1
|
An Z, Wang J, Li C, Tang C. Signal integrator function of CXXC5 in Cancer. Cell Commun Signal 2025; 23:25. [PMID: 39806388 PMCID: PMC11730785 DOI: 10.1186/s12964-024-02005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
CXXC type zinc finger protein 5 (CXXC5) is a member of the ZF-CXXC family and plays a pivotal role in signal integration and information transfer within cell signaling network. CXXC5 acts as a regulator in various physiological processes, and abnormalities in its protein structure or function have been linked to multiple pathological processes. In this article, we correspondingly describe the composition of the ZF-CXXC family, emphatically introducing the features of the CXXC5 gene and protein, review the role of CXXC5 in cellular signaling networks, the physiological and pathological processes associated with CXXC5 dysregulation, and particularly focus on the correlation between CXXC5 and cancers. Finally, we summarize the current therapies targeting CXXC5 and their potential applications, and discuss the intriguing findings from current studies, and the opportunities and challenges in future.
Collapse
Affiliation(s)
- Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiepu Wang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chengzuo Li
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
2
|
FitzGerald LM, Jung CH, Wong EM, Joo JE, Bassett JK, Dowty JG, Wang X, Dai JY, Stanford JL, O'Callaghan N, Nottle T, Pedersen J, Giles GG, Southey MC. Detection of differentially methylated CpGs between tumour and adjacent benign cells in diagnostic prostate cancer samples. Sci Rep 2024; 14:17877. [PMID: 39095452 PMCID: PMC11297152 DOI: 10.1038/s41598-024-66488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Differentially methylated CpG sites (dmCpGs) that distinguish prostate tumour from adjacent benign tissue could aid in the diagnosis and prognosis of prostate cancer. Previously, the identification of such dmCpGs has only been undertaken in radical prostatectomy (RP) samples and not primary diagnostic tumour samples (needle biopsy or transurethral resection of the prostate). We interrogated an Australian dataset comprising 125 tumour and 43 adjacent histologically benign diagnostic tissue samples, including 41 paired samples, using the Infinium Human Methylation450 BeadChip. Regression analyses of paired tumour and adjacent benign samples identified 2,386 significant dmCpGs (Bonferroni p < 0.01; delta-β ≥ 40%), with LASSO regression selecting 16 dmCpGs that distinguished tumour samples in the full Australian diagnostic dataset (AUC = 0.99). Results were validated in independent North American (npaired = 19; AUC = 0.87) and The Cancer Genome Atlas (TCGA; npaired = 50; AUC = 0.94) RP datasets. Two of the 16 dmCpGs were in genes that were significantly down-regulated in Australian tumour samples (Bonferroni p < 0.01; GSTM2 and PRKCB). Ten additional dmCpGs distinguished low (n = 34) and high Gleason (n = 88) score tumours in the diagnostic Australian dataset (AUC = 0.95), but these performed poorly when applied to the RP datasets (North American: AUC = 0.66; TCGA: AUC = 0.62). The DNA methylation marks identified here could augment and improve current diagnostic tests and/or form the basis of future prognostic tests.
Collapse
Affiliation(s)
- Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Chol-Hee Jung
- Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - JiHoon E Joo
- Centre for Epidemiology and Biostatistics, School of Global and Population Health, University of Melbourne, Parkville, Australia
| | - Julie K Bassett
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James Y Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Neil O'Callaghan
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Tim Nottle
- TissuPath, Mount Waverley, Melbourne, VIC, Australia
| | - John Pedersen
- TissuPath, Mount Waverley, Melbourne, VIC, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Global and Population Health, University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Saleem MA, Mustafa MS. Promoter Hypermethylation of the BRCA1 Gene as a Novel Biomarker for Prostate Cancer. Cureus 2024; 16:e66467. [PMID: 39246954 PMCID: PMC11380563 DOI: 10.7759/cureus.66467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) is recognized as one of the most common malignancies that greatly affects the male population globally. Breast cancer gene 1 (BRCA1) is an important tumor suppressor gene that plays a central role in the maintenance of genomic integrity by promoting the repair of double-strand breaks of DNA. Here, we present a pilot study to examine the promoter methylation and gene expression of the BRCA1 gene in patients with PCa in Erbil governorate, Iraq. The collection of samples took place in Erbil City, Iraq, specifically at Rizgary Hospital, PAR Hospital, and Al-Mufti's private laboratory. A total of 40 tissue samples were collected from age-matched individuals, comprising 30 pathologically confirmed PCa cases and 10 normal prostatic tissue taken from individuals who, during diagnosis, were found to be negative for PCa. Data on demographic and clinical information, such as pathological stage, age, and prostate-specific antigen (PSA) level, were gathered from the medical records. The impact of the promoter methylation was forecasted using the DNA bisulfite conversion technique and methyl-specific PCR (MSP) with specific primers for the BRCA1 promoter region. The assessment of BRCA1 expression was conducted using quantitative real-time PCR (qPCR). Among the 30 patients examined, 76.6% (23 cases) were found to have BRCA1 promoter methylation, and none of the normal tissues appeared to have DNA methylation. BRCA1 promoter methylation was positively associated with the advanced stage of disease (p=0.01) and Gleason score (p=0.007). The analysis revealed a significant downregulation of the BRCA1 gene expression in methylated tumor samples as compared to non-methylated tumors and normal tissues, suggesting the role of epigenetic silencing. To the best of our knowledge, this is the first study investigating methylation status and level of BRCA1 mRNA transcripts among PCa patients in Iraq. Our findings suggest that promoter hypermethylation of the BRCA1 gene could serve as a viable biomarker for PCa, marking a significant discovery.
Collapse
Affiliation(s)
- Mohammed A Saleem
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| | - Mustafa S Mustafa
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| |
Collapse
|
4
|
Kagan VE, Straub AC, Tyurina YY, Kapralov AA, Hall R, Wenzel SE, Mallampalli RK, Bayir H. Vitamin E/Coenzyme Q-Dependent "Free Radical Reductases": Redox Regulators in Ferroptosis. Antioxid Redox Signal 2024; 40:317-328. [PMID: 37154783 PMCID: PMC10890965 DOI: 10.1089/ars.2022.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/10/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
Significance: Lipid peroxidation and its products, oxygenated polyunsaturated lipids, act as essential signals coordinating metabolism and physiology and can be deleterious to membranes when they accumulate in excessive amounts. Recent Advances: There is an emerging understanding that regulation of polyunsaturated fatty acid (PUFA) phospholipid peroxidation, particularly of PUFA-phosphatidylethanolamine, is important in a newly discovered type of regulated cell death, ferroptosis. Among the most recently described regulatory mechanisms is the ferroptosis suppressor protein, which controls the peroxidation process due to its ability to reduce coenzyme Q (CoQ). Critical Issues: In this study, we reviewed the most recent data in the context of the concept of free radical reductases formulated in the 1980-1990s and focused on enzymatic mechanisms of CoQ reduction in different membranes (e.g., mitochondrial, endoplasmic reticulum, and plasma membrane electron transporters) as well as TCA cycle components and cytosolic reductases capable of recycling the high antioxidant efficiency of the CoQ/vitamin E system. Future Directions: We highlight the importance of individual components of the free radical reductase network in regulating the ferroptotic program and defining the sensitivity/tolerance of cells to ferroptotic death. Complete deciphering of the interactive complexity of this system may be important for designing effective antiferroptotic modalities. Antioxid. Redox Signal. 40, 317-328.
Collapse
Affiliation(s)
- Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Radiation Oncology and Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert Hall
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E. Wenzel
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, Children's Hospital Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Rosspopoff O, Trono D. Take a walk on the KRAB side. Trends Genet 2023; 39:844-857. [PMID: 37716846 DOI: 10.1016/j.tig.2023.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Canonical Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) act as major repressors of transposable elements (TEs) via the KRAB-mediated recruitment of the heterochromatin scaffold KRAB-associated protein (KAP)1. KZFP genes emerged some 420 million years ago in the last common ancestor of coelacanth, lungfish, and tetrapods, and dramatically expanded to give rise to lineage-specific repertoires in contemporary species paralleling their TE load and turnover. However, the KRAB domain displays sequence and function variations that reveal repeated diversions from a linear TE-KZFP trajectory. This Review summarizes current knowledge on the evolution of KZFPs and discusses how ancestral noncanonical KZFPs endowed with variant KRAB, SCAN or DUF3669 domains have been utilized to achieve KAP1-independent functions.
Collapse
Affiliation(s)
- Olga Rosspopoff
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Bouras E, Kim AE, Lin Y, Morrison J, Du M, Albanes D, Barry EL, Baurley JW, Berndt SI, Bien SA, Bishop TD, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Cenggoro TW, Chan AT, Chang-Claude J, Conti DV, Cotterchio M, Devall M, Diez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Giles GG, Gruber SB, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Joshi AD, Kawaguchi ES, Keku TO, Kundaje A, Le Marchand L, Lewinger JP, Li L, Lynch BM, Mahesworo B, Männistö S, Moreno V, Murphy N, Newcomb PA, Obón-Santacana M, Ose J, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Potter JD, Qi L, Qu C, Rennert G, Ruiz-Narvaez E, Sakoda LC, Schmit SL, Shcherbina A, Stern MC, Su YR, Tangen CM, Thomas DC, Tian Y, Um CY, van Duijnhoven FJ, Van Guelpen B, Visvanathan K, Wang J, White E, Wolk A, Woods MO, Ulrich CM, Hsu L, Gauderman WJ, Peters U, Tsilidis KK. Genome-wide interaction analysis of folate for colorectal cancer risk. Am J Clin Nutr 2023; 118:881-891. [PMID: 37640106 PMCID: PMC10636229 DOI: 10.1016/j.ajcnut.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Epidemiological and experimental evidence suggests that higher folate intake is associated with decreased colorectal cancer (CRC) risk; however, the mechanisms underlying this relationship are not fully understood. Genetic variation that may have a direct or indirect impact on folate metabolism can provide insights into folate's role in CRC. OBJECTIVES Our aim was to perform a genome-wide interaction analysis to identify genetic variants that may modify the association of folate on CRC risk. METHODS We applied traditional case-control logistic regression, joint 3-degree of freedom, and a 2-step weighted hypothesis approach to test the interactions of common variants (allele frequency >1%) across the genome and dietary folate, folic acid supplement use, and total folate in relation to risk of CRC in 30,550 cases and 42,336 controls from 51 studies from 3 genetic consortia (CCFR, CORECT, GECCO). RESULTS Inverse associations of dietary, total folate, and folic acid supplement with CRC were found (odds ratio [OR]: 0.93; 95% confidence interval [CI]: 0.90, 0.96; and 0.91; 95% CI: 0.89, 0.94 per quartile higher intake, and 0.82 (95% CI: 0.78, 0.88) for users compared with nonusers, respectively). Interactions (P-interaction < 5×10-8) of folic acid supplement and variants in the 3p25.2 locus (in the region of Synapsin II [SYN2]/tissue inhibitor of metalloproteinase 4 [TIMP4]) were found using traditional interaction analysis, with variant rs150924902 (located upstream to SYN2) showing the strongest interaction. In stratified analyses by rs150924902 genotypes, folate supplementation was associated with decreased CRC risk among those carrying the TT genotype (OR: 0.82; 95% CI: 0.79, 0.86) but increased CRC risk among those carrying the TA genotype (OR: 1.63; 95% CI: 1.29, 2.05), suggesting a qualitative interaction (P-interaction = 1.4×10-8). No interactions were observed for dietary and total folate. CONCLUSIONS Variation in 3p25.2 locus may modify the association of folate supplement with CRC risk. Experimental studies and studies incorporating other relevant omics data are warranted to validate this finding.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; BioRealm LLC, Walnut, CA, United States
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Timothy D Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert Carreras-Torres
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Matthew Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States; Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, United States
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Eric S Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, United States
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, United States; Department of Computer Science, Stanford University, Stanford, CA, United States
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, United States
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; School of Public Health, University of Washington, Seattle, WA, United States
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, United States
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J Pellatt
- Department of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Lihong Qi
- Department of Public Health Sciences, University of California Davis, Davis, CA, United States
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States; Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, United States; Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Mariana C Stern
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; School of Public Health, Capital Medical University, Beijing, China
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Franzel Jb van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jun Wang
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St John's, Canada
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States.
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom.
| |
Collapse
|
7
|
Zheng X, Jing J, Yuan M, Liu N, Song Y. Contribution of gene polymorphisms on 3p25 to salivary gland carcinoma, ameloblastoma, and odontogenic keratocyst in the Chinese Han population. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:220-230. [PMID: 37495273 DOI: 10.1016/j.oooo.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE This study aimed to investigate the contribution of gene polymorphisms in 3p25 to salivary gland carcinoma (SGC), ameloblastoma (AM), and odontogenic keratocyst (OKC) in the Chinese Han population. STUDY DESIGN Sixteen tag-single nucleotide polymorphisms (SNPs) within 5 genes (SYN2, TIMP4, PPARG, RAF1, and IQSEC1) in 3p25 were genotyped in 411 individuals with or without SGC, AM, and OKC. Genotype, clinical phenotype, and bioinformatics analyses were performed to evaluate the function of candidate SNPs. RESULTS SYN2-rs3773364, TIMP4-rs3755724, PPARG-rs10865710, and PPARG-rs1175544 were related to decreased SGC susceptibility, whereas IQSEC1-rs2600322 and IQSEC1-rs2686742 decreased and increased AM risk, respectively. Stratification analysis revealed that the significance of the identified SNPs was stronger in females or individuals younger than 46 years in SGC. PPARG-rs10865710 and PPARG-rs1175544 were associated with lower lymph node metastasis. SYN2-rs3773364 and PPARG-rs1175544 were associated with favorable SGC patient survival. Functional assessments linked PPARG-rs1175544 to PPARG expression regulation. Linkage disequilibrium analysis revealed a haplotype (SYN2-rs3773364-A, TIMP4-rs3817004-A, and TIMP4-rs3755724-C) associated with decreased susceptibility to SGC. Generalized multifactor dimensionality reduction analysis indicated the gene-gene interactions among IQSEC1, TIMP4, and PPARG in SGC, AM, and OKC progression. CONCLUSIONS These variants play important roles in the progression of SGC, AM, and OKC in the Chinese Han population and may be considered biomarkers for early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaojiao Jing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Pediatric Dentistry, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Minyan Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nianke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Qiu H, Ni C, Jia C, Rong X, Chu M, Wu R, Han B. CircRNA7632 down-regulation alleviates endothelial cell dysfunction in Kawasaki disease via regulating IL-33 expression. Cell Stress Chaperones 2023; 28:363-374. [PMID: 37166618 PMCID: PMC10352195 DOI: 10.1007/s12192-023-01333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Kawasaki disease (KD) is a form of idiopathic vasculitis frequently accompanied by coronary artery lesions, which involves endothelial dysfunction. Recent studies have demonstrated that circular RNAs (circRNAs) are implicated in many cardiovascular diseases. However, few studies have examined the role of circRNAs on endothelial dysfunction in KD. In this study, we investigated the role of circ7632 on endothelial-mesenchymal transition (EndoMT) in KD and then explored the underlying mechanism. Children diagnosed with KD and age-matched healthy controls (HC) were included. Sera samples were collected. Primary human umbilical vein endothelial cells (HUVECs) were obtained and incubated with 15% HC and KD serum for 48 h. The mRNA and protein expression of mesenchymal markers vimentin and α-smooth muscle actin (α-SMA) and endothelial marker zonula occludens-1 (ZO-1) in HUVECs transfected with plasmid-circ7632 and si-circ7632 were detected by RT-qPCR and Western blot analysis. CCK8, scratch test, and migration test were performed to examine the effect of circ7632 on the cell proliferation and migration. The circ7632 level was higher in HUVECs treated by KD serum than in HUVECs treated with HC serum. Overexpression of circ7632 significantly increased vimentin and α-SMA expression, decreased ZO-1 expression, and also decreased cell proliferation. Down-regulation of circ7632 expression got the opposite results. RNA-seq analysis, and confirmatory experiment displayed that down-regulation of circ7632 decreased IL-33 expression, and IL-33 silencing mitigated KD serum-mediated EndoMT. Our study revealed that circ7632 level was elevated in KD serum-treated HUVECs. Circ7632 down-regulation could alleviate EndoMT likely through decreasing IL-33 expression. The circ7632 may become a potential therapeutic target for KD.
Collapse
Affiliation(s)
- Huixian Qiu
- Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chao Ni
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chang Jia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xing Rong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Maoping Chu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Rongzhou Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Han
- Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
9
|
Zhang Q, Gao Y, Lin S, Goldin LR, Wang Y, Stevenson H, Edelman DC, Killian K, Marti G, Meltzer PS, Xiang S, Caporaso NE. Genome-wide DNA methylation profiling in chronic lymphocytic leukaemia. Front Genet 2023; 13:1056043. [PMID: 36712882 PMCID: PMC9873975 DOI: 10.3389/fgene.2022.1056043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background: DNA methylation aberrations are widespread among the malignant B lymphocytes of patients with chronic lymphocytic leukaemia (CLL), suggesting that DNA methylation might contribute to the pathogenesis of CLL. Aim: We aimed to explore the differentially methylated positions (DMPs) associated with CLL and screen the differentially methylated and expressed genes (DMEGs) by combining public databases. We aimed to observe the direction of each DMEG in CLL based on the DMPs in the promoter and the body region respectively to narrow down DMEGs. We also aimed to explore the methylation heterogeneity of CLL subgroups and the effect of B cells maturation on CLL. Methods: In this population-based case control study, we reported a genome-wide DNA methylation association study using the Infinium HumanMethylation450 BeadChip, profiling the DNA methylation of CD19+ B Cells from 48 CLL cases and 28 healthy controls. By integrating methylation data and expression data from public databases, gene sets were jointly screened, and then the relationship between methylation sites in promoter and body region and expression of each gene was explored. In addition, support vector machine (SVM) classification algorithm was used to identify subgroups of CLL cases based on methylation pattern, and the effect of B-cell differentiation related methylation sites on CLL-related sites was observed. Results: We identified 34,797 DMPs related to CLL across the genome, most of which were hypomethylated; the majority were located in gene body regions. By combining these DMPs with published DNA methylation and RNA sequencing data, we detected 26,244 replicated DMPs associated with 1,130 genes whose expression were significantly different in CLL cases. Among these DMEGs, nine low expressed DMEGs were selected with hypermethylated in promoter and hypomethylated in body region, and 83 high expressed DMEGs were selected with both hypomethylated in promoter and body region. The 48 CLL cases were divided into 3 subgroups based on methylation site by SVM algorithm. Over 92% of CpGs associated with B cell subtypes were found in CLL-related DMPs. Conclusion: The DNA methylation pattern was altered across the genome in CLL patients. The methylation of ZAP70, FMOD, and ADAMTS17 was significantly different between CLL cases and controls. Further studies are warranted to confirm our findings and identify the underlying mechanisms through which these methylation markers are associated with CLL.
Collapse
Affiliation(s)
- Qiuyi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China,Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Ying Gao,
| | - Shuchun Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lynn R. Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yonghong Wang
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Holly Stevenson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel C. Edelman
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keith Killian
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gerald Marti
- Lymphoid Malignancies Section, Hematology Branch, NHLBI, National Institutes of Health, Bethesda, MD, United States
| | - Paul S. Meltzer
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Araúzo-Bravo MJ, Erichsen L, Ott P, Beermann A, Sheikh J, Gerovska D, Thimm C, Bendhack ML, Santourlidis S. Consistent DNA Hypomethylations in Prostate Cancer. Int J Mol Sci 2022; 24:ijms24010386. [PMID: 36613831 PMCID: PMC9820221 DOI: 10.3390/ijms24010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
With approximately 1.4 million men annually diagnosed with prostate cancer (PCa) worldwide, PCa remains a dreaded threat to life and source of devastating morbidity. In recent decades, a significant decrease in age-specific PCa mortality has been achieved by increasing prostate-specific antigen (PSA) screening and improving treatments. Nevertheless, upcoming, augmented recommendations against PSA screening underline an escalating disproportion between the benefit and harm of current diagnosis/prognosis and application of radical treatment standards. Undoubtedly, new potent diagnostic and prognostic tools are urgently needed to alleviate this tensed situation. They should allow a more reliable early assessment of the upcoming threat, in order to enable applying timely adjusted and personalized therapy and monitoring. Here, we present a basic study on an epigenetic screening approach by Methylated DNA Immunoprecipitation (MeDIP). We identified genes associated with hypomethylated CpG islands in three PCa sample cohorts. By adjusting our computational biology analyses to focus on single CpG-enriched 60-nucleotide-long DNA probes, we revealed numerous consistently differential methylated DNA segments in PCa. They were associated among other genes with NOTCH3, CDK2AP1, KLK4, and ADAM15. These can be used for early discrimination, and might contribute to a new epigenetic tumor classification system of PCa. Our analysis shows that we can dissect short, differential methylated CpG-rich DNA fragments and combinations of them that are consistently present in all tumors. We name them tumor cell-specific differential methylated CpG dinucleotide signatures (TUMS).
Collapse
Affiliation(s)
- Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lars Erichsen
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pauline Ott
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Agnes Beermann
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jamal Sheikh
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Chantelle Thimm
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marcelo L. Bendhack
- Department of Urology, University Hospital, Positivo University, Curitiba 80420-011, Brazil
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
11
|
Hall R, Yuan S, Wood K, Katona M, Straub AC. Cytochrome b5 reductases: Redox regulators of cell homeostasis. J Biol Chem 2022; 298:102654. [PMID: 36441026 PMCID: PMC9706631 DOI: 10.1016/j.jbc.2022.102654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The cytochrome-b5 reductase (CYB5R) family of flavoproteins is known to regulate reduction-oxidation (redox) balance in cells. The five enzyme members are highly compartmentalized at the subcellular level and function as "redox switches" enabling the reduction of several substrates, such as heme and coenzyme Q. Critical insight into the physiological and pathophysiological significance of CYB5R enzymes has been gleaned from several human genetic variants that cause congenital disease and a broad spectrum of chronic human diseases. Among the CYB5R genetic variants, CYB5R3 is well-characterized and deficiency in expression and activity is associated with type II methemoglobinemia, cancer, neurodegenerative disorders, diabetes, and cardiovascular disease. Importantly, pharmacological and genetic-based strategies are underway to target CYB5R3 to circumvent disease onset and mitigate severity. Despite our knowledge of CYB5R3 in human health and disease, the other reductases in the CYB5R family have been understudied, providing an opportunity to unravel critical function(s) for these enzymes in physiology and disease. In this review, we aim to provide the broad scientific community an up-to-date overview of the molecular, cellular, physiological, and pathophysiological roles of CYB5R proteins.
Collapse
Affiliation(s)
- Robert Hall
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mate Katona
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Ma D, Ma Y, Ma Y, Liu J, Gu Y, Liu N, Xiang C, Liu H, Sang W. Molecular subtyping of CD5+ diffuse large B-cell lymphoma based on DNA-targeted sequencing and Lymph2Cx. Front Oncol 2022; 12:941347. [PMID: 36081566 PMCID: PMC9445310 DOI: 10.3389/fonc.2022.941347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCD5-positive diffuse large B-cell lymphoma (CD5+ DLBCL) showed poor prognosis in the rituximab era, with limited research on its genetic characteristics and cell of origin (COO). We aimed to demonstrate the molecular characteristics of CD5+ DLBCL and to discover potential prognostic factors.MethodsWe included 24 cases of CD5+ DLBCL and 23 CD5-negative (CD5-) counterparts and collected their clinicopathological features. Targeted DNA sequencing of 475 lymphoma-related genes was performed, and all cases were assigned to distinct genetic subtypes using the LymphGen tool. The COO was determined by the Lymph2Cx assay. The Kaplan–Meier method and Cox proportional hazards model were applied to identify the possible prognostic factors.ResultsCompared with their CD5- counterparts, patients with CD5+ DLBCL tended to have a worse prognosis and a higher incidence of MYD88L265P and CD79B double mutation (MCD) subtype (54.17%, P = 0.005) and activated B cell-like (ABC) subtype (62.5%, P = 00017), as determined by next-generation sequencing and Lymph2Cx, respectively. Moreover, PIM1, MYD88, and KMT2D mutations were detected more frequently in CD5+ DLBCL cases (P < 0.05). According to multivariate analysis, MYC/BCL2 double expression and ABC subtype were correlated with unfavorable overall survival (OS). High mRNA expression of SERPINA9 and MME showed a significant correlation with a better OS, and high expression of MME showed a significant correlation with better progression-free survival in CD5+ DLBCL.ConclusionThe genetic profile of CD5+ DLBCL is characterized by PIM1, MYD88, and KMT2D mutations, with a higher incidence of MCD and ABC subtypes. MYC/BCL2 double expression, ABC subtype, and mRNA expression of SERPINA9 and MME are independently predictive of the prognosis of CD5+ DLBCL.
Collapse
Affiliation(s)
- Dongshen Ma
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuhan Ma
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Ma
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jia Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Gu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nian Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Hui Liu, ; Wei Sang,
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Hui Liu, ; Wei Sang,
| |
Collapse
|
13
|
Sompel K, Dwyer-Nield LD, Smith AJ, Elango AP, Vanderlinden LA, Kopf K, Keith RL, Tennis MA. Loss of Frizzled 9 in Lung Cells Alters Epithelial Phenotype and Promotes Premalignant Lesion Development. Front Oncol 2022; 12:815737. [PMID: 35924166 PMCID: PMC9343062 DOI: 10.3389/fonc.2022.815737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
The transmembrane receptor Frizzled 9 (FZD9) is important for fetal neurologic and bone development through both canonical and non-canonical WNT/FZD signaling. In the adult lung, however, Fzd9 helps to maintain a normal epithelium by signaling through peroxisome proliferator activated receptor γ (PPARγ). The effect of FZD9 loss on normal lung epithelial cells and regulators of its expression in the lung are unknown. We knocked down FZD9 in human bronchial epithelial cell (HBEC) lines and found that downstream EMT targets and PPARγ activity are altered. We used a FZD9-/- mouse in the urethane lung adenocarcinoma model and found FZD9-/- adenomas had more proliferation, increased EMT signaling, decreased activation of PPARγ, increased expression of lung cancer associated genes, increased transformed growth, and increased potential for invasive behavior. We identified PPARγ as a transcriptional regulator of FZD9. We also demonstrated that extended cigarette smoke exposure in HBEC leads to decreased FZD9 expression, decreased activation of PPARγ, and increased transformed growth, and found that higher exposure to cigarette smoke in human lungs leads to decreased FZD9 expression. These results provide evidence for the role of FZD9 in lung epithelial maintenance and in smoking related malignant transformation. We identified the first transcriptional regulator of FZD9 in the lung and found FZD9 negative lesions are more dangerous. Loss of FZD9 creates a permissive environment for development of premalignant lung lesions, making it a potential target for intervention.
Collapse
Affiliation(s)
- Kayla Sompel
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori D Dwyer-Nield
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alex J Smith
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alamelu P Elango
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lauren A Vanderlinden
- School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katrina Kopf
- Office of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Robert L Keith
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Rocky Mountain Regional Medical Center, Aurora, CO, United States
| | - Meredith A Tennis
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
14
|
Chen J, Sun Y, Chen L, Zhou Y. NADH-Cytochrome B5 reductase 2 suppresses retinal vascular dysfunction through regulation of vascular endothelial growth factor A in diabetic retinopathy. Exp Eye Res 2022; 222:109186. [PMID: 35820466 DOI: 10.1016/j.exer.2022.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
Diabetic retinopathy (DR) is a progressive vascular complication of diabetes mellitus (DM) and is related to retinal vascular abnormalities. NADH-Cytochrome B5 Reductase 2 (CBR2) has been implicated in angiogenesis, but the effect of CBR2 on angiogenesis and endothelial cell biological behavior in DR remains unclear. Here, we aimed to explore the effect of CBR2 on retinal vascular dysfunction under diabetic conditions. The histological analyses were performed to explore the effect of CBR2 on pathological change in streptozotocin (STZ)-induced diabetic rat retinas. The effect of CBR2 on endothelial cell function was explored by CCK-8, scratch wound, transwell, tube formation, and immunofluorescence assays in high glucose (HG)-stimulated human retinal microvascular endothelial cells (HRMECs). CBR2 expression was significantly downregulated in DM rat retinas and HG-stimulated HRMECs. Intravitreal injection of CBR2-expressing lentivirus under diabetic conditions reduced retinal angiogenesis, acellular capillary formation, and pericyte loss, along with decreased expression of hypoxia-inducible factor-1α (HIF-1α), cluster of differentiation 31 (CD31), and vascular endothelial growth factor A (VEGFA) in vivo. Moreover, CBR2 overexpression inhibited cell growth and tube formation and led to decreased expression of HIF-1α and VEGFA in HG-induced HRMECs. Interestingly, the repressive effects of CBR2 on cell proliferation, migration, and tube formation under HG conditions were strongly reversed when VEGFA was overexpressed. Overall, the key findings of our study suggested that CBR2 might alleviate retinal vascular dysfunction and abnormal endothelial proliferation during the process of DR by regulating VEGFA, providing a piece of potent evidence for DR therapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yizhou Sun
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lei Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
15
|
Keith SW, Kwabi-Addo B, Zeigler-Johnson C. Interactions Between Obesity and One-Carbon Metabolism Genes in Predicting Prostate Cancer Outcomes Among White and Black Patients. J Racial Ethn Health Disparities 2022; 9:305-314. [PMID: 33432479 DOI: 10.1007/s40615-020-00958-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND One-carbon metabolism genes are linked to several cancers, but the association with prostate cancer (PCa) is less clear. Studies examining the relationship have not accounted for obesity, a risk factor for advanced PCa and altered methylation patterns. We hypothesized that obesity could moderate the association between one-carbon metabolism genes and PCa outcomes. METHODS We conducted secondary data analyses of the Study of Clinical Outcomes, Risk and Ethnicity. Obesity was included as a primary exposure and modifier (interacting with genetic polymorphisms) in the analytic models. We used logistic regression to determine associations of common one-carbon metabolism genotypes with odds of high stage (T3/T4) and high grade (Gleason score ≥ 7). We used Cox regression to examine associations of genotypes with biochemical recurrence. RESULTS There were 808 patients (632 White and 176 Black.) Among White men, we observed associations of TCN2_R259P with increased odds of high stage (OR = 0.64, 95% CI = 0.41-1.00), but no significant interactions with obesity. Among Black men, the SCL19A1_61bpdel and CBS_68bpINS variants were associated with high grade (OR = 2.61, 95% CI = 1.39-4.89 and OR = 0.29, 95% CI = 0.09-0.91, respectively.) Both the CBS_68bpINS and MTHFR_E429A variants interacted with obesity in Black men, where the highest risk for biochemical failure and odds of high grade, respectively, occurred among obese patients with variants. CONCLUSIONS We observed associations of one-carbon metabolism genes with different associations by race. We also observed interactions with obesity related to PCa outcomes in Black men only. Therefore, the involvement of one-carbon metabolism on PCa was dependent upon obesity status for Black men. These novel results could help identify patients that might benefit from effective weight management targeting one-carbon metabolism effects.
Collapse
Affiliation(s)
- Scott W Keith
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, DC, USA
| | - Charnita Zeigler-Johnson
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Suite 314, 834 Chestnut Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
16
|
Berglund A, Matta J, Encarnación-Medina J, Ortiz-Sanchéz C, Dutil J, Linares R, Marcial J, Abreu-Takemura C, Moreno N, Putney R, Chakrabarti R, Lin HY, Yamoah K, Osterman CD, Wang L, Dhillon J, Kim Y, Kim SJ, Ruiz-Deya G, Park JY. Dysregulation of DNA Methylation and Epigenetic Clocks in Prostate Cancer among Puerto Rican Men. Biomolecules 2021; 12:2. [PMID: 35053153 PMCID: PMC8773891 DOI: 10.3390/biom12010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
In 2021, approximately 248,530 new prostate cancer (PCa) cases are estimated in the United States. Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. The objective of this study was to assess DNA methylation patterns between aggressive and indolent PCa along with ancestry proportions in 49 H/L men from Puerto Rico (PR). Prostate tumors were classified as aggressive (n = 17) and indolent (n = 32) based on the Gleason score. Genomic DNA samples were extracted by macro-dissection. DNA methylation patterns were assessed using the Illumina EPIC DNA methylation platform. We used ADMIXTURE to estimate global ancestry proportions. We identified 892 differentially methylated genes in prostate tumor tissues as compared with normal tissues. Based on an epigenetic clock model, we observed that the total number of stem cell divisions (TNSC) and stem cell division rate (SCDR) were significantly higher in tumor than adjacent normal tissues. Regarding PCa aggressiveness, 141 differentially methylated genes were identified. Ancestry proportions of PR men were estimated as African, European, and Indigenous American; these were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation profiles associated with risk and aggressiveness of PCa in PR H/L men will shed light on potential mechanisms contributing to PCa disparities in PR population.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jarline Encarnación-Medina
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Carmen Ortiz-Sanchéz
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Raymond Linares
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Joshua Marcial
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Caren Abreu-Takemura
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Natasha Moreno
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Ryan Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Carlos Diaz Osterman
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Liang Wang
- Department of Molecular Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Seung Joon Kim
- Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Korea;
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Sompel K, Elango A, Smith AJ, Tennis MA. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol 2021; 12:32. [PMID: 34604862 PMCID: PMC8429367 DOI: 10.1007/s12672-021-00429-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Frizzled (FZD) transmembrane receptors are well known for their role in β-catenin signaling and development and now understanding of their role in the context of cancer is growing. FZDs are often associated with the process of epithelial to mesenchymal transition (EMT) through β-catenin, but some also influence EMT through non-canonical pathways. With ten different FZDs, there is a wide range of activity from oncogenic to tumor suppressive depending on the tissue context. Alterations in FZD signaling can occur during development of premalignant lesions, supporting their potential as targets of chemoprevention agents. Agonizing or antagonizing FZD activity may affect EMT, which is a key process in lesion progression often targeted by chemoprevention agents. Recent studies identified a specific FZD as important for activity of an EMT inhibiting chemopreventive agent and other studies have highlighted the previously unrecognized potential for targeting small molecules to FZD receptors. This work demonstrates the value of investigating FZDs in chemoprevention and here we provide a review of FZDs in cancer EMT and their potential as chemoprevention targets.
Collapse
Affiliation(s)
- K. Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. Elango
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. J. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - M. A. Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| |
Collapse
|
18
|
Daniunaite K, Bakavicius A, Zukauskaite K, Rauluseviciute I, Lazutka JR, Ulys A, Jankevicius F, Jarmalaite S. Promoter Methylation of PRKCB, ADAMTS12, and NAALAD2 Is Specific to Prostate Cancer and Predicts Biochemical Disease Recurrence. Int J Mol Sci 2021; 22:ijms22116091. [PMID: 34198725 PMCID: PMC8201120 DOI: 10.3390/ijms22116091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/19/2023] Open
Abstract
The molecular diversity of prostate cancer (PCa) has been demonstrated by recent genome-wide studies, proposing a significant number of different molecular markers. However, only a few of them have been transferred into clinical practice so far. The present study aimed to identify and validate novel DNA methylation biomarkers for PCa diagnosis and prognosis. Microarray-based methylome data of well-characterized cancerous and noncancerous prostate tissue (NPT) pairs was used for the initial screening. Ten protein-coding genes were selected for validation in a set of 151 PCa, 51 NPT, as well as 17 benign prostatic hyperplasia samples. The Prostate Cancer Dataset (PRAD) of The Cancer Genome Atlas (TCGA) was utilized for independent validation of our findings. Methylation frequencies of ADAMTS12, CCDC181, FILIP1L, NAALAD2, PRKCB, and ZMIZ1 were up to 91% in our study. PCa specific methylation of ADAMTS12, CCDC181, NAALAD2, and PRKCB was demonstrated by qualitative and quantitative means (all p < 0.05). In agreement with PRAD, promoter methylation of these four genes was associated with the transcript down-regulation in the Lithuanian cohort (all p < 0.05). Methylation of ADAMTS12, NAALAD2, and PRKCB was independently predictive for biochemical disease recurrence, while NAALAD2 and PRKCB increased the prognostic power of multivariate models (all p < 0.01). The present study identified methylation of ADAMTS12, NAALAD2, and PRKCB as novel diagnostic and prognostic PCa biomarkers that might guide treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Kristina Daniunaite
- Life Sciences Center, Institute of Biosciences, Vilnius University, 10257 Vilnius, Lithuania; (K.D.); (I.R.); (J.R.L.)
| | - Arnas Bakavicius
- National Cancer Institute, 08660 Vilnius, Lithuania; (A.B.); (K.Z.); (A.U.); (F.J.)
- Centre of Urology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Kristina Zukauskaite
- National Cancer Institute, 08660 Vilnius, Lithuania; (A.B.); (K.Z.); (A.U.); (F.J.)
| | - Ieva Rauluseviciute
- Life Sciences Center, Institute of Biosciences, Vilnius University, 10257 Vilnius, Lithuania; (K.D.); (I.R.); (J.R.L.)
| | - Juozas Rimantas Lazutka
- Life Sciences Center, Institute of Biosciences, Vilnius University, 10257 Vilnius, Lithuania; (K.D.); (I.R.); (J.R.L.)
| | - Albertas Ulys
- National Cancer Institute, 08660 Vilnius, Lithuania; (A.B.); (K.Z.); (A.U.); (F.J.)
| | - Feliksas Jankevicius
- National Cancer Institute, 08660 Vilnius, Lithuania; (A.B.); (K.Z.); (A.U.); (F.J.)
- Centre of Urology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Sonata Jarmalaite
- Life Sciences Center, Institute of Biosciences, Vilnius University, 10257 Vilnius, Lithuania; (K.D.); (I.R.); (J.R.L.)
- National Cancer Institute, 08660 Vilnius, Lithuania; (A.B.); (K.Z.); (A.U.); (F.J.)
- Correspondence: ; Tel.: +370-5-2190901; Fax: +370-5-2720164
| |
Collapse
|
19
|
Differential DNA Methylation in Prostate Tumors from Puerto Rican Men. Int J Mol Sci 2021; 22:ijms22020733. [PMID: 33450964 PMCID: PMC7828429 DOI: 10.3390/ijms22020733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
In 2020, approximately 191,930 new prostate cancer (PCa) cases are estimated in the United States (US). Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. This study aims to assess methylation patterns between aggressive and indolent PCa including DNA repair genes along with ancestry proportions. Prostate tumors classified as aggressive (n = 11) and indolent (n = 13) on the basis of the Gleason score were collected. Tumor and adjacent normal tissue were annotated on H&E (Haemotoxylin and Eosin) slides and extracted by macro-dissection. Methylation patterns were assessed using the Illumina 850K DNA methylation platform. Raw data were processed using the Bioconductor package. Global ancestry proportions were estimated using ADMIXTURE (k = 3). One hundred eight genes including AOX1 were differentially methylated in tumor samples. Regarding the PCa aggressiveness, six hypermethylated genes (RREB1, FAM71F2, JMJD1C, COL5A3, RAE1, and GABRQ) and 11 hypomethylated genes (COL9A2, FAM179A, SLC17A2, PDE10A, PLEKHS1, TNNI2, OR51A4, RNF169, SPNS2, ADAMTSL5, and CYP4F12) were identified. Two significant differentially methylated DNA repair genes, JMJD1C and RNF169, were found. Ancestry proportion results for African, European, and Indigenous American were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation patterns related to PCa in H/L men along with specific patterns related to aggressiveness and DNA repair constitutes a pivotal effort for the understanding of PCa in this population.
Collapse
|
20
|
Manasa P, Sidhanth C, Krishnapriya S, Vasudevan S, Ganesan TS. Oncogenes in high grade serous adenocarcinoma of the ovary. Genes Cancer 2020; 11:122-136. [PMID: 33488950 PMCID: PMC7805537 DOI: 10.18632/genesandcancer.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
High grade serous ovarian cancer is characterized by relatively few mutations occurring at low frequency, except in TP53. However other genetic aberrations such as copy number variation alter numerous oncogenes and tumor suppressor genes. Oncogenes are positive regulators of tumorigenesis and play a critical role in cancer cell growth, proliferation, and survival. Accumulating evidence suggests that they are crucial for the development and the progression of high grade serous ovarian carcinoma (HGSOC). Though many oncogenes have been identified, no successful inhibitors targeting these molecules and their associated pathways are available. This review discusses oncogenes that have been identified recently in HGSOC using different screening strategies. All the genes discussed in this review have been functionally characterized both in vitro and in vivo and some of them are able to transform immortalized ovarian surface epithelial and fallopian tube cells upon overexpression. However, it is necessary to delineate the molecular pathways affected by these oncogenes for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pacharla Manasa
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| |
Collapse
|
21
|
MYC DNA Methylation in Prostate Tumor Tissue Is Associated with Gleason Score. Genes (Basel) 2020; 12:genes12010012. [PMID: 33374332 PMCID: PMC7823928 DOI: 10.3390/genes12010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence suggests a role of epigenetic mechanisms at chromosome 8q24, an important cancer genetic susceptibility region, in prostate cancer. We investigated whether MYC DNA methylation at 8q24 (six CpG sites from exon 3 to the 3′ UTR) in prostate tumor was associated with tumor aggressiveness (based on Gleason score, GS), and we incorporated RNA expression data to investigate the function. We accessed radical prostatectomy tissue for 50 Caucasian and 50 African American prostate cancer patients at the University of Maryland Medical Center, selecting an equal number of GS 6 and GS 7 cases per group. MYC DNA methylation was lower in tumor than paired normal prostate tissue for all six CpG sites (median difference: −14.74 to −0.20 percentage points), and we observed similar results for two nearby sites in The Cancer Genome Atlas (p < 0.0001). We observed significantly lower methylation for more aggressive (GS 7) than less aggressive (GS 6) tumors for three exon 3 sites (for CpG 212 (chr8:128753145), GS 6 median = 89.7%; GS 7 median = 85.8%; p-value = 9.4 × 10−4). MYC DNA methylation was not associated with MYC expression, but was inversely associated with PRNCR1 expression after multiple comparison adjustment (q-value = 0.04). Findings suggest that prostate tumor MYC exon 3 hypomethylation is associated with increased aggressiveness.
Collapse
|
22
|
Wang Z, Gao L, Guo X, Lian W, Deng K, Xing B. Development and Validation of a Novel DNA Methylation-Driven Gene Based Molecular Classification and Predictive Model for Overall Survival and Immunotherapy Response in Patients With Glioblastoma: A Multiomic Analysis. Front Cell Dev Biol 2020; 8:576996. [PMID: 33015072 PMCID: PMC7494802 DOI: 10.3389/fcell.2020.576996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system, with a 5-year overall survival (OS) rate of only 5.6%. This study aimed to develop a novel DNA methylation-driven gene (MDG)-based molecular classification and risk model for individualized prognosis prediction for GBM patients. Methods The DNA methylation profiles (458 samples) and gene expression profiles (376 samples) of patients were enrolled to identify MDGs using the MethylMix algorithm. Unsupervised consensus clustering was performed to develop the MDG-based molecular classification. By performing the univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis, a MDG-based prognostic model was developed and validated. Then, Bisulfite Amplicon Sequencing (BSAS) and quantitative real-time polymerase chain reaction (qPCR) were performed to verify the methylation and expressions of MDGs in GBM cell lines. Results A total of 199 MDGs were identified, the expression patterns of which enabled TCGA and CGGA GBM patients to be divided into 2 clusters by unsupervised consensus clustering. Cluster 1 patients commonly exhibited a poor prognosis, were older in age, and were more sensitive to immunotherapies. Then, six MDGs (ANKRD10, BMP2, LOXL1, RPL39L, TMEM52, and VILL) were further selected to construct the prognostic risk score model, which was validated in the CGGA cohort. Kaplan-Meier survival analysis demonstrated that high-risk patients had significantly poorer OS than low-risk patients (logrank P = 3.338 × 10-6). Then, a prognostic nomogram was constructed and validated. Calibration plots, receiver operating characteristic curves, and decision curve analysis indicated excellent predictive performance for the nomogram in both the TCGA training and CGGA validation cohorts. Finally, in vitro BSAS and qPCR analysis validated that the expressions of the MDGs were negatively regulated by methylations of target genes, especially promoter region methylation. Conclusion The MDG-based prognostic model could serve as a promising prognostic indicator and potential therapeutic target to facilitate individualized survival prediction and better treatment options for GBM patients.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Ahmed AA, Adam Essa ME. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Potential of epigenetic events in human thyroid cancer. Cancer Genet 2019; 239:13-21. [PMID: 31472323 DOI: 10.1016/j.cancergen.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Thyroid cancer remains the highest prevailing endocrine malignancy, and its incidence rate has progressively increased in the previous years. Above 95% of thyroid tumor are follicular cells types of carcinoma in which are considered invasive type of tumor. The pathogenesis and molecular mechanism of thyroid tumors are yet remains elucidated, in spite of activating RET, RAS and BRAF carcinogenesis have been well introduced. Nemours molecular alterations have been defined and have revealed promise for their diagnostic, prognostic and therapeutic capacity but still need further confirmation. Among different types of mechanisms, the current article reviews the importance of epigenetic modifications in thyroid cancer. Increasing data from previous reports demonstrate that acquired epigenetic abnormalities together with genetic changes plays an important role in alteration of gene expression patterns. Aberrant DNA methylation has been well known in the CpG regions and profile of microRNAs (mi-RNAs) expression also involved in cancer development. In addition, the gene expression through epigenetic control contribution to thyroid cancer is analyzed and it is semi considered in the clinic. However the epigenetic of the thyroid cancer is yet remains in its early stages, and it carries encouraging potential thyroid cancer detections in its early stages, assessment of prognosis and targeted cancer treatment.
Collapse
|
25
|
Yan P, Yang X, Wang J, Wang S, Ren H. A novel CpG island methylation panel predicts survival in lung adenocarcinomas. Oncol Lett 2019; 18:1011-1022. [PMID: 31423161 PMCID: PMC6607393 DOI: 10.3892/ol.2019.10431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
The lack of clinically useful biomarkers compromise the personalized management of lung adenocarcinomas (ADCs); epigenetic events and DNA methylation in particular have exhibited potential value as biomarkers. By comparing genome-wide DNA methylation data of paired lung ADCs and normal tissues from 6 public datasets, cancer-specific CpG island (CGI) methylation changes were identified with a pre-specified criterion. Correlations between DNA methylation and expression data for each gene were assessed by Pearson correlation analysis. A prognostically relevant CGI methylation signature was constructed by risk-score analysis, and was validated using a training-validation approach. Survival data were analyzed by log-rank test and Cox regression model. In total, 134 lung ADC-specific CGI CpGs were identified, among which, a panel of 9 CGI loci were selected as prognostic candidates, and were used to construct a risk-score signature. The novel CGI methylation signature was identified to classify distinct prognostic subgroups across different datasets, and was demonstrated to be a potent independent prognostic factor for overall survival time of patients with lung ADCs. In addition, it was identified that cancer-specific CGI hypomethylation of RPL39L, along with the corresponding gene expression, provided optimized prognostication of lung ADCs. In summary, cancer-specific CGI methylation aberrations are optimal candidates for novel biomarkers of lung ADCs; the 9-CpG methylation panel and hypomethylation of RPL39L exhibited particularly promising significance.
Collapse
Affiliation(s)
- Pingzhao Yan
- Department of General Surgery, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Xiaohua Yang
- Department of Respiratory and Hematology Medicine, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Jianhua Wang
- Department of General Surgery, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Shichang Wang
- Department of General Surgery, People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Hong Ren
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
26
|
Peng Q, Wang L, Zhao D, Lv Y, Wang H, Chen G, Wang J, Xu W. Overexpression of FZD1 is Associated with a Good Prognosis and Resistance of Sunitinib in Clear Cell Renal Cell Carcinoma. J Cancer 2019; 10:1237-1251. [PMID: 30854133 PMCID: PMC6400675 DOI: 10.7150/jca.28662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frizzled class receptor 1 (FZD1), a receptor for Wnt signaling pathway. Overexpression of FZD1 has been detected in many cancer tissues and cells resulting in tumor development and drug resistance. However, its expression status and prognostic merit in renal cancer still remains unclear. We screened the FZD1 mRNA in clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) from TCGA database and Oncomine database. We then detected FZD1 mRNA expression in sunitinib-resistant cells and the corresponding parental cells by qRT-PCR. FZD1 level was significantly upregulated in renal cancer tissues, renal cancer cell lines and their corresponding sunitinib-resistant cells. FZD1 level was also associated with the clinicopathological characteristics of ccRCC patients that could discriminate metastasis, pathological stage, recurrence and prognosis in ccRCC patients. The Kaplan-Meier survival curve and the log-rank test revealed FZD1 was higher in lower clinical stage and grade that correlated with better overall survival (OS) and disease-free survival (DFS) in total and subgroups of ccRCC patients. Both univariate and multivariate cox regression analysis indicated that high FZD1 level was an independent predictor of good prognosis for OS (HR 0.569, P=0.001) and DFS (HR 0.559, P=0.036) in ccRCC patients. Using cBioportal program, less than 1% mutation in the patients with renal cancer was observed, the alterations in FZD1 were correlated with better OS (P=0.0404) in ccRCC patients. Finally, the result of KEGG pathway analysis predicted seven potential pathways that FZD1 and its related genes got involved in ccRCC, including Hippo signaling pathway. This indicated potential therapeutic targets of ccRCC. In conclusion, our results suggested that expression status of FZD1 had a diagnostic value and prognostic value in ccRCC patients, it also may serve as a potential drug target to relieve sunitinib resistance in renal cancer patients.
Collapse
Affiliation(s)
- Qiang Peng
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Danfeng Zhao
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Yulin Lv
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Hongzhi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Guang Chen
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Jiaqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| |
Collapse
|
27
|
Xiong X, Tu S, Wang J, Luo S, Yan X. CXXC5: A novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 2018; 23:740-749. [PMID: 30479059 PMCID: PMC6349197 DOI: 10.1111/jcmm.14046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc-finger protein family. Proteins in this family play a pivotal role in epigenetic regulation by binding to unmethylated CpG islands in gene promoters through their characteristic CXXC domain. CXXC5 is a short protein (322 amino acids in length) that does not have any catalytic domain, but is able to bind to DNA and act as a transcription factor and epigenetic factor through protein-protein interactions. Intriguingly, increasing evidence indicates that expression of the CXXC5 gene is controlled by multiple signaling pathways and a variety of transcription factors, positioning CXXC5 as an important signal integrator. In addition, CXXC5 is capable of regulating various signal transduction processes, including the TGF-β, Wnt and ATM-p53 pathways, thereby acting as a novel and crucial signaling coordinator. CXXC5 plays an important role in embryonic development and adult tissue homeostasis by regulating cell proliferation, differentiation and apoptosis. In keeping with these functions, aberrant expression or altered activity of CXXC5 has been shown to be involved in several human diseases including tumourigenesis. This review summarizes the current understanding of CXXC5 as a transcription factor and signaling regulator and coordinator.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. THE PHARMACOGENOMICS JOURNAL 2018; 19:375-389. [PMID: 30442921 PMCID: PMC6522337 DOI: 10.1038/s41397-018-0063-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
An extreme phenotype sampling (EPS) model with targeted next-generation sequencing (NGS) identified genetic variants associated with tacrolimus (Tac) metabolism in subjects from the Deterioration of Kidney Allograft Function (DeKAF) Genomics cohort which included 1,442 European Americans (EA) and 345 African Americans (AA). This study included 48 subjects separated into 4 groups of 12 (AA high, AA low, EA high, EA low). Groups were selected by the extreme phenotype of dose-normalized Tac trough concentrations after adjusting for common genetic variants and clinical factors. NGS spanned >3 Mb of 28 genes and identified 18,661 genetic variants (3,961 previously unknown). A group of 125 deleterious variants, by SIFT analysis, were associated with Tac troughs in EAs (burden test, p=0.008), CYB5R2 was associated with Tac troughs in AAs (SKAT, p=0.00079). In CYB5R2, rs61733057 (increased allele frequency in AAs) was predicted to disrupt protein function by SIFT and PolyPhen2 analysis. The variants merit further validation.
Collapse
|
29
|
Moses-Fynn E, Tang W, Beyene D, Apprey V, Copeland R, Kanaan Y, Kwabi-Addo B. Correlating blood-based DNA methylation markers and prostate cancer risk in African-American men. PLoS One 2018; 13:e0203322. [PMID: 30204798 PMCID: PMC6133349 DOI: 10.1371/journal.pone.0203322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
The objective of this work was to investigate the clinical significance of promoter gene DNA methylation changes in whole blood from African-American (AA) men with prostate cancer (PCa). We used high throughput pyrosequencing analysis to quantify percentage DNA methylation levels in a panel of 8 genes (RARβ2, TIMP3, SPARC, CDH13, HIN1, LINE1, CYB5R2 and DRD2) in blood DNA obtained from PCa and non-cancerous controls cases. Correlations of methylation status and various clinicopathological features were evaluated. Six genes tested achieved significant difference in DNA methylation levels between the PCa compared to control cases (P < 0.05). The TIMP3 loci demonstrated significant correlation of DNA methylation with age for all cases analyzed (p < 0.05). We observed an inverse correlation between CDH13 methylation (p = 0.045; r = -0.21) and serum vitamin D level whereas TIMP3 methylation (p = 0.021; r = -0.24) and DRD2 methylation (p = 0.056; r = -0.201) showed inverse correlation with supplementary vitamin D in the cancer cases. We also observed a direct correlation between methylation of RARβ2 (p = 0.0036; r = 0.293) and SPARC (p = 0.0134; r = 0.20) loci with PSA level in the controls but not the cancer cases. In addition, alcohol cases significantly correlated with higher RARβ2 methylation (p = 0.0314) in comparison with non-alcohol cases. Furthermore, we observed an inverse correlation of DRD2 methylation (p = 0.0349; r = -0.343) and Gleason score. Our data suggests that promoter methylation occurred more frequently in the blood of AA PCa and is associated with various clinicopathological features in AA men with PCa.
Collapse
Affiliation(s)
- Emmanuel Moses-Fynn
- Department of Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Desta Beyene
- Department of Microbiology, Howard University, Washington, D.C., United States of America
| | - Victor Apprey
- Department of Microbiology, Howard University, Washington, D.C., United States of America
| | - Robert Copeland
- Department of Pharmacology, Howard University, Washington, D.C., United States of America
| | - Yasmine Kanaan
- Department of Microbiology, Howard University, Washington, D.C., United States of America
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
30
|
Molnár B, Galamb O, Péterfia B, Wichmann B, Csabai I, Bodor A, Kalmár A, Szigeti KA, Barták BK, Nagy ZB, Valcz G, Patai ÁV, Igaz P, Tulassay Z. Gene promoter and exon DNA methylation changes in colon cancer development - mRNA expression and tumor mutation alterations. BMC Cancer 2018; 18:695. [PMID: 29945573 PMCID: PMC6020382 DOI: 10.1186/s12885-018-4609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.
Collapse
Affiliation(s)
- Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Bálint Péterfia
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
| | - András Bodor
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
- Institute of Mathematics and Informatics, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, H-7624 Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Krisztina Andrea Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barbara Kinga Barták
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsófia Brigitta Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Árpád V. Patai
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Péter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| |
Collapse
|
31
|
Intratumoral Heterogeneity for Inactivating Frameshift Mutation of CYB5R2 Gene in Colorectal Cancers. Pathol Oncol Res 2018. [PMID: 29532410 DOI: 10.1007/s12253-018-0406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Chi Y, Ding F, Zhang W, Du L. microRNA-503 suppresses the migration, proliferation and colony formation of prostate cancer cells by targeting tumor protein D52 like 2. Exp Ther Med 2017; 15:473-478. [PMID: 29375699 DOI: 10.3892/etm.2017.5401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the expression of microRNA-503 (miR-503) and its effect and mechanism of action on prostate cancer. Tumor tissues and tumor-adjacent tissues were collected from 20 patients with prostate cancer. TargetScan was used to predict the miRNA molecule that interacts with tumor protein D52 like 2 (TPD52L2). DU145 cells were transfected with a negative control, miR-503 mimic or miR-503 inhibitor. DU145 cells that had not undergone transfection were used as a control. Levels of miR-503 and TPD52L2 mRNA were determined using reverse transcription-quantitative polymerase chain reaction and the expression of TPD52L2 protein was measured using western blot analysis. The migration ability of DU145 cells was evaluated using a Transwell assay and cell proliferation was examined using an MTT assay. A flat plate colony formation test was conducted to examine the colony formation rate of DU145 cells. The current study demonstrated that TPD52L2 expression is increased while miR-503 expression is decreased in prostate cancer tissues. Overexpression of miR-503 inhibited the transcription and translation of TPD52L2 in DU145 cells and reduced cell migration, proliferation and colony formation. By contrast, inhibition of miR-503 expression increased the expression of TPD52L2 in DU145 cells and increased cell migration, proliferation and colony formation. The present study demonstrated that miR-503 is an oncogene that regulates the migration, proliferation and colony formation of prostate cancer cells by targeting the TPD52L2 gene. Thus, miR-503 has the potential to become a target for the molecular treatment and prognosis of prostate cancer in the future.
Collapse
Affiliation(s)
- Yuhua Chi
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Feng Ding
- Department of Anesthesia Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Wenjie Zhang
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Lifa Du
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
33
|
Benedetti I, De Marzo AM, Geliebter J, Reyes N. CXXC5 expression in prostate cancer: implications for cancer progression. Int J Exp Pathol 2017; 98:234-243. [PMID: 29027288 DOI: 10.1111/iep.12241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023] Open
Abstract
Identification of genes specifically deregulated in prostate adenocarcinoma may lead to discovery of new oncogenes/tumour suppressors with clinical relevance for diagnosis, prognosis and/or therapy. CXXC5 is a gene encoding a retinoid-inducible nuclear factor, whose overexpression in breast tumours, metastatic malignant melanomas and papillary thyroid carcinoma has been recently reported. We previously found differential expression of CXXC5 transcripts in metastatic prostate cancer cell lines of both rat and human origin. However, knowledge on the expression of this gene in benign or malignant human prostate tissue is lacking. The aim of this study was to determine the mRNA and protein expression pattern of CXXC5 in human benign prostate tissue, proliferative inflammatory atrophy, high-grade prostatic intra-epithelial neoplasia and prostate cancer, using qPCR, chromogenic in situ hybridization and immunohistochemistry. Our results showed that protein levels determined by immunohistochemistry were in agreement with transcript levels observed by chromogenic in situ hybridization. CXXC5 mRNA and protein expressions were significantly higher in prostate cancer, high-grade prostatic intra-epithelial neoplasia, and proliferative inflammatory atrophy, compared to benign prostate tissue. Significantly, within the same tissue specimens, CXXC5 staining was stronger in malignant acini than in matched adjacent, benign acini; immunostaining for this protein was mainly localized to the nucleus of benign epithelial cells and both the nucleus and cytoplasm of malignant epithelial cells. Our findings suggest that CXXC5 may play a role in the process of prostate carcinogenesis. Additional studies are required to determine the biological and clinical significance of CXXC5 in prostate cancer development and/or progression.
Collapse
Affiliation(s)
- Ines Benedetti
- School of Medicine, University of Cartagena, Cartagena, Colombia.,Research Group of Histopathology, Cartagena, Colombia
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jan Geliebter
- School of Medicine, New York Medical College, Valhalla, NY, USA
| | - Niradiz Reyes
- School of Medicine, University of Cartagena, Cartagena, Colombia.,Research Group of Genetics and Molecular Biology, Cartagena, Colombia
| |
Collapse
|
34
|
Epigenetic events in male common urogenital organs cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2016. [DOI: 10.1016/j.jcrpr.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Identification of novel candidate drivers connecting different dysfunctional levels for lung adenocarcinoma using protein-protein interactions and a shortest path approach. Sci Rep 2016; 6:29849. [PMID: 27412431 PMCID: PMC4944139 DOI: 10.1038/srep29849] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/24/2016] [Indexed: 12/21/2022] Open
Abstract
Tumors are formed by the abnormal proliferation of somatic cells with disordered growth regulation under the influence of tumorigenic factors. Recently, the theory of “cancer drivers” connects tumor initiation with several specific mutations in the so-called cancer driver genes. According to the differentiation of four basic levels between tumor and adjacent normal tissues, the cancer drivers can be divided into the following: (1) Methylation level, (2) microRNA level, (3) mutation level, and (4) mRNA level. In this study, a computational method is proposed to identify novel lung adenocarcinoma drivers based on dysfunctional genes on the methylation, microRNA, mutation and mRNA levels. First, a large network was constructed using protein-protein interactions. Next, we searched all of the shortest paths connecting dysfunctional genes on different levels and extracted new candidate genes lying on these paths. Finally, the obtained candidate genes were filtered by a permutation test and an additional strict selection procedure involving a betweenness ratio and an interaction score. Several candidate genes remained, which are deemed to be related to two different levels of cancer. The analyses confirmed our assertions that some have the potential to contribute to the tumorigenesis process on multiple levels.
Collapse
|
36
|
Wu Y, Davison J, Qu X, Morrissey C, Storer B, Brown L, Vessella R, Nelson P, Fang M. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer. Epigenetics 2016; 11:247-58. [PMID: 26890304 DOI: 10.1080/15592294.2016.1148867] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers. Most of these DMRs were located at CGI shores. The top 5 candidate DMRs from the low vs. high Gleason comparison, including OPCML, ELAVL2, EXT1, IRX5, and FLRT2, were validated by pyrosequencing using the discovery cohort. OPCML and FLRT2 were further validated in an independent cohort consisting of 20 low-Gleason and 33 high-Gleason tissues. We then compared patients with biochemical recurrence (n=70) vs. those without (n=86) in a third cohort, and they showed no difference in methylation at these DMR loci. When GS 3+4 cases and GS 4+3 cases were compared, OPCML-DMR methylation showed a trend of lower methylation in the recurrence group (n=30) than in the no-recurrence (n=52) group. We conclude that whole-genome methylation profiling with CHARM revealed distinct patterns of differential DNA methylation between normal prostate and PCa tissues, as well as between different risk groups of PCa as defined by Gleason scores. A panel of selected DMRs may serve as novel surrogate biomarkers for Gleason score in PCa.
Collapse
Affiliation(s)
- Yu Wu
- a Fred Hutchinson Cancer Research Center , Seattle , WA
| | - Jerry Davison
- a Fred Hutchinson Cancer Research Center , Seattle , WA
| | - Xiaoyu Qu
- a Fred Hutchinson Cancer Research Center , Seattle , WA
| | | | - Barry Storer
- a Fred Hutchinson Cancer Research Center , Seattle , WA
| | | | - Robert Vessella
- b University of Washington , Seattle , WA.,c Puget Sound VA Health Care System , Seattle , WA
| | - Peter Nelson
- a Fred Hutchinson Cancer Research Center , Seattle , WA.,b University of Washington , Seattle , WA
| | - Min Fang
- a Fred Hutchinson Cancer Research Center , Seattle , WA.,b University of Washington , Seattle , WA
| |
Collapse
|
37
|
Geybels MS, Zhao S, Wong CJ, Bibikova M, Klotzle B, Wu M, Ostrander EA, Fan JB, Feng Z, Stanford JL. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate 2015; 75:1941-50. [PMID: 26383847 PMCID: PMC4928710 DOI: 10.1002/pros.23093] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. METHODS The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. RESULTS In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. CONCLUSIONS This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets.
Collapse
Affiliation(s)
- Milan S. Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Shanshan Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- National Institute of Environmental Health Sciences, Biostatistics & Computational Biology Branch, North Carolina
| | - Chao-Jen Wong
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Michael Wu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | | | | | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
38
|
Liu Q, Liu Y, Li W, Wang X, Sawaya R, Lang FF, Yung WKA, Chen K, Fuller GN, Zhang W. Genetic, epigenetic, and molecular landscapes of multifocal and multicentric glioblastoma. Acta Neuropathol 2015; 130:587-97. [PMID: 26323991 PMCID: PMC4776337 DOI: 10.1007/s00401-015-1470-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/17/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Ten to twenty percent of newly diagnosed glioblastoma (GBM) patients initially present with multiple lesions, termed multifocal or multicentric GBM (M-GBM). The prognosis of these patients is poorer than that of solitary GBM (S-GBM) patients. However, it is unknown whether multifocality has a genetic, epigenetic, or molecular basis. Here, we identified the genetic and epigenetic characteristics of M-GBM by performing a comprehensive analysis of multidimensional data, including imaging, genetic, epigenetic, and gene expression profiles, from 30 M-GBM cases in The Cancer Genome Atlas database and comparing the results with those of 173 S-GBM cases. We found that M-GBMs had no IDH1, ATRX, or PDGFRA mutations and were significantly associated with the mesenchymal subtype. We also identified the CYB5R2 gene to be hypo-methylated and overexpressed in M-GBMs. The expression level of CYB5R2 was significantly associated with patient survival in two major independent GBM cohorts, totaling 758 cases. The IDH1 mutation was markedly associated with CYB5R2 promoter methylation, but the survival influence of CYB5R2 was independent of IDH1 mutation status. CYB5R2 expression was significantly associated with collagen maturation and the catabolic process and immunoregulation pathways. These results reveal that M-GBMs have some underlying genetic and epigenetic characteristics that are associated with poor prognosis and that CYB5R2 is a new epigenetic marker for GBM prognosis.
Collapse
Affiliation(s)
- Qun Liu
- Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Neurosurgery, Key Laboratory of Cancer Prevention and Therapy of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, People's Republic of China
| | - Yuexin Liu
- Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Wenliang Li
- Department of Neurosurgery, Key Laboratory of Cancer Prevention and Therapy of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, People's Republic of China
| | - Xiaoguang Wang
- Department of Neurosurgery, Key Laboratory of Cancer Prevention and Therapy of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, People's Republic of China
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, People's Republic of China
| | - Gregory N Fuller
- Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Wei Zhang
- Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Ming H, Lan Y, He F, Xiao X, Zhou X, Zhang Z, Li P, Huang G. Cytochrome b5 reductase 2 suppresses tumor formation in nasopharyngeal carcinoma by attenuating angiogenesis. CHINESE JOURNAL OF CANCER 2015; 34:459-67. [PMID: 26275421 PMCID: PMC4593386 DOI: 10.1186/s40880-015-0044-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/13/2015] [Indexed: 01/25/2023]
Abstract
Background Cytochrome b5 reductase 2 (CYB5R2) is a potential tumor suppressor that inhibits cell proliferation and motility in nasopharyngeal carcinoma (NPC). Inactivation of CYB5R2 is associated with lymph node metastasis in NPC. This study aimed to explore the mechanisms contributing to the anti-neoplastic effects of CYB5R2. Methods Polymerase chain reaction (PCR) assays were used to analyze the transcription of 84 genes known to be involved in representative cancer pathways in the NPC cell line HONE1. NPC cell lines CNE2 and HONE1 were transiently transfected with CYB5R2, and data was validated by real-time PCR. A chick chorioallantoic membrane (CAM) embryo model was implanted with CYB5R2-expressing CNE2 and HONE1 cells to evaluate the effect of CYB5R2 on angiogenesis. An immunohistochemical assay of the CAM model was used to analyze the protein expression of vascular endothelial growth factor (VEGF). Results In CYB5R2-transfected NPC cells, PCR assays revealed up-regulated mRNA levels of Fas cell surface death receptor (FAS), FBJ murine osteosarcoma viral oncogene homolog (FOS), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), integrin beta 3 (ITGB3), metastasis suppressor 1 (MTSS1), interferon beta 1 (IFNB1), and cyclin-dependent kinase inhibitor 2A (CDKN2A) and down-regulated levels of integrin beta 5 (ITGB5), insulin-like growth factor 1 (IGF1), TEK tyrosine kinase (TEK), transforming growth factor beta receptor 1 (TGFBR1), and VEGF. The angiogenesis in the CAM model implanted with CYB5R2-transfected NPC cells was inhibited. Down-regulation of VEGF by CYB5R2 in NPC cells was confirmed by immunohistochemical staining in the CAM model. Conclusion CYB5R2 up-regulates the expression of genes that negatively modulate angiogenesis in NPC cells and down-regulates the expression of VEGF to reduce angiogenesis, thereby suppressing tumor formation.
Collapse
Affiliation(s)
- Huixin Ming
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Ying Lan
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Feng He
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xiaoying Zhou
- Medical Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| |
Collapse
|
40
|
Pangeni RP, Channathodiyil P, Huen DS, Eagles LW, Johal BK, Pasha D, Hadjistephanou N, Nevell O, Davies CL, Adewumi AI, Khanom H, Samra IS, Buzatto VC, Chandrasekaran P, Shinawi T, Dawson TP, Ashton KM, Davis C, Brodbelt AR, Jenkinson MD, Bièche I, Latif F, Darling JL, Warr TJ, Morris MR. The GALNT9, BNC1 and CCDC8 genes are frequently epigenetically dysregulated in breast tumours that metastasise to the brain. Clin Epigenetics 2015; 7:57. [PMID: 26052355 PMCID: PMC4457099 DOI: 10.1186/s13148-015-0089-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/11/2015] [Indexed: 01/12/2023] Open
Abstract
Background Tumour metastasis to the brain is a common and deadly development in certain cancers; 18–30 % of breast tumours metastasise to the brain. The contribution that gene silencing through epigenetic mechanisms plays in these metastatic tumours is not well understood. Results We have carried out a bioinformatic screen of genome-wide breast tumour methylation data available at The Cancer Genome Atlas (TCGA) and a broad literature review to identify candidate genes that may contribute to breast to brain metastasis (BBM). This analysis identified 82 candidates. We investigated the methylation status of these genes using Combined Bisulfite and Restriction Analysis (CoBRA) and identified 21 genes frequently methylated in BBM. We have identified three genes, GALNT9, CCDC8 and BNC1, that were frequently methylated (55, 73 and 71 %, respectively) and silenced in BBM and infrequently methylated in primary breast tumours. CCDC8 was commonly methylated in brain metastases and their associated primary tumours whereas GALNT9 and BNC1 were methylated and silenced only in brain metastases, but not in the associated primary breast tumours from individual patients. This suggests differing roles for these genes in the evolution of metastatic tumours; CCDC8 methylation occurs at an early stage of metastatic evolution whereas methylation of GANLT9 and BNC1 occurs at a later stage of tumour evolution. Knockdown of these genes by RNAi resulted in a significant increase in the migratory and invasive potential of breast cancer cell lines. Conclusions These findings indicate that GALNT9 (an initiator of O-glycosylation), CCDC8 (a regulator of microtubule dynamics) and BNC1 (a transcription factor with a broad range of targets) may play a role in the progression of primary breast tumours to brain metastases. These genes may be useful as prognostic markers and their products may provide novel therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0089-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rajendra P Pangeni
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| | | | - David S Huen
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Lawrence W Eagles
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| | - Balraj K Johal
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Dawar Pasha
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Natasa Hadjistephanou
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Oliver Nevell
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Claire L Davies
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Ayobami I Adewumi
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Hamida Khanom
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Ikroop S Samra
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Vanessa C Buzatto
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Preethi Chandrasekaran
- School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Thoraia Shinawi
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - Timothy P Dawson
- Department of Neurosciences, Lancashire Teaching Hospitals NHS Foundation Trust, Royal Preston Hospital, Fulwood, Preston, UK
| | - Katherine M Ashton
- Department of Neurosciences, Lancashire Teaching Hospitals NHS Foundation Trust, Royal Preston Hospital, Fulwood, Preston, UK
| | - Charles Davis
- Department of Neurosciences, Lancashire Teaching Hospitals NHS Foundation Trust, Royal Preston Hospital, Fulwood, Preston, UK
| | | | | | - Ivan Bièche
- Department of Genetics, Institute Curie, Paris, France
| | - Farida Latif
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - John L Darling
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| | - Tracy J Warr
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| | - Mark R Morris
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK ; School of Biology, Chemistry and Forensic Sciences, University of Wolverhampton, Wolverhampton, UK ; Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
41
|
Devaney JM, Wang S, Furbert-Harris P, Apprey V, Ittmann M, Wang BD, Olender J, Lee NH, Kwabi-Addo B. Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men. Epigenetics 2015; 10:319-28. [PMID: 25864488 DOI: 10.1080/15592294.2015.1022019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence suggests that aberrant DNA methylation changes may contribute to prostate cancer (PCa) ethnic disparity. To comprehensively identify DNA methylation alterations in PCa disparity, we used the Illumina 450K methylation platform to interrogate the methylation status of 485,577 CpG sites focusing on gene-associated regions of the human genome. Genomic DNA from African-American (AA; 7 normal and 3 cancers) and Caucasian (Cau; 8 normal and 3 cancers) was used in the analysis. Hierarchical clustering analysis identified probe-sets unique to AA and Cau samples, as well as common to both. We selected 25 promoter-associated novel CpG sites most differentially methylated by race (fold change > 1.5-fold; adjusted P < 0.05) and compared the β-value of these sites provided by the Illumina, Inc. array with quantitative methylation obtained by pyrosequencing in 7 prostate cell lines. We found very good concordance of the methylation levels between β-value and pyrosequencing. Gene expression analysis using qRT-PCR in a subset of 8 genes after treatment with 5-aza-2'-deoxycytidine and/or trichostatin showed up-regulation of gene expression in PCa cells. Quantitative analysis of 4 genes, SNRPN, SHANK2, MST1R, and ABCG5, in matched normal and PCa tissues derived from AA and Cau PCa patients demonstrated differential promoter methylation and concomitant differences in mRNA expression in prostate tissues from AA vs. Cau. Regression analysis in normal and PCa tissues as a function of race showed significantly higher methylation prevalence for SNRPN (P = 0.012), MST1R (P = 0.038), and ABCG5 (P < 0.0002) for AA vs. Cau samples. We selected the ABCG5 and SNRPN genes and verified their biological functions by Western blot analysis and siRNA gene knockout effects on cell proliferation and invasion in 4 PCa cell lines (2 AA and 2 Cau patients-derived lines). Knockdown of either ABCG5 or SNRPN resulted in a significant decrease in both invasion and proliferation in Cau PCa cell lines but we did not observe these remarkable loss-of-function effects in AA PCa cell lines. Our study demonstrates how differential genome-wide DNA methylation levels influence gene expression and biological functions in AA and Cau PCa.
Collapse
Affiliation(s)
- J M Devaney
- a Children's National Medical Center ; Center for Genetic Medicine Research ; Washington, DC USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liang YX, Mo RJ, He HC, Chen JH, Zou J, Han ZD, Lu JM, Cai C, Zeng YR, Zhong WD, Wu CL. Aberrant hypomethylation-mediated CD147 overexpression promotes aggressive tumor progression in human prostate cancer. Oncol Rep 2015; 33:2648-54. [PMID: 25813864 DOI: 10.3892/or.2015.3870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Our previous study revealed the potential role of CD147 in human prostate cancer (PCa). Here, we investigated the CD147 promoter methylation status and the correlation with tumorigenicity in human PCa. CD147 mRNA and protein expression levels were both significantly higher in the 4 PCa cell lines, than in the 2 non-tumorigenic benign human prostatic epithelial cell lines (all P<0.01). We showed hypomethylation of promoter regions of CD147 in PCa cell lines with significant CD147 expression as compared to non-tumorigenic benign human prostatic epithelial cell lines slowly expressing CD147. Additionally, the treatment of methylated cell lines with 5-aza-2'-deoxycytidine increased CD147 expression significantly in low-expressing cell lines and also activated the expression of matrix metalloproteinase (MMP)-2, which may be one of the most important downstream targets of CD147. Furthermore, PCa tissues displayed decreased DNA methylation in the promoter region of CD147 compared to the corresponding non-cancerous prostate tissues, and methylation intensity correlated inversely with the CD147 mRNA levels. There was a significant negative correlation between CD147 mRNA levels and the number of methylated sites in PCa tissues (r=-0.467, P<0.01). In conclusion, our data offer convincing evidence for the first time that the DNA promoter hypomethylation of CD147 may be one of the regulatory mechanisms involved in the cancer-related overexpression of CD147 and may play a crucial role in the tumorigenesis of PCa.
Collapse
Affiliation(s)
- Yu-Xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Ru-Jun Mo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Hui-Chan He
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jia-Hong Chen
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jun Zou
- Department of Urology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jian-Ming Lu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Chao Cai
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yan-Ru Zeng
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
43
|
Abstract
The introduction of novel technologies that can be applied to the investigation of the molecular underpinnings of human cancer has allowed for new insights into the mechanisms associated with tumor development and progression. They have also advanced the diagnosis, prognosis and treatment of cancer. These technologies include microarray and other analysis methods for the generation of large-scale gene expression data on both mRNA and miRNA, next-generation DNA sequencing technologies utilizing a number of platforms to perform whole genome, whole exome, or targeted DNA sequencing to determine somatic mutational differences and gene rearrangements, and a variety of proteomic analysis platforms including liquid chromatography/mass spectrometry (LC/MS) analysis to survey alterations in protein profiles in tumors. One other important advancement has been our current ability to survey the methylome of human tumors in a comprehensive fashion through the use of sequence-based and array-based methylation analysis (Bock et al., Nat Biotechnol 28:1106-1114, 2010; Harris et al., Nat Biotechnol 28:1097-1105, 2010). The focus of this chapter is to present and discuss the evidence for key genes involved in prostate tumor development, progression, or resistance to therapy that are regulated by methylation-induced silencing.
Collapse
Affiliation(s)
- Tawnya C McKee
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, Diagnostic Biomarkers and Technology Branch, National Cancer Institute, Bethesda, MD, 20892-7430, USA
| | | |
Collapse
|
44
|
CXXC5 regulates differentiation of C2C12 myoblasts into myocytes. J Muscle Res Cell Motil 2014; 35:259-65. [DOI: 10.1007/s10974-014-9400-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
45
|
Shukla S, Patric IRP, Patil V, Shwetha SD, Hegde AS, Chandramouli BA, Arivazhagan A, Santosh V, Somasundaram K. Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth. J Biol Chem 2014; 289:22306-18. [PMID: 24923441 DOI: 10.1074/jbc.m114.567032] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor and shows very poor prognosis. Here, using genome-wide methylation analysis, we show that G-CIMP+ and G-CIMP-subtypes enrich distinct classes of biological processes. One of the hypermethylated genes in GBM, ULK2, an upstream autophagy inducer, was found to be down-regulated in GBM. Promoter hypermethylation of ULK2 was confirmed by bisulfite sequencing. GBM and glioma cell lines had low levels of ULK2 transcripts, which could be reversed upon methylation inhibitor treatment. ULK2 promoter methylation and transcript levels showed significant negative correlation. Ectopic overexpression of ULK2-induced autophagy, which further enhanced upon nutrient starvation or temozolomide chemotherapy. ULK2 also inhibited the growth of glioma cells, which required autophagy induction as kinase mutant of ULK2 failed to induce autophagy and inhibit growth. Furthermore, ULK2 induced autophagy and inhibited growth in Ras-transformed immortalized Baby Mouse Kidney (iBMK) ATG5(+/+) but not in autophagy-deficient ATG5(-/-) cells. Growth inhibition due to ULK2 induced high levels of autophagy under starvation or chemotherapy utilized apoptotic cell death but not at low levels of autophagy. Growth inhibition by ULK2 also appears to involve catalase degradation and reactive oxygen species generation. ULK2 overexpression inhibited anchorage independent growth, inhibited astrocyte transformation in vitro and tumor growth in vivo. Of all autophagy genes, we found ULK2 and its homologue ULK1 were only down-regulated in all grades of glioma. Thus these results altogether suggest that inhibition of autophagy by ULK1/2 down-regulation is essential for glioma development.
Collapse
Affiliation(s)
- Sudhanshu Shukla
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Irene Rosita Pia Patric
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Patil
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shivayogi D Shwetha
- Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Alangar S Hegde
- the Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India, and
| | | | | | - Vani Santosh
- Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Kumaravel Somasundaram
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India,
| |
Collapse
|
46
|
Gender-specific DNA methylome analysis of a Han Chinese longevity population. BIOMED RESEARCH INTERNATIONAL 2014; 2014:396727. [PMID: 24822201 PMCID: PMC4009103 DOI: 10.1155/2014/396727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/28/2014] [Indexed: 01/06/2023]
Abstract
Human longevity is always a biological hotspot and so much effort has been devoted to identifying genes and genetic variations associated with longer lives. Most of the demographic studies have highlighted that females have a longer life span than males. The reasons for this are not entirely clear. In this study, we carried out a pool-based, epigenome-wide investigation of DNA methylation profiles in male and female nonagenarians/centenarians using the Illumina 450 K Methylation Beadchip assays. Although no significant difference was detected for the average methylation levels of examined CpGs (or probes) between male and female samples, a significant number of differentially methylated probes (DMPs) were identified, which appeared to be enriched in certain chromosome regions and certain parts of genes. Further analysis of DMP-containing genes (named DMGs) revealed that almost all of them are solely hypermethylated or hypomethylated. Functional enrichment analysis of these DMGs indicated that DNA hypermethylation and hypomethylation may regulate genes involved in different biological processes, such as hormone regulation, neuron projection, and disease-related pathways. This is the first effort to explore the gender-based methylome difference in nonagenarians/centenarians, which may provide new insights into the complex mechanism of longevity gender gap of human beings.
Collapse
|