1
|
Heywood WE, Searle J, Collis R, Doykov I, Ashworth M, Sebire N, Bamber A, Gautel M, Eaton S, Coats CJ, Elliott PM, Mills K. A Proof of Principle 2D Spatial Proteome Mapping Analysis Reveals Distinct Regional Differences in the Cardiac Proteome. Life (Basel) 2024; 14:970. [PMID: 39202712 PMCID: PMC11355120 DOI: 10.3390/life14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Proteomics studies often explore phenotypic differences between whole organs and systems. Within the heart, more subtle variation exists. To date, differences in the underlying proteome are only described between whole cardiac chambers. This study, using the bovine heart as a model, investigates inter-regional differences and assesses the feasibility of measuring detailed, cross-tissue variance in the cardiac proteome. Using a bovine heart, we created a two-dimensional section through a plane going through two chambers. This plane was further sectioned into 4 × 4 mm cubes and analysed using label-free proteomics. We identified three distinct proteomes. When mapped to the extracted sections, the proteomes corresponded largely to the outer wall of the right ventricle and secondly to the outer wall of the left ventricle, right atrial appendage, tricuspid and mitral valves, modulator band, and parts of the left atrium. The third separate proteome corresponded to the inner walls of the left and right ventricles, septum, and left atrial appendage. Differential protein abundancies indicated differences in energy metabolism between regions. Data analyses of the mitochondrial proteins revealed a variable pattern of abundances of complexes I-V between the proteomes, indicating differences in the bioenergetics of the different cardiac sub-proteomes. Mapping of disease-associated proteins interestingly showed desmoglein-2, for which defects in this protein are known to cause Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy, which was present predominantly in the outer wall of the left ventricle. This study highlights that organs can have variable proteomes that do not necessarily correspond to anatomical features.
Collapse
Affiliation(s)
- Wendy E. Heywood
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Jon Searle
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Ivan Doykov
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Michael Ashworth
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Neil Sebire
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Andrew Bamber
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College, London WC2E 2LS, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Caroline J. Coats
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Perry M. Elliott
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
- Barts Heart Centre, and the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London EC1A 7BE, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| |
Collapse
|
2
|
Liu L, Luo Y, Deng Y, Liang Y, Xie L. Echocardiographic findings and pregnancy outcomes for fetuses with complete closure of the ductus arteriosus. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:737-744. [PMID: 38662985 DOI: 10.1002/jcu.23701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE We aimed to analyze the echocardiographic characteristics and pregnancy outcomes for fetuses with premature complete closure of the fetal ductus arteriosus. METHODS A retrospective analysis was performed for eight cases of premature ductus arteriosus closure diagnosed by prenatal ultrasonography in the Hunan Maternal and Child Health Hospital from July 2019 to August 2022, and the characteristics of fetal echocardiography and pregnancy outcomes of the eight cases were analyzed and summarized. RESULTS In all cases, the intima of the ductus arteriosus was thickened and occluded, the ductus arteriosus could be seen with slightly hyperechogenic, and no blood flow signal was found in the ductus arteriosus by Doppler ultrasonography. The right heart was enlarged in seven cases, and the whole heart was enlarged in one case. Tricuspid valve regurgitation was observed to different degrees, of which seven cases were severe and one case was moderate. The pulmonary arteries of eight patients had varying degrees of widening. All eight cases were delivered by cesarean section, and one newborn died after follow-up. The prognosis of the other newborns was good. CONCLUSION The parameters of prenatal echocardiography are helpful for the prognosis of fetuses with premature closure of the ductus arteriosus. Early prenatal detection, close observation, and clinical guidance can be used to select the right time of delivery.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Yingchun Luo
- Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Ying Deng
- Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Yanling Liang
- Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Lulu Xie
- Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| |
Collapse
|
3
|
Kundu P, Schäfer M, Le L, Thomas T, Jone PN, Hunter KS. Three-Dimensional, Right Ventricular Surface Strain Computation From Three-Dimensional Echocardiographic Images From Patients With Pediatric Pulmonary Hypertension. J Biomech Eng 2023; 145:111011. [PMID: 37542708 DOI: 10.1115/1.4063121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Right Ventricular (RV) dysfunction is routinely assessed with echocardiographic-derived global longitudinal strain (GLS). GLS is measured from a two-dimensional echo image and is increasingly accepted as a means for assessing RV function. However, any two-dimensional (2D) analysis cannot visualize the asymmetrical deformation of the RV nor visualize strain over the entire RV surface. We believe three-dimensional surface (3DS) strain, obtained from 3D echo will better evaluate myocardial mechanics. Components of 3DS strain (longitudinal, LS; circumferential, CS; longitudinal-circumferential shear, ɣCL; principal strains PSMax and PSMin; max shear, ɣMax; and principal angle θMax) were computed from RV surface meshes obtained with 3D echo from 50 children with associated pulmonary arterial hypertension (PAH), 43 children with idiopathic PAH, and 50 healthy children by computing strains from a discretized displacement field. All 3DS freewall (FW) normal strain (LS, CS, PSMax, and PSMin) showed significant decline at end-systole in PH groups (p < 0.0001 for all), as did FW-ɣMax (p = 0.0012). FW-θMax also changed in disease (p < 0.0001). Limits of agreement analysis suggest that 3DS LS, PSMax, and PSMin are related to GLS. 3DS strains showed significant heterogeneity over the 3D surface of the RV. Components of 3DS strain agree with existing clinical strain measures, well classify normal -versus- PAH subjects, and suggest that strains change direction on the myocardial surface due to disease. This last finding is similar to that of myocardial fiber realignment in disease, but further work is needed to establish true associations.
Collapse
Affiliation(s)
- Priyamvada Kundu
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, 12705 E. Montview Ave., Suite 100, Aurora, CO 80045-7109
| | - Michal Schäfer
- Heart Institute, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, CO 80045
| | - Lisa Le
- Heart Institute, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, CO 80045
| | - Thomas Thomas
- Heart Institute, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, CO 80045
| | - Pei-Ni Jone
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611-2605
| | - Kendall S Hunter
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, 12705 E. Montview Ave., Suite 100, Aurora, CO 80045-7109
| |
Collapse
|
4
|
Mountris KA, Pueyo E. A meshless fragile points method for rule-based definition of myocardial fiber orientation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107164. [PMID: 36265289 DOI: 10.1016/j.cmpb.2022.107164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Rule-based methods are commonly used to estimate the arrangement of myocardial fibers by solving the Laplace problem with appropriate Dirichlet boundary conditions. Existing algorithms are using the Finite Element Method (FEM) to solve the Laplace-Dirichlet problem. However, meshless methods are under development for cardiac electrophysiology simulation. The objective of this work is to propose a meshless rule based method for the determination of myocardial fiber arrangement without requiring a mesh discretization as it is required by FEM. METHODS The proposed method employs the Fragile Points Method (FPM) for the solution of the Laplace-Dirichlet problem. FPM uses simple discontinuous trial functions and single-point exact integration for linear trial functions that set it as a promising alternative to the Finite Element Method. We derive the FPM formulation of the Laplace-Dirichlet and we estimate ventricular and atrial fiber arrangements according to rules based on histology findings for four different geometries. The obtained fiber arrangements from FPM are compared with the ones obtained from FEM by calculating the angle between the fiber vector fields of the two methods for three different directions (i.e., longitudinal, sheet, transverse). RESULTS The fiber arrangements that were generated with FPM were in close agreement with the generated arrangements from FEM for all three directions. The mean angle difference between the FPM and FEM vector fields were lower than 0.030∘ for the ventricular fiber arrangements and lower than 0.036∘ for the atrial fiber arrangements. DISCUSSION The proposed meshless rule-based method was proven to generate myocardial fiber arrangements with very close agreement with FEM while alleviates the requirement for a mesh of the latter. This is of great value for cardiac electrophysiology solvers that are based on meshless methods since they require a well defined myocardial fiber arrangement to simulate accurately the propagation of electrical signals in the heart. Combining a meshless solution for both the determination of the fibers and the electrical signal propagation can allow for solution that do not require the definition of a mesh. To our knowledge, this work is the first one to propose a meshless rule-based method for myocardial fiber arrangement determination.
Collapse
Affiliation(s)
- Konstantinos A Mountris
- Aragón Institute for Engineering Research, University of Zaragoza, IIS Aragón, Zaragoza, Spain; CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain.
| | - Esther Pueyo
- Aragón Institute for Engineering Research, University of Zaragoza, IIS Aragón, Zaragoza, Spain; CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
5
|
Odeigah OO, Valdez-Jasso D, Wall ST, Sundnes J. Computational models of ventricular mechanics and adaptation in response to right-ventricular pressure overload. Front Physiol 2022; 13:948936. [PMID: 36091369 PMCID: PMC9449365 DOI: 10.3389/fphys.2022.948936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with substantial remodeling of the right ventricle (RV), which may at first be compensatory but at a later stage becomes detrimental to RV function and patient survival. Unlike the left ventricle (LV), the RV remains understudied, and with its thin-walled crescent shape, it is often modeled simply as an appendage of the LV. Furthermore, PAH diagnosis is challenging because it often leaves the LV and systemic circulation largely unaffected. Several treatment strategies such as atrial septostomy, right ventricular assist devices (RVADs) or RV resynchronization therapy have been shown to improve RV function and the quality of life in patients with PAH. However, evidence of their long-term efficacy is limited and lung transplantation is still the most effective and curative treatment option. As such, the clinical need for improved diagnosis and treatment of PAH drives a strong need for increased understanding of drivers and mechanisms of RV growth and remodeling (G&R), and more generally for targeted research into RV mechanics pathology. Computational models stand out as a valuable supplement to experimental research, offering detailed analysis of the drivers and consequences of G&R, as well as a virtual test bench for exploring and refining hypotheses of growth mechanisms. In this review we summarize the current efforts towards understanding RV G&R processes using computational approaches such as reduced-order models, three dimensional (3D) finite element (FE) models, and G&R models. In addition to an overview of the relevant literature of RV computational models, we discuss how the models have contributed to increased scientific understanding and to potential clinical treatment of PAH patients.
Collapse
Affiliation(s)
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | | | | |
Collapse
|
6
|
Rodriguez Padilla J, Petras A, Magat J, Bayer J, Bihan-Poudec Y, El-Hamrani D, Ramlugun G, Neic A, Augustin C, Vaillant F, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Bernus O, Quesson B, Haissaguerre M, Gsell M, Plank G, Ozenne V, Vigmond E. Impact of Intraventricular Septal Fiber Orientation on Cardiac Electromechanical Function. Am J Physiol Heart Circ Physiol 2022; 322:H936-H952. [PMID: 35302879 PMCID: PMC9109800 DOI: 10.1152/ajpheart.00050.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution. NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.
Collapse
Affiliation(s)
| | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Julie Magat
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jason Bayer
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS UMR 5229, Université Claude Bernard Lyon I, France
| | - Dounia El-Hamrani
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Aurel Neic
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | | | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | - Matthias Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Valéry Ozenne
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| |
Collapse
|
7
|
Exploring arterial tissue microstructural organization using non-Gaussian diffusion magnetic resonance schemes. Sci Rep 2021; 11:22247. [PMID: 34782651 PMCID: PMC8593063 DOI: 10.1038/s41598-021-01476-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to characterize the alterations in microstructural organization of arterial tissue using higher-order diffusion magnetic resonance schemes. Three porcine carotid artery models namely; native, collagenase treated and decellularized, were used to estimate the contribution of collagen and smooth muscle cells (SMC) on diffusion signal attenuation using gaussian and non-gaussian schemes. The samples were imaged in a 7 T preclinical scanner. High spatial and angular resolution diffusion weighted images (DWIs) were acquired using two multi-shell (max b-value = 3000 s/mm2) acquisition protocols. The processed DWIs were fitted using monoexponential, stretched-exponential, kurtosis and bi-exponential schemes. Directionally variant and invariant microstructural parametric maps of the three artery models were obtained from the diffusion schemes. The parametric maps were used to assess the sensitivity of each diffusion scheme to collagen and SMC composition in arterial microstructural environment. The inter-model comparison showed significant differences across the considered models. The bi-exponential scheme based slow diffusion compartment (Ds) was highest in the absence of collagen, compared to native and decellularized microenvironments. In intra-model comparison, kurtosis along the radial direction was the highest. Overall, the results of this study demonstrate the efficacy of higher order dMRI schemes in mapping constituent specific alterations in arterial microstructure.
Collapse
|
8
|
Agger P, Hyldebrandt JA, Hansen ESS, Omann C, Bøgh N, Waziri F, Nielsen PM, Laustsen C. Magnetic resonance hyperpolarization imaging detects early myocardial dysfunction in a porcine model of right ventricular heart failure. Eur Heart J Cardiovasc Imaging 2021; 21:93-101. [PMID: 31329841 PMCID: PMC6923679 DOI: 10.1093/ehjci/jez074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Aims Early detection of heart failure is important for timely treatment. During the development of heart failure, adaptive intracellular metabolic processes that evolve prior to macro-anatomic remodelling, could provide an early signal of impending failure. We hypothesized that metabolic imaging with hyperpolarized magnetic resonance would detect the early development of heart failure before conventional echocardiography could reveal cardiac dysfunction. Methods and results Five 8.5 kg piglets were subjected to pulmonary banding and subsequently examined by [1-13C]pyruvate hyperpolarization, conventional magnetic resonance imaging, echocardiography, and blood testing, every 4 weeks for 16 weeks. They were compared with a weight matched, healthy control group. Conductance catheter examination at the end of the study showed impaired right ventricular systolic function along with compromised left ventricular diastolic function. After 16 weeks, we saw a significant decrease in the conversion ratio of pyruvate/bicarbonate in the left ventricle from 0.13 (0.04) in controls to 0.07 (0.02) in animals with pulmonary banding, along with a significant increase in the lactate/bicarbonate ratio to 3.47 (1.57) compared with 1.34 (0.81) in controls. N-terminal pro-hormone of brain natriuretic peptide was increased by more than 300%, while cardiac index was reduced to 2.8 (0.95) L/min/m2 compared with 3.9 (0.95) in controls. Echocardiography revealed no changes. Conclusion Hyperpolarization detected a shift towards anaerobic metabolism in early stages of right ventricular dysfunction, as evident by an increased lactate/bicarbonate ratio. Dysfunction was confirmed with conductance catheter assessment, but could not be detected by echocardiography. Hyperpolarization has a promising future in clinical assessment of heart failure in both acquired and congenital heart disease.
Collapse
Affiliation(s)
- Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Janus Adler Hyldebrandt
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark.,Department of Anaesthesiology and Intensive Care, Akershus University Hospital, Sykehusveien 25, Lørenskog, Norway
| | | | - Camilla Omann
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Nikolaj Bøgh
- MR Research Centre, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Farhad Waziri
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| |
Collapse
|
9
|
Hyldebrandt JA, Bøgh N, Omann C, Agger P. Norepinephrine and dobutamine improve cardiac index equally by supporting opposite sides of the heart in an experimental model of chronic pulmonary hypertension. Intensive Care Med Exp 2021; 9:29. [PMID: 34085137 PMCID: PMC8175098 DOI: 10.1186/s40635-021-00391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary hypertension is a significant risk factor in patients undergoing surgery. The combined effects of general anaesthesia and positive pressure ventilation can aggravate this condition and cause increased pulmonary blood pressures, reduced systemic blood pressures and ventricular contractility. Although perioperative use of inotropic support or vasopressors is almost mandatory for these patients, preference is disputed. In this study, we investigated the effects of norepinephrine and dobutamine and their ability to improve the arterio-ventricular relationship and haemodynamics in pigs suffering from chronic pulmonary hypertension. METHOD Pulmonary hypertension was induced in five pigs by banding the pulmonary artery at 2-3 weeks of age. Six pigs served as controls. After 16 weeks of pulmonary artery banding, the animals were re-examined under general anaesthesia using biventricular conductance catheters and a pulmonary artery catheter. After baseline measurements, the animals were exposed to both norepinephrine and dobutamine infusions in incremental doses, with a stabilising period in between the infusions. The hypothesis of differences between norepinephrine and dobutamine with incremental doses was tested using repeated two-way ANOVA and Bonferroni multiple comparisons post-test. RESULTS At baseline, pulmonary artery-banded animals had increased right ventricular pressure (+ 39%, p = 0.04), lower cardiac index (- 23% p = 0.04), lower systolic blood pressure (- 13%, p = 0.02) and reduced left ventricular end-diastolic volume (- 33%, p = 0.02). When incremental doses of norepinephrine and dobutamine were administered, the right ventricular arterio-ventricular coupling was improved only by dobutamine (p < 0.05). Norepinephrine increased both left ventricular end-diastolic volume and left ventricular contractility to a greater extent (p < 0.05) in pulmonary artery-banded animals. While the cardiac index was improved equally by norepinephrine and dobutamine treatments in pulmonary artery-banded animals, norepinephrine had a significantly greater effect on mean arterial pressure (p < 0.05) and diastolic arterial pressure (p < 0.05). CONCLUSION While norepinephrine and dobutamine improved cardiac index equally, it was obtained in different manners. Dobutamine significantly improved the right ventricular function and the arterio-ventricular coupling. Norepinephrine increased systemic resistance, thereby improving arterial pressures and left ventricular systolic function by maintaining left ventricular end-diastolic volume.
Collapse
Affiliation(s)
- Janus Adler Hyldebrandt
- Department of Anesthesia and Intensive Care, Akershus University Hospital, Postbox 1000, 1478, Lørenskog, Norway.
| | - Nikolaj Bøgh
- MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Camilla Omann
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Sharifi Kia D, Kim K, Simon MA. Current Understanding of the Right Ventricle Structure and Function in Pulmonary Arterial Hypertension. Front Physiol 2021; 12:641310. [PMID: 34122125 PMCID: PMC8194310 DOI: 10.3389/fphys.2021.641310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease resulting in increased right ventricular (RV) afterload and RV remodeling. PAH results in altered RV structure and function at different scales from organ-level hemodynamics to tissue-level biomechanical properties, fiber-level architecture, and cardiomyocyte-level contractility. Biomechanical analysis of RV pathophysiology has drawn significant attention over the past years and recent work has found a close link between RV biomechanics and physiological function. Building upon previously developed techniques, biomechanical studies have employed multi-scale analysis frameworks to investigate the underlying mechanisms of RV remodeling in PAH and effects of potential therapeutic interventions on these mechanisms. In this review, we discuss the current understanding of RV structure and function in PAH, highlighting the findings from recent studies on the biomechanics of RV remodeling at organ, tissue, fiber, and cellular levels. Recent progress in understanding the underlying mechanisms of RV remodeling in PAH, and effects of potential therapeutics, will be highlighted from a biomechanical perspective. The clinical relevance of RV biomechanics in PAH will be discussed, followed by addressing the current knowledge gaps and providing suggested directions for future research.
Collapse
Affiliation(s)
- Danial Sharifi Kia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh - University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marc A Simon
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Agger P, Stephenson RS. Assessing Myocardial Architecture: The Challenges and Controversies. J Cardiovasc Dev Dis 2020; 7:jcdd7040047. [PMID: 33137874 PMCID: PMC7711767 DOI: 10.3390/jcdd7040047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
In recent decades, investigators have strived to describe and quantify the orientation of the cardiac myocytes in an attempt to classify their arrangement in healthy and diseased hearts. There are, however, striking differences between the investigations from both a technical and methodological standpoint, thus limiting their comparability and impeding the drawing of appropriate physiological conclusions from the structural assessments. This review aims to elucidate these differences, and to propose guidance to establish methodological consensus in the field. The review outlines the theory behind myocyte orientation analysis, and importantly has identified pronounced differences in the definitions of otherwise widely accepted concepts of myocytic orientation. Based on the findings, recommendations are made for the future design of studies in the field of myocardial morphology. It is emphasised that projection of myocyte orientations, before quantification of their angulation, introduces considerable bias, and that angles should be assessed relative to the epicardial curvature. The transmural orientation of the cardiomyocytes should also not be neglected, as it is an important determinant of cardiac function. Finally, there is considerable disagreement in the literature as to how the orientation of myocardial aggregates should be assessed, but to do so in a mathematically meaningful way, the normal vector of the aggregate plane should be utilised.
Collapse
Affiliation(s)
- Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, 8220 Aarhus N, Denmark
- Department of Pediatrics, Randers Regional Hospital, Skovlyvej 15, 8930 Randers NE, Denmark
- Correspondence:
| | - Robert S. Stephenson
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
12
|
Dejea H, Bonnin A, Cook AC, Garcia-Canadilla P. Cardiac multi-scale investigation of the right and left ventricle ex vivo: a review. Cardiovasc Diagn Ther 2020; 10:1701-1717. [PMID: 33224784 DOI: 10.21037/cdt-20-269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The heart is a complex multi-scale system composed of components integrated at the subcellular, cellular, tissue and organ levels. The myocytes, the contractile elements of the heart, form a complex three-dimensional (3D) network which enables propagation of the electrical signal that triggers the contraction to efficiently pump blood towards the whole body. Cardiovascular diseases (CVDs), a major cause of mortality in developed countries, often lead to cardiovascular remodeling affecting cardiac structure and function at all scales, from myocytes and their surrounding collagen matrix to the 3D organization of the whole heart. As yet, there is no consensus as to how the myocytes are arranged and packed within their connective tissue matrix, nor how best to image them at multiple scales. Cardiovascular imaging is routinely used to investigate cardiac structure and function as well as for the evaluation of cardiac remodeling in CVDs. For a complete understanding of the relationship between structural remodeling and cardiac dysfunction in CVDs, multi-scale imaging approaches are necessary to achieve a detailed description of ventricular architecture along with cardiac function. In this context, ventricular architecture has been extensively studied using a wide variety of imaging techniques: ultrasound (US), optical coherence tomography (OCT), microscopy (confocal, episcopic, light sheet, polarized light), magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and, more recently, synchrotron X-ray phase contrast imaging (SR X-PCI). Each of these techniques have their own set of strengths and weaknesses, relating to sample size, preparation, resolution, 2D/3D capabilities, use of contrast agents and possibility of performing together with in vivo studies. Therefore, the combination of different imaging techniques to investigate the same sample, thus taking advantage of the strengths of each method, could help us to extract the maximum information about ventricular architecture and function. In this review, we provide an overview of available and emerging cardiovascular imaging techniques for assessing myocardial architecture ex vivo and discuss their utility in being able to quantify cardiac remodeling, in CVDs, from myocyte to whole organ.
Collapse
Affiliation(s)
- Hector Dejea
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, UK
| | - Patricia Garcia-Canadilla
- Institute of Cardiovascular Science, University College London, London, UK.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
13
|
Omann C, Agger P, Bøgh N, Laustsen C, Ringgaard S, Stephenson RS, Anderson RH, Hjortdal VE, Smerup M. Resolving the natural myocardial remodelling brought upon by cardiac contraction; a porcine ex-vivo cardiovascular magnetic resonance study of the left and right ventricle. J Cardiovasc Magn Reson 2019; 21:35. [PMID: 31256759 PMCID: PMC6600899 DOI: 10.1186/s12968-019-0547-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/29/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The three-dimensional rearrangement of the right ventricular (RV) myocardium during cardiac deformation is unknown. Previous in-vivo studies have shown that myocardial left ventricular (LV) deformation is driven by rearrangement of aggregations of cardiomyocytes that can be characterised by changes in the so-called E3-angle. Ex-vivo imaging offers superior spatial resolution compared with in-vivo measurements, and can thus provide novel insight into the deformation of the myocardial microstructure in both ventricles. This study sought to describe the dynamic changes of the orientations of the cardiomyocytes in both ventricles brought upon by cardiac contraction, with particular interest in the thin-walled RV, which has not previously been described in terms of its micro-architecture. METHODS The hearts of 14 healthy 20 kg swine were excised and preserved in either a relaxed state or a contracted state. Myocardial architecture was assessed and compared between the two contractional states by quantification of the helical, transmural and E3-angles of the cardiomyocytes using high-resolution diffusion tensor imaging. RESULTS The differences between the two states of contraction were most pronounced in the endocardium where the E3-angle decreased from 78.6° to 24.8° in the LV and from 82.6° to 68.6° in the RV. No significant change in neither the helical nor the transmural angle was found in the cardiomyocytes of the RV. In the endocardium of the LV, however, the helical angle increased from 35.4° to 47.8° and the transmural angle increased from 3.1° to 10.4°. CONCLUSION The entire myocardium rearranges through the cardiac cycle with the change in the orientation of the aggregations of cardiomyocytes being the predominant mediator of myocardial wall thickening. Interestingly, differences also exist between the RV and LV, which helps in the explanation of the different physiological capabilities of the ventricles.
Collapse
Affiliation(s)
- Camilla Omann
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Peter Agger
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Comparative Medicine Lab, Aarhus University Hospital, Skejby, Denmark
| | - Nikolaj Bøgh
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- MR Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Robert S. Stephenson
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Comparative Medicine Lab, Aarhus University Hospital, Skejby, Denmark
- Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - Robert H. Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Morten Smerup
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|
14
|
Doste R, Soto-Iglesias D, Bernardino G, Alcaine A, Sebastian R, Giffard-Roisin S, Sermesant M, Berruezo A, Sanchez-Quintana D, Camara O. A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3185. [PMID: 30721579 DOI: 10.1002/cnm.3185] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/23/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Rule-based methods are often used for assigning fiber orientation to cardiac anatomical models. However, existing methods have been developed using data mostly from the left ventricle. As a consequence, fiber information obtained from rule-based methods often does not match histological data in other areas of the heart such as the right ventricle, having a negative impact in cardiac simulations beyond the left ventricle. In this work, we present a rule-based method where fiber orientation is separately modeled in each ventricle following observations from histology. This allows to create detailed fiber orientation in specific regions such as the endocardium of the right ventricle, the interventricular septum, and the outflow tracts. We also carried out electrophysiological simulations involving these structures and with different fiber configurations. In particular, we built a modeling pipeline for creating patient-specific volumetric meshes of biventricular geometries, including the outflow tracts, and subsequently simulate the electrical wavefront propagation in outflow tract ventricular arrhythmias with different origins for the ectopic focus. The resulting simulations with the proposed rule-based method showed a very good agreement with clinical parameters such as the 10 ms isochrone ratio in a cohort of nine patients suffering from this type of arrhythmia. The developed modeling pipeline confirms its potential for an in silico identification of the site of origin in outflow tract ventricular arrhythmias before clinical intervention.
Collapse
Affiliation(s)
- Ruben Doste
- Physense, ETIC, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | - Rafael Sebastian
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | | | | | - Antonio Berruezo
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Damian Sanchez-Quintana
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Oscar Camara
- Physense, ETIC, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
15
|
Satriano A, Pournazari P, Hirani N, Helmersen D, Thakrar M, Weatherald J, White JA, Fine NM. Characterization of Right Ventricular Deformation in Pulmonary Arterial Hypertension Using Three-Dimensional Principal Strain Analysis. J Am Soc Echocardiogr 2018; 32:385-393. [PMID: 30552030 DOI: 10.1016/j.echo.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) can cause maladaptive right ventricular (RV) functional changes associated with adverse prognosis that are challenging to accurately quantify noninvasively. The aim of this study was to explore principal strain (PS) with contraction angle analysis using three-dimensional echocardiography to characterize RV deformation changes in patients with PAH. METHODS Three-dimensional echocardiography was performed in 37 patients with PAH and 20 healthy control subjects with two-component (primary and secondary) PS and principal contraction angle analysis. Patients were stratified according to World Health Organization (WHO) functional class. RESULTS Primary PS differed significantly between patients with PAH and healthy control subjects (-20.2 ± 3.3% vs -26.8 ± 3.3%, P = .01), while secondary PS was not significantly different (3.6 ± 5.1% vs -2.5 ± 4.7%, P = .12). Principal contraction angle was significantly lower in patients with PAH (63 ± 22° vs 71 ± 7°, P = .01), with the greatest reduction for the RV free wall. Primary PS and principal contraction angle differed significantly between WHO class I and II and class III and IV patients (-23.9 ± 4.7% vs -18.1 ± 4.8% [P = .03] and 69 ± 9° vs 58 ± 14° [P = .03], respectively), while secondary PS was not significantly different between groups (P = .13). Compared with healthy control subjects, septal principal contraction angle was not different in patients with WHO class I and II PAH (P = .62), but it was significantly reduced in those with WHO class III and IV PAH (P < .01). The area under the curve for primary PS to differentiate patients with PAH by WHO functional class was 0.81 (95% CI, 0.77-0.89; P = .01). Primary PS intraclass correlation coefficients for intraobserver and interobserver variability were 0.91 (95% CI, 0.88-0.93) and 0.86 (95% CI, 0.81-0.88), respectively. CONCLUSIONS PS analysis using three-dimensional echocardiography provides comprehensive quantification of RV deformation and characterizes alterations occurring in PAH that are associated with WHO functional class.
Collapse
Affiliation(s)
- Alessandro Satriano
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Payam Pournazari
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Naushad Hirani
- Division of Respirology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Doug Helmersen
- Division of Respirology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mitesh Thakrar
- Division of Respirology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jason Weatherald
- Division of Respirology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James A White
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Nowell M Fine
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
MacIver DH, Partridge JB, Agger P, Stephenson RS, Boukens BJD, Omann C, Jarvis JC, Zhang H. The end of the unique myocardial band: Part II. Clinical and functional considerations. Eur J Cardiothorac Surg 2018; 53:120-128. [PMID: 29029119 DOI: 10.1093/ejcts/ezx335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/20/2017] [Indexed: 12/25/2022] Open
Abstract
Two of the leading concepts of mural ventricular architecture are the unique myocardial band and the myocardial mesh model. We have described, in an accompanying article published in this journal, how the anatomical, histological and high-resolution computed tomographic studies strongly favour the latter concept. We now extend the argument to describe the linkage between mural architecture and ventricular function in both health and disease. We show that clinical imaging by echocardiography and magnetic resonance imaging, and electrophysiological studies, all support the myocardial mesh model. We also provide evidence that the unique myocardial band model is not compatible with much of scientific research.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton and Somerset Hospital, Musgrove Park, Taunton, UK.,Medical Education, University of Bristol, Senate House, Bristol, UK.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - John B Partridge
- Eurobodalla Unit, Rural Clinical School of the ANU College of Medicine, Biology & Environment, Batemans Bay, NSW, Australia
| | - Peter Agger
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark.,Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Robert S Stephenson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bastiaan J D Boukens
- Department of Medical Biology, Academic Medical Centre, Amsterdam University, Amsterdam, Netherlands
| | - Camilla Omann
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jonathan C Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Resolving the True Ventricular Mural Architecture. J Cardiovasc Dev Dis 2018; 5:jcdd5020034. [PMID: 29925810 PMCID: PMC6023305 DOI: 10.3390/jcdd5020034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
The precise nature of packing together of the cardiomyocytes within the ventricular walls has still to be determined. The spiraling nature of the chains of interconnected cardiomyocytes has long been recognized. As long ago as the end of the nineteenth century, Pettigrew had emphasized that the ventricular cone was not arranged on the basis of skeletal muscle. Despite this guidance, subsequent anatomists described entities such as “bulbo-spiral muscles”, with this notion of subunits culminating in the suggestion that the ventricular cone could be unwrapped so as to produce a “ventricular myocardial band”. Others, in contrast, had suggested that the ventricular walls were arranged on the basis of “sheets”, or more recently “sheetlets”, with investigators seeking to establishing the angulation of these entities using techniques such as magnetic resonance imaging. Our own investigations, in contrast, have shown that the cardiomyocytes are aggregated together within the supporting fibrous matrix so as to produce a three-dimensional myocardial mesh. In this review, we summarize the previous accounts, and provide the anatomical evidence we have thus far accumulated to support the model of the myocardial mesh. We show how these anatomic findings underscore the concept of the myocardial mesh functioning in antagonistic fashion. They lend evidence to support the notion that the ventricular myocardium works as a muscular hydrostat.
Collapse
|
18
|
Wang Y, Ravanfar M, Zhang K, Duan D, Yao G. Automatic quantification of microscopic heart damage in a mouse model of Duchenne muscular dystrophy using optical polarization tractography. JOURNAL OF BIOPHOTONICS 2018; 11:e201700284. [PMID: 29314725 DOI: 10.1002/jbio.201700284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/06/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Quantification of microscopic myocardium damage in a diseased heart is important in studying disease progression and evaluating treatment outcome. However, it is challenging to use traditional histology and existing medical imaging modalities to quantify all microscopic damages in a small animal heart. Here, a method was developed for fast visualization and quantification of focal tissue damage in the mouse heart based on the fiber alignment index of the local myofiber organization obtained in optical polarization tractography (OPT). This method was tested in freshly excised hearts of the mdx4cv mouse, a commonly used mouse model for studying Duchenne cardiomyopathy. The hearts of age-matched C57BL/6 mice were also imaged as the normal controls. The results revealed a significant amount of damage in the mdx4cv hearts. Histology comparisons confirmed the damage identified by OPT. This fast and automatic method may greatly enhance preclinical studies in murine models of heart diseases.
Collapse
Affiliation(s)
- Yuanbo Wang
- Department of Bioengineering, University of Missouri, Columbia, Missouri
| | | | - Keqing Zhang
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri
| | - Dongsheng Duan
- Department of Bioengineering, University of Missouri, Columbia, Missouri
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri
| | - Gang Yao
- Department of Bioengineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
19
|
Agger P, Ilkjær C, Laustsen C, Smerup M, Frandsen JR, Ringgaard S, Pedersen M, Partridge JB, Anderson RH, Hjortdal V. Changes in overall ventricular myocardial architecture in the setting of a porcine animal model of right ventricular dilation. J Cardiovasc Magn Reson 2017; 19:93. [PMID: 29178894 PMCID: PMC5702974 DOI: 10.1186/s12968-017-0404-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/18/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Chronic pulmonary regurgitation often leads to myocardial dysfunction and heart failure. It is not fully known why secondary hypertrophy cannot fully protect against the increase in wall stress brought about by the increased end-diastolic volume in ventricular dilation. It has been assumed that mural architecture is not deranged in this situation, but we hypothesised that there might be a change in the pattern of orientation of the aggregations of cardiomyocytes, which would contribute to contractile impairment. METHODS We created pulmonary valvular regurgitation by open chest, surgical suturing of its leaflets in seven piglets, performing sham operations in seven control animals. Using cardiovascular magnetic resonance imaging after 12 weeks of recovery, we demonstrated significantly increased right ventricular volumes in the test group. After sacrifice, diffusion tensor imaging of their hearts permitted measurement of the orientation of the cardiomyocytes. RESULTS The helical angles in the right ventricle approached a more circumferential orientation in the setting of right ventricular RV dilation (p = 0.007), with an increased proportion of surface-parallel cardiomyocytes. In contrast, this proportion decreased in the left ventricle. Also in the left ventricle a higher proportion of E3 angles with a value around zero was found, and conversely a lower proportion of angles was found with a numerical higher value. In the dilated right ventricle the proportion of E3 angles around -90° is increased, while the proportion around 90° is decreased. CONCLUSION Contrary to traditional views, there is a change in the orientation of both the left ventricular and right ventricular cardiomyocytes subsequent to right ventricular dilation. This will change their direction of contraction and hinder the achievement of normalisation of cardiomyocytic strain, affecting overall contractility. We suggest that the aetiology of the cardiac failure induced by right vetricular dilation may be partly explained by morphological changes in the myocardium itself.
Collapse
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christine Ilkjær
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Smerup
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Jesper R. Frandsen
- Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- MR Research Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - John B. Partridge
- Eurobodalla Unit, Rural Clinical School of the ANU College of Medicine, Biology & Environment, Batemans Bay, NSW Australia
| | - Robert H. Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Vibeke Hjortdal
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Pervolaraki E, Dachtler J, Anderson RA, Holden AV. Ventricular myocardium development and the role of connexins in the human fetal heart. Sci Rep 2017; 7:12272. [PMID: 28947768 PMCID: PMC5612926 DOI: 10.1038/s41598-017-11129-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
The developmental timeline of the human heart remains elusive. The heart takes on its characteristic four chambered appearance by ~56 days gestational age (DGA). However, owing to the complexities (both technical and logistical) of exploring development in utero, we understand little of how the ventricular walls develop. To address this, we employed diffusion tensor magnetic resonance imaging to explore the architecture and tissue organization of the developing heart aged 95-143 DGA. We show that fractional anisotropy increases (from ~0.1 to ~0.5), diffusion coefficients decrease (from ~1 × 10-3mm2/sec to ~0.4 × 10-3mm2/sec), and fiber paths, extracted by tractography, increase linearly with gestation, indicative of the increasing organization of the ventricular myocytes. By 143 DGA, the developing heart has the classical helical organization observed in mature mammalian tissue. This was accompanied by an increase in connexin 43 and connexin 40 expression levels, suggesting their role in the development of the ventricular conduction system and that electrical propagation across the heart is facilitated in later gestation. Our findings highlight a key developmental window for the structural organization of the fetal heart.
Collapse
Affiliation(s)
| | - James Dachtler
- Department of Psychology, Durham University, Durham, DH1 3LE, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Arun V Holden
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Wang Y, Zhang K, Duan D, Yao G. Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1271-1276. [PMID: 28663827 PMCID: PMC5480542 DOI: 10.1364/boe.8.001271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 05/10/2023]
Abstract
We investigated the heart structural remodeling in the mdx4cv mouse model of Duchenne cardiomyopathy using optical polarization tractography. Whole heart tractography was obtained in freshly dissected hearts from six mdx4cv mice. Six hearts from C57BL/6J mice were also imaged as the normal control. The mdx4cv hearts were significantly larger than the control hearts and had significantly higher between-subject variations in myofiber organization. While both strains showed classic cross-helical fiber organization in the left ventricle, the rate of the myocardial fiber orientation change across the heart wall was significantly altered in the right ventricle of the mdx4cv heart.
Collapse
Affiliation(s)
- Y. Wang
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - K. Zhang
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA
| | - D. Duan
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA
| | - G. Yao
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
22
|
The human fetal right ventricular myocardium appears without a sub-epicardial base-apex oriented layer of myocytes. Pediatr Res 2017; 81:396-397. [PMID: 27861466 DOI: 10.1038/pr.2016.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 11/08/2022]
|