1
|
Edemann-Callesen H, Bernhardt N, Hlusicka EB, Hintz F, Habelt B, Winter R, Neubert I, Pelz M, Filla A, Soto-Montenegro ML, Winter C, Hadar R. Supplement Treatment with NAC and Omega-3 Polyunsaturated Fatty Acids during Pregnancy Partially Prevents Schizophrenia-Related Outcomes in the Poly I:C Rat Model. Antioxidants (Basel) 2023; 12:antiox12051068. [PMID: 37237933 DOI: 10.3390/antiox12051068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Heightened levels of inflammation and oxidative stress are thought to be involved in the pathophysiology of schizophrenia. We aimed to assess whether intake of anti-inflammatory and anti-oxidant drugs during pregnancy prevents later schizophrenia-related outcomes in a neurodevelopmental rat model of this disorder. METHODS Pregnant Wistar rats were injected with polyriboinosinic-polyribocytidilic acid (Poly I:C) or saline and subsequently treated with either N-acetyl cysteine (NAC) or omega-3 polyunsaturated fatty acids (PUFAs) until delivery. Controls rats received no treatment. In the offspring, neuroinflammation and anti-oxidant enzyme activity were assessed on postnatal day (PND) 21, 33, 48, and 90. Behavioral testing was performed at PND 90, followed by post-mortem neurochemical assessment and ex vivo MRI. RESULTS The supplement treatment led to a quicker restoration of the wellbeing of dams. In the adolescent Poly I:C offspring, the supplement treatment prevented an increase in microglial activity and partially prevented a deregulation in the anti-oxidant defense system. In the adult Poly I:C offspring, supplement treatment partially prevented dopamine deficits, which was paralleled by some changes in behavior. Exposure to omega-3 PUFAs prevented the enlargement of lateral ventricles. CONCLUSION Intake of over-the-counter supplements may assist in especially targeting the inflammatory response related to schizophrenia pathophysiology, aiding in diminishing later disease severity in the offspring.
Collapse
Affiliation(s)
- Henriette Edemann-Callesen
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Elizabeth Barroeta Hlusicka
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Franziska Hintz
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Rebecca Winter
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Isabell Neubert
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Meike Pelz
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Alexandra Filla
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Maria Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Christine Winter
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ravit Hadar
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Influence of Cerebral Vasodilation on Blood Reelin Levels in Growth Restricted Fetuses. Diagnostics (Basel) 2021; 11:diagnostics11061036. [PMID: 34199942 PMCID: PMC8228107 DOI: 10.3390/diagnostics11061036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Fetal growth restriction (FGR) is one of the most important obstetric pathologies. It is frequently caused by placental insufficiency. Previous studies have shown a relationship between FGR and impaired new-born neurodevelopment, although the molecular mechanisms involved in this association have not yet been completely clarified. Reelin is an extracellular matrix glycoprotein involved in development of neocortex, hippocampus, cerebellum and spinal cord. Reelin has been demonstrated to play a key role in regulating perinatal neurodevelopment and to contribute to the emergence and development of various psychiatric pathologies, and its levels are highly influenced by pathological conditions of hypoxia. The purpose of this article is to study whether reelin levels in new-borns vary as a function of severity of fetal growth restriction by gestational age and sex. We sub-grouped fetuses in: normal weight group (Group 1, n = 17), FGR group with normal umbilical artery Doppler and cerebral redistribution at middle cerebral artery Doppler (Group 2, n = 9), and FGR with abnormal umbilical artery Doppler (Group 3, n = 8). Our results show a significant association of elevated Reelin levels in FGR fetuses with cerebral blood redistribution compared to the normal weight group and the FGR with abnormal umbilical artery group. Future research should focus on further expanding the knowledge of the relationship of reelin and its regulated products with neurodevelopment impairment in new-borns with FGR and should include larger and more homogeneous samples and the combined use of different in vivo techniques in neonates with impaired growth during their different adaptive phases.
Collapse
|
3
|
Pires JM, Foresti ML, Silva CS, Rêgo DB, Calió ML, Mosini AC, Nakamura TKE, Leslie ATF, Mello LE. Lipopolysaccharide-Induced Systemic Inflammation in the Neonatal Period Increases Microglial Density and Oxidative Stress in the Cerebellum of Adult Rats. Front Cell Neurosci 2020; 14:142. [PMID: 32581717 PMCID: PMC7283979 DOI: 10.3389/fncel.2020.00142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Inflammatory processes occurring in the perinatal period may affect different brain regions, resulting in neurologic sequelae. Injection of lipopolysaccharide (LPS) at different neurodevelopmental stages produces long-term consequences in several brain structures, but there is scarce evidence regarding alterations in the cerebellum. The aim of this study was to evaluate the long-term consequences on the cerebellum of a systemic inflammatory process induced by neonatal LPS injection. For this, neonatal rats were randomly assigned to three different groups: naïve, sham, and LPS. Saline (sham group) or LPS solution (1 mg/kg) was intraperitoneally injected on alternate postnatal days (PN) PN1, PN3, PN5, and PN7. Spontaneous activity was evaluated with the open field test in adulthood. The cerebellum was evaluated for different parameters: microglial and Purkinje cell densities, oxidative stress levels, and tumor necrosis factor alpha (TNF-α) mRNA expression. Our results show that administration of LPS did not result in altered spontaneous activity in adult animals. Our data also indicate increased oxidative stress in the cerebellum, as evidenced by an increase in superoxide fluorescence by dihydroethidium (DHE) indicator. Stereological analyses indicated increased microglial density in the cerebellum that was not accompanied by Purkinje cell loss or altered TNF-α expression in adult animals. Interestingly, Purkinje cells ectopically positioned in the granular and molecular layers of the cerebellum were observed in animals of the LPS group. Our data suggest that neonatal LPS exposure causes persistent cellular and molecular changes to the cerebellum, indicating the susceptibility of this region to systemic inflammatory insults in infancy. Further investigation of the consequences of these changes and the development of strategies to avoid those should be subject of future studies.
Collapse
Affiliation(s)
| | - Maira Licia Foresti
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | | | | | | | - Amanda Cristina Mosini
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Associação Brasileira de Epilepsia, São Paulo, Brazil
| | | | | | - Luiz Eugênio Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Haddad FL, Patel SV, Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci Biobehav Rev 2020; 113:546-567. [PMID: 32320814 DOI: 10.1016/j.neubiorev.2020.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) in response to a viral infection during early and mid-gestation has been linked through various epidemiological studies to a higher risk for the child to develop autism or schizophrenia-related symptoms.. This has led to the establishment of the pathogen-free poly I:C-induced MIA animal model for neurodevelopmental disorders, which shows relatively high construct and face validity. Depending on the experimental variables, particularly the timing of poly I:C administration, different behavioural and molecular phenotypes have been described that relate to specific symptoms of neurodevelopmental disorders such as autism spectrum disorder and/or schizophrenia. We here review and summarize epidemiological evidence for the effects of maternal infection and immune activation, as well as major findings in different poly I:C MIA models with a focus on poly I:C exposure timing, behavioural and molecular changes in the offspring, and characteristics of the model that relate it to autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Salonee V Patel
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
6
|
Ali AAH, Tundo-Lavalle F, Hassan SA, Pfeffer M, Stahr A, von Gall C. Impact of Targeted Deletion of the Circadian Clock Gene Bmal1 in Excitatory Forebrain Neurons on Adult Neurogenesis and Olfactory Function. Int J Mol Sci 2020; 21:E1394. [PMID: 32092990 PMCID: PMC7073072 DOI: 10.3390/ijms21041394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circadian system is an endogenous timekeeping system that synchronizes physiology and behavior with the 24 h solar day. Mice with total deletion of the core circadian clock gene Bmal1 show circadian arrhythmicity, cognitive deficits, and accelerated age-dependent decline in adult neurogenesis as a consequence of increased oxidative stress. However, it is not yet known if the impaired adult neurogenesis is due to circadian disruption or to loss of the Bmal1 gene function. Therefore, we investigated oxidative stress and adult neurogenesis of the two principle neurogenic niches, the hippocampal subgranular zone and the subventricular zone in mice with a forebrain specific deletion of Bmal1 (Bmal1 fKO), which show regular circadian rhythmicity. Moreover, we analyzed the morphology of the olfactory bulb, as well as olfactory function in Bmal1 fKO mice. In Bmal1 fKO mice, oxidative stress was increased in subregions of the hippocampus and the olfactory bulb but not in the neurogenic niches. Consistently, adult neurogenesis was not affected in Bmal1 fKO mice. Although Reelin expression in the olfactory bulb was higher in Bmal1 fKO mice as compared to wildtype mice (Bmal1 WT), the olfactory function was not affected. Taken together, the targeted deletion of Bmal1 in mouse forebrain neurons is associated with a regional increase in oxidative stress and increased Reelin expression in the olfactory bulb but does not affect adult neurogenesis or olfactory function.
Collapse
Affiliation(s)
- Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
- Zoology Department, Faculty of Science, Suez University, Suez 43111, Egypt
| | - Martina Pfeffer
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| | - Anna Stahr
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| |
Collapse
|
7
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
9
|
Shankle WR, Hara J, Barrentine LW, Curole MV. CerefolinNAC Therapy of Hyperhomocysteinemia Delays Cortical and White Matter Atrophy in Alzheimer's Disease and Cerebrovascular Disease. J Alzheimers Dis 2018; 54:1073-1084. [PMID: 27567825 DOI: 10.3233/jad-160241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined whether using a medical food therapy for hyperhomocysteinemia (HHcy) in patients with Alzheimer's disease (AD) or cognitive impairment due to cerebrovascular disease (CVD) with Cerefolin®/CerefolinNAC® (CFLN: L-methylfolate, methylcobalamin, and N-acetyl-cysteine) slowed regional brain atrophy. Thirty HHcy patients with AD and related disorders (ADRD) received CFLN (HHcy+CFLN: duration [μ ± σ] = 18.6±16.1 months); a sub-sample of this group did not receive CFLN for varying periods of time (HHcy+NoCFLN: duration [μ ± σ] = 12.6±5.6 months). Thirty-seven NoHHcy patients with ADRD did not receive CFLN (NoHHcy+NoCFLN: duration [μ ± σ] = 13.3±17.7 months). No participant took supplemental B vitamins. Regional brain volumes were measured at baseline and end of study, and covariate-adjusted rates of hippocampal, cortical, and forebrain parenchymal (includes white matter) atrophy were predicted. The HHcy+CFLN group's hippocampal and cortical atrophy adjusted rates were 4.25 and 11.2 times slower than those of the NoHHcy+NoCFLN group (p < 0.024). The HHcy+CFLN group's forebrain parenchyma atrophy rate was significantly slower only for CVD; the rate of slowing was proportional to the degree of homocysteine lowering (p < 0.0001). CFLN was associated with significantly slowed hippocampal and cortical atrophy rates in ADRD patients with HHcy, and forebrain parenchymal atrophy rates in CVD patients with HHcy. The present results should be further validated.
Collapse
Affiliation(s)
- William R Shankle
- Medical Care Corporation, Newport Beach, CA, USA.,Shankle Clinic, Newport Beach, CA, USA.,Memory and Cognitive Disorders Program, Neurosciences Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, USA.,Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Junko Hara
- Medical Care Corporation, Newport Beach, CA, USA.,Shankle Clinic, Newport Beach, CA, USA
| | | | | |
Collapse
|
10
|
Costa LG, Chang YC, Cole TB. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism. Curr Environ Health Rep 2017; 4:156-165. [PMID: 28417440 PMCID: PMC5952375 DOI: 10.1007/s40572-017-0135-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. RECENT FINDINGS Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA.
- Department of Neuroscience, University of Parma, Parma, Italy.
| | - Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
| | - Toby B Cole
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Traffic-Related Air Pollution and Neurodegenerative Diseases: Epidemiological and Experimental Evidence, and Potential Underlying Mechanisms. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Mata A, Urrea L, Vilches S, Llorens F, Thüne K, Espinosa JC, Andréoletti O, Sevillano AM, Torres JM, Requena JR, Zerr I, Ferrer I, Gavín R, Del Río JA. Reelin Expression in Creutzfeldt-Jakob Disease and Experimental Models of Transmissible Spongiform Encephalopathies. Mol Neurobiol 2016; 54:6412-6425. [PMID: 27726110 DOI: 10.1007/s12035-016-0177-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Reelin is an extracellular glycoprotein involved in key cellular processes in developing and adult nervous system, including regulation of neuronal migration, synapse formation, and plasticity. Most of these roles are mediated by the intracellular phosphorylation of disabled-1 (Dab1), an intracellular adaptor molecule, in turn mediated by binding Reelin to its receptors. Altered expression and glycosylation patterns of Reelin in cerebrospinal and cortical extracts have been reported in Alzheimer's disease. However, putative changes in Reelin are not described in natural prionopathies or experimental models of prion infection or toxicity. With this is mind, in the present study, we determined that Reelin protein and mRNA levels increased in CJD human samples and in mouse models of human prion disease in contrast to murine models of prion infection. However, changes in Reelin expression appeared only at late terminal stages of the disease, which prevent their use as an efficient diagnostic biomarker. In addition, increased Reelin in CJD and in in vitro models does not correlate with Dab1 phosphorylation, indicating failure in its intracellular signaling. Overall, these findings widen our understanding of the putative changes of Reelin in neurodegeneration.
Collapse
Affiliation(s)
- Agata Mata
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Laura Urrea
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Franc Llorens
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Katrin Thüne
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Juan-Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Valdeolmos, Spain
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alejandro M Sevillano
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
- Department of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Valdeolmos, Spain
| | - Jesús Rodríguez Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
- Department of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Inga Zerr
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Isidro Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Zhang Q, Deng Y, Lai W, Guan X, Sun X, Han Q, Wang F, Pan X, Ji Y, Luo H, Huang P, Tang Y, Gu L, Dan G, Yu J, Namaka M, Zhang J, Deng Y, Li X. Maternal inflammation activated ROS-p38 MAPK predisposes offspring to heart damages caused by isoproterenol via augmenting ROS generation. Sci Rep 2016; 6:30146. [PMID: 27443826 PMCID: PMC4957145 DOI: 10.1038/srep30146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Maternal inflammation contributes to the increased incidence of adult cardiovascular disease. The current study investigated the susceptibility of cardiac damage responding to isoproterenol (ISO) in adult offspring that underwent maternal inflammation (modeled by pregnant Sprague-Dawley rats with lipopolysaccharides (LPS) challenge). We found that 2 weeks of ISO treatment in adult offspring of LPS-treated mothers led to augmented heart damage, characterized by left-ventricular systolic dysfunction, cardiac hypertrophy and myocardial fibrosis. Mechanistically, prenatal exposure to LPS led to up-regulated expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, antioxidant enzymes, and p38 MAPK activity in left ventricular of adult offspring at resting state. ISO treatment exaggerated ROS generation, p38 MAPK activation but down-regulated reactive oxygen species (ROS) elimination capacity in the left ventricular of offspring from LPS-treated mothers, while antioxidant N-acetyl-L-cysteine (NAC) reversed these changes together with improved cardiac functions. The p38 inhibitor SB202190 alleviated the heart damage only via inhibiting the expression of NADPH oxidases. Collectively, our data demonstrated that prenatal inflammation programs pre-existed ROS activation in the heart tissue, which switches on the early process of oxidative damages on heart rapidly through a ROS-p38 MAPK-NADPH oxidase-ROS positive feedback loop in response to a myocardial hypertrophic challenge in adulthood.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Yafei Deng
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Wenjing Lai
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Xiongshan Sun
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Qi Han
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Yan Ji
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Hongqin Luo
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Pei Huang
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Yuan Tang
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Liangqi Gu
- The Center for Disease Control and Prevention of Chengdu
Military Command, Chengdu
610021, China
| | - Guorong Dan
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The
Ohio State University, Columbus, Ohio
43210, USA
| | - Michael Namaka
- Colleges of Pharmacy and Medicine, University of Manitoba,
Apotex Center 750, McDermot Avenue, Winnipeg, R3E
0T5, MB, Canada
- Joint Laboratory of Biological Psychiatry between Shantou
University Medical College and the College of Medicine University of
Manitoba, Shantou
515063, China
| | - Jianxiang Zhang
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military
Medical University, Chongqing
400038, China
- Center of Translational Medicine, College of Pharmacy, Third
Military Medical University, Chongqing
400038, China
| |
Collapse
|
14
|
Hara J, Shankle WR, Barrentine LW, Curole MV. Novel Therapy of Hyperhomocysteinemia in Mild Cognitive Impairment, Alzheimer's Disease, and Other Dementing Disorders. J Nutr Health Aging 2016; 20:825-834. [PMID: 27709231 DOI: 10.1007/s12603-016-0688-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Studies have produced conflicting results assessing hyperhomocysteinemia (HYH) treatment with B vitamins in patients with normal cognition, Alzheimer's disease and related disorders (ADRD). This study examined the effect of HYH management with L-methylfolate (LMF), methylcobalamin (MeCbl; B12), and N-acetyl-cysteine (CFLN: Cerefolin®/Cerefolin-NAC®) on cognitive decline. DESIGN Prospective, case-control study of subjects followed longitudinally. SETTING Outpatient clinic for cognitive disorders. PARTICIPANTS 116 ADRD patients (34 with HYH, 82 with No-HYH) met inclusion and exclusion criteria to participate. No study participant took B vitamins. INTERVENTION HYH patients received CFLN, and No-HYH patients did not. MEASUREMENTS Cognitive outcome measures included MCI Screen (memory), CERAD Drawings (constructional praxis), Ishihara Number Naming (object recognition), Trails A and B (executive function), and F-A-S test (verbal fluency). Dependent or predictor measures included demographics, functional severity, CFLN and no CFLN treatment duration, ADRD diagnosis, memantine and cholinesterase inhibitor treatment. Linear mixed effects models with covariate adjustment were used to evaluate rate of change on cognitive outcomes. RESULTS The duration of CFLN treatment, compared to an equivalent duration without CFLN treatment, significantly slowed decline in learning and memory, constructional praxis, and visual-spatial executive function (Trails B). CFLN treatment slowed cognitive decline significantly more for patients with milder baseline severity. CFLN treatment effect increased as baseline functional severity decreased. The analytical model showed that treatment duration must exceed some minimum period of at least one year to slow the rate of cognitive decline. CONCLUSION After covariate adjustment, HYH+CFLN significantly slowed cognitive decline compared to No-HYH+No-CFLN. Longer CFLN treatment duration, milder baseline severity, and magnitude of homocysteine reduction from baseline were all significant predictors. There are a number of factors that could account for disagreement with other clinical trials of B vitamin treatment of HYH. Moreover, CFLN is chemically distinct from commonly used B vitamins as both LMF and MeCbl are the fully reduced and bioactive functional forms; CLFN also contains the glutathione precursor, N-acetyl-cysteine. The findings of other B vitamin trials of HYH can, therefore, only partly account for treatment effects of CFLN. These findings warrant further evaluation with a randomized, placebo-controlled trial.
Collapse
Affiliation(s)
- J Hara
- Junko Hara, Ph.D. Shankle Clinic, 3900 W Coast Hwy, Ste 310, Newport Beach, CA 92663, Phone: +1-949-478-8858 ex222, Fax: +1-949-242-2465,
| | | | | | | |
Collapse
|
15
|
Arsenault D, Coulombe K, Zhu A, Gong C, Kil KE, Choi JK, Poutiainen P, Brownell AL. Loss of Metabotropic Glutamate Receptor 5 Function on Peripheral Benzodiazepine Receptor in Mice Prenatally Exposed to LPS. PLoS One 2015; 10:e0142093. [PMID: 26536027 PMCID: PMC4633140 DOI: 10.1371/journal.pone.0142093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
Parental microglial induced neuroinflammation, triggered by bacterial- or viral infections, can induce neuropsychiatric disorders like schizophrenia and autism to offspring in animal models. Recent investigations suggest that microglia, the resident immune cells of the brain, provides a link between neurotransmission, immune cell activation, brain inflammation and neuronal dysfunction seen with the offspring. Relatively little is known about how reduction of brain inflammation and restoration of glial function are associated with diminution of brain degeneration and behavioral deficits in offspring. Increased mGluR5 expression and the long-lasting excitotoxic effects of the neurotoxin during brain development are associated with the glial dysfunctions. We investigated the relationship of mGluR5 and PBR and how they regulate glial function and inflammatory processes in mice prenatally exposed to LPS (120μg/kg, between gestational days 15 and 17), an inflammatory model of a psychiatric disorder. Using PET imaging, we showed that pharmacological activation of mGluR5 during 5 weeks reduced expression of classic inflammation marker PBR in many brain areas and that this molecular association was not present in LPS-exposed offspring. The post-mortem analysis revealed that the down regulation of PBR was mediated through activation of mGluR5 in astrocytes. In addition, we demonstrated that this interaction is defective in a mouse model of the psychiatric deficit offering a novel insight of mGluR5 involvement to brain related disorders and PBR related imaging studies. In conclusion, mGluR5 driven glutamatergic activity regulates astrocytic functions associated with PBR (cholesterol transport, neurosteroidogenesis, glial phenotype) during maturation and could be associated with neuropsychiatric disorders in offspring.
Collapse
Affiliation(s)
- Dany Arsenault
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Aijun Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Chunyu Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Kun-Eek Kil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Ji-Kyung Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Pekka Poutiainen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna-Liisa Brownell
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Maternal lipopolysaccharide treatment differentially affects 5-HT2A and mGlu2/3 receptor function in the adult male and female rat offspring. Neuropharmacology 2015; 97:275-88. [DOI: 10.1016/j.neuropharm.2015.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/08/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022]
|
17
|
Rideau Batista Novais A, Crouzin N, Cavalier M, Boubal M, Guiramand J, Cohen-Solal C, de Jesus Ferreira MC, Cambonie G, Vignes M, Barbanel G. Tiagabine improves hippocampal long-term depression in rat pups subjected to prenatal inflammation. PLoS One 2014; 9:e106302. [PMID: 25184226 PMCID: PMC4153642 DOI: 10.1371/journal.pone.0106302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/03/2014] [Indexed: 02/02/2023] Open
Abstract
Maternal inflammation during pregnancy is associated with the later development of cognitive and behavioral impairment in the offspring, reminiscent of the traits of schizophrenia or autism spectrum disorders. Hippocampal long-term potentiation and long-term depression of glutamatergic synapses are respectively involved in memory formation and consolidation. In male rats, maternal inflammation with lipopolysaccharide (LPS) led to a premature loss of long-term depression, occurring between 12 and 25 postnatal days instead of after the first postnatal month, and aberrant occurrence of long-term potentiation. We hypothesized this would be related to GABAergic system impairment. Sprague Dawley rats received either LPS or isotonic saline ip on gestational day 19. Male offspring's hippocampus was studied between 12 and 25 postnatal days. Morphological and functional analyses demonstrated that prenatal LPS triggered a deficit of hippocampal GABAergic interneurons, associated with presynaptic GABAergic transmission deficiency in male offspring. Increasing ambient GABA by impairing GABA reuptake with tiagabine did not interact with the low frequency-induced long-term depression in control animals but fully prevented its impairment in male offspring of LPS-challenged dams. Tiagabine furthermore prevented the aberrant occurrence of paired-pulse triggered long-term potentiation in these rats. Deficiency in GABA seems to be central to the dysregulation of synaptic plasticity observed in juvenile in utero LPS-challenged rats. Modulating GABAergic tone may be a possible therapeutic strategy at this developmental stage.
Collapse
Affiliation(s)
- Aline Rideau Batista Novais
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
- Neonatal Intensive Care Unit, Montpellier University Hospital, Montpellier, France
| | - Nadine Crouzin
- Laboratory NICN-UMR7259 “Neurobiologie des Interactions Cellulaires et Neurophysiopathologie”, CNRS - Aix-Marseille University, Marseille, France
| | - Mélanie Cavalier
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Mathilde Boubal
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
- Neonatal Intensive Care Unit, Montpellier University Hospital, Montpellier, France
| | - Janique Guiramand
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Catherine Cohen-Solal
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Marie-Céleste de Jesus Ferreira
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Gilles Cambonie
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
- Neonatal Intensive Care Unit, Montpellier University Hospital, Montpellier, France
| | - Michel Vignes
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Gérard Barbanel
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
- * E-mail:
| |
Collapse
|
18
|
Arsenault D, St-Amour I, Cisbani G, Rousseau LS, Cicchetti F. The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain Behav Immun 2014; 38:77-90. [PMID: 24384468 DOI: 10.1016/j.bbi.2013.12.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/30/2013] [Accepted: 12/20/2013] [Indexed: 01/06/2023] Open
Abstract
In recent years, in vivo animal models of prenatal infection have been developed in an attempt to recreate behavioral and neuropathological features associated to a number of neurological and neuropsychiatric disorders. However, these models are still in their emerging phase and a better understanding of how these types of infections relate to adult-onset of brain-related disorders is needed. Here, we undertook an extensive behavioral characterization of both pregnant females and their pups following late gestational exposure (from gestational days (GD) 15-17) to either lipopolysaccharide (LPS; 120μg/kg i.p.) or polyinosinic:polycytidylic acid (poly I:C; 5mg/kg i.v.). We observed that both LPS and poly I:C treatments produced anxiety-like behaviors in treated pregnant females, although to a lesser extent with LPS. LPS injections, but not poly I:C, led to reduced food intake and consequently decreased weight gain in pregnant dams. In pups, poly I:C treatments triggered a delay in growth and sensorimotor development, as evaluated by righting, geotaxis and grasping reflexes. At the cellular level, both toxins induced an initial inflammatory response while only LPS reduced the expression of brain cell markers in foetuses (GFAP and NeuN), which was no longer observable at postnatal day (PnD) 10. Higher levels of IL-2, IL-5 and IL-6 in plasma and an upregulation of the metabotropic receptor 5 (mGluR5) in foetal brains of 10-day-old offspring prenatally exposed to poly I:C was also observed. Interestingly, the increased mGluR5 expression correlated with impairments of the righting reflex. This study is the first to directly compare reflex development following LPS and poly I:C prenatal immune challenges in mice and sheds light onto the different patterns of behavior and pathology in dams and their offspring.
Collapse
Affiliation(s)
- Dany Arsenault
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Isabelle St-Amour
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Giulia Cisbani
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Louis-Simon Rousseau
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC G1K 7P4, Canada.
| |
Collapse
|