1
|
Sarlak S, Pagès G, Luciano F. Enhancing radiotherapy techniques for Triple-Negative breast cancer treatment. Cancer Treat Rev 2025; 136:102939. [PMID: 40286498 DOI: 10.1016/j.ctrv.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer is the most prevalent cancer among women worldwide, with various subtypes that require distinct treatment approaches. Among these, Triple-Negative Breast Bancer (TNBC) is recognized as the most aggressive form, often associated with poor prognosis due to its lack of targeted therapeutic options. This review specifically focuses on Radiotherapy (RT) as a treatment modality for TNBC, evaluating recent advancements and ongoing challenges, particularly the issue of radioresistance. RT remains an essential part in the management of breast cancer, including TNBC. Over the years, multiple improvements have been made to enhance RT effectiveness and minimize resistance. The introduction of advanced techniques such as Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiosurgery (SRS) has significantly improved precision and reduced toxicity. More recently, proton radiation therapy, a novel RT modality, has been introduced, offering enhanced dose distribution and reducing damage to surrounding healthy tissues. Despite these technological advancements, a subset of TNBC patients continues to exhibit resistance to RT, leading to recurrence and poor treatment outcomes. To overcome radioresistance, there is an increasing interest in combining RT with targeted therapeutic agents that sensitize cancer cells to radiation. Radiosensitizing drugs have been explored to enhance the efficacy of RT by making cancer cells more susceptible to radiation-induced damage. Potential candidates include DNA damage repair inhibitors, immune checkpoint inhibitors, and small-molecule targeted therapies that interfere with key survival pathways in TNBC cells. In conclusion, while RT remains a crucial modality for TNBC treatment, radioresistance remains a significant challenge. Future research should focus on optimizing RT techniques while integrating radiosensitizing agents to improve treatment efficacy. By combining RT with targeted drug therapy, a more effective and personalized treatment approach can be developed, ultimately improving patient outcomes and reducing recurrence rates in TNBC.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Gilles Pagès
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Frédéric Luciano
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| |
Collapse
|
2
|
Sarlak S, Marotte D, Karaulic A, Sirera J, Pierantoni A, Tsai M, Sylvestre R, Molina C, Gouraud A, Bancaud A, Kousteridou P, Vidal M, Hérault J, Doyen J, Dufies M, Morfoisse F, Garmy‐Susini B, Luciano F, Pagès G. Comparative impact of proton versus photon irradiation on triple-negative breast cancer: Role of VEGFC in tumour aggressiveness. Clin Transl Med 2025; 15:e70330. [PMID: 40400121 PMCID: PMC12095174 DOI: 10.1002/ctm2.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025] Open
Affiliation(s)
- Saharnaz Sarlak
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | - Delphine Marotte
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | - Arthur Karaulic
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | - Jessy Sirera
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | - Alessandra Pierantoni
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | - Meng‐Chen Tsai
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | | | - Clement Molina
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | - Arthur Gouraud
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | | | | | - Marie Vidal
- Institut Méditerranéen de ProtonthérapieCentre Antoine LacassagneFédération Claude LalanneNiceFrance
| | - Joël Hérault
- Institut Méditerranéen de ProtonthérapieCentre Antoine LacassagneFédération Claude LalanneNiceFrance
| | - Jérôme Doyen
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | - Maeva Dufies
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | | | | | - Frédéric Luciano
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| | - Gilles Pagès
- University Cote d'Azur (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN)Centre Antoine LacassagneNiceFrance
| |
Collapse
|
3
|
Zhang A, Fan L, Liu Q, Zuo X, Zhu J. Immunological Effects of Proton Radiotherapy: New Opportunities and Challenges in Cancer Therapy. CANCER INNOVATION 2025; 4:e70003. [PMID: 40061827 PMCID: PMC11885950 DOI: 10.1002/cai2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025]
Abstract
Radiation therapy can be categorised by particle type into photon, proton and heavy ion therapies. Proton radiotherapy is highlighted due to its unique physical properties, such as the Bragg peak and minimal exit dose, which offer superior dose distribution. This makes proton radiotherapy especially advantageous for treating tumours near vital organs with complex structures, such as gliomas near the brain, nasopharyngeal carcinoma near the brainstem and mediastinal tumours near the heart. Proton irradiation can induce distant effects through immunogenicity within the target area. The reduced low-dose zone outside the target provides better lymphatic system protection and immune benefits. Additionally, combining proton radiotherapy with immunotherapy may offer further biological advantages. These features make proton radiotherapy a promising option in cancer treatment. This article may aid in the understanding of proton radiotherapy and its immune effects and lead to new effective options for tumour treatment.
Collapse
Affiliation(s)
- Anhang Zhang
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy (Shandong Cancer Hospital)JinanShandongChina
| | - Liyuan Fan
- Department of Radiation OncologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Qi Liu
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy (Shandong Cancer Hospital)JinanShandongChina
| | - Xiaoxin Zuo
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy (Shandong Cancer Hospital)JinanShandongChina
| | - Jian Zhu
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy (Shandong Cancer Hospital)JinanShandongChina
| |
Collapse
|
4
|
Wu CN, Wang JD, Chen WC, Lin CY, Chiu TJ, Yang YH, Chang JTC, Luo SD, Wang YM. Intensity-modulated proton therapy versus volumetric-modulated ARC therapy in patients with nasopharyngeal carcinoma: A long-term, multicenter cohort study. Radiother Oncol 2025; 202:110648. [PMID: 39586359 DOI: 10.1016/j.radonc.2024.110648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Data evaluating the impact of intensity-modulated proton therapy (IMPT) on survival among nasopharyngeal carcinoma (NPC) patients are limited. This study aims to elucidate the survival benefits and toxicity profiles of IMPT compared to modern photon therapy, volumetric-modulated arc therapy (VMAT), over an extended follow-up period. METHODS We analyzed data from NPC patients recorded in the Chang Gung Research Database. This analysis focused on individuals who received definitive radiotherapy, either IMPT or VMAT therapy, from 2016 to 2021. Patients with distant metastasis or concurrent other malignancies were excluded. We performed 1:1 matching based on stage, year of diagnosis, and age (± 10 years). Oncological outcomes and toxicities were assessed using Cox proportional hazards modeling. For sensitivity analysis, we employed inverse probability of treatment weighting and additional 1:2 matching. RESULTS Out of a 1,202 NPC patients' cohort, 276 were selected from a subset of 294 who received IMPT and matched with an equivalent number of patients receiving VMAT. IMPT was associated with improved oncological outcomes after matching, with an adjusted hazard ratio (aHR) of 0.31 (95% CI: 0.15-0.62) for all-cause mortality and an aHR of 0.58 (95% CI: 0.34-0.99) for disease recurrence. Additionally, IMPT was linked to a reduced incidence of feeding tube placement, with an aHR of 0.31 (95% CI: 0.18-0.55). Competing risk and sensitivity analyses corroborated these trends, though the significance for disease recurrence was not consistent. CONCLUSION IMPT was associated with significantly better overall survival outcomes and a lower incidence of dysphagia compared to VMAT in NPC patients. Further randomized trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Ching-Nung Wu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Der Wang
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Occupational and Environmental Medicine, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Ying Lin
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tai-Jan Chiu
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Hsu Yang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Medicine, College of Medicine, National SunYat-Sen University, Kaohsiung, Taiwan
| | - Yu-Ming Wang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Medicine, College of Medicine, National SunYat-Sen University, Kaohsiung, Taiwan; Department of Radiation Oncology & Proton and Radiation Therapy Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Pham TN, Coupey J, Rousseau M, Thariat J, Valable S. Revealing the effect of X-ray or proton brain irradiation on systemic inflammation and leukocyte subpopulation interplay in rodents. J Leukoc Biol 2024; 116:1530-1543. [PMID: 38952292 DOI: 10.1093/jleuko/qiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024] Open
Abstract
The absolute lymphocyte count (ALC), lymphocyte-to-monocyte ratio (LMR), and neutrophil-to-lymphocyte ratio (NLR) offer convenient means to assess systemic inflammation post-cancer treatment, which influences treatment outcomes. Understanding these biomarker variations and leukocyte subpopulation interplay is crucial for optimizing radiotherapy. Herein, leukocyte subpopulations (T-CD4+, T-CD8+, B cells, NK cells, neutrophils, monocytes) during and after brain irradiation (using X-rays or protons) in tumor-free mice were used to compute ALC, LMR, and NLR, on which radiation parameter influence was assessed by principal component analysis (PCA). NLR kinetics was further examined using modeling. Leukocyte subpopulation interplays and their response to radiation parameters were examined using PCA and correlation analysis. Under X-rays, ALC and LMR decreased, with ALC recovered to baseline after irradiation, but not LMR. Both X-rays and protons increased the NLR during irradiation, recovering in protons but not X-rays. Both irradiation volume and dose rate had a pronounced effect on the NLR. Leukocyte subpopulation interplay was observed under X-rays and protons, normalizing in the proton group by day 28. Lymphopenia was observed in all lymphocyte subpopulations under X-ray irradiation but not protons. The recovery patterns varied among the subpopulations. Neutrophil counts increased during irradiation, with the recovery of protons, but not X-rays, by day 28. Interplays between NK cells and myeloid subpopulations were evident under X-rays but not protons. Importantly, no interplay was detected between myeloid cells and T/B cells, indicating that LMR and NLR variations were primarily due to independent responses to brain irradiation. A tumor-free experimental mouse model was used to study the effects of brain radiotherapy on systemic immunity. When administering fractionated irradiation with a total dose of 20 Gy using a vertical beam to either the whole brain or hemi-brain, proton irradiation had fewer adverse impacts on the immune system compared to X-rays in tumor-free rodents.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
| | - Julie Coupey
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
| | - Marc Rousseau
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, Normandy, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
| |
Collapse
|
6
|
Pham TN, Coupey J, Ivanova V, Thariat J, Valable S. Differential plasma cytokine variation following X-ray or proton brain irradiation using machine-learning approaches. Cancer Radiother 2024; 28:474-483. [PMID: 39307604 DOI: 10.1016/j.canrad.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE X-ray and proton irradiation have been reported to induce distinct modifications in cytokine expression in vitro and in vivo, suggesting a dissimilar inflammatory response between X-rays and protons. We aimed to investigate the differences in cytokine profiles early following fractionated brain irradiation with X-rays or protons and their relationship with leukocyte subpopulations in rodents. MATERIALS AND METHODS Our study utilized data from 80 tumor-free mice subjected to X-ray or proton brain irradiation in four fractions of 2.5Gy. Sixteen non-irradiated mice were used as the controls. Blood was collected 12h postirradiation to examine the profile of 13 cytokines. Correlation analysis, principal component analysis (PCA), and tree-based modeling were used to investigate the relationship between cytokine levels and leukocyte subpopulation variations following irradiation in the blood. RESULTS Regardless of the irradiation type, brain irradiation resulted in a notable elevation in the plasma levels of IFN-γ and MCP-1. The use of either X-ray or proton beam had differential effect on plasma cytokine levels following brain irradiation. Specifically, X-ray irradiation was associated with significantly increased plasma levels of IFN-β, IL-12p70, and IL-23, along with a decreased level of IL-1α, in comparison to proton irradiation. Correlation analysis revealed distinct cytokine regulatory patterns between X-ray and proton brain irradiation. PCA highlighted the association of MCP-1, IL-6, TNF-α, IL-17A, and IFN-γ with neutrophils, monocytes, and naïve T-cells following X-ray irradiation. TNF-α and IL-23 levels correlated with naïve CD4+-cells following proton irradiation. Tree-based models demonstrated that high TNF-α level resulted in an increase in naïve T-cells, neutrophils, and monocytes, whereas low IL-6 level was associated with decreases in these cell counts. CONCLUSION Our findings revealed distinct inflammatory responses induced by X-ray irradiation in contrast to proton brain irradiation, as demonstrated by the differential regulation of cytokines in the bloodstream. Moreover, the study highlighted the association between specific cytokine levels and various leukocyte subpopulations. Further investigation is essential to accurately determine the impact of proton and X-ray brain irradiation on the inflammatory response and the efficacy of radiotherapy treatment.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France; Laboratoire de physique corpusculaire, UMR6534 IN2P3/EnsiCaen, Caen, France
| | - Julie Coupey
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France
| | - Viktoriia Ivanova
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire, UMR6534 IN2P3/EnsiCaen, Caen, France; Department of Radiation Oncology, Centre François-Baclesse, Caen, France.
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France.
| |
Collapse
|
7
|
Juvkam IS, Zlygosteva O, Sitarz M, Sørensen BS, Aass HCD, Edin NJ, Galtung HK, Søland TM, Malinen E. Proton- compared to X-irradiation leads to more acinar atrophy and greater hyposalivation accompanied by a differential cytokine response. Sci Rep 2024; 14:22311. [PMID: 39333378 PMCID: PMC11437014 DOI: 10.1038/s41598-024-73110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Proton therapy gives less dose to healthy tissue compared to conventional X-ray therapy, but systematic comparisons of normal tissue responses are lacking. The aim of this study was to investigate late tissue responses in the salivary glands following proton- or X-irradiation of the head and neck in mice. Moreover, we aimed at investigating molecular responses by monitoring the cytokine levels in serum and saliva. Female C57BL/6J mice underwent local fractionated irradiation with protons or X-rays to the maximally tolerated acute level. Saliva and serum were collected before and at different time points after irradiation to assess salivary gland function and cytokine expression. To study late responses in the major salivary glands, histological analyses were performed on tissues collected at day 105 after onset of irradiation. Saliva volume after proton and X-irradiation was significantly lower than for controls and remained reduced at all time points after irradiation. Protons caused reduced saliva production and fewer acinar cells in the submandibular glands compared to X-rays at day 105. X-rays induced a stronger inflammatory cytokine response in saliva compared to protons. This work supports previous preclinical findings and indicate that the relative biological effectiveness of protons in normal tissue might be higher than the commonly used value of 1.1.
Collapse
Affiliation(s)
- Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Christian D Aass
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Radiation Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Lillo S, Mirandola A, Vai A, Camarda AM, Ronchi S, Bonora M, Ingargiola R, Vischioni B, Orlandi E. Current Status and Future Directions of Proton Therapy for Head and Neck Carcinoma. Cancers (Basel) 2024; 16:2085. [PMID: 38893203 PMCID: PMC11171191 DOI: 10.3390/cancers16112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The growing interest in proton therapy (PT) in recent decades is justified by the evidence that protons dose distribution allows maximal dose release at the tumor depth followed by sharp distal dose fall-off. But, in the holistic management of head and neck cancer (HNC), limiting the potential of PT to a mere dosimetric advantage appears reductive. Indeed, the precise targeting of PT may help evaluate the effectiveness of de-escalation strategies, especially for patients with human papillomavirus associated-oropharyngeal cancer (OPC) and nasopharyngeal cancer (NPC). Furthermore, PT could have potentially greater immunogenic effects than conventional photon therapy, possibly enhancing both the radiotherapy (RT) capability to activate anti-tumor immune response and the effectiveness of immunotherapy drugs. Based on these premises, the aim of the present paper is to conduct a narrative review reporting the safety and efficacy of PT compared to photon RT focusing on NPC and OPC. We also provide a snapshot of ongoing clinical trials comparing PT with photon RT for these two clinical scenarios. Finally, we discuss new insights that may further develop clinical research on PT for HNC.
Collapse
Affiliation(s)
- Sara Lillo
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.); (A.V.)
| | - Alessandro Vai
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.); (A.V.)
| | - Anna Maria Camarda
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Dok R, Vanderwaeren L, Verstrepen KJ, Nuyts S. Radiobiology of Proton Therapy in Human Papillomavirus-Negative and Human Papillomavirus-Positive Head and Neck Cancer Cells. Cancers (Basel) 2024; 16:1959. [PMID: 38893080 PMCID: PMC11171379 DOI: 10.3390/cancers16111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Photon-based radiotherapy (XRT) is one of the most frequently used treatment modalities for HPV-negative and HPV-positive locally advanced head and neck squamous cell carcinoma (HNSCC). However, locoregional recurrences and normal RT-associated toxicity remain major problems for these patients. Proton therapy (PT), with its dosimetric advantages, can present a solution to the normal toxicity problem. However, issues concerning physical delivery and the lack of insights into the underlying biology of PT hamper the full exploitation of PT. Here, we assessed the radiobiological processes involved in PT in HPV-negative and HPV-positive HNSCC cells. We show that PT and XRT activate the DNA damage-repair and stress response in both HPV-negative and HPV-positive cells to a similar extent. The activation of these major radiobiological mechanisms resulted in equal levels of clonogenic survival and mitotic cell death. Altogether, PT resulted in similar biological effectiveness when compared to XRT. These results emphasize the importance of dosimetric parameters when exploiting the potential of increased clinical effectiveness and reduced normal tissue toxicity in PT treatment.
Collapse
Affiliation(s)
- Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Chimote AA, Lehn MA, Bhati J, Mascia AE, Sertorio M, Lamba MA, Ionascu D, Tang AL, Langevin SM, Khodoun MV, Wise-Draper TM, Conforti L. Proton Treatment Suppresses Exosome Production in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:1008. [PMID: 38473367 PMCID: PMC10931005 DOI: 10.3390/cancers16051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Proton therapy (PT) is emerging as an effective and less toxic alternative to conventional X-ray-based photon therapy (XRT) for patients with advanced head and neck squamous cell carcinomas (HNSCCs) owing to its clustered dose deposition dosimetric characteristics. For optimal efficacy, cancer therapies, including PT, must elicit a robust anti-tumor response by effector and cytotoxic immune cells in the tumor microenvironment (TME). While tumor-derived exosomes contribute to immune cell suppression in the TME, information on the effects of PT on exosomes and anti-tumor immune responses in HNSCC is not known. In this study, we generated primary HNSCC cells from tumors resected from HNSCC patients, irradiated them with 5 Gy PT or XRT, and isolated exosomes from cell culture supernatants. HNSCC cells exposed to PT produced 75% fewer exosomes than XRT- and non-irradiated HNSCC cells. This effect persisted in proton-irradiated cells for up to five days. Furthermore, we observed that exosomes from proton-irradiated cells were identical in morphology and immunosuppressive effects (suppression of IFN-γ release by peripheral blood mononuclear cells) to those of photon-irradiated cells. Our results suggest that PT limits the suppressive effect of exosomes on cancer immune surveillance by reducing the production of exosomes that can inhibit immune cell function.
Collapse
Affiliation(s)
- Ameet A. Chimote
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.A.C.); (J.B.)
| | - Maria A. Lehn
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (M.A.L.); (T.M.W.-D.)
| | - Jay Bhati
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.A.C.); (J.B.)
| | - Anthony E. Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.E.M.); (M.S.); (M.A.L.); (D.I.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.E.M.); (M.S.); (M.A.L.); (D.I.)
| | - Michael A. Lamba
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.E.M.); (M.S.); (M.A.L.); (D.I.)
| | - Dan Ionascu
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.E.M.); (M.S.); (M.A.L.); (D.I.)
| | - Alice L. Tang
- Department of Otolarynogology, Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Scott M. Langevin
- Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Marat V. Khodoun
- Division of Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Trisha M. Wise-Draper
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (M.A.L.); (T.M.W.-D.)
| | - Laura Conforti
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.A.C.); (J.B.)
| |
Collapse
|
11
|
Zlygosteva O, Juvkam IS, Arous D, Sitarz M, Sørensen BS, Ankjærgaard C, Andersen CE, Galtung HK, Søland TM, Edin NJ, Malinen E. Acute normal tissue responses in a murine model following fractionated irradiation of the head and neck with protons or X-rays. Acta Oncol 2023; 62:1574-1580. [PMID: 37703217 DOI: 10.1080/0284186x.2023.2254481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. MATERIALS AND METHODS Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. RESULTS The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. CONCLUSION With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.
Collapse
Affiliation(s)
- Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Delmon Arous
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus E Andersen
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Eirik Malinen
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Gordon K, Smyk D, Gulidov I, Golubev K, Fatkhudinov T. An Overview of Head and Neck Tumor Reirradiation: What Has Been Achieved So Far? Cancers (Basel) 2023; 15:4409. [PMID: 37686685 PMCID: PMC10486419 DOI: 10.3390/cancers15174409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The recurrence rate of head and neck cancers (HNCs) after initial treatment may reach 70%, and poor prognosis is reported in most cases. Curative options for recurrent HNCs mainly depend on the treatment history and the recurrent tumor localization. Reirradiation for HNCs is effective and has been included in most guidelines. However, the option remains clinically challenging due to high incidence of severe toxicity, especially in cases of quick infield recurrence. Recent technical advances in radiation therapy (RT) provide the means for upgrade in reirradiation protocols. While the majority of hospitals stay focused on conventional and widely accessible modulated RTs, the particle therapy options emerge as tolerable and providing further treatment opportunities for recurrent HNCs. Still, the progress is impeded by high heterogeneity of the data and the lack of large-scale prospective studies. This review aimed to summarize the outcomes of reirradiation for HNCs in the clinical perspective.
Collapse
Affiliation(s)
- Konstantin Gordon
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia; (D.S.); (I.G.); (K.G.)
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 8, 117198 Moscow, Russia;
| | - Daniil Smyk
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia; (D.S.); (I.G.); (K.G.)
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 8, 117198 Moscow, Russia;
| | - Igor Gulidov
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia; (D.S.); (I.G.); (K.G.)
| | - Kirill Golubev
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia; (D.S.); (I.G.); (K.G.)
| | - Timur Fatkhudinov
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 8, 117198 Moscow, Russia;
| |
Collapse
|
13
|
Jumaniyazova E, Smyk D, Vishnyakova P, Fatkhudinov T, Gordon K. Photon- and Proton-Mediated Biological Effects: What Has Been Learned? Life (Basel) 2022; 13:30. [PMID: 36675979 PMCID: PMC9866122 DOI: 10.3390/life13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The current understanding of the effects of radiation is gradually becoming broader. However, it still remains unclear why some patients respond to radiation with a pronounced positive response, while in some cases the disease progresses. This is the motivation for studying the effects of radiation therapy not only on tumor cells, but also on the tumor microenvironment, as well as studying the systemic effects of radiation. In this framework, we review the biological effects of two types of radiotherapy: photon and proton irradiations. Photon therapy is a commonly used type of radiation therapy due to its wide availability and long-term history, with understandable and predictable outcomes. Proton therapy is an emerging technology, already regarded as the method of choice for many cancers in adults and children, both dosimetrically and biologically. This review, written after the analysis of more than 100 relevant literary sources, describes the local effects of photon and proton therapy and shows the mechanisms of tumor cell damage, interaction with tumor microenvironment cells and effects on angiogenesis. After systematic analysis of the literature, we can conclude that proton therapy has potentially favorable toxicological profiles compared to photon irradiation, explained mainly by physical but also biological properties of protons. Despite the fact that radiobiological effects of protons and photons are generally similar, protons inflict reduced damage to healthy tissues surrounding the tumor and hence promote fewer adverse events, not only local, but also systemic.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Daniil Smyk
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Konstantin Gordon
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia
| |
Collapse
|
14
|
Shiau C, Su J, Guo JA, Hong TS, Wo JY, Jagadeesh KA, Hwang WL. Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution. Front Oncol 2022; 12:929950. [PMID: 36185212 PMCID: PMC9524152 DOI: 10.3389/fonc.2022.929950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most treatment refractory and lethal malignancies. The diversity of endothelial cell (EC) lineages in the tumor microenvironment (TME) impacts the efficacy of antineoplastic therapies, which in turn remodel EC states and distributions. Here, we present a single-cell resolution framework of diverse EC lineages in the PDAC TME in the context of neoadjuvant chemotherapy, radiotherapy, and losartan. We analyzed a custom single-nucleus RNA-seq dataset derived from 37 primary PDAC specimens (18 untreated, 14 neoadjuvant FOLFIRINOX + chemoradiotherapy, 5 neoadjuvant FOLFIRINOX + chemoradiotherapy + losartan). A single-nucleus transcriptome analysis of 15,185 EC profiles revealed two state programs (ribosomal, cycling), four lineage programs (capillary, arterial, venous, lymphatic), and one program that did not overlap significantly with prior signatures but was enriched in pathways involved in vasculogenesis, stem-like state, response to wounding and hypoxia, and endothelial-to-mesenchymal transition (reactive EndMT). A bulk transcriptome analysis of two independent cohorts (n = 269 patients) revealed that the lymphatic and reactive EndMT lineage programs were significantly associated with poor clinical outcomes. While losartan and proton therapy were associated with reduced lymphatic ECs, these therapies also correlated with an increase in reactive EndMT. Thus, the development and inclusion of EndMT-inhibiting drugs (e.g., nintedanib) to a neoadjuvant chemoradiotherapy regimen featuring losartan and/or proton therapy may be most effective in depleting both lymphatic and reactive EndMT populations and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Carina Shiau
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Jennifer Su
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Jimmy A. Guo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, United States
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jennifer Y. Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Karthik A. Jagadeesh
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: William L. Hwang, ; Karthik A. Jagadeesh,
| | - William L. Hwang
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: William L. Hwang, ; Karthik A. Jagadeesh,
| |
Collapse
|
15
|
Hagege A, Saada-Bouzid E, Ambrosetti D, Rastoin O, Boyer J, He X, Rousset J, Montemagno C, Doyen J, Pedeutour F, Parola J, Bourget I, Luciano F, Bozec A, Cao Y, Pagès G, Dufies M. Targeting of c-MET and AXL by cabozantinib is a potential therapeutic strategy for patients with head and neck cell carcinoma. Cell Rep Med 2022; 3:100659. [PMID: 36130479 PMCID: PMC9512663 DOI: 10.1016/j.xcrm.2022.100659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/14/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Local or metastatic relapse following surgery, radiotherapy, and cisplatin is the leading cause of death in patients with head and neck squamous cell carcinoma (HNSCC). Our study shows overexpression of c-MET and AXL in HNSCC cells and patients resistant to radiotherapy and cisplatin. We demonstrate that cabozantinib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), c-MET, and AXL, decreases migration, invasion, and proliferation and induces mitotic catastrophe and apoptotic cell death of naive and radiotherapy- and cisplatin-resistant HNSCC cells. Cabozantinib inhibits the growth and metastatic spread of experimental HNSCC in zebrafish and the growth of experimental HNSCC in mice by blocking tumor cell proliferation and angiogenesis. The efficacy of cabozantinib is also confirmed on viable sections of surgically removed specimens of human HNSCC and on a patient who relapses after five lines of treatment. These results suggest that cabozantinib is relevant for the treatment of patients with HNSCC after relapse under radiotherapy and cisplatin. AXL and c-MET are overexpressed in radiotherapy- and cisplatin-resistant HNSCC Overexpression of AXL and c-MET contributes to tumor aggressiveness and poor prognosis Cabozantinib has anti-tumor and anti-metastatic efficacy in mice and zebrafish models Cabozantinib efficacy is shown on HNSCC biopsies and in one patient after several relapses
Collapse
|
16
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
High-Throughput 3D Tumor Spheroid Array Platform for Evaluating Sensitivity of Proton-Drug Combinations. Int J Mol Sci 2022; 23:ijms23020587. [PMID: 35054773 PMCID: PMC8775525 DOI: 10.3390/ijms23020587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines—Fadu and Cal27—cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.
Collapse
|
18
|
Montemagno C, Luciano F, Pagès G. Opposing Roles of Vascular Endothelial Growth Factor C in Metastatic Dissemination and Resistance to Radio/Chemotherapy: Discussion of Mechanisms and Therapeutic Strategies. Methods Mol Biol 2022; 2475:1-23. [PMID: 35451746 DOI: 10.1007/978-1-0716-2217-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many cancers can be cured by combining surgery with healthy margins, radiation therapy and chemotherapies. However, when the pathology becomes metastatic, cancers can be incurable. The best situation involves "chronicization" of the pathology even for several years. However, most of the time, patients die within a few months. To disseminate throughout the body, cancer cells must enter the vascular network and seed in another organ. However, during the initiation of cancer processes, the tumor is avascular. Later, the production of angiogenic factors causes tumor neovascularization and subsequent growth and spread, and the presence of blood and/or lymphatic vessels is associated with high grade tumors. Moreover, during tumor development, cancer cells enter lymphatic vessels and disseminate via the lymphatic network. Hence, blood and lymphatic vessels are considered as main routes of metastatic dissemination and cancer aggressiveness. Therefore, anti-angiogenic drugs entered in the therapeutic arsenal from 2004. Despite undeniable effects however, they are far from curative and only prolong survival by a few months.Recently, the concepts of angio/lymphangiogenesis were revisited by analyzing the role of blood and lymphatic vessels at the initiation steps of tumor development. During this period, cancer cells enter lymphatic vessels and activate immune cells within lymph nodes to initiate an antitumor immune response. Moreover, the presence of blood vessels at the proximity of the initial nodule allows immune cells to reach the tumor and eliminate cancer cells. Therefore, blood and lymphatic networks have a beneficial role during a defined time window. Considering only their detrimental effects is a concern. Hence, administration of anti-angio/lymphangiogenic therapies should be revisited to avoid the destruction of networks involved in antitumor immune response. This review mainly focuses on one of the main drivers of lymphangiogenesis, the VEGFC and its beneficial and pejorative roles according to the grade of aggressive tumors.
Collapse
Affiliation(s)
- Christopher Montemagno
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Frédéric Luciano
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Gilles Pagès
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France.
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France.
- Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
19
|
Mohamed N, Lee A, Lee NY. Proton beam radiation therapy treatment for head and neck cancer. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nader Mohamed
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
| | - Anna Lee
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Nancy Y. Lee
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
| |
Collapse
|
20
|
Gordon KB, Smyk DI, Gulidov IA. Proton Therapy in Head and Neck Cancer Treatment: State of the Problem and Development Prospects (Review). Sovrem Tekhnologii Med 2021; 13:70-80. [PMID: 34603766 PMCID: PMC8482826 DOI: 10.17691/stm2021.13.4.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Proton therapy (PT) due to dosimetric characteristics (Bragg peak formation, sharp dose slowdown) is currently one of the most high-tech techniques of radiation therapy exceeding the standards of photon methods. In recent decades, PT has traditionally been used, primarily, for head and neck cancers (HNC) including skull base tumors. Regardless of the fact that recently PT application area has significantly expanded, HNC still remain a leading indication for proton radiation since PT’s physic-dosimetric and radiobiological advantages enable to achieve the best treatment results in these tumors. The present review is devoted to PT usage in HNC treatment in the world and Russian medicine, the prospects for further technique development, the assessment of PT’s radiobiological features, a physical and dosimetric comparison of protons photons distribution. The paper shows PT’s capabilities in the treatment of skull base tumors, HNC (nasal cavity, paranasal sinuses, nasopharynx, oropharynx, and laryngopharynx, etc.), eye tumors, sialomas. The authors analyze the studies on repeated radiation and provide recent experimental data on favorable profile of proton radiation compared to the conventional radiation therapy. The review enables to conclude that currently PT is a dynamic radiation technique opening up new opportunities for improving therapy of oncology patients, especially those with HNC.
Collapse
Affiliation(s)
- K B Gordon
- Senior Researcher, Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| | - D I Smyk
- Junior Researcher, Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| | - I A Gulidov
- Professor, Head of the Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| |
Collapse
|
21
|
Chua KLM, Chu PL, Tng DJH, Soo KC, Chua MLK. Repurposing Proton Beam Therapy through Novel Insights into Tumour Radioresistance. Clin Oncol (R Coll Radiol) 2021; 33:e469-e481. [PMID: 34509347 DOI: 10.1016/j.clon.2021.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Despite improvements in radiotherapy, radioresistance remains an important clinical challenge. Radioresistance can be mediated through enhanced DNA damage response mechanisms within the tumour or through selective pressures exerted by the tumour microenvironment (TME). The effects of the TME have in recent times gained increased attention, in part due to the success of immune modulating strategies, but also through improved understanding of the downstream effects of hypoxia and dysregulated wound healing processes on mediating radioresistance. Although we have a better appreciation of these molecular mechanisms, efforts to address them through novel combination approaches have been scarce, owing to limitations of photon therapy and concerns over toxicity. At the same time, proton beam therapy (PBT) represents an advancement in radiotherapy technologies. However, early clinical results have been mixed and the clinical strategies around optimal use and patient selection for PBT remain unclear. Here we highlight the role that PBT can play in addressing radioresistance, through better patient selection, and by providing an improved toxicity profile for integration with novel agents. We will also describe the developments around FLASH PBT. Through close examination of its normal tissue-sparing effects, we will highlight how FLASH PBT can facilitate combination strategies to tackle radioresistance by further improving toxicity profiles and by directly mediating the mechanisms of radioresistance.
Collapse
Affiliation(s)
- K L M Chua
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore; Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - P L Chu
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - D J H Tng
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - K C Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - M L K Chua
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore; Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
22
|
Montemagno C, Serrano B, Durivault J, Nataf V, Mocquot F, Amblard R, Vial V, Ronco C, Benhida R, Dufies M, Faraggi M, Pagès G. In vivo monitoring of the therapeutic efficacy of a CXCR1/2 inhibitor with 18F-FDG PET/CT imaging in experimental head and neck carcinoma: A feasibility study. Biochem Biophys Rep 2021; 27:101098. [PMID: 34430714 PMCID: PMC8374394 DOI: 10.1016/j.bbrep.2021.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/09/2022] Open
Abstract
The chemokine receptors CXCR1/2 play a key role in the aggressiveness of several types of cancers including head and neck squamous cell carcinomas (HNSCCs). In HNSCCs, CXCR1/2 signaling promotes cell proliferation and angiogenesis leading to tumor growth and metastasis. The competitive inhibitor of CXCR1/2, C29, inhibits the growth of experimental HNSCCs in mice. However, a non-invasive tool to monitor treatment response is essential to implement the use of C29 in clinical practices. 18F-FDG PET/CT is a gold-standard tool for the staging and the post-therapy follow-up of HNSCCs patients. Our study aimed to perform the first in vivo monitoring of C29 efficacy by non-invasive 18F-FDG PET/CT imaging. Mice bearing experimental HNSCCs (CAL33) were injected with 18F-FDG (T0) and thereafter treated (n = 7 mice, 9 tumors, 50 mg/kg by gavage) or not (n = 7 mice, 10 tumors) with C29 for 4 consecutive days. Final 18F-FDG-tumor uptake was determined at day 4 (TF). The average relative change (TF-T0) in 18F-FDG tumor uptake was +25.85 ± 10.93 % in the control group vs -5.72 ± 10.07 % in the C29-treated group (p < 0.01). These results were consistent with the decrease of the tumor burden and with the decrease of tumor proliferating Ki67+ cells. These results paved the way for the use of 18F-FDG to monitor tumor response following C29 treatment.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco
- Institute for Research on Cancer and Aging of Nice, Université Cote D’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200, Nice, France
| | - Benjamin Serrano
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco
| | - Valérie Nataf
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - François Mocquot
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Régis Amblard
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Valérie Vial
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco
| | - Cyril Ronco
- Université Côte D'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108, Nice, France
| | - Rachid Benhida
- Université Côte D'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108, Nice, France
| | - Maeva Dufies
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco
- Institute for Research on Cancer and Aging of Nice, Université Cote D’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200, Nice, France
| |
Collapse
|
23
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
24
|
Spehner L, Boustani J, Cabel L, Doyen J, Vienot A, Borg C, Kim S. Present and Future Research on Anal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:3895. [PMID: 34359795 PMCID: PMC8345786 DOI: 10.3390/cancers13153895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinoma of the anus is an orphan disease, and after more than three decades of no substantial advances in disease knowledge and treatment, it is finally gaining momentum with the arrival of a taxane-based chemotherapy and immunotherapy. Currently, about 20 combination clinical trials with an anti-PD1/L1 are ongoing in localized and advanced stages, in association with radiotherapy, chemotherapy, tumor vaccines, anti-CTLA4, anti-EGFR, or antiangiogenic molecules. Moreover, a new biomarker with high sensitivity and specificity such as HPV circulating tumor DNA (HPV ctDNA) by liquid biopsy, is improving not only the prognostic measurement but also the treatment strategy guidance for this disease. Finally, better understanding of potential targets is reshaping the present and future clinical research in this unique, HPV genotype-16-related disease in the great majority of patients.
Collapse
Affiliation(s)
- Laurie Spehner
- Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique Research Unit INSERM UMR1098, University of Bourgogne Franche-Comté, 25020 Besançon, France; (L.S.); (A.V.); (C.B.)
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
| | - Jihane Boustani
- Department of Radiotherapy, University Hospital of Besançon, 25030 Besançon, France;
| | - Luc Cabel
- Department of Medical Oncology, Curie Institute, 75005 Paris, France;
| | - Jérôme Doyen
- Department of Medical Oncology, Centre Antoine-Lacassagne, 06189 Nice, France;
| | - Angélique Vienot
- Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique Research Unit INSERM UMR1098, University of Bourgogne Franche-Comté, 25020 Besançon, France; (L.S.); (A.V.); (C.B.)
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
- Clinical Investigational Center, INSERM CIC-1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon, France
| | - Christophe Borg
- Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique Research Unit INSERM UMR1098, University of Bourgogne Franche-Comté, 25020 Besançon, France; (L.S.); (A.V.); (C.B.)
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
- Clinical Investigational Center, INSERM CIC-1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon, France
| | - Stefano Kim
- Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique Research Unit INSERM UMR1098, University of Bourgogne Franche-Comté, 25020 Besançon, France; (L.S.); (A.V.); (C.B.)
- Department of Medical Oncology, University Hospital of Besançon, 25030 Besançon, France
- Clinical Investigational Center, INSERM CIC-1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon, France
- Department of Oncology and Radiotherapy, Nord Franche Comté Hospital, 25209 Montbéliard, France
| |
Collapse
|
25
|
Gordon K, Gulidov I, Semenov A, Golovanova O, Koryakin S, Makeenkova T, Ivanov S, Kaprin A. Proton re-irradiation of unresectable recurrent head and neck cancers. ACTA ACUST UNITED AC 2021; 26:203-210. [PMID: 34211770 DOI: 10.5603/rpor.a2021.0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
Background This study presents a retrospective analysis (efficacy and toxicity) of outcomes in patients with unresectable recurrence of previously irradiated head and neck (H&N) cancers treated with proton therapy. Locoregional recurrence is the main pattern of failure in the treatment of H&N cancers. Proton re-irradiation in patients with relapse after prior radiotherapy might be valid as promising as a challenging treatment option. Materials and methods From November 2015 to January 2020, 30 patients with in-field recurrence of head and neck cancer, who were not suitable for surgery due to medical contraindications, tumor localization, or extent, received re-irradiation with intensity-modulated proton therapy (IMPT). Sites of retreatment included the aerodigestive tract (60%) and the base of skull (40%). The median total dose of prior radiotherapy was 55.0 Gy. The median time to the second course was 38 months. The median re-irradiated tumor volume was 158.1 cm3. Patients were treated with 2.0, 2.4, and 3.0 GyRBE per fraction, with a median equivalent dose (EQD2) of 57.6 Gy (α/β = 10). Radiation-induced toxicity was recorded according to the RTOG/EORTC criteria. Results The 1- and 2-year local control (LC), progression-free survival (PFS), and overall survival (OS) were 52.6/21.0, 21.9/10.9, and 73.4/8.4%, respectively, with a median follow-up time of 21 months. The median overall survival was 16 months. Acute grade 3 toxicity was observed in one patient (3.3%). There were five late severe side effects (16.6%), with one death associated with re-irradiation. Conclusion Re-irradiation with a proton beam can be considered a safe and efficient treatment even for a group of patients with unresectable recurrent H&N cancers.
Collapse
Affiliation(s)
- Konstantin Gordon
- Department of Proton and Photon Therapy, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Igor Gulidov
- Radiation Therapy Department, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Alexey Semenov
- Department of Proton and Photon Therapy, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Olga Golovanova
- Radiophysics Department, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Sergey Koryakin
- Radiophysics Department, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Tatyana Makeenkova
- Department of Proton and Photon Therapy, A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Andrey Kaprin
- National Medical Research Center of Radiology, Obninsk, Russia
| |
Collapse
|
26
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
27
|
Verhaegen F, Wanders RG, Wolfs C, Eekers D. Considerations for shoot-through FLASH proton therapy. Phys Med Biol 2021; 66:06NT01. [PMID: 33571981 DOI: 10.1088/1361-6560/abe55a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To discuss several pertinent issues related to shoot-through FLASH proton therapy based on an illustrative case. METHODS We argue that with the advent of FLASH proton radiotherapy and due to the issues associated with conventional proton radiotherapy regarding the uncertainties of positioning of the Bragg peaks, the difficulties of in vivo verification of the dose distribution, the use of treatment margins and the uncertainties surrounding linear energy transfer (LET) and relative biological effectiveness (RBE), a special mode of shoot-through FLASH proton radiotherapy should be investigated. In shoot-through FLASH, the proton beams have sufficient energy to reach the distal exit side of the patient. Due to the FLASH sparing effect of normal tissues at both the proximal and distal side of tumors, radiotherapy plans can be developed that meet current planning constraints and issues regarding RBE can be avoided. RESULTS A preliminary proton plan for a neurological tumor in close proximity to various organs at risk (OAR) with strict dose constraints was studied. A plan with four beams mostly met the constraints for the OAR, using a treatment planning system that was not optimized for this novel treatment modality. When new treatment planning algorithms would be developed for shoot-through FLASH, constraints would be easier to meet. The shoot-through FLASH plan led to a significant effective dose reduction in large parts of the healthy tissue. The plan had no uncertainties associated to Bragg peak positioning, needed in principle no large proximal or distal margins and LET increases near the Bragg peak became irrelevant. CONCLUSION Shoot-through FLASH proton radiotherapy may be an interesting treatment modality to explore further. It would remove some of the current sources of uncertainty in proton radiotherapy. An additional advantage could be that portal dosimetry may be possible with beams penetrating the patient and impinging on a distally placed imaging detector, potentially leading to a practical treatment verification method. With current proton accelerator technology, trials could be conducted for neurological, head&neck and thoracic cancers. For abdominal and pelvic cancer a higher proton energy would be required.
Collapse
Affiliation(s)
- Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
28
|
Cui Y, Huang S, Cao J, Ye J, Huang H, Liao D, Yang Y, Chen W, Pu R. Combined targeting of vascular endothelial growth factor C (VEGFC) and P65 using miR-27b-3p agomir and lipoteichoic acid in the treatment of gastric cancer. J Gastrointest Oncol 2021; 12:121-132. [PMID: 33708430 DOI: 10.21037/jgo-21-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Gastric cancer is the second leading cancer-related mortality worldwide and more effective treatment strategies are urgently needed to combat the disease. Using lipoteichoic acid (LTA) and miR-27b-3p agomir, we aimed to assess the efficacy of this combination of therapies in treating gastric cancer. Methods The RNA levels of miR-27b-3p, FOXO3, MET, KRAS, vascular endothelial growth factor C (VEGFC), TSC1, and P65 were analyzed by quantified-PCR (Q-PCR) and the cell viability of AGS cells was analyzed by MTT. Confirm Luciferase reporter assays were used to explore the putative miR-27b-3p binding sites and Western blot analyzed the protein level of GAPDH, VEGFC, P65, AKT, and phosphorylated-AKT (p-AKT). The level of P65 in both the cytoplasm and nucleus of AGS cells was visualized by immunofluorescence assay. Subcutaneous xenograft models of gastric cancer were established, and mice were treated with miR-27b-3p agomir, LTA, or both. Hematoxylin-eosin staining and Ki-67 immunohistochemistry analysis of tumor tissues were then performed. Results The results showed that the decreased expression of miR-27b-3p in gastric cancer cell lines inhibited the viability of AGS cells, and VEGFC was confirmed as the target of miR-27b-3p. In addition, ectopic expression of miR-27b-3p significantly inhibited the AKT pathway in AGS and N87 cells, and LTA suppressed the proliferation of gastric cancer cells by inhibiting the NF-κB pathway. In an established xenograft model, both miR-27b-3p agomir alone and LTA treatment alone inhibited tumor growth and treatment which combined the two showed an even stronger inhibitory effect. Conclusions Taken together, the combined use of LTA and miR-27b-3p agomir exhibited a synergistic effect in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yejia Cui
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China
| | - Shaolong Huang
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China.,Department of Clinical Laboratory, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Jin Cao
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China
| | - Jinjun Ye
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China
| | - Haohai Huang
- Department of Clinical Pharmacy, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China
| | - Dan Liao
- Department of Gynecology and Obstetrics, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China
| | - Yufeng Yang
- Department of Pathology, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China
| | - Wanchan Chen
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China
| | - Rong Pu
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan Third Clinical Hospital of Guangdong Medical University, Dongguan, China
| |
Collapse
|
29
|
Byrne NM, Tambe P, Coulter JA. Radiation Response in the Tumour Microenvironment: Predictive Biomarkers and Future Perspectives. J Pers Med 2021; 11:jpm11010053. [PMID: 33467153 PMCID: PMC7830490 DOI: 10.3390/jpm11010053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) is a primary treatment modality for a number of cancers, offering potentially curative outcomes. Despite its success, tumour cells can become resistant to RT, leading to disease recurrence. Components of the tumour microenvironment (TME) likely play an integral role in managing RT success or failure including infiltrating immune cells, the tumour vasculature and stroma. Furthermore, genomic profiling of the TME could identify predictive biomarkers or gene signatures indicative of RT response. In this review, we will discuss proposed mechanisms of radioresistance within the TME, biomarkers that may predict RT outcomes, and future perspectives on radiation treatment in the era of personalised medicine.
Collapse
|
30
|
Wang L, Fossati P, Paganetti H, Ma L, Gillison M, Myers JN, Hug E, Frank SJ. The Biological Basis for Enhanced Effects of Proton Radiation Therapy Relative to Photon Radiation Therapy for Head and Neck Squamous Cell Carcinoma. Int J Part Ther 2021; 8:3-13. [PMID: 34285931 PMCID: PMC8270087 DOI: 10.14338/ijpt-20-00070.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) often present as local-regionally advanced disease at diagnosis, for which a current standard of care is x-ray-based radiation therapy, with or without chemotherapy. This approach provides effective local regional tumor control, but at the cost of acute and late toxicity that can worsen quality of life and contribute to mortality. For patients with human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (SCC) in particular, for whom the prognosis is generally favorable, de-escalation of the radiation dose to surrounding normal tissues without diminishing the radiation dose to tumors is desired to mitigate radiation-related toxic effects. Proton radiation therapy (PRT) may be an excellent de-escalation strategy because of its physical properties (that eliminate unnecessary radiation to surrounding tissues) and because of its biological properties (including tumor-specific variations in relative biological effectiveness [RBE] and linear energy transfer [LET]), in combination with concurrent systemic therapy. Early clinical evidence has shown that compared with x-ray-based radiation therapy, PRT offers comparable disease control with fewer and less severe treatment-related toxicities that can worsen the quality of life for patients with HNSCC. Herein, we review aspects of the biological basis of enhanced HNSCC cell response to proton versus x-ray irradiation in terms of radiation-induced gene and protein expression, DNA damage and repair, cell death, tumor immune responses, and radiosensitization of tumors.
Collapse
Affiliation(s)
- Li Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura Gillison
- Department of Thoracic-Head & Neck Med Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N. Myers
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugen Hug
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Steven J. Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Li X, Lee A, Cohen MA, Sherman EJ, Lee NY. Past, present and future of proton therapy for head and neck cancer. Oral Oncol 2020; 110:104879. [PMID: 32650256 DOI: 10.1016/j.oraloncology.2020.104879] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Proton therapy has recently gained substantial momentum worldwide due to improved accessibility to the technology and sustained interests in its advantage of better tissue sparing compared to traditional photon radiation. Proton therapy in head and neck cancer has a unique advantage given the complex anatomy and proximity of targets to vital organs. As head and neck cancer patients are living longer due to epidemiological shifts and advances in treatment options, long-term toxicity from radiation treatment has become a major concern that may be better mitigated by proton therapy. With increased utilization of proton therapy, new proton centers breaking ground, and as excitement about the technology continue to increase, we aim to comprehensively review the evidence of proton therapy in major subsites within the head and neck, hoping to facilitate a greater understanding of the full risks and benefits of proton therapy for head and neck cancer.
Collapse
Affiliation(s)
- Xingzhe Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Anna Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Marc A Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, United States
| | - Eric J Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States.
| |
Collapse
|
32
|
Wu PH, Onodera Y, Giaccia AJ, Le QT, Shimizu S, Shirato H, Nam JM. Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiation. Commun Biol 2020; 3:620. [PMID: 33110168 PMCID: PMC7591908 DOI: 10.1038/s42003-020-01339-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Enhanced invasiveness, a critical determinant of metastasis and poor prognosis, has been observed in cancer cells that survive cancer therapy, including radiotherapy. Here, we show that invasiveness in radiation-surviving cancer cells is associated with alterations in lysosomal exocytosis caused by the enhanced activation of Arl8b, a small GTPase that regulates lysosomal trafficking. The binding of Arl8b with its effector, SKIP, is increased after radiation through regulation of BORC-subunits. Knockdown of Arl8b or BORC-subunits decreases lysosomal exocytosis and the invasiveness of radiation-surviving cells. Notably, high expression of ARL8B and BORC-subunit genes is significantly correlated with poor prognosis in breast cancer patients. Sp1, an ATM-regulated transcription factor, is found to increase BORC-subunit genes expression after radiation. In vivo experiments show that ablation of Arl8b decreases IR-induced invasive tumor growth and distant metastasis. These findings suggest that BORC-Arl8b-mediated lysosomal trafficking is a target for improving radiotherapy by inhibiting invasive tumor growth and metastasis.
Collapse
Affiliation(s)
- Ping-Hsiu Wu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shinichi Shimizu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
| |
Collapse
|
33
|
Sertorio M, Nowrouzi A, Akbarpour M, Chetal K, Salomonis N, Brons S, Mascia A, Ionascu D, McCauley S, Kupneski T, Köthe A, Debus J, Perentesis JP, Abdollahi A, Zheng Y, Wells SI. Differential transcriptome response to proton versus X-ray radiation reveals novel candidate targets for combinatorial PT therapy in lymphoma. Radiother Oncol 2020; 155:293-303. [PMID: 33096164 DOI: 10.1016/j.radonc.2020.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Knowledge of biological responses to proton therapy (PT) in comparison to X-ray remains in its infancy. Identification of PT specific molecular signals is an important opportunity for the discovery of biomarkers and synergistic drugs to advance clinical application. Since PT is used for the treatment of lymphoma, we report here transcriptomic responses of lymphoma cell lines to PT vs X-ray and identify potential therapeutic targets. MATERIALS AND METHODS Two lymphoma cell lines of human (BL41) and murine (J3D) origin were irradiated by X-ray and PT. Differential transcriptome regulation was quantified by RNA sequencing for each radiation type at 12 hours post irradiation. Gene-set enrichment analysis revealed deregulated molecular pathways and putative targets for lymphoma cell sensitization to PT. RESULTS Transcriptomic gene set enrichment analyses uncovered pathways that contribute to the unfolded protein response (UPR) and mitochondrial transport. Functional validation at multiple time points demonstrated increased UPR activation and decreased protein translation, perhaps due to increased oxidative stress and oxidative protein damage after PT. PPARgamma was identified as a potential regulator of the PT transcriptomic response. Inhibition of PPARgamma by two compounds, T0070907 and SR2595, sensitized lymphoma cells to PT. CONCLUSIONS Proton vs X-ray radiation leads to the transcriptional regulation of a specific subset of genes in line with diminished protein translation and UPR activation that may be due to oxidative stress. This study demonstrates that different radiation qualities trigger distinct cellular responses in lymphoma cells, and identifies PPARgamma inhibition as a potential strategy for the sensitization of lymphoma to PT.
Collapse
Affiliation(s)
- Mathieu Sertorio
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| | - Ali Nowrouzi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Mahdi Akbarpour
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, USA
| | - Dan Ionascu
- Department of Radiation Oncology, University of Cincinnati College of Medicine, USA
| | - Shelby McCauley
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Taylor Kupneski
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Andreas Köthe
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Germany; German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Germany
| | - Yi Zheng
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| |
Collapse
|
34
|
VEGFC negatively regulates the growth and aggressiveness of medulloblastoma cells. Commun Biol 2020; 3:579. [PMID: 33067561 PMCID: PMC7568583 DOI: 10.1038/s42003-020-01306-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma (MB), the most common brain pediatric tumor, is a pathology composed of four molecular subgroups. Despite a multimodal treatment, 30% of the patients eventually relapse, with the fatal appearance of metastases within 5 years. The major actors of metastatic dissemination are the lymphatic vessel growth factor, VEGFC, and its receptors/co-receptors. Here, we show that VEGFC is inversely correlated to cell aggressiveness. Indeed, VEGFC decreases MB cell proliferation and migration, and their ability to form pseudo-vessel in vitro. Irradiation resistant-cells, which present high levels of VEGFC, lose the ability to migrate and to form vessel-like structures. Thus, irradiation reduces MB cell aggressiveness via a VEGFC-dependent process. Cells intrinsically or ectopically overexpressing VEGFC and irradiation-resistant cells form smaller experimental tumors in nude mice. Opposite to the common dogma, our results give strong arguments in favor of VEGFC as a negative regulator of MB growth. Manon Penco-Campillo, Yannick Comoglio et al. show that VEGFC decreases the proliferation and migration of medulloblastoma cells, as well as their ability to form pseudo vessels. Cells expressing high levels of VEGFC also form smaller tumors when subcutaneously injected into the flank of nude mice, thus highlighting a negative regulatory role for VEGFC on tumor growth.
Collapse
|
35
|
Nielsen S, Bassler N, Grzanka L, Swakon J, Olko P, Horsman MR, Sørensen BS. Proton scanning and X-ray beam irradiation induce distinct regulation of inflammatory cytokines in a preclinical mouse model. Int J Radiat Biol 2020; 96:1238-1244. [PMID: 32780616 DOI: 10.1080/09553002.2020.1807644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Conventional X-ray radiotherapy induces a pro-inflammatory response mediated by altered expression of inflammation-regulating cytokines. Proton scanning and X-ray irradiation produce distinct changes to cytokine gene expression in vitro suggesting that proton beam therapy may induce an inflammatory response dissimilar to that of X-ray radiation. The purpose of the present study was to determine whether proton scanning beam radiation and conventional X-ray photon radiation would induce differential regulation of circulating cytokines in vivo. MATERIALS AND METHODS Female CDF1 mice were irradiated locally at the right hind leg using proton pencil beam scanning or X-ray photons. Blood samples were obtained from two separate mice groups. Samples from one group were drawn by retro-orbital puncture 16 months post irradiation, while samples from the other group were drawn 5 and 30 days post irradiation. Concentration of the cytokines IL-6, IL-1β, IL-10, IL-17A, IFN-γ, and TNFα was measured in plasma using bead-based immunoassays. RESULTS The cytokines IL-6, IL-1β, IL-10, IFN-γ, and TNFα were expressed at lower levels in plasma samples from proton-irradiated mice compared with X-ray-irradiated mice 16 months post irradiation. The same cytokines were downregulated in proton-irradiated mice 5 days post irradiation when compared to controls, while at day 30 expression had increased to the same level or higher. X-ray radiation did not markedly change expression levels at days 5 and 30. CONCLUSIONS The inflammatory response to proton and X-ray irradiation seem to be distinct as the principal pro-inflammatory cytokines are differentially regulated short- and long-term following irradiation. Both the development of normal tissue damage and efficacy of immunotherapy could be influenced by an altered inflammatory response to irradiation.
Collapse
Affiliation(s)
- Steffen Nielsen
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Deiter N, Chu F, Lenards N, Hunzeker A, Lang K, Mundy D. Evaluation of replanning in intensity-modulated proton therapy for oropharyngeal cancer: Factors influencing plan robustness. Med Dosim 2020; 45:384-392. [PMID: 32660887 DOI: 10.1016/j.meddos.2020.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 12/01/2022]
Abstract
The head and neck (H&N) region is frequently replanned during intensity-modulated proton therapy (IMPT), but replanning disrupts clinical workflow and presents additional burden on patients. The purpose of this study was to establish a standard treatment planning approach to minimize H&N replanning by identifying a correlation between dosimetric variables and replan frequency. In a retrospective study of 27 bilateral oropharyngeal cancer patients treated with IMPT at a single institution, cases were evaluated using Fisher's exact tests and logistic regression for a significant relationship between replan frequency and the following variables: beam number, clinical target volume (CTV) coverage, presence of dental fillings, and robustness. The reason and timing for replan initiation, and patient immobilization was also recorded to identify trends. Results suggested that beam number, CTV coverage, presence of dental fillings, and the initial robustness curve on the high-dose CTV did not individually contribute to replanning frequency. Setup variation in the soft tissue of the neck was the most prominent reason for replanning. A lack of correlation between the number of replans and the studied dosimetric variables highlights the necessity of verification CT and adaptive replanning in IMPT of H&N cancer. Departments may therefore benefit from a methodical replan workflow. One development showing potential to enhance clinical replan processes is machine learning-based automatic adaptive replanning.
Collapse
Affiliation(s)
- Noelle Deiter
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| | - Felicia Chu
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA.
| | - Nishele Lenards
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| | - Ashley Hunzeker
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| | - Karen Lang
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| | - Daniel Mundy
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| |
Collapse
|
37
|
Chargari C, Levy A, Paoletti X, Soria JC, Massard C, Weichselbaum RR, Deutsch E. Methodological Development of Combination Drug and Radiotherapy in Basic and Clinical Research. Clin Cancer Res 2020; 26:4723-4736. [PMID: 32409306 DOI: 10.1158/1078-0432.ccr-19-4155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Abstract
Newer technical improvements in radiation oncology have been rapidly implemented in recent decades, allowing an improved therapeutic ratio. The development of strategies using local and systemic treatments concurrently, mainly targeted therapies, has however plateaued. Targeted molecular compounds and immunotherapy are increasingly being incorporated as the new standard of care for a wide array of cancers. A better understanding of possible prior methodology issues is therefore required and should be integrated into upcoming early clinical trials including individualized radiotherapy-drug combinations. The outcome of clinical trials is influenced by the validity of the preclinical proofs of concept, the impact on normal tissue, the robustness of biomarkers and the quality of the delivery of radiation. Herein, key methodological aspects are discussed with the aim of optimizing the design and implementation of future precision drug-radiotherapy trials.
Collapse
Affiliation(s)
- Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Xavier Paoletti
- University of Versailles St. Quentin, France
- Institut Curie INSERM U900, Biostatistics for Personalized Medicine Team, St. Cloud, France
| | | | - Christophe Massard
- Université Paris-Sud, Orsay, France
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
38
|
Torres ERS, Hall R, Bobe G, Choi J, Impey S, Pelz C, Lindner JR, Stevens JF, Raber J. Integrated Metabolomics-DNA Methylation Analysis Reveals Significant Long-Term Tissue-Dependent Directional Alterations in Aminoacyl-tRNA Biosynthesis in the Left Ventricle of the Heart and Hippocampus Following Proton Irradiation. Front Mol Biosci 2019; 6:77. [PMID: 31552266 PMCID: PMC6746933 DOI: 10.3389/fmolb.2019.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, an untargeted metabolomics approach was used to assess the effects of proton irradiation (1 Gy of 150 MeV) on the metabolome and DNA methylation pattern in the murine hippocampus and left ventricle of the heart 22 weeks following exposure using an integrated metabolomics-DNA methylation analysis. The integrated metabolomics-DNA methylation analysis in both tissues revealed significant alterations in aminoacyl-tRNA biosynthesis, but the direction of change was tissue-dependent. Individual and total amino acid synthesis were downregulated in the left ventricle of proton-irradiated mice but were upregulated in the hippocampus of proton-irradiated mice. Amino acid tRNA synthetase methylation was mostly downregulated in the hippocampus of proton-irradiated mice, whereas no consistent methylation pattern was observed for amino acid tRNA synthetases in the left ventricle of proton-irradiated mice. Thus, proton irradiation causes long-term changes in the left ventricle and hippocampus in part through methylation-based epigenetic modifications. Integrated analysis of metabolomics and DNA methylation is a powerful approach to obtain converging evidence of pathways significantly affected. This in turn might identify biomarkers of the radiation response, help identify therapeutic targets, and assess the efficacy of mitigators directed at those targets to minimize, or even prevent detrimental long-term effects of proton irradiation on the heart and the brain.
Collapse
Affiliation(s)
- Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Reed Hall
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Soren Impey
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Carl Pelz
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan R Lindner
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.,Division of Neuroscience ONPRC, Departments of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
39
|
Dufies M, Grytsai O, Ronco C, Camara O, Ambrosetti D, Hagege A, Parola J, Mateo L, Ayrault M, Giuliano S, Grépin R, Lagarde N, Montes M, Auberger P, Demange L, Benhida R, Pagès G. New CXCR1/CXCR2 inhibitors represent an effective treatment for kidney or head and neck cancers sensitive or refractory to reference treatments. Theranostics 2019; 9:5332-5346. [PMID: 31410218 PMCID: PMC6691587 DOI: 10.7150/thno.34681] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
Clear cell Renal Cell (RCC) and Head and Neck Squamous Cell Carcinomas (HNSCC) are characterized by a pro-angiogenic/pro-inflammatory context. Despite conventional or targeted therapies, metastatic RCC and HNSCC remain incurable. Alternative treatments to reference therapies (sunitinib, a multi tyrosine kinase inhibitor for RCC or cisplatin for HNSCC) are urgently needed on relapse. Here, we described the relevance of targeting the ELR+CXCL cytokines receptors, CXCR1/2, for the treatment of these two cancer types. Methods: The relevance to patient treatment was evaluated by correlating the ELR+CXCL/CXCR1/2 levels to survival using online available data. We report herein the synthesis of new pharmacological inhibitors of CXCR1/2 with anti-proliferation/survival activity. The latter was evaluated with the XTT assay with leukemic, breast, RCC and HNSCC cell lines. Their relevance as an alternative treatment was tested on sunitinib- and cisplatin- resistant cells. The most efficient compound was then tested in a mouse model of RCC and HNSCC. Results: RCC and HNSCC expressed the highest amounts of CXCR1/2 of all cancers. High levels of ELR+CXCL cytokines (CXCL1, 2, 3, 5, 6, 7, 8) correlated to shorter survival. Among the 33 synthesized and tested molecules, compound C29 reduced ELR+CXCL/CXCR1/2-dependent proliferation and migration of endothelial cells. C29 exerted an anti-proliferation/survival activity on a panel of cancer cells including naive and resistant RCC and HNSCC cells. C29 reduced the growth of experimental RCC and HNSCC tumors by decreasing tumor cell proliferation, angiogenesis and ELR+/CXCL-mediated inflammation. Conclusion: Our study highlights the relevance of new CXCR1/2 inhibitors for the treatment of RCC or HNSCC as first-line treatment or at relapse on reference therapies.
Collapse
|
40
|
Carrier F, Liao Y, Mendenhall N, Guerrieri P, Todor D, Ahmad A, Dominello M, Joiner MC, Burmeister J. Three Discipline Collaborative Radiation Therapy (3DCRT) Special Debate: I would treat prostate cancer with proton therapy. J Appl Clin Med Phys 2019; 20:7-14. [PMID: 31166085 PMCID: PMC6612688 DOI: 10.1002/acm2.12621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- France Carrier
- Department of Radiation OncologyUniversity of MarylandBaltimoreMDUSA
| | - Yixiang Liao
- Department of Radiation OncologyRush University Medical CenterChicagoILUSA
| | | | | | - Dorin Todor
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Anis Ahmad
- Department of Radiation OncologyUniversity of Miami, Sylvester Comprehensive Cancer Center, Miller School of MedicineMiamiFLUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
41
|
Lockney NA, Zhang M, Morris CG, Nichols RC, Okunieff P, Swarts S, Zhang Z, Zhang B, Zhang A, Hoppe BS. Radiation-induced tumor immunity in patients with non-small cell lung cancer. Thorac Cancer 2019; 10:1605-1611. [PMID: 31228354 PMCID: PMC6610279 DOI: 10.1111/1759-7714.13122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/19/2023] Open
Abstract
Background Radiation‐induced tumor immunity (RITI) influences primary tumor growth and development of metastases in preclinical cancer models with conventional radiotherapy. Antigen‐specific immune responses have also been shown for prostate cancer treated with radiotherapy. We examined whether RITI can be induced in patients with non‐small cell lung cancer (NSCLC) following proton radiotherapy. Methods Pre‐ and post‐radiotherapy plasma samples from 26 patients with nonmetastatic NSCLC who received radiotherapy between 2010 and 2012 were evaluated by western blotting for IgG and IgM bands to assess RITI response to tumor antigens from lung cancer cell lines. Statistical analysis was used to evaluate any correlation among IgG or IgM and clinical outcomes. Results Twenty‐one patients received proton therapy at 2 GyRBE/fraction (n = 17) or 6–12 Gy/fraction (n = 4); five received photon therapy at 2–2.5 GyRBE/fraction. Compared with the pretreatment baseline, new IgG or IgM binding was detected in 27% and 50% of patients, respectively. New IgG bands were detected in the 25–37 kD, 50–75 kD, and 75–100 kD ranges. New IgM bands were detected in the 20–25 kD, 25–37 kD, 37–50 kD, 50–75 kD, and 75–100 kD ranges. There was no difference in IgG and/or IgM RITI response in patients treated with photons versus protons, or in patients who received SBRT compared to standard fractionation (P > 0.05). There was no difference in overall survival, metastasis‐free survival, or local control based on IgG and/or IgM RITI response (P > 0.05). Conclusion RITI can be induced in patients with NSCLC through upregulated IgG and/or IgM. RITI response was not associated with proton versus photon therapy or with clinical outcomes in this small cohort and should be examined in a larger cohort in future studies.
Collapse
Affiliation(s)
- Natalie A Lockney
- Department of Radiation Oncology, University of Florida, Gainesville, USA
| | - Mei Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, USA
| | | | | | - Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, USA
| | - Steven Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, USA
| | - Zhenhuan Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, USA
| | - Bingrong Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, USA
| | - Amy Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, USA
| | - Bradford S Hoppe
- Department of Radiation Oncology, University of Florida, Gainesville, USA
| |
Collapse
|
42
|
Boustani J, Grapin M, Laurent PA, Apetoh L, Mirjolet C. The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E860. [PMID: 31226866 PMCID: PMC6627091 DOI: 10.3390/cancers11060860] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Historically, the 4Rs and then the 5Rs of radiobiology explained the effect of radiation therapy (RT) fractionation on the treatment efficacy. These 5Rs are: Repair, Redistribution, Reoxygenation, Repopulation and, more recently, intrinsic Radiosensitivity. Advances in radiobiology have demonstrated that RT is able to modify the tumor micro environment (TME) and to induce a local and systemic (abscopal effect) immune response. Conversely, RT is able to increase some immunosuppressive barriers, which can lead to tumor radioresistance. Fractionation and dose can affect the immunomodulatory properties of RT. Here, we review how fractionation, dose and timing shape the RT-induced anti-tumor immune response and the therapeutic effect of RT. We discuss how immunomodulators targeting immune checkpoint inhibitors and the cGAS/STING (cyclic GMP-AMP Synthase/Stimulator of Interferon Genes) pathway can be successfully combined with RT. We then review current trials evaluating the RT/Immunotherapy combination efficacy and suggest new innovative associations of RT with immunotherapies currently used in clinic or in development with strategic schedule administration (fractionation, dose, and timing) to reverse immune-related radioresistance. Overall, our work will present the existing evidence supporting the claim that the reactivation of the anti-tumor immune response can be regarded as the 6th R of Radiobiology.
Collapse
Affiliation(s)
- Jihane Boustani
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | - Mathieu Grapin
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | - Pierre-Antoine Laurent
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | | | - Céline Mirjolet
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
- INSERM, U1231 Dijon, France.
| |
Collapse
|
43
|
Konings K, Vandevoorde C, Belmans N, Vermeesen R, Baselet B, Walleghem MV, Janssen A, Isebaert S, Baatout S, Haustermans K, Moreels M. The Combination of Particle Irradiation With the Hedgehog Inhibitor GANT61 Differently Modulates the Radiosensitivity and Migration of Cancer Cells Compared to X-Ray Irradiation. Front Oncol 2019; 9:391. [PMID: 31139573 PMCID: PMC6527843 DOI: 10.3389/fonc.2019.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the advantages of charged particles compared to conventional radiotherapy, a vast increase is noted in the use of particle therapy in the clinic. These advantages include an improved dose deposition and increased biological effectiveness. Metastasis is still an important cause of mortality in cancer patients and evidence has shown that conventional radiotherapy can increase the formation of metastasizing cells. An important pathway involved in the process of metastasis is the Hedgehog (Hh) signaling pathway. Recent studies have demonstrated that activation of the Hh pathway, in response to X-rays, can lead to radioresistance and increased migratory, and invasive capabilities of cancer cells. Here, we investigated the effect of X-rays, protons, and carbon ions on cell survival, migration, and Hh pathway gene expression in prostate cancer (PC3) and medulloblastoma (DAOY) cell lines. In addition, the potential modulation of cell survival and migration by the Hh pathway inhibitor GANT61 was investigated. We found that in both cell lines, carbon ions were more effective in decreasing cell survival and migration as well as inducing more significant alterations in the Hh pathway genes compared to X-rays or protons. In addition, we show here for the first time that the Hh inhibitor GANT61 is able to sensitize DAOY medulloblastoma cells to particle radiation (proton and carbon ion) but not to conventional X-rays. This important finding demonstrates that the results of combination treatment strategies with X-ray radiotherapy cannot be automatically extrapolated to particle therapy and should be investigated separately. In conclusion, combining GANT61 with particle radiation could offer a benefit for specific cancer types with regard to cancer cell survival.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium.,Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Niels Belmans
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium.,Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Merel Van Walleghem
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Sofie Isebaert
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| |
Collapse
|
44
|
Ndiaye PD, Dufies M, Giuliano S, Douguet L, Grépin R, Durivault J, Lenormand P, Glisse N, Mintcheva J, Vouret-Craviari V, Mograbi B, Wurmser M, Ambrosetti D, Rioux-Leclercq N, Maire P, Pagès G. VEGFC acts as a double-edged sword in renal cell carcinoma aggressiveness. Am J Cancer Res 2019; 9:661-675. [PMID: 30809300 PMCID: PMC6376471 DOI: 10.7150/thno.27794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxic zones are common features of metastatic tumors. Due to inactivation of the von Hippel-Lindau gene (VHL), renal cell carcinomas (RCC) show constitutive stabilization of the alpha subunit of the hypoxia-inducible factor (HIF). Thus, RCC represents a model of chronic hypoxia. Development of the lymphatic network is dependent on vascular endothelial growth factor C (VEGFC) and lies at the front line of metastatic spreading. Here, we addressed the role of VEGFC in RCC aggressiveness and the regulation of its expression in hypoxia. Methods: Transcriptional and post transcriptional regulation of VEGFC expression was evaluated by qPCR and with reporter genes. The involvement of HIF was evaluated using a siRNA approach. Experimental RCC were performed with immuno-competent/deficient mice using human and mouse cells knocked-out for the VEGFC gene by a CRISPR/Cas9 method. The VEGFC axis was analyzed with an online available data base (TCGA) and using an independent cohort of patients. Results: Hypoxia induced VEGFC protein expression but down-regulated VEGFC gene transcription and mRNA stability. Increased proliferation, migration, over-activation of the AKT signaling pathway and enhanced expression of mesenchymal markers characterized VEGFC-/- cells. VEGFC-/- cells did not form tumors in immuno-deficient mice but developed aggressive tumors in immuno-competent mice. These tumors showed down-regulation of markers of activated lymphocytes and M1 macrophages, and up-regulation of M2 macrophages markers and programmed death ligand 1 (PDL1). Over-expression of lymphangiogenic genes including VEGFC was linked to increased disease-free and overall survival in patients with non-metastatic tumors, whereas its over-expression correlated with decreased progression-free and overall survival of metastatic patients. Conclusion: Our study revisited the admitted dogma linking VEGFC to tumor aggressiveness. We conclude that targeting VEGFC for therapy must be considered with caution.
Collapse
|
45
|
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome 2018; 29:843-865. [PMID: 30178305 PMCID: PMC6267675 DOI: 10.1007/s00335-018-9777-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
Abstract
Radiation is an important component of cancer treatment with more than half of all patients receive radiotherapy during their cancer experience. While the impact of radiation on tumour morphology is routinely examined in the pre-clinical and clinical setting, the impact of radiation on the tumour microenvironment and more specifically the inflammatory/immune response is less well characterised. Inflammation is a key contributor to short- and long-term cancer eradication, with significant tumour and normal tissue consequences. Therefore, the role of radiation in modulating the inflammatory response is highly topical given the current wave of targeted and immuno-therapeutic treatments for cancer. This review provides a general overview of how radiation modulates the inflammatory and immune response—(i) how radiation induces the inflammatory/immune system, (ii) the cellular changes that take place, (iii) how radiation dose delivery affects the immune response, and (iv) a discussion on research directions to improve patient survival, reduce side effects, improve quality of life, and reduce financial costs in the immediate future. Harnessing the benefits of radiation on the immune response will enhance its maximal therapeutic benefit and reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia. .,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia. .,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia.,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michael Back
- Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Tom Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Connie I Diakos
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
46
|
Almeida IP, Schyns LEJR, Vaniqui A, van der Heyden B, Dedes G, Resch AF, Kamp F, Zindler JD, Parodi K, Landry G, Verhaegen F. Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment. ACTA ACUST UNITED AC 2018; 63:115008. [DOI: 10.1088/1361-6560/aabb60] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Okunieff P, Casey-Sawicki K, Lockney NA, Hoppe BS, Enderling H, Pinnix C, Welsh J, Krishnan S, Yothers G, Brown M, Knox S, Bristow R, Spellman P, Mitin T, Nabavizadeh N, Jaboin J, Manning HC, Feng F, Galbraith S, Solanki AA, Harkenrider MM, Tuli R, Decker RH, Finkelstein SE, Hsu CC, Ha CS, Jagsi R, Shumway D, Daly M, Wang TJC, Fitzgerald TJ, Laurie F, Marshall DT, Raben D, Constine L, Thomas CR, Kachnic LA. Report from the SWOG Radiation Oncology Committee: Research Objectives Workshop 2017. Clin Cancer Res 2018; 24:3500-3509. [PMID: 29661779 DOI: 10.1158/1078-0432.ccr-17-3202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
Abstract
The Radiation Therapy Committee of SWOG periodically evaluates its strategic plan in an effort to maintain a current and relevant scientific focus, and to provide a standard platform for future development of protocol concepts. Participants in the 2017 Strategic Planning Workshop included leaders in cancer basic sciences, molecular theragnostics, pharmaceutical and technology industries, clinical trial design, oncology practice, and statistical analysis. The committee discussed high-priority research areas, such as optimization of combined modality therapy, radiation oncology-specific drug design, identification of molecular profiles predictive of radiation-induced local or distant tumor responses, and methods for normal tissue-specific mitigation of radiation toxicity. The following concepts emerged as dominant questions ready for national testing: (i) what is the role of radiotherapy in the treatment of oligometastatic, oligorecurrent, and oligoprogressive disease? (ii) How can combined modality therapy be used to enhance systemic and local response? (iii) Can we validate and optimize liquid biopsy and other biomarkers (such as novel imaging) to supplement current response criteria to guide therapy and clinical trial design endpoints? (iv) How can we overcome deficiencies of randomized survival endpoint trials in an era of increasing molecular stratification factors? And (v) how can we mitigate treatment-related side effects and maximize quality of life in cancer survivors? The committee concluded that many aspects of these questions are ready for clinical evaluation and example protocol concepts are provided that could improve rates of cancer cure and quality of survival. Clin Cancer Res; 24(15); 3500-9. ©2018 AACR.
Collapse
Affiliation(s)
- Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida.
| | - Katherine Casey-Sawicki
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Natalie A Lockney
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Bradford S Hoppe
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Chelsea Pinnix
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - James Welsh
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Sunil Krishnan
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Greg Yothers
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Martin Brown
- Departments of Radiation Oncology and Neurology, Stanford University, Palo Alto, California
| | - Susan Knox
- Departments of Radiation Oncology and Neurology, Stanford University, Palo Alto, California
| | - Robert Bristow
- Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Paul Spellman
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Timur Mitin
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon
| | - Jerry Jaboin
- Department of Radiation Medicine, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon
| | - H Charles Manning
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Felix Feng
- Department of Urology, University of California, San Francisco, California
| | | | - Abhishek A Solanki
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Roy H Decker
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| | | | - Charles C Hsu
- Department of Radiation Oncology, University of Arizona Cancer Center, Tucson, Arizona
| | - Chul S Ha
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, Texas
| | - Reshma Jagsi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Dean Shumway
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Megan Daly
- Department of Radiation Oncology, University of California, San Diego, California
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Thomas J Fitzgerald
- Department of Radiation Oncology, University of Massachusetts Medical School, North Worcester, Massachusetts
| | - Fran Laurie
- Department of Radiation Oncology, University of Massachusetts Medical School, North Worcester, Massachusetts
| | - David T Marshall
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Louis Constine
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon
| | - Lisa A Kachnic
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|