited. PTS also induced a significant loss of mitochondrial membrane potential that was attributed to up-regulation of both Bak and PUMA, two pro-apoptotic Bcl-2 family members, leading to apoptosis. PTS inhibited the phosphorylation of m-TOR, 4E-BP1, and p70S6K in both cell lines. Overexpression of constitutively active Akt rescued the inhibition of mTOR/p70S6K signaling in PC-3 cells indicating an Akt-dependent pathway. In contrast, Akt-independent effect was observed in DU-145 cells. Lipid rafts serve as functional platforms for multiple cellular signaling and trafficking processes. Both cell lines expressed raft-associated Akt, mTOR, and p70S6K. PTS induced decreases of expressions in both raft-associated total and phosphorylated forms of these kinases. PTS-induced inhibitory effects were rescued by supplement of cholesterol, an essential constituent in lipid raft, indicating a key role of cholesterol contents. Moreover, the tumor xenograft model showed that PTS inhibited tumor growth with a T/C (treatment/control) of 0.44 and a 56% inhibition of growth rate indicating the in vivo efficacy. In conclusion, the data suggest that PTS is an effective anti-tumor agent with in vitro and in vivo efficacies through inhibition of both Akt-dependent and -independent mTOR/p70S6K pathways. Moreover, disturbance of lipid raft and cholesterol contents may at least partly explain PTS-mediated anti-tumor mechanism.
Collapse
Affiliation(s)
- Jui-Ling Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Ping Liu
- Department of Urology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jih-Hwa Guh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Aono Y, Horinaka M, Iizumi Y, Watanabe M, Taniguchi T, Yasuda S, Sakai T. Sulindac sulfone inhibits the mTORC1 pathway in colon cancer cells by directly targeting voltage-dependent anion channel 1 and 2. Biochem Biophys Res Commun 2018; 505:1203-1210. [PMID: 30327144 DOI: 10.1016/j.bbrc.2018.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
Sulindac sulfone is a metabolite of sulindac, a non-steroidal anti-inflammatory drug (NSAID), without anti-inflammatory ability. However, sulindac sulfone has been reported to significantly reduce polyps in patients with colorectal adenomatous polyposis in clinical trials. Thus, sulindac sulfone is expected to be useful for the chemoprevention of neoplasia with few side effects related to anti-inflammatory ability. To date, the molecular targets of sulindac sulfone have not yet fully investigated. Therefore, in order to newly identify sulindac sulfone-binding proteins, we generated sulindac sulfone-fixed FG beads and purified sulindac sulfone-binding proteins from human colon cancer HT-29 cells. we identified mitochondrial outer membrane proteins voltage-dependent anion channel (VDAC) 1 and VDAC2 as novel molecular targets of sulindac sulfone, and sulindac sulfone directly bound to both VDAC1 and VDAC2. Double knockdown of VDAC1 and VDAC2 by siRNA inhibited growth and arrested the cell cycle at G1 phase in HT-29 cells. Depletion of VDAC1 and VDAC2 also inhibited the mTORC1 pathway with a reduction in cyclin D1. Interestingly, these effects were consistent with those of sulindac sulfone against human colon cancer cells, suggesting that sulindac sulfone negatively regulates the function of VDAC1 and VDAC2. In the present study, our data suggested that VDAC1 and VDAC2 are direct targets of sulindac sulfone which suppresses the mTORC1 pathway and induces G1 arrest.
Collapse
Affiliation(s)
- Yuichi Aono
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mano Horinaka
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yosuke Iizumi
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motoki Watanabe
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoyuki Taniguchi
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shusuke Yasuda
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
27
|
Ono H, Iizumi Y, Goi W, Sowa Y, Taguchi T, Sakai T. Ribosomal protein S3 regulates XIAP expression independently of the NF-κB pathway in breast cancer cells. Oncol Rep 2017; 38:3205-3210. [DOI: 10.3892/or.2017.6008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/15/2017] [Indexed: 11/06/2022] Open
|