1
|
Bentanachs R, Miró L, Ramírez-Carrasco P, Sánchez RM, Bernabeu M, Amat C, Alegret M, Pérez-Bosque A, Roglans N, Laguna JC. Mirabegron induces selective changes in the faecal microbiota of HFHFr rats without altering bile acid composition. Front Pharmacol 2025; 16:1547749. [PMID: 40297137 PMCID: PMC12034709 DOI: 10.3389/fphar.2025.1547749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver (MASL), the initial, asymptomatic stage of the metabolic dysfunction-associated steatotic liver disease, is directly involved in the progression to steatohepatitis. Healthy lifestyle and dietary measures are currently the only treatments for MASL. Given the high prevalence of MASL in the human population, candidate drugs for its prevention or treatment should have an acceptable safety profile. Repurposing drugs already in clinical use could help to identify effective and safe drug treatments for MASL. We have characterized a high-fat, high-fructose rat dietary model of simple hepatic steatosis to evaluate the potential anti-steatotic effect of mirabegron, which is already in clinical use for the treatment of overactive bladder. We have previously reported that mirabegron administration was unable to reduce liver triglyceride content in our rat model. Methods In the present work, we analyse stored liver, adipose tissue (perigonadal and brown), serum and faecal samples from our previous study and present new biochemical, faecal metabolomic and microbiome data. Results and discussion We show that oral administration of mirabegron significantly increases the expression of uncoupling protein 1 in brown adipose tissue and β3-Adrenergic receptor protein in perigonadal white adipose and liver tissues. Furthermore, mirabegron treatment changes the relative abundance of several genus and families of rat faecal microbiota, albeit without restoring the global biodiversity and evenness indexes observed in control rats, as well as faecal bile acids composition. These changes are probably due to a direct effect of mirabegron on the gut microbiome, rather than being mediated by changes in bile acid induced by drug treatment.
Collapse
Affiliation(s)
- Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine IBUB, University of Barcelona, Barcelona, Spain
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona, Spain
| | - Patricia Ramírez-Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Rosa M. Sánchez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine IBUB, University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Spain
| | - Concepció Amat
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine IBUB, University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona, Spain
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine IBUB, University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan C. Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine IBUB, University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
da Silva Pereira ENG, Franco RLC, Santos RDCD, Daliry A. Statins and non-alcoholic fatty liver disease: A concise review. Biomed Pharmacother 2025; 183:117805. [PMID: 39755024 DOI: 10.1016/j.biopha.2024.117805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging. As there is no specific treatment, drug repositioning is being researched as an alternative strategy. Statins, which are known for their cholesterol-lowering effects, are considered potential interventions for NAFLD. This review aimed to present the current understanding of the effects of statins on liver physiology in the context of NAFLD. The pathophysiology of NAFLD includes steatosis, inflammation, and fibrosis, which are exacerbated by dyslipidemia and insulin resistance. Statins, which inhibit 3-hydroxy-3-methylglutaryl-CoA reductase, have pleiotropic effects beyond cholesterol-lowering and affect pathways related to inflammation, fibrogenesis, oxidative stress, and microcirculation. Although clinical guidelines support the use of statins for dyslipidemia in patients with NAFLD, more studies are needed to demonstrate their efficacy in liver disease. This comprehensive review serves as a foundation for future studies on the therapeutic potential of statins in NAFLD.
Collapse
Affiliation(s)
| | - Rafaela Luiza Costa Franco
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Rafaele Dantas Cruz Dos Santos
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
4
|
Sun M, Sun Q, Li T, Ren X, Xu Q, Sun Z, Duan J. Silica nanoparticles induce liver lipid metabolism disorder via ACSL4-mediated ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124590. [PMID: 39043312 DOI: 10.1016/j.envpol.2024.124590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
The disease burden of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Emerging evidence has revealed that silica nanoparticles (SiNPs) could disorder the liver lipid metabolism and cause hepatotoxicity, but the underlying mechanism remains unknown. The purpose of this study is to elucidate the molecular mechanism of hepatic lipid metabolism disorder caused by SiNPs, and to reveal the role of ferroptosis in SiNPs-induced hepatotoxicity. To explore the phenotypic changes in liver, the wild-type C57BL/6J mice were exposed to different doses of SiNPs (5, 10, 20 mg/kg·bw) with or without melatonin (20 mg/kg·bw). SiNPs accelerated hepatic oxidative stress and promoted pathological injury and lipid accumulation, resulting in NAFLD development. Melatonin significantly inhibited the oxidative damage caused by SiNPs. Then, the hepatocytes were treated with SiNPs, the ferroptosis inducer and inhibitor, respectively. In vitro, SiNPs (25 μg/mL) generated mitochondrial and intracellular Fe2+ accumulation and lipid peroxidation repair ability impairment, decreased the activity of GPX4 through ACSL4/p38 MAPK signaling pathway, resulting in ferroptosis of hepatocytes. Notably, Erastin (the ferroptosis activator, 5 μM) increased the sensitivity of hepatocytes to ferroptosis. Ferrostatin-1 (Fer-1, the ferroptosis inhibitor, 5 μM) restored GPX4 activity and protected against deterioration of lipid hydroperoxides (LOOHs) to salvage SiNPs-induced cytotoxicity. Finally, the liver tissue conditional ACSL4 knockout (cKO) mice and ACSL4-KO hepatocytes were adopted to further identify the role of the ACSL4-mediated ferroptosis on SiNPs-induced NAFLD development. The results displayed ACSL4 knockout could down-regulate the lipid peroxidation and ferroptosis, ultimately rescuing the progression of NAFLD. In summary, our data indicated that ACSL4/p38 MAPK/GPX4-mediated ferroptosis was a novel and critical mechanism of SiNPs-induced NAFLD.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
5
|
Bott S, Lallement J, Marino A, Daskalopoulos EP, Beauloye C, Esfahani H, Dessy C, Leclercq IA. When the liver is in poor condition, so is the heart - cardiac remodelling in MASH mouse models. Clin Sci (Lond) 2024; 138:1151-1171. [PMID: 39206703 PMCID: PMC11405860 DOI: 10.1042/cs20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) confers a risk for cardiovascular diseases in patients. Animal models may help exploring the mechanisms linking liver and heart diseases. Hence, we explored the cardiac phenotype in two MASH mouse models: foz/foz mice fed a high-fat diet (HFD) for 24 or 60 weeks and C57BL/6J mice fed a high-fat-, high-cholesterol-, and high-fructose diet for 60 weeks. Angiotensin II (AngII) was used as an additional cardiovascular stressor for 4 weeks in 10 weeks HFD-fed foz/foz mice. Foz/foz mice with fibrosing MASH developed cardiac hypertrophy with adverse cardiac remodelling not seen in WT similarly fed the HFD. AngII caused hypertension and up-regulated the expression of genes contributing to pathological cardiac hypertrophy (Nppa, Myh7) more severely so in foz/foz mice than in controls. After 60 weeks of HFD, while liver disease had progressed to burn-out non steatotic MASH with hepatocellular carcinoma in 50% of the animals, the cardiomyopathy did not. In an independent model (C57BL/6J mice fed a fat-, cholesterol- and fructose-rich diet), moderate fibrosing MASH is associated with cardiac fibrosis and dysregulation of genes involved in pathological remodelling (Col1a1, Col3a1, Vim, Myh6, Slc2a1). Thus, animals with MASH present consistent adverse structural changes in the heart with no patent alteration of cardiac function even when stressed with exogenous AngII. Liver disease, and likely not overfeeding or aging alone, is associated with this cardiac phenotype. Our findings support foz/foz mice as suitable for studying links between MASH and heart structural changes ahead of heart failure.
Collapse
Affiliation(s)
- Sebastian Bott
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Justine Lallement
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alice Marino
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Christophe Beauloye
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hrag Esfahani
- Platform of Integrated Physiology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Anne Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels
| |
Collapse
|
6
|
Duan Y, Yang Y, Zhao S, Bai Y, Yao W, Gao X, Yin J. Crosstalk in extrahepatic and hepatic system in NAFLD/NASH. Liver Int 2024; 44:1856-1871. [PMID: 38717072 DOI: 10.1111/liv.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease globally. Non-alcoholic steatohepatitis (NASH) represents an extremely progressive form of NAFLD, which, without timely intervention, may progress to cirrhosis or hepatocellular carcinoma. Presently, a definitive comprehension of the pathogenesis of NAFLD/NASH eludes us, and pharmacological interventions targeting NASH specifically remain constrained. The aetiology of NAFLD encompasses a myriad of external factors including environmental influences, dietary habits and gender disparities. More significantly, inter-organ and cellular interactions within the human body play a role in the development or regression of the disease. In this review, we categorize the influences affecting NAFLD both intra- and extrahepatically, elaborating meticulously on the mechanisms governing the onset and progression of NAFLD/NASH. This exploration delves into progress in aetiology and promising therapeutic targets. As a metabolic disorder, the development of NAFLD involves complexities related to nutrient metabolism, liver-gut axis interactions and insulin resistance, among other regulatory functions of extraneous organs. It further encompasses intra-hepatic interactions among hepatic cells, Kupffer cells (KCs) and hepatic stellate cells (HSCs). A comprehensive understanding of the pathogenesis of NAFLD/NASH from a macroscopic standpoint is instrumental in the formulation of future therapies for NASH.
Collapse
Affiliation(s)
- Yiliang Duan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shuqiang Zhao
- Jiangsu Institute for Food and Drug Control, NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, Jiangsu, China
| | - Yuesong Bai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Wei X, Lin L, Yuan QQ, Wang XY, Zhang Q, Zhang XM, Tang KC, Guo MY, Dong TY, Han W, Huang DK, Qi YL, Zhang M, Zhang HB. Bavachin protects against diet-induced hepatic steatosis and obesity in mice. Acta Pharmacol Sin 2023; 44:1416-1428. [PMID: 36721007 PMCID: PMC10310714 DOI: 10.1038/s41401-023-01056-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health concern worldwide, and the incidence of metabolic disorders associated with NAFLD is rapidly increasing because of the obesity epidemic. There are currently no approved drugs that prevent or treat NAFLD. Recent evidence shows that bavachin, a flavonoid isolated from the seeds and fruits of Psoralea corylifolia L., increases the transcriptional activity of PPARγ and insulin sensitivity during preadipocyte differentiation, but the effect of bavachin on glucose and lipid metabolism remains unclear. In the current study we investigated the effects of bavachin on obesity-associated NAFLD in vivo and in vitro. In mouse primary hepatocytes and Huh7 cells, treatment with bavachin (20 μM) significantly suppressed PA/OA or high glucose/high insulin-induced increases in the expression of fatty acid synthesis-related genes and the number and size of lipid droplets. Furthermore, bavachin treatment markedly elevated the phosphorylation levels of AKT and GSK-3β, improving the insulin signaling activity in the cells. In HFD-induced obese mice, administration of bavachin (30 mg/kg, i.p. every other day for 8 weeks) efficiently attenuated the increases in body weight, liver weight, blood glucose, and liver and serum triglyceride contents. Moreover, bavachin administration significantly alleviated hepatic inflammation and ameliorated HFD-induced glucose intolerance and insulin resistance. We demonstrated that bavachin protected against HFD-induced obesity by inducing fat thermogenesis and browning subcutaneous white adipose tissue (subWAT). We revealed that bavachin repressed the expression of lipid synthesis genes in the liver of obese mice, while promoting the expression of thermogenesis, browning, and mitochondrial respiration-related genes in subWAT and brown adipose tissue (BAT) in the mice. In conclusion, bavachin attenuates hepatic steatosis and obesity by repressing de novo lipogenesis, inducing fat thermogenesis and browning subWAT, suggesting that bavachin is a potential drug for NAFLD therapy.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Li Lin
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Qian-Qian Yuan
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiu-Yun Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Min Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ke-Chao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Man-Yu Guo
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ting-Yu Dong
- The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Da-Ke Huang
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yin-Liang Qi
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Mei Zhang
- Health Management Center, The First Affiliated Hospital of the University of Sciences and Technology of China (Anhui Provincial Hospital), Hefei, 230001, China.
| | - Hua-Bing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
- The Affiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou), Chuzhou, 239001, China.
| |
Collapse
|
8
|
Camacho RC, Polidori D, Chen T, Chen B, Hsu HH, Gao B, Marella M, Lubomirski M, Beavers T, Cabrera J, Wong P, Nawrocki AR. Validation of a diet-induced Macaca fascicularis model of non-alcoholic steatohepatitis with dietary and pioglitazone interventions. Diabetes Obes Metab 2023; 25:1068-1079. [PMID: 36546607 DOI: 10.1111/dom.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
AIM To develop an obese, insulin-resistant cynomolgus monkey model of non-alcoholic steatohepatitis (NASH) with fibrosis with a high fat/high cholesterol (HFHC) diet (with or without high fructose) and test its responsiveness to caloric restriction or pioglitazone. METHODS First, two groups of monkeys (n = 24/group) with histologically proven NASH and fibrosis were fed the HFHC diet for 17 weeks. The treatment group was subjected to a 40% caloric restriction (CR) and had their diet switched from the HFHC diet to a chow diet (DSCR). Paired liver biopsies were taken before and 17 weeks after DSCR. Subsets of monkeys (nine/group) had whole liver fat content assessed by MRI. Next, two groups of monkeys with histologically proven NASH and fibrosis were treated with vehicle (n = 9) or pioglitazone (n = 20) over 24 weeks. RESULTS The HFHC and DSCR groups lost 0.9% and 11.4% of body weight, respectively. After 17 weeks, non-alcoholic fatty liver disease activity score (NAS) improvement was observed in 66.7% of the DSCR group versus 12.5% of the HFHC group (P < .001). Hepatic fat was reduced to 5.2% in the DSCR group versus 23.0% in the HFHC group (P = .0001). After 24 weeks, NAS improvement was seen in 30% of the pioglitazone group versus 0% of the vehicle group (P = .08). CONCLUSIONS Both weight loss induced by DSCR and treatment with pioglitazone improve the histological features of NASH in a diet-induced cynomolgus monkey model. This model provides a translational preclinical model for testing novel NASH therapies.
Collapse
Affiliation(s)
- Raul C Camacho
- Cardiovascular Metabolism, Spring House, Pennsylvania, USA
| | - David Polidori
- Cardiovascular Metabolism, Spring House, Pennsylvania, USA
| | - Tao Chen
- Preclincial Sciences and Translational Safety, Shanghai, China
| | - Bin Chen
- Preclincial Sciences and Translational Safety, Shanghai, China
| | - Helen Han Hsu
- Preclincial Sciences and Translational Safety, Shanghai, China
| | - Bin Gao
- Translational Medicine and Early Development Statistics, Spring House, Pennsylvania, USA
| | | | - Mariusz Lubomirski
- Translational Medicine and Early Development Statistics, Spring House, Pennsylvania, USA
| | - Traymon Beavers
- Translational Medicine and Early Development Statistics, Spring House, Pennsylvania, USA
| | - Javier Cabrera
- Translational Medicine and Early Development Statistics, Spring House, Pennsylvania, USA
| | - Peggy Wong
- Quantitative Sciences, Janssen R&D, Raritan, New Jersey, USA
| | | |
Collapse
|
9
|
Chiang CH, Li SJ, Lin YH, Wang PY, Hsu PS, Lin SP, Chiang TC, Chen CY. Early-onset caloric restriction alleviates ageing-associated steatohepatitis in male mice via restoring mitochondrial homeostasis. Biogerontology 2023; 24:391-401. [PMID: 36802043 DOI: 10.1007/s10522-023-10023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Non-alcoholic fatty liver disease is associated with ageing, and impaired mitochondrial homeostasis is the main cause for hepatic ageing. Caloric restriction (CR) is a promising therapeutic approach for fatty liver. The purpose of the present study was to investigate the possibility of early-onset CR in decelerating the progression of ageing-related steatohepatitis. The putative mechanism associated with mitochondria was further determined. C57BL/6 male mice at 8 weeks of age were randomly assigned to one of three treatments: Young-AL (AL, ad libitum), Aged-AL, or Aged-CR (60% intake of AL). Mice were sacrificed when they were 7 months old (Young) or 20 months old (Aged). Aged-AL mice displayed the greatest body weight, liver weight, and liver relative weight among treatments. Steatosis, lipid peroxidation, inflammation, and fibrosis coexisted in the aged liver. Mega mitochondria with short, randomly organized crista were noticed in the aged liver. The CR ameliorated these unfavourable outcomes. The level of hepatic ATP decreased with ageing, but this was reversed by CR. Ageing caused a decrease in mitochondrial-related protein expressions of respiratory chain complexes (NDUFB8 and SDHB) and fission (DRP1), but an increase in proteins related to mitochondrial biogenesis (TFAM), and fusion (MFN2). CR reversed the expression of these proteins in the aged liver. Both Aged-CR and Young-AL revealed a comparable pattern of protein expression. To summarize, this study demonstrated the potential of early-onset CR in preventing ageing-associated steatohepatitis, and maintaining mitochondrial functions may contribute to CR's protection during hepatic ageing.
Collapse
Affiliation(s)
- Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sin-Jin Li
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu-Han Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ting-Chia Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan. .,Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan.
| |
Collapse
|
10
|
Gillard J, Picalausa C, Ullmer C, Adorini L, Staels B, Tailleux A, Leclercq IA. Enterohepatic Takeda G-Protein Coupled Receptor 5 Agonism in Metabolic Dysfunction-Associated Fatty Liver Disease and Related Glucose Dysmetabolism. Nutrients 2022; 14:nu14132707. [PMID: 35807885 PMCID: PMC9268629 DOI: 10.3390/nu14132707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a major health concern with no approved pharmacological therapies. Molecules developed to activate the bile acid-receptor TGR5 regulate pathways involved in MALFD pathogenesis, but the therapeutic value of TGR5 activation on the active form of MAFLD, non-alcoholic steatohepatitis (NASH), still needs to be evaluated. As TGR5 agonism is low in MAFLD, we used strategies to promote the production of endogenous TGR5 ligands or administered pharmacological TGR5 agonists, INT-777 and RO5527239, to study the effect of TGR5 activation on liver and metabolic diseases in high-fat diet-fed foz/foz mice. Although described in the literature, treatment with fexaramine, an intestine-restricted FXR agonist, did not raise the concentrations of TGR5 ligands nor modulate TGR5 signaling and, accordingly, did not improve dysmetabolic status. INT-777 and RO5527239 directly activated TGR5. INT-777 only increased the TGR5 activation capacity of the portal blood; RO5527239 also amplified the TGR5 activation capacity of systemic blood. Both molecules improved glucose tolerance. In spite of the TGR5 activation capacity, INT-777, but not RO5527239, reduced liver disease severity. In conclusion, TGR5 activation in enterohepatic, rather than in peripheral, tissues has beneficial effects on glucose tolerance and MAFLD.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.G.); (C.P.)
| | - Corinne Picalausa
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.G.); (C.P.)
| | - Christoph Ullmer
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | | | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, University Lille, U1011-EGID, F-59000 Lille, France; (B.S.); (A.T.)
| | - Anne Tailleux
- Inserm, CHU Lille, Institut Pasteur de Lille, University Lille, U1011-EGID, F-59000 Lille, France; (B.S.); (A.T.)
| | - Isabelle A. Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.G.); (C.P.)
- Correspondence: ; Tel.: +32-2-764-5273
| |
Collapse
|
11
|
Anti-obesity effects of heat-transformed green tea extract through the activation of adipose tissue thermogenesis. Nutr Metab (Lond) 2022; 19:14. [PMID: 35241108 PMCID: PMC8896087 DOI: 10.1186/s12986-022-00648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Adipose tissue thermogenesis is a potential therapeutic target to increase energy expenditure and thereby combat obesity. The aim of the present study was to investigate the thermogenic and anti-obesity effects of heat-transformed green tea extract (HTGT) and enzymatically modified isoquercetin (EMIQ). Methods Immortalized brown pre-adipocytes and C3H10T1/2 cells were used for in vitro analyses. A high-fat diet (HFD)-induced obesity mouse model and CIDEA-reporter mice were used for in vivo experiments. The effects of HTGT and EMIQ on mitochondrial metabolism were evaluated by immunoblot, mitochondrial staining, and oxygen consumption rate analyses. In vivo anti-obesity effects of HTGT and EMIQ were measured using indirect calorimetry, body composition analyses, glucose tolerance tests, and histochemical analyses. Results Co-treatment with HTGT and EMIQ (50 μg/mL each) for 48 h increased brown adipocyte marker and mitochondrial protein levels (UCP1 and COXIV) in brown adipocytes by 2.9-fold, while the maximal and basal oxygen consumption rates increased by 1.57- and 1.39-fold, respectively. Consistently, HTGT and EMIQ treatment increased the fluorescence intensity of mitochondrial staining in C3H10T1/2 adipocytes by 1.68-fold. The combination of HTGT and EMIQ (100 mg/kg each) increased the expression levels of brown adipocyte markers and mitochondrial proteins in adipose tissue. Two weeks of HTGT and EMIQ treatment (100 mg/kg each) led to a loss of 3% body weight and 7.09% of body fat. Furthermore, the treatment increased energy expenditure by 8.95% and improved glucose tolerance in HFD-fed mice. Conclusions The current study demonstrated that HTGT and EMIQ have in vivo anti-obesity effects partly by increasing mitochondrial metabolism in adipocytes. Our findings suggest that a combination of HTGT and EMIQ is a promising therapeutic agent for the treatment of obesity and related metabolic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00648-6.
Collapse
|
12
|
Farrar JS, Martin RK. Isolation of the Stromal Vascular Fraction from Adipose Tissue and Subsequent Differentiation into White or Beige Adipocytes. Methods Mol Biol 2022; 2455:103-115. [PMID: 35212990 DOI: 10.1007/978-1-0716-2128-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is linked to adipose tissue dysfunction, with weight loss being the only treatment shown to reverse it. Due to this correlation with obesity, the study of adipose tissue and adipocytes is an important step in understanding the pathogenesis of this disease. Here, we describe the isolation process of the stromal vascular fraction (SVF) of adipose tissue. The SVF contains the foundational cells that will differentiate into adipocytes. These cells can be isolated and subsequently differentiated in vitro into white and beige adipocytes. We outline the in vitro differentiation of pre-adipocytes into cultured white and beige adipocytes using both human and mouse adipose tissue.
Collapse
Affiliation(s)
- Jared S Farrar
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
13
|
Gillard J, Clerbaux LA, Nachit M, Sempoux C, Staels B, Bindels LB, Tailleux A, Leclercq IA. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 4:100387. [PMID: 34825156 PMCID: PMC8604813 DOI: 10.1016/j.jhepr.2021.100387] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Background & Aims Through FXR and TGR5 signaling, bile acids (BAs) modulate lipid and glucose metabolism, inflammation and fibrosis. Hence, BAs returning to the liver after enteric secretion, modification and reabsorption may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). Herein, we characterized the enterohepatic profile and signaling of BAs in preclinical models of NASH, and explored the consequences of experimental manipulation of BA composition. Methods We used high-fat diet (HFD)-fed foz/foz and high-fructose western diet-fed C57BL/6J mice, and compared them to their respective controls. Mice received a diet supplemented with deoxycholic acid (DCA) to modulate BA composition. Results Compared to controls, mice with NASH had lower concentrations of BAs in their portal blood and bile, while systemic BA concentrations were not significantly altered. Notably, the concentrations of secondary BAs, and especially of DCA, and the ratio of secondary to primary BAs were strikingly lower in bile and portal blood of mice with NASH. Hence, portal blood was poor in FXR and TGR5 ligands, and conferred poor anti-inflammatory protection in mice with NASH. Enhanced primary BAs synthesis and conversion of secondary to primary BAs in NASH livers contributed to the depletion in secondary BAs. Dietary DCA supplementation in HFD-fed foz/foz mice restored the BA concentrations in portal blood, increased TGR5 and FXR signaling, improved the dysmetabolic status, protected from steatosis and hepatocellular ballooning, and reduced macrophage infiltration. Conclusions BA composition in the enterohepatic cycle, but not in systemic circulation, is profoundly altered in preclinical models of NASH, with specific depletion in secondary BAs. Dietary correction of the BA profile protected from NASH, supporting a role for enterohepatic BAs in the pathogenesis of NASH. Lay summary This study clearly demonstrates that the alterations of enterohepatic bile acids significantly contribute to the development of non-alcoholic steatohepatitis in relevant preclinical models. Indeed, experimental modulation of bile acid composition restored perturbed FXR and TGR5 signaling and prevented non-alcoholic steatohepatitis and associated metabolic disorders.
Collapse
Key Words
- ASBT, apical sodium-dependent BA transporter
- BA, bile acid
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CYP27A1, sterol 27-hydroxylase
- CYP2A12, bile acid 7α-hydroxylase
- CYP7A1, cholesterol 7α-hydroxylase
- CYP7B1, oxysterol 7α-hydroxylase
- CYP8B1, sterol 12α-hydroxylase
- DCA, deoxycholic acid
- FABP6, fatty acid binding protein 6
- FGF15, fibroblast growth factor 15
- FGFR4, fibroblast growth factor receptor 4
- FXR
- FXR, Farnesoid X receptor
- GLP-1, glucagon-like peptide-1
- HFD, high-fat diet
- LCA, lithocholic acid
- LPS, lipopolysaccharide
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- ND, normal diet
- OGTT, oral glucose tolerance test
- OST, organic solute transporter
- SHP, small heterodimer protein
- TGR5
- TGR5, Takeda G-protein coupled receptor 5
- TLCA, tauro-lithocholic acid
- TNFα, tumor necrosis factor α
- WDF, western and high-fructose diet
- WT, wild-type
- metabolic syndrome
- αMCA, α-muricholic acid
- βMCA, β-muricholic acid
- ωMCA, ω-muricholic acid
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Peres Valgas da Silva C, Calmasini F, Alexandre EC, Raposo HF, Delbin MA, Monica FZ, Zanesco A. The effects of mirabegron on obesity-induced inflammation and insulin resistance are associated with brown adipose tissue activation but not beiging in the subcutaneous white adipose tissue. Clin Exp Pharmacol Physiol 2021; 48:1477-1487. [PMID: 34343353 DOI: 10.1111/1440-1681.13566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023]
Abstract
Mirabegron is a selective β₃-adrenergic receptors agonist, which has been recently shown to improve metabolic health in rodents and humans. In this study, we investigated the effects of 2-week mirabegron treatment on the metabolic parameters of mice with a diet-induced obesity (DIO). C57BL/6JUnib mice were divided into control (CTR) and obese (OB) groups treated with vehicle, and an OB group treated with mirabegron (OB + MIRA). The obese groups were fed a high-fat diet for 12 weeks. Mirabegron (10 mg/kg/day) was administrated orally by gavage from weeks 10-12. After 2 weeks of mirabegron treatment, the energy expenditure was assessed with indirect calorimetry. Blood glucose, insulin, glycerol, free fatty acids (FFA), thiobarbituric acid reactive substance (TBAR), and tumour necrosis factor (TNF)-α levels were also assessed, and the HOMA index was determined. Liver tissue, brown adipose tissue (BAT), and inguinal white adipose tissue (iWAT) samples were collected for histological examination. The protein expressions of uncoupling protein 1 (UCP1) and mitochondrial transcription factor A (TFAM) were assessed using western blotting of the BAT and iWAT samples. In this study, mirabegron increased the energy expenditure and decreased adiposity in OB + MIRA. Increased UCP1 expression in BAT without changes in iWAT was also found. Mirabegron decreased circulating levels of FFA, glycerol, insulin, TNF-α, TBARS and HOMA index. DIO significantly increased the lipid deposits in the liver and BAT, but mirabegron partially reversed this change. Our findings indicate that treatment with mirabegron decreased inflammation and improved metabolism in obese mice. This effect was associated with increased BAT-mediated energy expenditure, but not iWAT beiging, which suggests that mirabegron might be useful for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Fabiano Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Helena Fonseca Raposo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Andreia Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Zakia Monica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- Medical School, Graduate Program in Environmental Health, Metropolitan University of Santos, Santos, Brazil
| |
Collapse
|
15
|
Yang J, Zhang H, Parhat K, Xu H, Li M, Wang X, Ran C. Molecular Imaging of Brown Adipose Tissue Mass. Int J Mol Sci 2021; 22:ijms22179436. [PMID: 34502347 PMCID: PMC8431742 DOI: 10.3390/ijms22179436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Brown adipose tissue (BAT), a uniquely thermogenic tissue that plays an important role in metabolism and energy expenditure, has recently become a revived target in the fight against metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Different from white adipose tissue (WAT), the brown adipocytes have distinctive features including multilocular lipid droplets, a large number of mitochondria, and a high expression of uncoupling protein-1 (UCP-1), as well as abundant capillarity. These histologic characteristics provide an opportunity to differentiate BAT from WAT using imaging modalities, such as PET/CT, SPECT/CT, MRI, NIRF and Ultrasound. However, most of the reported imaging methods were BAT activation dependent, and the imaging signals could be affected by many factors, including environmental temperatures and the states of the sympathetic nervous system. Accurate BAT mass detection methods that are independent of temperature and hormone levels have the capacity to track the development and changes of BAT throughout the lifetime of mammals, and such methods could be very useful for the investigation of potential BAT-related therapies. In this review, we focus on molecular imaging modalities that can detect and quantify BAT mass. In addition, their detection mechanism and limitations will be discussed as well.
Collapse
Affiliation(s)
- Jing Yang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| | - Haili Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Kadirya Parhat
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Hui Xu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Mingshuang Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Xiangyu Wang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| |
Collapse
|
16
|
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021; 50:101238. [PMID: 33892169 PMCID: PMC8324684 DOI: 10.1016/j.molmet.2021.101238] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease, or as recently proposed 'metabolic-associated fatty liver disease' (MAFLD), is characterized by pathological accumulation of triglycerides and other lipids in hepatocytes. This common disease can progress from simple steatosis to steatohepatitis, and eventually end-stage liver diseases. MAFLD is closely related to disturbances in systemic energy metabolism, including insulin resistance and atherogenic dyslipidemia. SCOPE OF REVIEW The liver is the central organ in lipid metabolism by secreting very low density lipoproteins (VLDL) and, on the other hand, by internalizing fatty acids and lipoproteins. This review article discusses recent research addressing hepatic lipid synthesis, VLDL production, and lipoprotein internalization as well as the lipid exchange between adipose tissue and the liver in the context of MAFLD. MAJOR CONCLUSIONS Liver steatosis in MAFLD is triggered by excessive hepatic triglyceride synthesis utilizing fatty acids derived from white adipose tissue (WAT), de novo lipogenesis (DNL) and endocytosed remnants of triglyceride-rich lipoproteins. In consequence of high hepatic lipid content, VLDL secretion is enhanced, which is the primary cause of complex dyslipidemia typical for subjects with MAFLD. Interventions reducing VLDL secretory capacity attenuate dyslipidemia while they exacerbate MAFLD, indicating that the balance of lipid storage versus secretion in hepatocytes is a critical parameter determining disease outcome. Proof of concept studies have shown that promoting lipid storage and energy combustion in adipose tissues reduces hepatic lipid load and thus ameliorates MAFLD. Moreover, hepatocellular triglyceride synthesis from DNL and WAT-derived fatty acids can be targeted to treat MAFLD. However, more research is needed to understand how individual transporters, enzymes, and their isoforms affect steatosis and dyslipidemia in vivo, and whether these two aspects of MAFLD can be selectively treated. Processing of cholesterol-enriched lipoproteins appears less important for steatosis. It may, however, modulate inflammation and consequently MAFLD progression.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Brown adipose tissue is associated with healthier body fat distribution and metabolic benefits independent of regional adiposity. CELL REPORTS MEDICINE 2021; 2:100332. [PMID: 34337558 PMCID: PMC8324464 DOI: 10.1016/j.xcrm.2021.100332] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/25/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
The association of brown adipose tissue (BAT) and body fat distribution and their combined effects on metabolic health in humans remains unknown. Here, we retrospectively identify individuals with and without BAT on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and assemble a propensity score-matched study cohort to compare body fat distribution and determine its role in mediating the benefits of brown fat. We find that BAT is associated with lower amounts of visceral adipose tissue and higher amounts of subcutaneous adipose tissue, resulting in less central obesity. In addition, BAT is independently associated with lower blood glucose and white blood cell count, improved lipids, lower prevalence of type 2 diabetes mellitus, and decreased liver fat accumulation. These observations are most prominent in individuals with central obesity. Our results support a role of BAT in protection from visceral adiposity and improved metabolic health. Brown adipose tissue is associated with more subcutaneous and less visceral fat Brown adipose tissue is associated with health independent of fat distribution Brown adipose tissue is associated with less liver fat and type 2 diabetes Brown adipose tissue is most beneficial in individuals with central obesity
Collapse
|
18
|
Namkhah Z, Naeini F, Ostadrahimi A, Tutunchi H, Hosseinzadeh-Attar MJ. The association of the adipokine zinc-alpha2-glycoprotein with non-alcoholic fatty liver disease and related risk factors: A comprehensive systematic review. Int J Clin Pract 2021; 75:e13985. [PMID: 33404166 DOI: 10.1111/ijcp.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/03/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM The adipokine zinc-alpha2-glycoprotein (ZAG), a multidisciplinary protein, is involved in lipid metabolism, glucose homeostasis and energy balance. Accumulating evidence demonstrates that the expression of ZAG is mainly downregulated in obesity and obesity-related conditions. In the present study, we assessed the association of ZAG with non-alcoholic fatty liver disease (NAFLD) and the related risk factors including obesity, metabolic factors and inflammatory parameters, with emphasis on potential mechanisms underlying these associations. METHODS PRISMA guidelines were followed in this review. Systematic searches were performed using the PubMed/Medline, ScienceDirect, Scopus, EMBASE, ProQuest and Google Scholar databases, up to August 2020 for all relevant published papers. RESULTS Out of 362 records screened, 34 articles were included in the final analysis. According to the studies reviewed here, ZAG appears to exert a protective effect against NAFLD by enhancing mRNA expression levels of peroxisome proliferator-activated receptor α (PPARα) and PPARγ, promoting mRNA expression levels of the lipolysis-related genes, reducing mRNA expression levels of the lipogenesis-related genes, increasing hepatic fatty acid oxidation, ameliorating hepatic steatosis, promoting the activity of brown adipose tissue and the expression of thermogenesis-related genes, modulating energy balance and glucose homeostasis, and elevating plasma levels of healthy adipokines such as adiponectin. ZAG can also be involved in the regulation of inflammatory responses by attenuation of the expression of pro-inflammatory and pro-fibrotic mediators. CONCLUSION According to the studies reviewed here, ZAG is suggested to be a promising therapeutic target for NAFLD. However, the favourable effects of ZAG need to be confirmed in prospective cohort studies.
Collapse
Affiliation(s)
- Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
19
|
De Munck TJI, Xu P, Vanderfeesten BLJ, Elizalde M, Masclee AAM, Nevens F, Cassiman D, Schaap FG, Jonkers DMAE, Verbeek J. The Role of Brown Adipose Tissue in the Development and Treatment of Nonalcoholic Steatohepatitis: An Exploratory Gene Expression Study in Mice. Horm Metab Res 2020; 52:869-876. [PMID: 33260239 DOI: 10.1055/a-1301-2378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brown adipose tissue (BAT) might be a beneficial mediator in the development and treatment of nonalcoholic steatohepatitis (NASH). We aim to evaluate the gene expression of BAT activity-related genes during the development and the dietary and surgical treatment of NASH. BAT was collected from male C57BL/6J mice that received a high fat-high sucrose diet (HF-HSD) or a normal chow diet (NCD) for 4 and 20 weeks (n=8-9 per dietary group and timepoint) and from mice that underwent dietary intervention (return to NCD) (n=8), roux-en-y gastric bypass (RYGB) (n=6), or sham procedure (n=6) after 12 weeks HF-HSD. Expression of BAT genes involved in lipid metabolism (Cd36 and Cpt1b; p<0.05) and energy expenditure (Ucp1 and Ucp3; p<0.05) were significantly increased after 4 weeks HF-HSD compared with NCD, whereas in the occurrence of NASH after 20 weeks HF-HSD no difference was observed. We observed no differences in gene expression regarding lipid metabolism or energy expenditure at 8 weeks after dietary intervention (no NASH) compared with HF-HSD mice (NASH), nor in mice that underwent RYGB compared with SHAM. However, dietary intervention and RYGB both decreased the BAT gene expression of inflammatory cytokines (Il1b, Tnf-α and MCP-1; p<0.05). Gene expression of the batokine neuregulin 4 was significantly decreased after 20 weeks HF-HSD (p<0.05) compared with NCD, but was restored by dietary intervention and RYGB (p<0.05). In conclusion, BAT is hallmarked by dynamic alterations in the gene expression profile during the development of NASH and can be modulated by dietary intervention and bariatric surgery.
Collapse
Affiliation(s)
- Toon J I De Munck
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Pan Xu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Brechtje L J Vanderfeesten
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Montserrat Elizalde
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ad A M Masclee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - David Cassiman
- Department of Gastroenterology and Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Frank G Schaap
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Daisy M A E Jonkers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Jef Verbeek
- Department of Gastroenterology and Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Choi MS, Choi JY, Kwon EY. Fisetin Alleviates Hepatic and Adipocyte Fibrosis and Insulin Resistance in Diet-Induced Obese Mice. J Med Food 2020; 23:1019-1032. [PMID: 32856978 DOI: 10.1089/jmf.2019.4619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the protective role of the flavonoid fisetin (FI) on inflammation-mediated metabolic diseases, especially tissue fibrosis and insulin resistance (IR) in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed with normal-fat diet, HFD (40 kcal% fat), or HFD +0.02% (w/w) FI for 16 weeks. Dietary FI supplementation improved hepatic steatosis by restricting lipogenesis, while promoting lipolysis in the liver. FI also prevented adiposity via an increase in the expression of genes involved in FA oxidation and a decrease in the expression of genes involved in lipogenesis in white adipose tissue. In addition, FI increased brown adipose tissue (BAT) and skeletal muscle weights, thermogenic gene mRNA expression in BAT, and tricarboxylic acid cycle-related gene expression in skeletal muscle, which may be linked to the prevention of nonalcoholic fatty liver disease as well as adiposity. Moreover, FI supplementation decreased excessive reactive oxygen species production by increasing paraoxonase activity, adipokine dysregulation, proinflammatory cytokine production, and extracellular matrix amassment in the liver. FI supplementation ameliorated IR, in part, by normalizing pancreatic islet dysfunction, and it declined hepatic gluconeogenesis and proinflammatory responses. Taken together, the present findings indicate that FI can protect against HFD-induced inflammation-mediated disorders, including fibrosis and IR.
Collapse
Affiliation(s)
- Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
| | - Ji-Young Choi
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
| |
Collapse
|
21
|
Sato K, Meng F, Francis H, Wu N, Chen L, Kennedy L, Zhou T, Franchitto A, Onori P, Gaudio E, Glaser S, Alpini G. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. J Pineal Res 2020; 68:e12639. [PMID: 32061110 PMCID: PMC8682809 DOI: 10.1111/jpi.12639] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms and clock gene expressions are regulated by the suprachiasmatic nucleus in the hypothalamus, and melatonin is produced in the pineal gland. Although the brain detects the light through retinas and regulates rhythms and melatonin secretion throughout the body, the liver has independent circadian rhythms and expressions as well as melatonin production. Previous studies indicate the association between circadian rhythms with various liver diseases, and disruption of rhythms or clock gene expression may promote liver steatosis, inflammation, or cancer development. It is well known that melatonin has strong antioxidant effects. Alcohol drinking or excess fatty acid accumulation produces reactive oxygen species and oxidative stress in the liver leading to liver injuries. Melatonin administration protects these oxidative stress-induced liver damage and improves liver conditions. Recent studies have demonstrated that melatonin administration is not limited to antioxidant effects and it has various other effects contributing to the management of liver conditions. Accumulating evidence suggests that restoring circadian rhythms or expressions as well as melatonin supplementation may be promising therapeutic strategies for liver diseases. This review summarizes recent findings for the functional roles and therapeutic potentials of circadian rhythms and melatonin in liver diseases.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
22
|
Kim K, Kim KH. Targeting of Secretory Proteins as a Therapeutic Strategy for Treatment of Nonalcoholic Steatohepatitis (NASH). Int J Mol Sci 2020; 21:ijms21072296. [PMID: 32225108 PMCID: PMC7177791 DOI: 10.3390/ijms21072296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is defined as a progressive form of nonalcoholic fatty liver disease (NAFLD) and is a common chronic liver disease that causes significant worldwide morbidity and mortality, and has no approved pharmacotherapy. Nevertheless, growing understanding of the molecular mechanisms underlying the development and progression of NASH has suggested multiple potential therapeutic targets and strategies to treat this disease. Here, we review this progress, with emphasis on the functional role of secretory proteins in the development and progression of NASH, in addition to the change of expression of various secretory proteins in mouse NASH models and human NASH subjects. We also highlight secretory protein-based therapeutic approaches that influence obesity-associated insulin resistance, liver steatosis, inflammation, and fibrosis, as well as the gut–liver and adipose–liver axes in the treatment of NASH.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Korea
- Correspondence: (K.K.); (K.H.K.)
| | - Kook Hwan Kim
- Metabolic Diseases Research Center, GI Cell, Inc., B-1014, Tera Tower, Songpa-daero 167, Songpa-gu, Seoul 05855, Korea
- Correspondence: (K.K.); (K.H.K.)
| |
Collapse
|
23
|
De Rudder M, Bouzin C, Nachit M, Louvegny H, Vande Velde G, Julé Y, Leclercq IA. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH. J Transl Med 2020; 100:147-160. [PMID: 31506634 DOI: 10.1038/s41374-019-0315-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Pathologists use a semiquantitative scoring system (NAS or SAF score) to facilitate the reporting of disease severity and evolution. Similar scores are applied for the same purposes in rodents. Histological scores have inherent inter- and intra-observer variability and yield discrete and not continuous values. Here we performed an automatic numerical quantification of NASH features on liver sections in common preclinical NAFLD/NASH models. High-fat diet-fed foz/foz mice (Foz HF) or wild-type mice (WT HF) known to develop progressive NASH or an uncomplicated steatosis, respectively, and C57Bl6 mice fed a choline-deficient high-fat diet (CDAA) to induce steatohepatitis were analyzed at various time points. Automated software image analysis of steatosis, inflammation, and fibrosis was performed on digital images from entire liver sections. Data obtained were compared with the NAS score, biochemical quantification, and gene expression. As histologically assessed, WT HF mice had normal liver up to week 34 when they harbor mild steatosis with if any, little inflammation. Foz HF mice exhibited grade 2 steatosis as early as week 4, grade 3 steatosis at week 12 up to week 34; inflammation and ballooning increased gradually with time. Automated measurement of steatosis (macrovesicular steatosis area) revealed a strong correlation with steatosis scores (r = 0.89), micro-CT liver density, liver lipid content (r = 0.89), and gene expression of CD36 (r = 0.87). Automatic assessment of the number of F4/80-immunolabelled crown-like structures strongly correlated with conventional inflammatory scores (r = 0.79). In Foz HF mice, collagen deposition, evident at week 20 and progressing at week 34, was automatically quantified on picrosirius red-stained entire liver sections. The automated procedure also faithfully captured and quantitated macrovesicular steatosis, mixed inflammation, and pericellular fibrosis in CDAA-induced steatohepatitis. In conclusion, the automatic numerical analysis represents a promising quantitative method to rapidly monitor NAFLD activity with high-throughput in large preclinical studies and for accurate monitoring of disease evolution.
Collapse
Affiliation(s)
- Maxime De Rudder
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- Imaging platform 2IP, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Heloïse Louvegny
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
24
|
Sato T, Minatsuki S. Neuregulin-4, an Adipokine, as a Residual Risk Factor of Atherosclerotic Coronary Artery Disease. Int Heart J 2019; 60:1-3. [PMID: 30686800 DOI: 10.1536/ihj.18-654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tatsuyuki Sato
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Shun Minatsuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|