1
|
Abstract
Individuals born extremely preterm (before 28 weeks of gestation) comprise only about 0.7% of births in the United States and an even lower proportion in other high resource countries. However, these individuals account for a disproportionate number of children with cerebral palsy, intellectual deficit, autism spectrum disorder, attention deficit hyperactivity disorder, and epilepsy. This review describes two large multiple center cohorts comprised of individuals born extremely preterm: the EPICURE cohort, recruited 1995 in the United Kingdom and the Republic of Ireland, and the Extremely Low Gestational Age Newborn (ELGAN), recruited 2002-2004 in five states in the United States. The primary focus of these studies has been neurodevelopmental disorders, but also of interest are growth, respiratory illness, and parent- and self-reported global health and well-being. Both of these studies indicate that among individuals born extremely preterm the risks of most neurodevelopmental disorders are increased. Early life factors that contribute to this risk include perinatal brain damage, some of which can be identified using neonatal head ultrasound, bronchopulmonary dysplasia, and neonatal systemic inflammation. Prenatal factors, particularly the family's socioeconomic position, also appear to contribute to risk. For most adverse outcomes, the risk is higher in males. Young adults born extremely preterm who have neurodevelopmental impairment, as compared to those without such impairment, rate their quality of life lower. However, young adults born extremely preterm who do not have neurodevelopmental impairments rate their quality of life as being similar to that of young adults born at term. Finally, we summarize the current state of interventions designed to improve the life course of extremely premature infants, with particular focus on efforts to prevent premature birth and on postnatal efforts to prevent adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Genevieve L Taylor
- Genevieve L Taylor MD: Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine
| | - T Michael O'Shea
- T. Michael O'Shea, MD, MPH: Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine.
| |
Collapse
|
2
|
Dizon MLV, deRegnier RAO, Weiner SJ, Varner MW, Rouse DJ, Costantine MM, Wapner RJ, Thorp JM, Blackwell SC, Ayala NK, Saad AF, Caritis SN. Differential Gene Expression in Cord Blood of Infants Diagnosed with Cerebral Palsy: A Pilot Analysis of the Beneficial Effects of Antenatal Magnesium Cohort. Dev Neurosci 2022; 44:412-425. [PMID: 35705018 PMCID: PMC9474611 DOI: 10.1159/000525483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
The Beneficial Effects of Antenatal Magnesium clinical trial was conducted between 1997 and 2007, and demonstrated a significant reduction in cerebral palsy (CP) in preterm infants who were exposed to peripartum magnesium sulfate (MgSO4). However, the mechanism by which MgSO4 confers neuroprotection remains incompletely understood. Cord blood samples from this study were interrogated during an era when next-generation sequencing was not widely accessible and few gene expression differences or biomarkers were identified between treatment groups. Our goal was to use bulk RNA deep sequencing to identify differentially expressed genes comparing the following four groups: newborns who ultimately developed CP treated with MgSO4 or placebo, and controls (newborns who ultimately did not develop CP) treated with MgSO4 or placebo. Those who died after birth were excluded. We found that MgSO4 upregulated expression of SCN5A only in the control group, with no change in gene expression in cord blood of newborns who ultimately developed CP. Regardless of MgSO4 exposure, expression of NPBWR1 and FTO was upregulated in cord blood of newborns who ultimately developed CP compared with controls. These data support that MgSO4 may not exert its neuroprotective effect through changes in gene expression. Moreover, NPBWR1 and FTO may be useful as biomarkers and may suggest new mechanistic pathways to pursue in understanding the pathogenesis of CP. The small number of cases ultimately available for this secondary analysis, with male predominance and mild CP phenotype, is a limitation of the study. In addition, differentially expressed genes were not validated by qRT-PCR.
Collapse
Affiliation(s)
- Maria L V Dizon
- The Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
| | | | - Steven J Weiner
- The George Washington University Biostatistics Center, Washington, District of Columbia, USA
| | - Michael W Varner
- The Departments of Obstetrics and Gynecology of the University of Utah, Salt Lake City, Utah, USA
| | - Dwight J Rouse
- The Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maged M Costantine
- The Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, USA
| | - Ronald J Wapner
- The Department of Obstetrics and Gynecology, Thomas Jefferson University and Drexel University, Philadelphia, Pennsylvania, USA
- The Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - John M Thorp
- The Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean C Blackwell
- University of Texas Health Science Center at Houston-Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Nina K Ayala
- The Department of Obstetrics and Gynecology, Brown University, Providence, Rhode Island, USA
| | - Antonio F Saad
- The Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steve N Caritis
- The Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Marcotte EL, Spector LG, Mendes-de-Almeida DP, Nelson HH. The Prenatal Origin of Childhood Leukemia: Potential Applications for Epidemiology and Newborn Screening. Front Pediatr 2021; 9:639479. [PMID: 33968846 PMCID: PMC8102903 DOI: 10.3389/fped.2021.639479] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Childhood leukemias are heterogeneous diseases with widely differing incident rates worldwide. As circulating tumors, childhood acute leukemias are uniquely accessible, and their natural history has been described in greater detail than for solid tumors. For several decades, it has been apparent that most cases of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) initiate in utero. Circumstantial evidence in support of this contention includes the young age of onset and high rate of concordance among identical twins. "Backtracking" of leukemic somatic mutations, particularly gene translocations, to cord blood and dried blood spots collected during the perinatal period has provided molecular proof of prenatal leukemogenesis. Detection of a patient's leukemia translocation in easily accessible birth samples, such as dried blood spots, is straightforward with the knowledge of their idiosyncratic breakpoints. However, to translate these findings into population-based screening and leukemia prevention requires novel methods able to detect translocations at all possible breakpoints when present in a low frequency of cells. Several studies have attempted to screen for leukemic translocations, mainly the common ETV6-RUNX1 translocation, in cord blood samples from healthy children. Most studies have reported finding translocations in healthy children, but estimates of prevalence have varied widely and greatly exceed the incidence of leukemia, leading to concerns that technical artifact or contamination produced an artificially inflated estimate of translocation prevalence at birth. New generation techniques that capture the presence of these translocations at birth have the potential to vastly increase our understanding of the epidemiology of acute leukemias. For instance, if leukemic translocations are present at birth in a far higher proportion of children than eventually develop acute leukemia, what are the exposures and somatic molecular events that lead to disease? And could children with translocations present at birth be targeted for prevention of disease? These questions must be answered before large-scale newborn screening for leukemia can occur as a public health initiative. Here, we review the literature regarding backtracking of acute leukemias and the prevalence of leukemic translocations at birth. We further suggest an agenda for epidemiologic research using new tools for population screening of leukemic translocations.
Collapse
Affiliation(s)
- Erin L. Marcotte
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Logan G. Spector
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Daniela P. Mendes-de-Almeida
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Hematology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Division of Molecular Carcinogenesis, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Heather H. Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Whole genome methylation and transcriptome analyses to identify risk for cerebral palsy (CP) in extremely low gestational age neonates (ELGAN). Sci Rep 2021; 11:5305. [PMID: 33674671 PMCID: PMC7935929 DOI: 10.1038/s41598-021-84214-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Preterm birth remains the leading identifiable risk factor for cerebral palsy (CP), a devastating form of motor impairment due to developmental brain injury occurring around the time of birth. We performed genome wide methylation and whole transcriptome analyses to elucidate the early pathogenesis of CP in extremely low gestational age neonates (ELGANs). We evaluated peripheral blood cell specimens collected during a randomized trial of erythropoietin for neuroprotection in the ELGAN (PENUT Trial, NCT# 01378273). DNA methylation data were generated from 94 PENUT subjects (n = 47 CP vs. n = 47 Control) on day 1 and 14 of life. Gene expression data were generated from a subset of 56 subjects. Only one differentially methylated region was identified for the day 1 to 14 change between CP versus no CP, without evidence for differential gene expression of the associated gene RNA Pseudouridine Synthase Domain Containing 2. iPathwayGuide meta-analyses identified a relevant upregulation of JAK1 expression in the setting of decreased methylation that was observed in control subjects but not CP subjects. Evaluation of whole transcriptome data identified several top pathways of potential clinical relevance including thermogenesis, ferroptossis, ribosomal activity and other neurodegenerative conditions that differentiated CP from controls.
Collapse
|
5
|
McClendon-Weary B, Putnick DL, Robinson S, Yeung E. Little to Give, Much to Gain-What Can You Do With a Dried Blood Spot? Curr Environ Health Rep 2021; 7:211-221. [PMID: 32851603 DOI: 10.1007/s40572-020-00289-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Technological advances have allowed dried blood spots (DBS) to be utilized for various measurements, helpful in population-based studies. The following is a review of the literature highlighting the advantages and disadvantages of DBS and describing their use in multiple areas of research. RECENT FINDINGS DBS can track pollutant exposure to understand their impact on health. DBS can also be used for (epi-)genetic studies, to measure clinical biomarkers, and to monitor drug adherence. Advantages of DBS include being minimally invasive, requiring low blood volume, and being cost-effective to collect, transport, and store. Disadvantages of DBS include the hematocrit effect, which is related to the viscosity of the blood affecting its spread on to the filter paper, causing a major source of error when assessing concentrations, and the possibility of low DNA volume. Numerous uses for DBS make them an important source of biomaterial but they require additional validation for accuracy and reproducibility.
Collapse
Affiliation(s)
- Bryttany McClendon-Weary
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Diane L Putnick
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Sonia Robinson
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Edwina Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA.
| |
Collapse
|
6
|
Abstract
Cerebral palsy (CP), defined as a group of nonprogressive disorders of movement and posture, is the most common cause of severe neurodisability in children. The prevalence of CP is the same across the globe, affecting approximately 17 million people worldwide. Cerebral Palsy is an umbrella term used to describe the disease due to its inherent heterogeneity. For instance, CP has multiple (1) causes; (2) clinical types; (3) patterns of neuropathology on brain imaging and (4) it's associated with several developmental pathologies such as intellectual disability, autism, epilepsy, and visual impairment. Understanding its physiopathology is crucial to developing protective strategies. Despite its importance, there is still insufficient progress in the areas of CP prediction, early diagnosis, treatment, and prevention. Herein we describe the current risk factors and biomarkers used for the diagnosis and prediction of CP. With the advancement in biomarker discovery, we predict that our understanding of the etiopathophysiology of CP will also increase, lending to more opportunities for developing novel treatments and prognosis.
Collapse
Affiliation(s)
- Zeynep Alpay Savasan
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Beaumont Health System, Royal Oak, MI, United States; Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States.
| | - Sun Kwon Kim
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Beaumont Health System, Royal Oak, MI, United States; Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States
| | - Kyung Joon Oh
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| | - Stewart F Graham
- Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States; Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
| |
Collapse
|
7
|
Rovito R, Warnatz HJ, Kiełbasa SM, Mei H, Amstislavskiy V, Arens R, Yaspo ML, Lehrach H, Kroes ACM, Goeman JJ, Vossen ACTM. Impact of congenital cytomegalovirus infection on transcriptomes from archived dried blood spots in relation to long-term clinical outcome. PLoS One 2018; 13:e0200652. [PMID: 30024899 PMCID: PMC6053152 DOI: 10.1371/journal.pone.0200652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/30/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital Cytomegalovirus infection (cCMV) is the leading infection in determining permanent long-term impairments (LTI), and its pathogenesis is largely unknown due to the complex interplay between viral, maternal, placental, and child factors. The cellular activity, considered to be the result of the response to exogenous and endogenous factors, is captured by the determination of gene expression profiles. In this study, we determined whole blood transcriptomes in relation to cCMV, CMV viral load and LTI development at 6 years of age by using RNA isolated from neonatal dried blood spots (DBS) stored at room temperature for 8 years. As DBS were assumed to mainly reflect the neonatal immune system, particular attention was given to the immune pathways using the global test. Additionally, differential expression of individual genes was performed using the voom/limma function packages. We demonstrated feasibility of RNA sequencing from archived neonatal DBS of children with cCMV, and non-infected controls, in relation to LTI and CMV viral load. Despite the lack of statistical power to detect individual genes differences, pathway analysis suggested the involvement of innate immune response with higher CMV viral loads, and of anti-inflammatory markers in infected children that did not develop LTI. Finally, the T cell exhaustion observed in infected neonates, in particular with higher viral load, did not correlate with LTI, therefore other mechanisms are likely to be involved in the long-term immune dysfunction. Despite these data demonstrate limitation in determining prognostic markers for LTI by means of transcriptome analysis, this exploratory study represents a first step in unraveling the pathogenesis of cCMV, and the aforementioned pathways certainly merit further evaluation.
Collapse
Affiliation(s)
- Roberta Rovito
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Szymon M. Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Vyacheslav Amstislavskiy
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Aloys C. M. Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelle J. Goeman
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ann C. T. M. Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Reust MJ, Lee MH, Xiang J, Zhang W, Xu D, Batson T, Zhang T, Downs JA, Dupnik KM. Dried Blood Spot RNA Transcriptomes Correlate with Transcriptomes Derived from Whole Blood RNA. Am J Trop Med Hyg 2018; 98:1541-1546. [PMID: 29512483 PMCID: PMC5953367 DOI: 10.4269/ajtmh.17-0653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/14/2018] [Indexed: 01/14/2023] Open
Abstract
Obtaining RNA from clinical samples collected in resource-limited settings can be costly and challenging. The goals of this study were to 1) optimize messenger RNA extraction from dried blood spots (DBS) and 2) determine how transcriptomes generated from DBS RNA compared with RNA isolated from blood collected in Tempus tubes. We studied paired samples collected from eight adults in rural Tanzania. Venous blood was collected on Whatman 903 Protein Saver cards and in tubes with RNA preservation solution. Our optimal DBS RNA extraction used 8 × 3-mm DBS punches as the starting material, bead beater disruption at maximum speed for 60 seconds, extraction with Illustra RNAspin Mini RNA Isolation kit, and purification with Zymo RNA Concentrator kit. Spearman correlations of normalized gene counts in DBS versus whole blood ranged from 0.887 to 0.941. Bland-Altman plots did not show a trend toward over- or under-counting at any gene size. We report a method to obtain sufficient RNA from DBS to generate a transcriptome. The DBS transcriptome gene counts correlated well with whole blood transcriptome gene counts. Dried blood spots for transcriptome studies could be an option when field conditions preclude appropriate collection, storage, or transport of whole blood for RNA studies.
Collapse
Affiliation(s)
- Mary J. Reust
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Myung Hee Lee
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | - Wei Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | - Dong Xu
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | - Tatiana Batson
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | | | | |
Collapse
|
9
|
Hidecker MJC, Slaughter J, Abeysekara P, Ho NT, Dodge N, Hurvitz EA, Workinger MS, Kent RD, Rosenbaum P, Lenski M, Vanderbeek SB, DeRoos S, Paneth N. Early Predictors and Correlates of Communication Function in Children With Cerebral Palsy. J Child Neurol 2018; 33:275-285. [PMID: 29366365 PMCID: PMC8583866 DOI: 10.1177/0883073817754006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Birth characteristics and developmental milestones were evaluated as early predictors/correlates of communication in children with cerebral palsy. The hypothesis was that maternal report of child's age for vocal play and first words would predict current functional communication. A case series of 215 children, 2 to 17 years (mean age = 8.2 years, SD = 3.9) with cerebral palsy was recruited from medical practices in 3 Michigan cities. Early developmental data were collected by maternal interview. The child's Communication Function Classification System (CFCS) level was obtained from parent. Predictors of less functional communication included gestational age >32 weeks, number of comorbidities, age of first words after age 24 months, and use of communication methods other than speech. Several birth characteristics and developmental language milestones were predictive of later communication performance for children with cerebral palsy. These characteristics and milestones should trigger referrals for communication evaluations, including speech, language, hearing, and/or augmentative and alternative communication.
Collapse
Affiliation(s)
- Mary Jo Cooley Hidecker
- Division of Communication Disorders, University of Wyoming, Laramie, WY, USA.,Department of Epidemiology& Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Jaime Slaughter
- Department of Health Systems & Sciences Research and Department of Epidemiology & Biostatistics, Drexel University, PA, USA
| | - Purni Abeysekara
- Department of Community Health & Prevention, Drexel University, PA, USA
| | - Nhan T Ho
- Sergievesky Center, Columbia University Medical Center, New York, NY, USA
| | - Nancy Dodge
- Department of Pediatrics, Helen DeVos Children’s Hospital, Grand Rapids, MI, USA
| | - Edward A Hurvitz
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | | | - Ray D Kent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Rosenbaum
- CanChild Centre for Childhood Disability Research, McMaster University, Hamilton, ON, Canada
| | - Madeleine Lenski
- Department of Epidemiology& Biostatistics, Michigan State University, East Lansing, MI, USA
| | | | - Steven DeRoos
- Division of Pediatric Neurology, Helen DeVos Children’s Hospital, Grand Rapids, MI, USA
| | - Nigel Paneth
- Departments of Epidemiology& Biostatistics and Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Mohandas N, Bass-Stringer S, Maksimovic J, Crompton K, Loke YJ, Walstab J, Reid SM, Amor DJ, Reddihough D, Craig JM. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals consistent regional differences in DNA methylation. Clin Epigenetics 2018; 10:25. [PMID: 29484035 PMCID: PMC5824607 DOI: 10.1186/s13148-018-0457-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cerebral palsy (CP) is a clinical description for a group of motor disorders that are heterogeneous with respect to causes, symptoms and severity. A diagnosis of CP cannot usually be made at birth and in some cases may be delayed until 2–3 years of age. This limits opportunities for early intervention that could otherwise improve long-term outcomes. CP has been recorded in monozygotic twins discordant for the disorder, indicating a potential role of non-genetic factors such as intrauterine infection, hypoxia-ischaemia, haemorrhage and thrombosis. The aim of this exploratory study was to utilise the discordant monozygotic twin model to understand and measure epigenetic changes associated with the development of CP. Methods We performed a genome-wide analysis of DNA methylation using the Illumina Infinium Human Methylation 450 BeadChip array with DNA from newborn blood spots of 15 monozygotic twin pairs who later became discordant for CP. Quality control and data preprocessing were undertaken using the minfi R package. Differential methylation analysis was performed using the remove unwanted variation (RUVm) method, taking twin pairing into account in order to identify CP-specific differentially methylated probes (DMPs), and bumphunter was performed to identify differentially methylated regions (DMRs). Results We identified 33 top-ranked DMPs based on a nominal p value cut-off of p < 1 × 10−4 and two DMRs (p < 1 × 10−3) associated with CP. The top-ranked probes related to 25 genes including HNRNPL, RASSF5, CD3D and KALRN involved in immune signalling pathways, in addition to TBC1D24, FBXO9 and VIPR2 previously linked to epileptic encephalopathy. Gene ontology and pathway analysis of top-ranked DMP-associated genes revealed enrichment of inflammatory signalling pathways, regulation of cytokine secretion and regulation of leukocyte-mediated immunity. We also identified two top-ranked DMRs including one on chromosome 6 within the promoter region of LTA gene encoding tumour necrosis factor-beta (TNF-β), an important regulator of inflammation and brain development. The second was within the transcription start site of the LIME1 gene, which plays a key role in inflammatory pathways such as MAPK signalling. CP-specific differential DNA methylation within one of our two top DMRs was validated using an independent platform, MassArray EpiTyper. Conclusions Ours is the first epigenome-wide association study of CP in disease-discordant monozygotic twin pairs and suggests a potential role for immune dysfunction in this condition. Electronic supplementary material The online version of this article (10.1186/s13148-018-0457-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Namitha Mohandas
- Environmental and Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia.,2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia
| | - Sebastian Bass-Stringer
- Environmental and Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Jovana Maksimovic
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,Bioinformatics Group, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Kylie Crompton
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia.,5Neurodevelopment and Disability, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Yuk J Loke
- Environmental and Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Janet Walstab
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia
| | - Susan M Reid
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia.,5Neurodevelopment and Disability, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - David J Amor
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia.,5Neurodevelopment and Disability, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Dinah Reddihough
- 2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,4Developmental Disability and Rehabilitation Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria 3052 Australia.,5Neurodevelopment and Disability, The Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia
| | - Jeffrey M Craig
- Environmental and Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052 Australia.,2Department of Paediatrics, The University of Melbourne, Flemington Road, Parkville, Victoria 3052 Australia.,6Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria 3220 Australia
| |
Collapse
|
11
|
Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, Grove J, Agerbo E, Bækvad-Hansen M, Poulsen JB, Hansen CS, McGrath JJ, Als TD, Goldstein JI, Neale BM, Daly MJ, Hougaard DM, Mors O, Nordentoft M, Børglum AD, Werge T, Mortensen PB. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol Psychiatry 2018; 23:6-14. [PMID: 28924187 PMCID: PMC5754466 DOI: 10.1038/mp.2017.196] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022]
Abstract
The Integrative Psychiatric Research (iPSYCH) consortium has established a large Danish population-based Case-Cohort sample (iPSYCH2012) aimed at unravelling the genetic and environmental architecture of severe mental disorders. The iPSYCH2012 sample is nested within the entire Danish population born between 1981 and 2005, including 1 472 762 persons. This paper introduces the iPSYCH2012 sample and outlines key future research directions. Cases were identified as persons with schizophrenia (N=3540), autism (N=16 146), attention-deficit/hyperactivity disorder (N=18 726) and affective disorder (N=26 380), of which 1928 had bipolar affective disorder. Controls were randomly sampled individuals (N=30 000). Within the sample of 86 189 individuals, a total of 57 377 individuals had at least one major mental disorder. DNA was extracted from the neonatal dried blood spot samples obtained from the Danish Neonatal Screening Biobank and genotyped using the Illumina PsychChip. Genotyping was successful for 90% of the sample. The assessments of exome sequencing, methylation profiling, metabolome profiling, vitamin-D, inflammatory and neurotrophic factors are in progress. For each individual, the iPSYCH2012 sample also includes longitudinal information on health, prescribed medicine, social and socioeconomic information, and analogous information among relatives. To the best of our knowledge, the iPSYCH2012 sample is the largest and most comprehensive data source for the combined study of genetic and environmental aetiologies of severe mental disorders.
Collapse
Affiliation(s)
- C B Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Fuglesangs Allé 4, Aarhus 8210, Denmark. E-mail:
| | - J Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - M G Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - J Grove
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Centre for Integrative Sequencing, Department of Biomedicine and iSEQ, Aarhus University, Aarhus, Denmark,BiRC-Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - E Agerbo
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - M Bækvad-Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - J B Poulsen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - C S Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - J J McGrath
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - T D Als
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Centre for Integrative Sequencing, Department of Biomedicine and iSEQ, Aarhus University, Aarhus, Denmark
| | - J I Goldstein
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - B M Neale
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - M J Daly
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - D M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - O Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - M Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Mental Health Centre Copenhagen, Capital Region of Denmark, Copenhagen University Hospital, Copenhagen, Denmark
| | - A D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Centre for Integrative Sequencing, Department of Biomedicine and iSEQ, Aarhus University, Aarhus, Denmark
| | - T Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - P B Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark,Centre for Integrative Sequencing, Department of Biomedicine and iSEQ, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
BCL6 mediates the effects of Gastrodin on promoting M2-like macrophage polarization and protecting against oxidative stress-induced apoptosis and cell death in macrophages. Biochem Biophys Res Commun 2017; 486:458-464. [PMID: 28315684 DOI: 10.1016/j.bbrc.2017.03.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023]
Abstract
Cerebral palsy (CP) is the most common childhood disability worldwide, yet biomarkers for predicting CP are lacking. By subjecting peripheral blood samples from 62 CP patients and 30 healthy controls to Affymetrix GeneChip® PrimeView™ HumanGene Expression Microarray analysis, we identified the novel biomarker B-cell lymphoma 6 (BCL6) as the most upregulated gene in the CP samples. Gastrodin is a traditional Chinese medicine and bioactive compound that promotes adductor angle release, as well as gross and fine motor performance by increasing Gross Motor Function Measure-66 and Fine Motor Function Measure-45 scores. Gastrodin upregulates the mRNA expression of Mgl2 and Mrc1, M2 macrophage markers, and arginase activity, an M2 polarization indicator, in murine RAW264.7 macrophages. Moreover, these effects were blocked by BCL6 siRNA, which also abrogated the protective effects of Gastrodin against hydrogen peroxide-induced apoptosis and death in RAW264.7 cells. Our work identified BCL6 as a novel biomarker for early prediction of CP. Moreover, we demonstrated that Gastrodin not only stimulated polarization toward M2-like macrophages, which promote tissue repair, but also rescued macrophages from oxidative stress, apoptosis and death by inducing BCL6 expression. BCL6-targeted therapeutic strategies have promise for improving motor performance in CP patients.
Collapse
|
13
|
Bybjerg-Grauholm J, Hagen CM, Khoo SK, Johannesen ML, Hansen CS, Bækvad-Hansen M, Christiansen M, Hougaard DM, Hollegaard MV. RNA sequencing of archived neonatal dried blood spots. Mol Genet Metab Rep 2016; 10:33-37. [PMID: 28053876 PMCID: PMC5198792 DOI: 10.1016/j.ymgmr.2016.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 01/25/2023] Open
Abstract
Neonatal dried blood spots (DBS) are routinely collected on standard Guthrie cards for all-comprising national newborn screening programs for inborn errors of metabolism, hypothyroidism and other diseases. In Denmark, the Guthrie cards are stored at − 20 °C in the Danish Neonatal Screening Biobank and each sample is linked to elaborate social and medical registries. This provides a unique biospecimen repository to enable large population research at a perinatal level. Here, we demonstrate the feasibility to obtain gene expression data from DBS using next-generation RNA sequencing (RNA-seq). RNA-seq was performed on five males and five females. Sequencing results have an average of > 30 million reads per sample. 26,799 annotated features can be identified with 64% features detectable without fragments per kilobase of transcript per million mapped reads (FPKM) cutoff; number of detectable features dropped to 18% when FPKM ≥ 1. Sex can be discriminated using blood-based sex-specific gene set identified by the Genotype-Tissue Expression consortium. Here, we demonstrate the feasibility to acquire biologically-relevant gene expression from DBS using RNA-seq which provide a new avenue to investigate perinatal diseases in a high throughput manner.
Collapse
Affiliation(s)
- Jonas Bybjerg-Grauholm
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Christian Munch Hagen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Grand Rapids, MI 49503, USA
| | - Maria Louise Johannesen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Christine Søholm Hansen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Marie Bækvad-Hansen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Michael Christiansen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Department of Biomedicine, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - David Michael Hougaard
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Mads V Hollegaard
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| |
Collapse
|
14
|
Ho NT, Busik JV, Resau JH, Paneth N, Khoo SK. Effect of storage time on gene expression data acquired from unfrozen archived newborn blood spots. Mol Genet Metab 2016; 119:207-213. [PMID: 27553879 PMCID: PMC5083152 DOI: 10.1016/j.ymgme.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 01/11/2023]
Abstract
Unfrozen archived newborn blood spots (NBS) have been shown to retain sufficient messenger RNA (mRNA) for gene expression profiling. However, the effect of storage time at ambient temperature for NBS samples in relation to the quality of gene expression data is relatively unknown. Here, we evaluated mRNA expression from quantitative real-time PCR (qRT-PCR) and microarray data obtained from NBS samples stored at ambient temperature to determine the effect of storage time on the quality of gene expression. These data were generated in a previous case-control study examining NBS in 53 children with cerebral palsy (CP) and 53 matched controls. NBS sample storage period ranged from 3 to 16years at ambient temperature. We found persistently low RNA integrity numbers (RIN=2.3±0.71) and 28S/18S rRNA ratios (~0) across NBS samples for all storage periods. In both qRT-PCR and microarray data, the expression of three common housekeeping genes-beta cytoskeletal actin (ACTB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and peptidylprolyl isomerase A (PPIA)-decreased with increased storage time. Median values of each microarray probe intensity at log2 scale also decreased over time. After eight years of storage, probe intensity values were largely reduced to background intensity levels. Of 21,500 genes tested, 89% significantly decreased in signal intensity, with 13,551, 10,730, and 9925 genes detected within 5years, > 5 to <10years, and >10years of storage, respectively. We also examined the expression of two gender-specific genes (X inactivation-specific transcript, XIST and lysine-specific demethylase 5D, KDM5D) and seven gene sets representing the inflammatory, hypoxic, coagulative, and thyroidal pathways hypothesized to be related to CP risk to determine the effect of storage time on the detection of these biologically relevant genes. We found the gender-specific genes and CP-related gene sets detectable in all storage periods, but exhibited differential expression (between male vs. female or CP vs. control) only within the first six years of storage. We concluded that gene expression data quality deteriorates in unfrozen archived NBS over time and that differential gene expression profiling and analysis is recommended for those NBS samples collected and stored within six years at ambient temperature.
Collapse
Affiliation(s)
- Nhan T Ho
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - James H Resau
- Graduate School, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA; Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA.
| |
Collapse
|
15
|
McDade TW, M Ross K, L Fried R, Arevalo JMG, Ma J, Miller GE, Cole SW. Genome-Wide Profiling of RNA from Dried Blood Spots: Convergence with Bioinformatic Results Derived from Whole Venous Blood and Peripheral Blood Mononuclear Cells. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2016; 62:182-97. [PMID: 27337553 PMCID: PMC4972449 DOI: 10.1080/19485565.2016.1185600] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genome-wide transcriptional profiling has emerged as a powerful tool for analyzing biological mechanisms underlying social gradients in health, but utilization in population-based studies has been hampered by logistical constraints and costs associated with venipuncture blood sampling. Dried blood spots (DBS) provide a minimally invasive, low-cost alternative to venipuncture, and in this article we evaluate how closely the substantive results from DBS transcriptional profiling correspond to those derived from parallel analyses of gold-standard venous blood samples (PAXgene whole blood and peripheral blood mononuclear cells [PBMC]). Analyses focused on differences in gene expression between African-Americans and Caucasians in a community sample of 82 healthy adults (age 18-70 years; mean 35). Across 19,679 named gene transcripts, DBS-derived values correlated r = .85 with both PAXgene and PBMC values. Results from bioinformatics analyses of gene expression derived from DBS samples were concordant with PAXgene and PBMC samples in identifying increased Type I interferon signaling and up-regulated activity of monocytes and natural killer (NK) cells in African-Americans compared to Caucasian participants. These findings demonstrate the feasibility of DBS in field-based studies of gene expression and encourage future studies of human transcriptome dynamics in larger, more representative samples than are possible with clinic- or lab-based research designs.
Collapse
Affiliation(s)
- Thomas W McDade
- a Department of Anthropology , Northwestern University , Evanston , Illinois , USA
- b Cells to Society (C2S): The Center on Social Disparities and Health, Institute for Policy Research , Northwestern University , Evanston , Illinois , USA
- c Program in Child and Brain Development , Canadian Institute for Advanced Research , Toronto , Canada
| | - Kharah M Ross
- d Psychology Department , University of California, Los Angeles , Los Angeles , California , USA
| | - Ruby L Fried
- a Department of Anthropology , Northwestern University , Evanston , Illinois , USA
| | - Jesusa M G Arevalo
- e Department of Medicine, Division of Hematology-Oncology , UCLA School of Medicine , Los Angeles , California , USA
| | - Jeffrey Ma
- f Department of Psychiatry & Biobehavioral Sciences , Cousins Center for Psychoneuroimmunology , University of California, Los Angeles, Los Angeles , California , USA
| | - Gregory E Miller
- b Cells to Society (C2S): The Center on Social Disparities and Health, Institute for Policy Research , Northwestern University , Evanston , Illinois , USA
- g Department of Psychology , Northwestern University , Evanston , Illinois , USA
| | - Steve W Cole
- e Department of Medicine, Division of Hematology-Oncology , UCLA School of Medicine , Los Angeles , California , USA
- f Department of Psychiatry & Biobehavioral Sciences , Cousins Center for Psychoneuroimmunology , University of California, Los Angeles, Los Angeles , California , USA
| |
Collapse
|
16
|
|
17
|
Mcintyre S, Badawi N, Blair E, Nelson KB. Does aetiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy influence the outcome of treatment? Dev Med Child Neurol 2015; 57 Suppl 3:2-7. [PMID: 25800486 DOI: 10.1111/dmcn.12725] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 12/21/2022]
Abstract
Neonatal encephalopathy, a clinical syndrome affecting term-born and late preterm newborn infants, increases the risk of perinatal death and long-term neurological morbidity, especially cerebral palsy. With the advent of therapeutic hypothermia, a treatment designed for hypoxic or ischaemic injury, associated mortality and morbidity rates have decreased. Unfortunately, only about one in eight neonates (95% confidence interval) who meet eligibility criteria for therapeutic cooling apparently benefit from the treatment. Studies of infants in representative populations indicate that neonatal encephalopathy is a potential result of a variety of antecedents and that asphyxial complications at birth account for only a small percentage of neonatal encephalopathy. In contrast, clinical case series suggest that a large proportion of neonatal encephalopathy is hypoxic or ischaemic, and trials of therapeutic hypothermia are specifically designed to include only infants exposed to hypoxia or ischaemia. This review addresses the differences, definitional and methodological, between infants studied and investigations undertaken, in population studies compared with cooling trials. It raises the question if there may be subgroups of infants with a clinical diagnosis of hypoxic-ischaemic encephalopathy (HIE) in whom the pathobiology of neonatal neurological depression is not fundamentally hypoxic or ischaemic and, therefore, for whom cooling may not be beneficial. In addition, it suggests approaches to future trials of cooling plus adjuvant therapy that may contribute to further improvement of care for these vulnerable neonates.
Collapse
Affiliation(s)
- Sarah Mcintyre
- Cerebral Palsy Alliance, University of Notre Dame, Darlinghurst, NSW, Australia
| | | | | | | |
Collapse
|
18
|
Pappas A, Chaiworapongsa T, Romero R, Korzeniewski SJ, Cortez JC, Bhatti G, Gomez-Lopez N, Hassan SS, Shankaran S, Tarca AL. Transcriptomics of maternal and fetal membranes can discriminate between gestational-age matched preterm neonates with and without cognitive impairment diagnosed at 18-24 months. PLoS One 2015; 10:e0118573. [PMID: 25822971 PMCID: PMC4379164 DOI: 10.1371/journal.pone.0118573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Neurocognitive impairment among children born preterm may arise from complex interactions between genes and the intra-uterine environment. OBJECTIVES (1) To characterize the transcriptomic profiles of chorioamniotic membranes in preterm neonates with and without neurocognitive impairment via microarrays and (2) to determine if neonates with neurocognitive impairment can be identified at birth. MATERIALS/METHODS A retrospective case-control study was conducted to examine the chorioamniotic transcriptome of gestational-age matched very preterm neonates with and without neurocognitive impairment at 18-24 months' corrected-age defined by a Bayley-III Cognitive Composite Score <80 (n = 14 each). Pathway analysis with down-weighting of overlapping genes (PADOG) was performed to identify KEGG pathways relevant to the phenotype. Select differentially expressed genes were profiled using qRT-PCR and a multi-gene disease prediction model was developed using linear discriminant analysis. The model's predictive performance was tested on a new set of cases and controls (n = 19 each). RESULTS 1) 117 genes were differentially expressed among neonates with and without subsequent neurocognitive impairment (p<0.05 and fold change >1.5); 2) Gene ontology analysis indicated enrichment of 19 biological processes and 3 molecular functions; 3)PADOG identified 4 significantly perturbed KEGG pathways: oxidative phosphorylation, Parkinson's disease, Alzheimer's disease and Huntington's disease (q-value <0.1); 4) 48 of 90 selected differentially expressed genes were confirmed by qRT-PCR, including genes implicated in energy metabolism, neuronal signaling, vascular permeability and response to injury (e.g., up-regulation of SEPP1, APOE, DAB2, CD163, CXCL12, VWF; down-regulation of HAND1, OSR1)(p<0.05); and 5) a multi-gene model predicted 18-24 month neurocognitive impairment (using the ratios of OSR1/VWF and HAND1/VWF at birth) in a larger, independent set (sensitivity = 74%, at specificity = 83%). CONCLUSIONS Gene expression patterns in the chorioamniotic membranes link neurocognitive impairment in preterm infants to neurodegenerative disease pathways and might be used to predict neurocognitive impairment. Further prospective studies are needed.
Collapse
Affiliation(s)
- Athina Pappas
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Pediatrics, Division of Neonatal and Perinatal Medicine, Wayne State University, Detroit, MI, United States of America
- * E-mail: (AP); (AT)
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Josef C. Cortez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Pediatrics, Division of Neonatal and Perinatal Medicine, Wayne State University, Detroit, MI, United States of America
| | - Gaurav Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
| | - Seetha Shankaran
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Pediatrics, Division of Neonatal and Perinatal Medicine, Wayne State University, Detroit, MI, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development / NIH / DHHS, Bethesda, MD and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States of America
- * E-mail: (AP); (AT)
| |
Collapse
|
19
|
Wei C, Lu Q, Khoo SK, Lenski M, Fichorova R, Leviton A, Paneth N. Comparison of frozen and unfrozen blood spots for gene expression studies. J Pediatr 2014; 164:189-191.e1. [PMID: 24209717 PMCID: PMC4326080 DOI: 10.1016/j.jpeds.2013.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/16/2013] [Accepted: 09/12/2013] [Indexed: 01/15/2023]
Abstract
We studied gene expression in 9 sets of paired newborn blood spots stored for 8-10 years in either the frozen state or the unfrozen state. Fewer genes were expressed in unfrozen spots, but the average correlation coefficient for overall gene expression comparing the frozen and unfrozen state was 0.771 (95% CI, 0.700-0.828).
Collapse
Affiliation(s)
- Changshuai Wei
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Qing Lu
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Sok Kean Khoo
- Laboratory of Microarray Technology, Van Andel Research Institute, Grand Rapids, MI
| | - Madeleine Lenski
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Raina Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
| | - Alan Leviton
- Neuroepidemiology Unit, Department of Neurology, Boston Children's Hospital, Harvard University, Boston, MA
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI; Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI.
| |
Collapse
|
20
|
Grala TM, Kay JK, Phyn CVC, Bionaz M, Walker CG, Rius AG, Snell RG, Roche JR. Reducing milking frequency during nutrient restriction has no effect on the hepatic transcriptome of lactating dairy cattle. Physiol Genomics 2013; 45:1157-67. [PMID: 24104205 DOI: 10.1152/physiolgenomics.00134.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate if a reduced milking frequency altered the effect of dietary energy restriction on the hepatic transcriptome of grazing dairy cows during early lactation. Multiparous Holstein-Friesian and Holstein-Friesian × Jersey cows (n = 120) were milked twice daily (2×) from calving until 34 ± 6 days in milk (mean ± SD). Cows were then allocated to one of four treatments in a 2 × 2 factorial arrangement. Treatments consisted of two milking frequencies [2× or once daily (1×)] and two feeding levels for 3 wk: adequately fed (AF) or underfed (UF, 60% of AF). Liver tissue was biopsied from 12 cows per treatment after 3 wk of treatment, and the hepatic transcriptome was profiled with an Agilent 4 × 44k bovine microarray. Over 2,900 genes were differentially expressed in response to the energy restriction; however, no effects resulted from changes to milking frequency. This may indicate that after 3 wk of 1× milking, any changes to the liver transcriptome that may have occurred earlier have returned to normal. After 3 wk of energy restriction, gene expression patterns indicate that glucose-sparing pathways were activated, and gluconeogenesis was increased in UF cows. Genes involved in hepatic stress were upregulated in response to the energy restriction indicative of the pressure energy restriction places on liver function. Other pathways upregulated included "cytoskeletal remodeling," indicating that a 3 wk energy restriction resulted in molecular changes to assist tissue remodeling. Overall, 1× milking does not modify the hepatic transcriptome changes that occur in response to an energy restriction.
Collapse
Affiliation(s)
- T M Grala
- DairyNZ Limited - University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Slaughter J, Wei C, Korzeniewski SJ, Lu Q, Beck JS, Khoo SK, Brovont A, Maurer J, Martin D, Lenski M, Paneth N. High correlations in gene expression between paired umbilical cord blood and neonatal blood of healthy newborns on Guthrie cards. J Matern Fetal Neonatal Med 2013; 26:1765-7. [PMID: 23668672 DOI: 10.3109/14767058.2013.804050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To examine the correlation in genes expressed in paired umbilical cord blood (UCB) and newborn blood (NB). METHOD Total mRNA and mRNA of three gene sets (inflammatory, hypoxia, and thyroidal response) was assessed using microarray in UCB and NB spotted on Guthrie cards from 7 mother/infant pairs. RESULTS The average gene expression correlation between paired UCB and NB samples was 0.941 when all expressed genes were considered, and 0.949 for three selected gene sets. CONCLUSION The high correlation of UCB and NB gene expression suggest that either source may be useful for examining gene expression in the perinatal period.
Collapse
Affiliation(s)
- Jaime Slaughter
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University , East Lansing, MI , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|