1
|
Qin A, Chen H, Xu F, Li W, Guo S, Zhang G, Zhang A, Zheng A, Tian F, Zheng Q. MiR- 150 deletion promotes lung tumor growth by upregulating P-STAT3 and ROS in MDSCs. Sci Rep 2025; 15:12988. [PMID: 40234699 PMCID: PMC12000323 DOI: 10.1038/s41598-025-97556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/05/2025] [Indexed: 04/17/2025] Open
Abstract
Lung cancer is the second most common cancer in the world. Myeloid-derived suppressor cells (MDSCs) are important cell populations in the microenvironment of lung cancer, which affects the development and treatment of lung cancer. A large number of studies have shown that miRNA can regulate MDSCs, promoting tumor development. Here we aim to explore the role of miR- 150 on MDSCs in lung tumors. We established lung tumor models by injecting miR- 150 knock-out (miR- 150 KO) mice with LLC subcutaneously. MiR- 150 deletion promoted tumor growth and increased the ratio of MDSCs in tumors. In addition, knockdown of miR- 150 resulted in high serum levels of IL- 6 and G-CSF and promoted the expression of suppressive-associated molecules in MDSCs. In vitro, inhibition of miR- 150 led to increased expression of ROS, IRE1α and P-STAT3 in MDSCs. In vivo administration of STAT3 inhibitor significantly inhibited tumor growth in miR- 150 KO mice and reduced ROS level in tumor MDSCs. Our results indicated that miR- 150 deletion promotes lung tumor growth by upregulating P-STAT3 and ROS in MDSCs, suggesting that STAT3 inhibitors are effective in blocking the production of ROS in MDSCs lacking miR- 150.
Collapse
Affiliation(s)
- Anqi Qin
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Hao Chen
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Fan Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Wenting Li
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100083, People's Republic of China
| | - Shuai Guo
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Ge Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Aihong Zhang
- Department of ICU, The Affiliated Hospital of North China University of Science and Technology, Tangshan, 063000, People's Republic of China
| | - Aihua Zheng
- Emergency department, Worker's Hospital of Tangshan, Tangshan, 063000, People's Republic of China
| | - Feng Tian
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100083, People's Republic of China
| | - Quanhui Zheng
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China.
| |
Collapse
|
2
|
Raju C, Sankaranarayanan K. Insights on post-translational modifications in fatty liver and fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167659. [PMID: 39788217 DOI: 10.1016/j.bbadis.2025.167659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders. This review article presents how different chemical moieties of various PTMs like phosphorylation, methylation, ubiquitination, glutathionylation, neddylation, acetylation, SUMOylation, lactylation, crotonylation, hydroxylation, glycosylation, citrullination, S-sulfhydration and succinylation presents the cause-effect contribution towards the MASLD spectra. Additionally, the therapeutic prospects in the management of liver steatosis and hepatic fibrosis via targeting PTMs and regulatory enzymes are also encapsulated. This review seeks to understand the function of protein modifications in progression and promote the markers discovery of diagnostic, prognostic and drug targets towards MASLD management which could also halt the progression of a catalogue of related diseases.
Collapse
Affiliation(s)
- Chithra Raju
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India.
| |
Collapse
|
3
|
Yu E, Kim H, Park H, Hong JH, Jin J, Song Y, Woo JM, Min JK, Yun J. Targeting the VEGFR2 signaling pathway for angiogenesis and fibrosis regulation in neovascular age-related macular degeneration. Sci Rep 2024; 14:25682. [PMID: 39465270 PMCID: PMC11514265 DOI: 10.1038/s41598-024-76258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is characterized by abnormal blood vessel growth from the choroid, leading to complications and eventual blindness. Despite anti-VEGF therapy, subretinal fibrosis remains a major concern, as VEGF/VEGF receptor-2 (VEGFR2) signaling can contribute to both angiogenesis and fibrosis. For the identification of the aqueous humor proteome, we performed liquid chromatography with tandem mass spectrometry analysis. To investigate the potential therapeutic effects of targeting the VEGF signaling pathway using apatinib, a highly selective VEGFR2 tyrosine kinase inhibitor, this study employed in vitro (THP-1 conditioned media-treated ARPE-19 cells) and in vivo (laser-induced choroidal neovascularization mouse) models of nAMD. This study revealed elevated VEGFR2 protein levels in the aqueous humor of nAMD patients, suggesting a potential target to mitigate neovascularization and fibrosis in nAMD. Apatinib effectively reduced VEGFA and αSMA levels in both in vitro and in vivo models. Moreover, apatinib showed improvement in laser-induced subretinal hyper-reflective lesions. The action mechanism was linked to the inhibition of VEGFR2 activation, leading to the suppression of both angiogenesis and fibrosis through the downregulation of STAT3 phosphorylation. Therefore, the VEGFR2 signaling pathway appears to play a central role in the development of nAMD by regulating both angiogenesis and fibrosis.
Collapse
Affiliation(s)
- Eunhye Yu
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Haechan Kim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Hyeonji Park
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
- College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Ji Hye Hong
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Jonghwa Jin
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Yunjeong Song
- Ministry of Food and Drug Safety, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Je Moon Woo
- Department of Ophthalmology, College of Medicine, Ulsan University Hospital, University of Ulsan, 25, Daehakbyeongwon-ro, Dong-gu, Ulsan, 44033, Republic of Korea
| | - Jung Kee Min
- Department of Ophthalmology, College of Medicine, Ulsan University Hospital, University of Ulsan, 25, Daehakbyeongwon-ro, Dong-gu, Ulsan, 44033, Republic of Korea.
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| |
Collapse
|
4
|
Yan D, Zhang X, Ma C, Huang W, Hao M, Xie L. Mechanism Study of Xiaoyao San against Nonalcoholic Steatohepatitis-Related Liver Fibrosis Based on a Combined Strategy of Transcriptome Analysis and Network Pharmacology. Pharmaceuticals (Basel) 2024; 17:1128. [PMID: 39338294 PMCID: PMC11434732 DOI: 10.3390/ph17091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease worldwide. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD. The livers of patients with NASH are more likely to develop fibrosis. Xiaoyao San (XYS) is a classic traditional Chinese medicine (TCM) formula that has been widely used in treating liver diseases. In this study, we elucidated the effects and mechanism of XYS in treating NASH-related liver fibrosis by combining high-throughput sequencing-based high-throughput screening with network pharmacology analysis. Our work revealed that XYS may play a role in preventing NASH-related liver fibrosis by regulating biological functions related to the extracellular matrix (ECM), inflammation, and metabolism. Additionally, Bupleuri Radix, Poria, Zingiberis Rhizoma Recens, and Paeoniae Radix Alba are the key herbs of XYS that could partially represent the functions of XYS. These regulatory effects are mediated by targeting signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NFκB), and peroxisome proliferator-activated receptor gamma (PPARγ) signaling. Narcissin, casuarictin, and γ-sitosterol were identified as representative active compounds in XYS targeting STAT3, NFκB, and PPARγ, respectively. Taken together, our findings provide a novel strategy for investigating the pharmacological effects and biological mechanisms of a TCM formula.
Collapse
Affiliation(s)
- Di Yan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China;
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (X.Z.); (C.M.); (M.H.)
| | - Xiaoling Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (X.Z.); (C.M.); (M.H.)
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (X.Z.); (C.M.); (M.H.)
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Mimi Hao
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (X.Z.); (C.M.); (M.H.)
| | - Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China;
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (X.Z.); (C.M.); (M.H.)
| |
Collapse
|
5
|
Tang Y, Zhu Z, Li M, Gao L, Wu X, Chen J, Zhang Y, Zhao H, Xiao Z. Lycorine relieves the CCl 4-induced liver fibrosis mainly via the JAK2/STAT3 and PI3K/AKT signaling pathways. Toxicol Appl Pharmacol 2024; 489:117017. [PMID: 38925513 DOI: 10.1016/j.taap.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Liver fibrosis, a progressive process of fibrous scarring, results from the accumulation of extracellular matrix proteins (ECM). If left untreated, it often progresses to diseases such as cirrhosis and hepatocellular carcinoma. Lycorine, a natural alkaloid derived from medicinal plants, has shown diverse bioactivities by targeting JAK2/STAT3 signaling, but its pharmacological effects and potential molecular mechanisms in liver fibrosis remains largely unexplored. The purpose of this study is to elucidate the pharmacological activity and molecular mechanism of lycorine in anti-hepatic fibrosis. Findings indicate that lycorine significantly inhibited hepatic stellate cells (HSCs) activation by reducing the expression of α-SMA and collagen-1. In vivo, lycorine treatment alleviated carbon tetrachloride (CCl4) -induced mice liver fibrosis, improving liver function, decreasing ECM deposition, and inhibiting fibrosis-related markers' expression. Mechanistically, it was found that lycorine exerts protective activity through the JAK2/STAT3 and PI3K/AKT signaling pathways, as evidenced by transcriptome sequencing technology and small molecule inhibitors. These results underscore lycorine's potential as a therapeutic drug for liver fibrosis.
Collapse
Affiliation(s)
- Yue Tang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaisheng Zhu
- Department of Medicine Care Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Mengying Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lijiao Gao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinyi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingyi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Haiyang Zhao
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.
| |
Collapse
|
6
|
Liu KX, Wang ZY, Ying YT, Wei RM, Dong DL, Sun ZJ. The antiprotozoal drug nitazoxanide improves experimental liver fibrosis in mice. Biochem Pharmacol 2024; 224:116205. [PMID: 38615918 DOI: 10.1016/j.bcp.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nitazoxanide is an FDA-approved antiprotozoal drug. Our previous studies find that nitazoxanide and its metabolite tizoxanide affect AMPK, STAT3, and Smad2/3 signals which are involved in the pathogenesis of liver fibrosis, therefore, in the present study, we examined the effect of nitazoxanide on experimental liver fibrosis and elucidated the potential mechanisms. The in vivo experiment results showed that oral nitazoxanide (75, 100 mg·kg-1) significantly improved CCl4- and bile duct ligation-induced liver fibrosis in mice. Oral nitazoxanide activated the inhibited AMPK and inhibited the activated STAT3 in liver tissues from liver fibrosis mice. The in vitro experiment results showed that nitazoxanide and its metabolite tizoxanide activated AMPK and inhibited STAT3 signals in LX-2 cells (human hepatic stellate cells). Nitazoxanide and tizoxanide inhibited cell proliferation and collagen I expression and secretion of LX-2 cells. Nitazoxanide and tizoxanide inhibited transforming growth factor-β1 (TGF-β1)- and IL-6-induced increases of cell proliferation, collagen I expression and secretion, inhibited TGF-β1- and IL-6-induced STAT3 and Smad2/3 activation in LX-2 cells. In mouse primary hepatic stellate cells, nitazoxanide and tizoxanide also activated AMPK, inhibited STAT3 and Smad2/3 activation, inhibited cell proliferation, collagen I expression and secretion. In conclusion, nitazoxanide inhibits liver fibrosis and the underlying mechanisms involve AMPK activation, and STAT3 and Smad2/3 inhibition.
Collapse
Affiliation(s)
- Kai-Xin Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zeng-Yang Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ya-Ting Ying
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Rui-Miao Wei
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
7
|
Song Q, Li H, Yan H, Yu Z, Li Z, Yuan J, Jiang N, Ni Z, Gu L, Fang W. Inhibition of STAT3 by S3I-201 suppress peritoneal fibroblast phenotype conversion and alleviate peritoneal fibrosis. J Cell Mol Med 2024; 28:e18381. [PMID: 38780509 PMCID: PMC11114217 DOI: 10.1111/jcmm.18381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.
Collapse
Affiliation(s)
- Qianhui Song
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Han Li
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Hao Yan
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Zhenyuan Li
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Jiangzi Yuan
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Na Jiang
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| | - Wei Fang
- Department of Nephrology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- Shanghai Center for Peritoneal Dialysis ResearchShanghaiPeople's Republic of China
| |
Collapse
|
8
|
Jiang H, Yang J, Li T, Wang X, Fan Z, Ye Q, Du Y. JAK/STAT3 signaling in cardiac fibrosis: a promising therapeutic target. Front Pharmacol 2024; 15:1336102. [PMID: 38495094 PMCID: PMC10940489 DOI: 10.3389/fphar.2024.1336102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiac fibrosis is a serious health problem because it is a common pathological change in almost all forms of cardiovascular diseases. Cardiac fibrosis is characterized by the transdifferentiation of cardiac fibroblasts (CFs) into cardiac myofibroblasts and the excessive deposition of extracellular matrix (ECM) components produced by activated myofibroblasts, which leads to fibrotic scar formation and subsequent cardiac dysfunction. However, there are currently few effective therapeutic strategies protecting against fibrogenesis. This lack is largely because the molecular mechanisms of cardiac fibrosis remain unclear despite extensive research. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascade is an extensively present intracellular signal transduction pathway and can regulate a wide range of biological processes, including cell proliferation, migration, differentiation, apoptosis, and immune response. Various upstream mediators such as cytokines, growth factors and hormones can initiate signal transmission via this pathway and play corresponding regulatory roles. STAT3 is a crucial player of the JAK/STAT pathway and its activation is related to inflammation, malignant tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in the spotlight for its role in the occurrence and development of cardiac fibrosis and its activation can promote the proliferation and activation of CFs and the production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript, we discuss the structure, transactivation and regulation of the JAK/STAT3 signaling pathway and review recent progress on the role of this pathway in cardiac fibrosis. Moreover, we summarize the current challenges and opportunities of targeting the JAK/STAT3 signaling for the treatment of fibrosis. In summary, the information presented in this article is critical for comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and will also contribute to future research aimed at the development of effective anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Junjie Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanfei Du
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Choi HJ, Kim YA, Ryu J, Park KK, Lee SJ, Kim BS, Song JE, Kim JD. STAT3 Decoy Oligodeoxynucleotides Suppress Liver Inflammation and Fibrosis in Liver Cancer Cells and a DDC-Induced Liver Injury Mouse Model. Molecules 2024; 29:593. [PMID: 38338338 PMCID: PMC10856653 DOI: 10.3390/molecules29030593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Liver damage caused by various factors results in fibrosis and inflammation, leading to cirrhosis and cancer. Fibrosis results in the accumulation of extracellular matrix components. The role of STAT proteins in mediating liver inflammation and fibrosis has been well documented; however, approved therapies targeting STAT3 inhibition against liver disease are lacking. This study investigated the anti-fibrotic and anti-inflammatory effects of STAT3 decoy oligodeoxynucleotides (ODN) in hepatocytes and liver fibrosis mouse models. STAT3 decoy ODN were delivered into cells using liposomes and hydrodynamic tail vein injection into 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice in which liver injury was induced. STAT3 target gene expression changes were verified using qPCR and Western blotting. Liver tissue fibrosis and bile duct proliferation were assessed in animal experiments using staining techniques, and macrophage and inflammatory cytokine distribution was verified using immunohistochemistry. STAT3 decoy ODN reduced fibrosis and inflammatory factors in liver cancer cell lines and DDC-induced liver injury mouse model. These results suggest that STAT3 decoy ODN may effectively treat liver fibrosis and must be clinically investigated.
Collapse
Affiliation(s)
- Hye Jin Choi
- Department of Surgery, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Young-Ah Kim
- Seoul Clinical Laboratories of Daegu, Daegu 41238, Republic of Korea
| | - Junghwa Ryu
- Department of Radiology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.-K.P.)
| | - Sun-Jae Lee
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.-K.P.)
| | - Byung Seok Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (B.S.K.)
| | - Jeong-En Song
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (B.S.K.)
| | - Joo Dong Kim
- Department of Surgery, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
10
|
Rafiq H, Hu J, Hakami MA, Hazazi A, Alamri MA, Alkhatabi HA, Mahmood A, Alotaibi BS, Wadood A, Huang X. Identification of novel STAT3 inhibitors for liver fibrosis, using pharmacophore-based virtual screening, molecular docking, and biomolecular dynamics simulations. Sci Rep 2023; 13:20147. [PMID: 37978263 PMCID: PMC10656421 DOI: 10.1038/s41598-023-46193-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) plays a fundamental role in the growth and regulation of cellular life. Activation and over-expression of STAT3 have been implicated in many cancers including solid blood tumors and other diseases such as liver fibrosis and rheumatoid arthritis. Therefore, STAT3 inhibitors are be coming a growing and interesting area of pharmacological research. Consequently, the aim of this study is to design novel inhibitors of STAT3-SH3 computationally for the reduction of liver fibrosis. Herein, we performed Pharmacophore-based virtual screening of databases including more than 19,481 commercially available compounds and in-house compounds. The hits obtained from virtual screening were further docked with the STAT3 receptor. The hits were further ranked on the basis of docking score and binding interaction with the active site of STAT3. ADMET properties of the screened compounds were calculated and filtered based on drug-likeness criteria. Finally, the top five drug-like hit compounds were selected and subjected to molecular dynamic simulation. The stability of each drug-like hit in complex with STAT3 was determined by computing their RMSD, RMSF, Rg, and DCCM analyses. Among all the compounds Sa32 revealed a good docking score, interactions, and stability during the entire simulation procedure. As compared to the Reference compound, the drug-like hit compound Sa32 showed good docking scores, interaction, stability, and binding energy. Therefore, we identified Sa32 as the best small molecule potent inhibitor for STAT3 that will be helpful in the future for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huma Rafiq
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Junjian Hu
- Department of Central Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan, China
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Hind A Alkhatabi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arif Mahmood
- Center for Medical Genetics and Human Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan.
| | - Xiaoyun Huang
- Department of Neurology, Dongguan Songshan Lake Central Hospital, Dongguan, China.
| |
Collapse
|
11
|
Bala S, Zhuang Y, Nagesh PT, Catalano D, Zivny A, Wang Y, Xie J, Gao G, Szabo G. Therapeutic inhibition of miR-155 attenuates liver fibrosis via STAT3 signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:413-427. [PMID: 37547286 PMCID: PMC10403732 DOI: 10.1016/j.omtn.2023.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Most chronic liver diseases progress to liver fibrosis, which, when left untreated, can lead to cirrhosis and hepatocellular carcinoma. MicroRNA (miRNA)-targeted therapeutics have become attractive approaches to treat diseases. In this study, we investigated the therapeutic effect of miR-155 inhibition in the bile duct ligation (BDL) mouse model of liver fibrosis and evaluated the role of miR-155 in chronic liver fibrosis using miR-155-deficient (miR-155 knockout [KO]) mice. We found increased hepatic miR-155 expression in patients with cirrhosis and in the BDL- and CCl4-induced mouse models of liver fibrosis. Liver fibrosis was significantly reduced in miR-155 KO mice after CCl4 administration or BDL. To assess the therapeutic potential of miR-155 inhibition, we administered an rAAV8-anti-miR-155 tough decoy in vivo that significantly reduced liver damage and fibrosis in BDL. BDL-induced protein levels of transforming growth factor β (TGF-β), p-SMAD2/3, and p-STAT3 were attenuated in anti-miR-155-treated compared with control mice. Hepatic stellate cells from miR-155 KO mice showed attenuation in activation and mesenchymal marker expression. In vitro, miR-155 gain- and loss-of-function studies revealed that miR-155 regulates activation of stellate cells partly via STAT3 signaling. Our study suggests that miR-155 is the key regulator of liver fibrosis and might be a potential therapeutic target to attenuate fibrosis progression.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adam Zivny
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yanbo Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
12
|
Xu F, Lu S, Jia X, Zhou Y. Bromodomain protein 4 mediates the roles of TGFβ1-induced Stat3 signaling in mouse liver fibrogenesis. Toxicol Lett 2023; 385:42-50. [PMID: 37634812 DOI: 10.1016/j.toxlet.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Epigenetic reader Bromodomain protein 4 (BrD4) functions as a global genomic regulator to direct hepatic stellate cell (HSC) activation (a key step in liver fibrogenesis) and liver fibrosis. The pivotal pro-fibrotic cytokine transforming growth factor-β1 (TGFβ1) signals through both Smad and Stat3 to elicit a wide array of biological effects. Stat3 is widely acknowledged as a regulator of gene transcription and is involved in fibrosis of multiple tissues. The present study focused on BrD4 function implication in the roles of TGFβ1-induced Stat3 signaling in HSC activation and liver fibrosis by using heterozygous TGFβ1 knockout mice and HSC culture. Results showed that Stat3 was required for TGFβ1-induced BrD4 expression in HSCs. BrD4 expression paralleled Stat3 activation in activated HSCs in human cirrhotic livers. BrD4 was involved in the roles of TGFβ1-induced Stat3 in HSC activation and liver fibrogenesis. Smad3 bound to phosphorylated-Stat3 and contributed to TGFβ1-induced Stat3 signaling. BrD4 expression induced by Stat3 signaling required the early-immediate gene Egr1. Egr1 had a positive feedback on Stat3 activation. In conclusion, a network consisting of Stat3 signaling, Smad3 signaling, Egr1, and BrD4 was involved in the effects of TGFβ1 on liver fibrosis, providing new toxicological mechanisms for TGFβ1 in liver fibrogenesis.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), 500 Yonghe Road, Nantong 226011, Jiangsu, China
| | - Sidan Lu
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
13
|
Li J, Wu B, Zeng L, Lin Y, Chen Q, Wang H, An L, Zhang J, Chen S, Huang J, Zhan R, Zhang G. Aqueous extract of Amydrium sinense (Engl.) H. Li alleviates hepatic fibrosis by suppressing hepatic stellate cell activation through inhibiting Stat3 signaling. Front Pharmacol 2023; 14:1101703. [PMID: 37383718 PMCID: PMC10293641 DOI: 10.3389/fphar.2023.1101703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background: The present study aimed to investigate the protective effect of the water extract of Amydrium sinense (Engl.) H. Li (ASWE) against hepatic fibrosis (HF) and clarify the underlying mechanism. Methods: The chemical components of ASWE were analysed by a Q-Orbitrap high-resolution mass spectrometer. In our study, an in vivo hepatic fibrosis mouse model was established via an intraperitoneal injection of olive oil containing 20% CCl4. In vitro experiments were conducted using a hepatic stellate cell line (HSC-T6) and RAW 264.7 cell line. A CCK-8 assay was performed to assess the cell viability of HSC-T6 and RAW264.7 cells treated with ASWE. Immunofluorescence staining was used to examine the intracellular localization of signal transducer and activator of transcription 3 (Stat3). Stat3 was overexpressed to analyse the role of Stat3 in the effect of ASWE on HF. Results: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that candidate targets of ASWE, associated with protective effects against hepatic fibrosis, were related to inflammation response. ASWE ameliorated CCl4-induced liver pathological damage and reduced the liver index and alanine transaminase (ALT) and aspartate transaminase (AST) levels. ASWE also decreased the serum levels of collagen Ⅰ (Col Ⅰ) and hydroxyproline (Hyp) in CCl4-treated mice. In addition, the expression of fibrosis markers, including α-SMA protein and Acta2, Col1a1, and Col3a1 mRNA, was downregulated by ASWE treatment in vivo. The expression of these fibrosis markers was also decreased by treatment with ASWE in HSC-T6 cells. Moreover, ASWE decreased the expression of inflammatory markers, including the Tnf-α, Il6 and Il1β, in RAW264.7 cells. ASWE decreased the phosphorylation of Stat3 and total Stat3 expression and reduced the mRNA expression of the Stat3 gene in vivo and in vitro. ASWE also inhibited the nuclear shuttling of Stat3. Overexpression of Stat3 weakened the therapeutic effect of ASWE and accelerated the progression of HF. Conclusion: The results show that ASWE protects against CCl4-induced liver injury by suppressing fibrosis, inflammation, HSC activation and the Stat3 signaling pathway, which might lead to a new approach for preventing HF.
Collapse
Affiliation(s)
- Jingyan Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bingmin Wu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lishan Zeng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Lin
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuhe Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haixia Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin An
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiajun Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Siyan Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junying Huang
- College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Ruoting Zhan
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifang Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Li X, Wang J, Wang Q, Luo T, Song X, Wan G, Feng Z, He X, Lei Q, Xu Y, You X, Yu L, Zhang L, Zhao L. A novel VEGFR inhibitor ZLF-095 with potent antitumor activity and low toxicity. Heliyon 2023; 9:e15152. [PMID: 37251840 PMCID: PMC10209341 DOI: 10.1016/j.heliyon.2023.e15152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/31/2023] Open
Abstract
Angiogenesis plays a critical role in the survival, progression and metastasis of malignant tumors. Multiple factors are known to induce tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most important one. Lenvatinib is an oral multi-kinase inhibitor of VEGFRs which has been approved for the treatment of various malignancies as the first-line agent by the Food and Drug Administration (FDA). It shows excellent antitumor efficacy in clinical practice. However, the adverse effects of Lenvatinib may seriously impair the therapeutic effect. Here we report the discovery and characterization of a novel VEGFR inhibitor (ZLF-095), which exhibited high activity and selectivity for VEGFR1/2/3. ZLF-095 displayed apparently antitumor effect in vitro and in vivo. We discovered that Lenvatinib could provoke fulminant ROS-caspase3-GSDME-dependent pyroptosis in GSDME-expressing cells by loss of mitochondrial membrane potential, which may be one of the reasons for Lenvatinib's toxicity. Meanwhile, ZLF-095 showed less toxicity than Lenvatinib by switching pyroptosis to apoptosis. These results suggest that ZLF-095 could become a potential angiogenesis inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jia Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Tianwen Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610000, China
| | - Guoquan Wan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaojie He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Lei
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, China
| | - Ying Xu
- School of Chemical Engineering, Northwest University, No.229 North Taibai Road, Xi’an, Shaanxi, 710069, China
| | - Xinyu You
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Lidan Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
15
|
Kim KE, Lee J, Shin HJ, Jeong EA, Jang HM, Ahn YJ, An HS, Lee JY, Shin MC, Kim SK, Yoo WG, Kim WH, Roh GS. Lipocalin-2 activates hepatic stellate cells and promotes nonalcoholic steatohepatitis in high-fat diet-fed Ob/Ob mice. Hepatology 2023; 77:888-901. [PMID: 35560370 PMCID: PMC9936980 DOI: 10.1002/hep.32569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS In obesity and type 2 diabetes mellitus, leptin promotes insulin resistance and contributes to the progression of NASH via activation of hepatic stellate cells (HSCs). However, the pathogenic mechanisms that trigger HSC activation in leptin-deficient obesity are still unknown. This study aimed to determine how HSC-targeting lipocalin-2 (LCN2) mediates the transition from simple steatosis to NASH. APPROACH AND RESULTS Male wild-type (WT) and ob/ob mice were fed a high-fat diet (HFD) for 20 weeks to establish an animal model of NASH with fibrosis. Ob/ob mice were subject to caloric restriction or recombinant leptin treatment. Double knockout (DKO) mice lacking both leptin and lcn2 were also fed an HFD for 20 weeks. In addition, HFD-fed ob/ob mice were treated with gadolinium trichloride to deplete Kupffer cells. The LX-2 human HSCs and primary HSCs from ob/ob mice were used to investigate the effects of LCN2 on HSC activation. Serum and hepatic LCN2 expression levels were prominently increased in HFD-fed ob/ob mice compared with normal diet-fed ob/ob mice or HFD-fed WT mice, and these changes were closely linked to liver fibrosis and increased hepatic α-SMA/matrix metalloproteinase 9 (MMP9)/signal transducer and activator of transcription 3 (STAT3) protein levels. HFD-fed DKO mice showed a marked reduction of α-SMA protein compared with HFD-fed ob/ob mice. In particular, the colocalization of LCN2 and α-SMA was increased in HSCs from HFD-fed ob/ob mice. In primary HSCs from ob/ob mice, exogenous LCN2 treatment induced HSC activation and MMP9 secretion. By contrast, LCN2 receptor 24p3R deficiency or a STAT3 inhibitor reduced the activation and migration of primary HSCs. CONCLUSIONS LCN2 acts as a key mediator of HSC activation in leptin-deficient obesity via α-SMA/MMP9/STAT3 signaling, thereby exacerbating NASH.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye Min Jang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yu Jeong Ahn
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo Kyoung Kim
- Department of Internal Medicine, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Ho Kim
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
16
|
Jiao J, Sanchez JI, Saldarriaga OA, Solis LM, Tweardy DJ, Maru DM, Stevenson HL, Beretta L. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100628. [PMID: 36687470 PMCID: PMC9850198 DOI: 10.1016/j.jhepr.2022.100628] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background & Aims The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Methods Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion. Conclusion Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches. Impact and implications Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD.
Collapse
Key Words
- DSP, digital spatial profiler
- FC, fold change
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HPCs, hepatic progenitor cells
- HSCs, hepatic stellate cells
- IPA, Ingenuity® Pathway Analysis
- LSECs, liver sinusoidal endothelial cells
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- SECs, sinusoidal endothelial cells
- STAT, signal transducer and activator of transcription
- STAT3
- cirrhosis
- fibrosis
- liver cancer
- pSTAT3, phospho-STAT3
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omar A. Saldarriaga
- Department of Pathology, The University of Texas Medical Branch, Galveston TX, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J. Tweardy
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dipen M. Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather L. Stevenson
- Department of Pathology, The University of Texas Medical Branch, Galveston TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Lv L, Wang D, Yin J, Yang T, Huang B, Cao Y, Lu J. Downregulation of miR-20b-5p Contributes to the Progression of Liver Fibrosis via the STAT3 Signaling Pathway In Vivo and In Vitro. Dig Dis Sci 2023; 68:487-496. [PMID: 35947307 DOI: 10.1007/s10620-022-07660-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Activated hepatic stellate cells (HSCs) are primarily involved in liver fibrosis and portal hypertension (PHT). We aimed to investigate the effect of miR-20b-5p on HSCs, liver fibrosis, and PHT. METHODS MiR-20b-5p expression in HSCs and in mouse liver fibrosis was determined by qPCR. Further, the effects of miR-20b-5p mimic on HSCs migration, proliferation, and apoptosis were investigated in vitro. A dual-luciferase reporter assay was performed to confirm the direct interaction between miR-20b-5p and STAT3. In vivo, mouse liver fibrosis was established by common bile duct ligation and intervened by agomiR-20b-5p. Sirius red staining and hydroxyproline content were used to evaluate collagen deposition. The α-SMA expression in the liver was detected by IHC and Western blotting. The STAT3 signaling pathway and its downregulated cytokines as well as portal pressure and angiogenesis were explored. RESULTS MiR-20b-5p was significantly downregulated during HSCs activation and in mouse liver fibrosis. The functional analyses demonstrated that miR-20b-5p inhibited cell proliferation, activation, and promoted apoptosis in HSCs in vitro. Moreover, miR-20b-5p regulated STAT3 expression by binding to the 3'UTR of its miRNA directly. Overexpression of miR-20b-5p facilitated HSC activation and proliferation by inhibiting the STAT3 signaling pathway. MiR-20b-5p overexpression suppressed the STAT3 and its downstream cytokines and ameliorated liver fibrosis in mice. The intra- and inter-hepatic angiogenesis were also effectively inhibited. The inhibition of liver fibrosis and neoangiogenesis contributed to the decrease of portal pressure. CONCLUSIONS MiR-20b-5p plays an important role in the fibrosis and angiogenesis of liver fibrosis by targeting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ling Lv
- Department of Disease Control and Prevention, Tangdu Hospital, Fourth Military Medical University, 569 Xin Si Road, Xi'an, 710038, China
| | - Dong Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jikai Yin
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Yang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Huang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanlong Cao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianguo Lu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Morimoto M, Maishi N, Tsumita T, Alam MT, Kikuchi H, Hida Y, Yoshioka Y, Ochiya T, Annan DA, Takeda R, Kitagawa Y, Hida K. miR-1246 in tumor extracellular vesicles promotes metastasis via increased tumor cell adhesion and endothelial cell barrier destruction. Front Oncol 2023; 13:973871. [PMID: 37124539 PMCID: PMC10130374 DOI: 10.3389/fonc.2023.973871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Tumor blood vessels play a key role in tumor metastasis. We have previously reported that tumor endothelial cells (TECs) exhibit abnormalities compared to normal endothelial cells. However, it is unclear how TECs acquire these abnormalities. Tumor cells secrete extracellular vesicles (EVs) to create a suitable environment for themselves. We have previously identified miR-1246 to be more abundant in high metastatic melanoma EVs than in low metastatic melanoma EVs. In the current study, we focused on miR-1246 as primarily responsible for acquiring abnormalities in TECs and examined whether the alteration of endothelial cell (EC) character by miR-1246 promotes cancer metastasis. Methods We analyzed the effect of miR-1246 in metastatic melanoma, A375SM-EVs, in vivo metastasis. The role of tumor EV-miR-1246 in the adhesion between ECs and tumor cells and the EC barrier was addressed. Changes in the expression of adhesion molecule and endothelial permeability were examined. Results Intravenous administration of A375SM-EVs induced tumor cell colonization in the lung resulting in lung metastasis. In contrast, miR-1246 knockdown in A375SM decreased lung metastasis in vivo. miR-1246 transfection in ECs increased the expression of adhesion molecule ICAM-1 via activation of STAT3, followed by increased tumor cell adhesion to ECs. Furthermore, the expression of VE-Cadherin was downregulated in miR-1246 overexpressed EC. A375SM-EV treatment enhanced endothelial permeability. VE-Cadherin was validated as the potential target gene of miR-1246 via the target gene prediction database and 3' UTR assay. Conclusion miR-1246 in high metastatic tumor EVs promotes lung metastasis by inducing the adhesion of tumor cells to ECs and destroying the EC barrier.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroshi Kikuchi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yusuke Yoshioka
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Dorcas A. Annan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Ryo Takeda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- *Correspondence: Kyoko Hida,
| |
Collapse
|
19
|
Wu B, Huang L, Wang Y, Zeng L, Lin Y, Li J, Wang S, Zhang G, An L. Yao medicine Amydrium hainanense suppresses hepatic fibrosis by repressing hepatic stellate cell activation via STAT3 signaling. Front Pharmacol 2022; 13:1043022. [PMID: 36588728 PMCID: PMC9794994 DOI: 10.3389/fphar.2022.1043022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Ethnopharmacological relevance: Hepatic fibrosis (HF) occurs in response to chronic liver injury and may easily develop into irreversible liver cirrhosis or even liver cancer. Amydrium hainanense water extract (AHWE) is a water-soluble component extracted from the Yao medicine Amydrium hainanense (H.Li, Y.Shiao & S.L.Tseng) H.Li, which is commonly used for treating inflammatory diseases in folk. Previous evidence suggested that AHWE significantly inhibited hepatic stellate cell activation. However, little is known regarding the therapeutic effect of AHWE in HF and its underlying action mechanism. Objective: Investigation of the therapeutic effect of AHWE in HF and its underlying mechanism. Methods: The therapeutic effect of AHWE was tested in vivo using an HF mouse model via an intraperitoneal injection of carbon tetrachloride (CCl4). Histological evaluation of liver injury and fibrosis were tested by H&E staining and Masson's trichrome staining. Serum levels of ALT, AST, collagen type I (Col I), and hydroxyproline (HYP) were measured. The mRNA expression of liver fibrotic and inflammatory genes were tested, and the protein levels of alpha smooth muscle actin (α-SMA) and signal transducers and activators of transcription 3 (STAT3) were analyzed. The in vitro experiments were conducted using HSC-T6 and RAW264.7 cell lines. Results: Treatment with AHWE significantly reversed histopathological liver damage and liver function abnormalities in CCl4 mouse model. Also, the serum levels of ALT, AST, Col I, and HYP in CCl4-induced HF mice were improved in AHWE treatment. Further, AHWE showed a remarkable inhibitory effect on the expression of fibrosis markers (Acta2, Col1a1, and Col3a1) and inflammatory factors (Stat3, Tnfa, Il6, and Il1b) induced by CCl4. The results of in vitro experiments were consistent with those obtained in vivo. In addition, it is shown that STAT3 signaling was involved in the anti-fibrotic effects of AHWE as evidenced by STAT3 overexpression. Conclusion: The present study proposed a novel ethnomedicine for HF and suggested the underlying role of STAT3 signaling pathway regulation in this anti-fibrotic effect of the proposed medicine. These findings would serve as solid scientific evidence in support of the development of AHWE as a novel alternative or complementary therapy for HF prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaogui Wang
- *Correspondence: Shaogui Wang, ; Guifang Zhang, ; Lin An,
| | - Guifang Zhang
- *Correspondence: Shaogui Wang, ; Guifang Zhang, ; Lin An,
| | - Lin An
- *Correspondence: Shaogui Wang, ; Guifang Zhang, ; Lin An,
| |
Collapse
|
20
|
Wang L, Zhang Y, Ren Y, Yang X, Ben H, Zhao F, Yang S, Wang L, Qing J. Pharmacological targeting of cGAS/STING-YAP axis suppresses pathological angiogenesis and ameliorates organ fibrosis. Eur J Pharmacol 2022; 932:175241. [PMID: 36058291 DOI: 10.1016/j.ejphar.2022.175241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
Organ fibrosis is accompanied by pathological angiogenesis. Discovering new ways to ameliorate pathological angiogenesis may bypass organ fibrosis. The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been implicated in organ injuries and its activation inhibits endothelial proliferation. Currently, a controversy exists as to whether cGAS/STING activation exacerbates inflammation and tissue injury or mitigates damage, and whether one of these effects predominates under specific context. This study unveiled a new antifibrotic cGAS/STING signaling pathway that suppresses pathological angiogenesis in liver and kidney fibrosis. We showed that cGAS expression was induced in fibrotic liver and kidney, but suppressed in endothelial cells. cGAS genetic deletion promoted liver and kidney fibrosis and pathological angiogenesis, including occurrence of endothelial-to-mesenchymal transition. Meanwhile, cGAS deletion upregulated profibrotic Yes-associated protein (YAP) signaling in endothelial cells, which was evidenced by the attenuation of organ fibrosis in mice specifically lacking endothelial YAP. Pharmacological targeting of cGAS/STING-YAP signaling by both a small-molecule STING agonist, SR-717, and a G protein-coupled receptor (GPCR)-based antagonist that blocks the profibrotic activity of endothelial YAP, attenuated liver and kidney fibrosis. Together, our data support that activation of cGAS/STING signaling mitigates organ fibrosis and suppresses pathological angiogenesis. Further, pharmacological targeting of cGAS/STING-YAP axis exhibits the potential to alleviate liver and kidney fibrosis.
Collapse
Affiliation(s)
- Lu Wang
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuwei Zhang
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yafeng Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610064, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Haijing Ben
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Fulan Zhao
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Li Wang
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Jie Qing
- National Traditional Chinese Medicine Clinical Research Base and Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Pathogenesis of Liver Fibrosis and Its TCM Therapeutic Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5325431. [PMID: 35529927 PMCID: PMC9071861 DOI: 10.1155/2022/5325431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is a pathological process of abnormal tissue proliferation in the liver caused by various pathogenic factors, which will further develop into cirrhosis or even hepatocellular carcinoma if liver injury is not intervened in time. As a diffuse progressive liver disease, its clinical manifestations are mostly excessive deposition of collagen-rich extracellular matrix resulting in scar formation due to liver injury. Hepatic fibrosis can be caused by hepatitis B and C, fatty liver, alcohol, and rare diseases such as hemochromatosis. As the metabolic center of the body, the liver regulates various vital activities. During the development of fibrosis, it is influenced by many other factors in addition to the central event of hepatic stellate cell activation. Currently, with the increasing understanding of TCM, the advantages of TCM with multiple components, pathways, and targets have been demonstrated. In this review, we will describe the factors influencing liver fibrosis, focusing on the effects of cells, intestinal flora, iron death, signaling pathways, autophagy and angiogenesis on liver fibrosis, and the therapeutic effects of herbal medicine on liver fibrosis.
Collapse
|
22
|
Angre T, Kumar A, Singh AK, Thareja S, Kumar P. Role of collagen regulators in cancer treatment: A comprehensive review. Anticancer Agents Med Chem 2022; 22:2956-2984. [DOI: 10.2174/1871520622666220501162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Abstract:
Collagen is the most important structural protein and also a main component of extra-cellular matrix (ECM). It plays a role in tumor progression. Collagen can be regulated by altering it’s biosynthesis pathway through various signaling pathways, receptors and genes. Activity of cancer cells can also be regulated by other ECM components like metalloproteinases, hyaluronic acid, fibronectin and so on. Hypoxia is also one of the condition which leads to cancer progression by stimulating the expression of procollagen lysine as a collagen crosslinker, which increases the size of collagen fibres promoting cancer spread. The collagen content in cancerous cells leads to resistance in chemotherapy. So, to reduce this resistance, some of the collagen regulating therapies are introduced, which include inhibiting its biosynthesis, disturbing cancer cell signaling pathway, mediating ECM components and directly utilizing collagenase. This study is an effort to compile the strategies reported to control the collagen level and different collagen inhibitors reported so far. More research is needed in this area, growing understandings of collagen’s structural features and its role in cancer progression will aid in the advancement of newer chemotherapies.
Collapse
Affiliation(s)
- Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
23
|
Tang YX, Liu M, Liu L, Zhen BR, Wang TT, Li N, Lv N, Zhu Z, Sun G, Wang X, Chen S. Lipophilic Constituents in Salvia miltiorrhiza Inhibit Activation of the Hepatic Stellate Cells by Suppressing the JAK1/STAT3 Signaling Pathway: A Network Pharmacology Study and Experimental Validation. Front Pharmacol 2022; 13:770344. [PMID: 35517817 PMCID: PMC9065469 DOI: 10.3389/fphar.2022.770344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is currently a global health challenge with no approved therapy, with the activation of hepatic stellate cells being a principal factor. Lipophilic constituents in Salvia miltiorrhiza (LS) have been reported to improve liver function and reduce the indicators of liver fibrosis for patients with chronic hepatitis B induced hepatic fibrosis. However, the pharmacological mechanisms of LS on liver fibrosis have not been clarified. In this study, 71 active compounds, 342 potential target proteins and 22 signaling pathways of LS were identified through a network pharmacology strategy. Through text mining and data analysis, the JAK1/STAT3 signaling pathway was representatively selected for further experimental validation. We firstly confirmed the protective effect of LS on liver fibrosis in vivo by animal experiments. Hepatic stellate cells, which proliferated and displayed a fibroblast-like morphology similar to activated primary stellate cells, were applied to evaluate its underlying mechanisms. The results showed that LS could inhibit the cell viability, promote the cell apoptosis, decrease the expression of liver fibrosis markers, and downregulate the JAK1/STAT3 signaling pathway. These results demonstrated that LS could exert anti-liver-fibrosis effects by inhibiting the activation of HSCs and regulating the JAK1/STAT3 signaling pathway, which is expected to benefit its clinical application.
Collapse
Affiliation(s)
- Ya-Xin Tang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- School of Medicine, Shanghai University, Shanghai, China
- GongQing Institute of Science and Technology, Gong Qing, China
| | - Mingming Liu
- Lianyungang Second People’s Hospital, Lianyungang, China
| | - Long Liu
- GongQing Institute of Science and Technology, Gong Qing, China
| | - Bo-Rui Zhen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tian-Tian Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Nanning Lv
- Lianyungang Second People’s Hospital, Lianyungang, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Guoquan Sun
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guoquan Sun, ; Xiaobo Wang, ; Si Chen,
| | - Xiaobo Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- The 967th Hospital of the Chinese People’s Liberation Army Joint Logistics Support Force, Dalian, China
- *Correspondence: Guoquan Sun, ; Xiaobo Wang, ; Si Chen,
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Guoquan Sun, ; Xiaobo Wang, ; Si Chen,
| |
Collapse
|
24
|
Song Z, Liu X, Zhang W, Luo Y, Xiao H, Liu Y, Dai G, Hong J, Li A. Ruxolitinib suppresses liver fibrosis progression and accelerates fibrosis reversal via selectively targeting Janus kinase 1/2. J Transl Med 2022; 20:157. [PMID: 35382859 PMCID: PMC8981941 DOI: 10.1186/s12967-022-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND JAK1 and JAK2 have been implicated in fibrosis and cancer as a fibroblast-related marker; however, their role in liver fibrosis has not been elucidated. Here, we aim to determine the effect and underlying mechanism of JAK1/2 inhibition on liver fibrosis and hepatic stellate cells (HSCs) and further explore the therapeutic efficacy of Ruxolitinib, a JAK1/2 selective inhibitor, on preventing and reversing liver fibrosis in mice. METHODS Immunohistochemistry staining of JAK1 and JAK2 were performed on liver tissue in mice with hepatic fibrosis and human liver tissue microarray of liver cirrhosis and liver cancer. LX-2 cells treated with specific siRNA of JAK1 and JAK2 were used to analysis activation, proliferation and migration of HSCs regulated by JAK1/2. The effects of Ruxolitinib (JAK1/2 inhibitor) on liver fibrosis were studied in LX-2 cells and two progressive and reversible fibrosis animal models (carbon tetrachloride (CCl4), Thioacetamide (TAA)). RESULTS We found that JAK1/2 expression was positively correlated with the progression of HCC in humans and the levels of liver fibrosis in mice. Silencing of JAK1/2 down-regulated their downstream signaling and inhibited proliferation, migration, and activation of HSCs in vitro, while Ruxolitinib had similar effects on HSCs. Importantly, Ruxolitinib significantly attenuated fibrosis progression, improved cell damage, and accelerated fibrosis reversal in the liver of mice treated with CCl4 or TAA. CONCLUSIONS JAK1/2 regulates the function of HSCs and plays an essential role in liver fibrosis and HCC development. Its inhibitor, Ruxolitinib, may be an effective drug for preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Zhenghui Song
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinhui Liu
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Wan Zhang
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yue Luo
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yun Liu
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, China
| | - Guanqi Dai
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Aimin Li
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Ding L, Tang S, Tang W, Mosley DD, Yu A, Sil D, Romanova S, Bailey KL, Knoell DL, Wyatt TA, Oupický D. Perfluorocarbon Nanoemulsions Enhance Therapeutic siRNA Delivery in the Treatment of Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103676. [PMID: 34994102 PMCID: PMC8922118 DOI: 10.1002/advs.202103676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Local pulmonary administration of therapeutic siRNA represents a promising approach to the treatment of lung fibrosis, which is currently hampered by inefficient delivery. Development of perfluorooctylbromide (PFOB) nanoemulsions as a way of improving the efficiency of pulmonary polycation-based delivery of siRNA is reported. The results show that the polycation/siRNA/PFOB nanoemulsions are capable of efficiently silencing the expression of STAT3 and inhibiting chemokine receptor CXCR4-two validated targets in pulmonary fibrosis. Both in vitro and in vivo results demonstrate that the nanoemulsions improve mucus penetration and facilitate effective cellular delivery of siRNA. Pulmonary treatment of mice with bleomycin-induced pulmonary fibrosis shows strong inhibition of the progression of the disease and significant prolongation of animal survival. Overall, the study points to a promising local treatment strategy of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siyuan Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Weimin Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Deanna D. Mosley
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Ao Yu
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Diptesh Sil
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Svetlana Romanova
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Kristina L. Bailey
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Daren L. Knoell
- Department of Pharmacy Practice and ScienceCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Todd A. Wyatt
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of EnvironmentalAgricultural and Occupational HealthUniversity of Nebraska Medical CenterOmahaNE68198USA
- Research ServiceDepartment of Veterans Affairs Omaha‐Western Iowa Health Care SystemOmahaNE68105USA
| | - David Oupický
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| |
Collapse
|
26
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1237] [Impact Index Per Article: 309.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
27
|
Pan J, Shi M, Guo F, Ma L, Fu P. Pharmacologic inhibiting STAT3 delays the progression of kidney fibrosis in hyperuricemia-induced chronic kidney disease. Life Sci 2021; 285:119946. [PMID: 34516993 DOI: 10.1016/j.lfs.2021.119946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
AIMS Kidney fibrosis is a histological hallmark of chronic kidney disease (CKD), where hyperuricemia is a key independent risk factor. Considerable evidence indicated that STAT3 is one of the crucial signaling pathways in the progression of kidney fibrosis. Here, we investigated that pharmacological blockade of STAT3 delayed the progression of renal fibrosis in hyperuricemia-induced CKD. MAIN METHODS In the study, we used the mixture of adenine and potassium oxonate to perform kidney injury and fibrosis in hyperuricemic mice, accompanied by STAT3 activation in tubular and interstitial cells. KEY FINDINGS Treatment with STAT3 inhibitor S3I-201 improved renal dysfunction, reduced serum uric acid level, and delayed the progression of kidney fibrosis. Furthermore, S3I-201 could suppress fibrotic signaling pathway of TGF-β/Smads, JAK/STAT and NF-κB, as well as inhibit the expression of multiple profibrogenic cytokines/chemokines in the kidneys of hyperuricemic mice. SIGNIFICANCE These data suggested that STAT3 inhibition was a potent anti-fibrotic strategy in hyperuricemia-related CKD.
Collapse
Affiliation(s)
- Jing Pan
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Thoracic Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Shi
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fan Guo
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Xu Y, Xu W, Lu Z, Cheung MH, Lin M, Liang C, Lou J, Chen Y. Anti-Gastric Cancer Effect of Purified Omphalia lapidescens Protein via Regulating the JAK/STAT3 Signaling Pathway. Nutr Cancer 2021; 74:1780-1791. [PMID: 34601984 DOI: 10.1080/01635581.2021.1960385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gastric cancer is the leading cause of cancer-related death worldwide. The aim of present study was to investigate the anti-tumor effect of purified Omphalia lapidescens protein (pPeOp) in gastric cancer. Microarray analysis was performed to find out differentially expressed genes in pPeOp-treated MC-4 gastric cancer cells. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) three signaling pathway was most likely to be altered based on bioinformatics analysis. Interleukin-6 (IL-6) and NSC74859 were used as the agonist and inhibitor of the JAK/STAT3 signaling pathway, respectively. Flow cytometry and MTS assay were used for cell proliferation and viability analysis in pPeOp-treated gastric cancer cell lines with IL-6 or NSC74859. The anti-tumor effect was increased when pPeOp were co-treated with IL-6, while decreased in inhibitor treatment. The expression of the crucial members in the pathway of MC-4 cells, including glycoprotein 130 (GP130), JAK1, JAK2, STAT3, p-STAT3, suppressor of cytokine signaling SOCS1 and SOCS3, was detected by western blotting. pPeOp exhibited promising anticancer effect in the xenograft nude mice model, established by STAT3 knock down gastric cancer cells.Thus, JAK/STAT3 inhibition partially contributed to the anticancer effect of pPeOp, which may serve as a novel strategy for gastric cancer.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1960385.
Collapse
Affiliation(s)
- Yuqin Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjun Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongxia Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,School of Medicine and Pharmacy, Ocean University of China, QingDao, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neural Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meiai Lin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun Liang
- School of Medicine and Pharmacy, Ocean University of China, QingDao, China.,EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| | - Jianshu Lou
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of medicine, Hangzhou Normal University, Hangzhou, China
| | - Yitao Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neural Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
29
|
Camacho-Moll ME, Sampayo-Reyes A, Castorena-Torres F, Lozano-Garza G, Alarcón-Galván G, Hernández A, Marcos R, Alcocer-González JM, Tamez-Guerra R, Bermúdez de León M. Selenite Downregulates STAT3 Expression and Provokes Lymphocytosis in the Liver of Chronically Exposed Syrian Golden Hamsters. Molecules 2021; 26:molecules26185614. [PMID: 34577085 PMCID: PMC8465886 DOI: 10.3390/molecules26185614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/01/2022] Open
Abstract
Arsenic is considered a worldwide pollutant that can be present in drinking water. Arsenic exposure is associated with various diseases, including cancer. Antioxidants as selenite and α-tocopherol-succinate have been shown to modulate arsenic toxic effects. Since changes in STAT3 and PSMD10 gene expression have been associated with carcinogenesis, the aim of this study was to evaluate the effect of arsenic exposure and co-treatments with selenite or α-tocopherol-succinate on the expression of these genes, in the livers of chronically exposed Syrian golden hamsters. Animals were divided into six groups: (i) control, (ii) chronically treated with 100 ppm arsenic, (iii) treated with 6 ppm α-tocopherol-succinate (α-TOS), (iv) treated with 8.5 ppm selenite, (v) treated with arsenic + α-TOS, and (vi) treated with arsenic + selenite. Urine samples and livers were collected after 20 weeks of continuous exposure. The urine samples were analyzed for arsenic species by atomic absorption spectrophotometry, and real-time RT-qPCR analysis was performed for gene expression evaluation. A reduction in STAT3 expression was observed in the selenite-treated group. No differences in PSMD10 expression were found among groups. Histopathological analysis revealed hepatic lymphocytosis in selenite-treated animals. As a conclusion, long-term exposure to arsenic does not significantly alter the expression of STAT3 and PSMD10 oncogenes in the livers of hamsters; however, selenite down-regulates STAT3 expression and provokes lymphocytosis.
Collapse
Affiliation(s)
- María Elena Camacho-Moll
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
| | - Adriana Sampayo-Reyes
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | | | - Gerardo Lozano-Garza
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
| | - Gabriela Alarcón-Galván
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.H.); (R.M.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.H.); (R.M.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Juan Manuel Alcocer-González
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | - Reyes Tamez-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | - Mario Bermúdez de León
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
- Correspondence: ; Tel.: +52-81-8190-4035
| |
Collapse
|
30
|
Perilipin 5 Ameliorates Hepatic Stellate Cell Activation via SMAD2/3 and SNAIL Signaling Pathways and Suppresses STAT3 Activation. Cells 2021; 10:cells10092184. [PMID: 34571833 PMCID: PMC8467115 DOI: 10.3390/cells10092184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Comprehending the molecular mechanisms underlying hepatic fibrogenesis is essential to the development of treatment. The hallmark of hepatic fibrosis is the development and deposition of excess fibrous connective tissue forcing tissue remodeling. Hepatic stellate cells (HSC) play a major role in the pathogenesis of liver fibrosis. Their activation via the transforming growth factor-β1 (TGF-β1) as a key mediator is considered the crucial event in the pathophysiology of hepatic fibrogenesis. It has been shown that Perilipin 5 (PLIN5), known as a lipid droplet structural protein that is highly expressed in oxidative tissue, can inhibit such activation through various mechanisms associated with lipid metabolism. This study aimed to investigate the possible influence of PLIN5 on TGF-β1 signaling. Our findings confirm the importance of PLIN5 in maintaining HSC quiescence in vivo and in vitro. PLIN5 overexpression suppresses the TGF-β1-SMAD2/3 and SNAIL signaling pathways as well as the activation of the signal transducers and activators of transcription 3 (STAT3). These findings derived from experiments in hepatic cell lines LX-2 and Col-GFP, in which overexpression of PLIN5 was able to downregulate the signaling pathways SMAD2/3 and SNAIL activated previously by TGF-β1 treatment. Furthermore, TGF-β1-mediatedinduction of extracellular matrix proteins, such as collagen type I (COL1), Fibronectin, and α-smooth muscle actin (α-SMA), was suppressed by PLIN5. Moreover, STAT3, which is interrelated with TGF-β1 was already basally activated in the cell lines and inhibited by PLIN5 overexpression, leading to a further reduction in HSC activity shown by lowered α-SMA expression. This extension of the intervening mechanisms presents PLIN5 as a potent and pleiotropic target in HSC activation.
Collapse
|
31
|
Wang Z, Hui C, Xie Y. Natural STAT3 inhibitors: A mini perspective. Bioorg Chem 2021; 115:105169. [PMID: 34333418 DOI: 10.1016/j.bioorg.2021.105169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays pivotal role in several cellular processes such as cell proliferation and survival and has been found to be aberrantly activated in many cancers. STAT3 is largely believed to be one of the key oncogenes and crucial therapeutic targets. Much research has suggested the leading mechanisms for regulating the STAT3 pathway and its role in promoting tumorigenesis. Therefore, intensive efforts have been devoted to develop potent STAT3 inhibitors and several of them are currently undergoing clinical trials. Nevertheless, many natural products were identified as STAT3 inhibitors but attract less attention compared to the small molecule counterpart. In this review, the development of natural STAT3 inhibitors with an emphasis on their biological profile and chemical synthesis are detailed. The current state of STAT3 inhibitors and the future directions and opportunities for STAT3 inhibitor are discussed.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen 518055, People's Republic of China.
| | - Chunngai Hui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
32
|
Yu B, Yang L, Song S, Li W, Wang H, Cheng J. LRG1 facilitates corneal fibrotic response by inducing neutrophil chemotaxis via Stat3 signaling in alkali-burned mouse corneas. Am J Physiol Cell Physiol 2021; 321:C415-C428. [PMID: 34260299 DOI: 10.1152/ajpcell.00517.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leucine-rich α-2-glycoprotein-1 (LRG1) is a novel profibrotic factor that modulates transforming growth factor-β (TGF-β) signaling. However, its role in the corneal fibrotic response remains unknown. In the present study, we found that the LRG1 level increased in alkali-burned mouse corneas. In the LRG1-treated alkali-burned corneas, there were higher fibrogenic protein expression and neutrophil infiltration. LRG1 promoted neutrophil chemotaxis and CXCL-1 secretion. Conversely, LRG1-specific siRNA reduced fibrogenic protein expression and neutrophil infiltration in the alkali-burned corneas. The clearance of neutrophils effectively attenuated the LRG1-enhanced corneal fibrotic response, whereas the presence of neutrophils enhanced the effect of LRG1 on the fibrotic response in cultured TKE2 cells. In addition, the topical application of LRG1 elevated interleukin-6 (IL-6) and p-Stat3 levels in the corneal epithelium and in isolated neutrophils. The clearance of neutrophils inhibited the expression of p-Stat3 and IL-6 promoted by LRG1 in alkali-burned corneas. Moreover, neutrophils significantly increased the production of IL-6 and p-Stat3 promoted by LRG1 in TKE2 cells. Furthermore, the inhibition of Stat3 signaling by S3I-201 decreased neutrophil infiltration and alleviated the LRG1-enhanced corneal fibrotic response in the alkali-burned corneas. S3I-201 also reduced LRG1 or neutrophil-induced fibrotic response in TKE2 cells. In conclusion, LRG1 promotes the corneal fibrotic response by stimulating neutrophil infiltration via the modulation of the IL-6/Stat3 signaling pathway. Therefore, LRG1 could be targeted as a promising therapeutic strategy for patients with corneal fibrosis.
Collapse
Affiliation(s)
- Bingjie Yu
- Qingdao University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Shan Song
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Chengwu Hospital Affiliated to Shandong First Medical University, Heze, People's Republic of China
| | - Weina Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, Liuzhou, People's Republic of China
| | - Huifeng Wang
- Qingdao University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Jun Cheng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Qingdao Eye Hospital of Shandong First University, Qingdao, People's Republic of China
| |
Collapse
|
33
|
Zhu Z, Hu R, Li J, Xing X, Chen J, Zhou Q, Sun J. Alpinetin exerts anti-inflammatory, anti-oxidative and anti-angiogenic effects through activating the Nrf2 pathway and inhibiting NLRP3 pathway in carbon tetrachloride-induced liver fibrosis. Int Immunopharmacol 2021; 96:107660. [PMID: 33862553 DOI: 10.1016/j.intimp.2021.107660] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
Alpinetin is the major active ingredient of Alpiniakatsumadai Hayata. As a kind of novel plant-derived flavonoid, alpinetin has shown potent hepatoprotective effect against many liver diseases such as non-alcoholic fatty liver and lipopolysaccharide/d-Galactosamine-induced liver injury. However, its roles in liver fibrosis remain to be determined. The aim of the current study was to investigate the effect of alpinetin in mice with carbon tetrachloride (CCl4)-induced liver fibrosis, and to elucidate the underlying mechanisms of action. Alpinetin ameliorated the CCl4-induced liver injury and fibrosis in mice, as shown by decreased collagen deposition and the decreased expression of liver fibrosis marker proteins. Alpinetin suppressed the inflammation and oxidative stress in fibrotic livers of mice, as evidenced by decreased levels of proinflammatory factors, the decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the increased activities of antioxidant enzymes. In addition, alpinetin attenuated the angiogenesis in fibrotic livers of the test animals. Mechanistically, alpinetin inhibited the CCl4-induced expression of NLRP3, ASC, cleaved caspase-1, mature (cleaved-) IL-1β, and IL-18 in livers of mice. Furthermore, alpinetin resulted in an increased in the nuclear expression and a decrease in the cytoplasmic expression of Nrf2, as well as increased protein expression of downstream target enzymes, GCLC, HO-1, NQO1, and GCLM, thus exerting the antioxidant effect. Overall, these findings suggested that the anti-fibrotic effect of alpinetin can be attributed to the inhibition of NLRP3-mediated anti-inflammatory activities and Nrf2-mediated anti-oxidative activities, in addition to the decrement of hepatic angiogenesis.
Collapse
Affiliation(s)
- Zhiheng Zhu
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China
| | - Renyue Hu
- Medical School of Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jidan Li
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China
| | - Xiaoxiao Xing
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China
| | - Jianxin Chen
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China
| | - Qi Zhou
- Department of Operating Room, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China.
| | - Jingjun Sun
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China.
| |
Collapse
|
34
|
Gong X, Wang X, Zhou F. Liver microRNA-29b-3p positively correlates with relative enhancement values of magnetic resonance imaging and represses liver fibrosis. J Biochem 2021; 168:603-609. [PMID: 32653922 DOI: 10.1093/jb/mvaa074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
This study aims to identify potential microRNAs (miRNAs) contribute to liver fibrosis progression and investigate how the miRNA is involved. We recruited totally 58 patients. Magnetic resonance imaging was employed to detect fibrosis. Classification of liver fibrosis was carried out by Ishak scoring system. Cell viability was tested using cell counting kit-8. Measurements of mRNA and protein expressions were conducted using real-time quantitative polymerase chain reaction and western blotting. Luciferase reporter assay was recruited for determination of miR-29b-3p targets. We found that relative enhancement (RE) values were reduced with the increases in fibrosis stages and was negatively associated with Ishak scores. In comparison with patients without liver fibrosis, miR-29b-3p level was remarkably reduced in those with liver fibrosis. Its level was found to be positively associated with RE values. Transforming growth factor beta 1 (TGF-β1)-induced hepatic stellate cell (HSC) activation significantly decreased miR-29b-3p expression. However, miR-29b-3p overexpression repressed TGF-β1-induced collagen I protein and alpha-smooth muscle actin (α-SMA) expression. As expected, its overexpression also reduced cell viability. We found that miR-29b-3p directly bind to signal transducer and activator of transcription 3 (STAT3) and suppressed its expression. Our study demonstrates that low expression of miR-29b-3p may contribute to the progression of liver fibrosis by suppressing STAT3.
Collapse
Affiliation(s)
- Xijun Gong
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Xiaolin Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, China
| | - Fangfang Zhou
- Department of Radiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| |
Collapse
|
35
|
Ogawa H, Kaji K, Nishimura N, Takagi H, Ishida K, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Yoshiji H. Lenvatinib prevents liver fibrosis by inhibiting hepatic stellate cell activation and sinusoidal capillarization in experimental liver fibrosis. J Cell Mol Med 2021; 25:4001-4013. [PMID: 33609067 PMCID: PMC8051749 DOI: 10.1111/jcmm.16363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted agents are pharmacologically used to treat liver fibrosis and have gained increased attention. The present study examined the preventive effect of lenvatinib on experimental liver fibrosis and sinusoidal capillarization as well as the in vitro phenotypes of hepatic stellate cells. LX-2, a human stellate cell line, was used for in vitro studies. In vivo liver fibrosis was induced in F344 rats using carbon tetrachloride by intraperitoneal injection for 8 weeks, and oral administration of lenvatinib was started two weeks after initial injection of carbon tetrachloride. Lenvatinib restrained proliferation and promoted apoptosis of LX-2 with suppressed phosphorylation of extracellular signal-regulated kinase 1/2 and AKT. It also down-regulated COL1A1, ACTA2 and TGFB1 expressions by inhibiting the transforming growth factor-β1/Smad2/3 pathway. Treatment with lenvatinib also suppressed platelet-derived growth factor-BB-stimulated proliferation, chemotaxis and vascular endothelial growth factor-A production, as well as basic fibroblast growth factor-induced LX-2 proliferation. In vivo study showed that lenvatinib attenuated liver fibrosis development with reduction in activated hepatic stellate cells and mRNA expression of profibrogenic markers. Intrahepatic neovascularization was ameliorated with reduced hepatic expressions of Vegf1, Vegf2 and Vegfa in lenvatinib-treated rats. Collectively, these results suggest the potential use of lenvatinib as a novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Hiroyuki Ogawa
- Department of GastroenterologyNara Medical UniversityNaraJapan
| | - Kosuke Kaji
- Department of GastroenterologyNara Medical UniversityNaraJapan
| | | | | | - Koji Ishida
- Department of GastroenterologyNara Medical UniversityNaraJapan
| | - Hiroaki Takaya
- Department of GastroenterologyNara Medical UniversityNaraJapan
| | | | - Kei Moriya
- Department of GastroenterologyNara Medical UniversityNaraJapan
| | | | - Takemi Akahane
- Department of GastroenterologyNara Medical UniversityNaraJapan
| | - Hitoshi Yoshiji
- Department of GastroenterologyNara Medical UniversityNaraJapan
| |
Collapse
|
36
|
Pan D, Gong X, Wang X, Li M. Role of Active Components of Medicinal Food in the Regulation of Angiogenesis. Front Pharmacol 2021; 11:594050. [PMID: 33716724 PMCID: PMC7944143 DOI: 10.3389/fphar.2020.594050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis refers to the formation of new blood vessels from the endothelial cells of existing arteries, veins, and capillaries. Angiogenesis is involved in a variety of physiological and pathological processes, such as the formation of malignant and development of atherosclerosis and other diseases. In recent years, many studies have shown that the active components of food have a certain regulatory effect on angiogenesis and negligible clinical limitations. With the increasing attention being paid to medicine and food homology, exploring the effect of active food components on angiogenesis is of great significance. In this review, we discuss the source, composition, pharmacological activity, and mechanism of action of certain active components of medicinal foods in detail. These could help prevent angiogenesis-related complications or provide a basis for healthier dietary habits. This review can provide a theoretical basis for the research and development of highly efficient anti-angiogenic drugs with low toxicity.
Collapse
Affiliation(s)
- Dezhi Pan
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
37
|
Extensive proteomic and transcriptomic changes quench the TCR/CD3 activation signal of latently HIV-1 infected T cells. PLoS Pathog 2021; 17:e1008748. [PMID: 33465149 PMCID: PMC7846126 DOI: 10.1371/journal.ppat.1008748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/29/2021] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
The biomolecular mechanisms controlling latent HIV-1 infection, despite their importance for the development of a cure for HIV-1 infection, are only partially understood. For example, ex vivo studies have recently shown that T cell activation only triggered HIV-1 reactivation in a fraction of the latently infected CD4+ T cell reservoir, but the molecular biology of this phenomenon is unclear. We demonstrate that HIV-1 infection of primary T cells and T cell lines indeed generates a substantial amount of T cell receptor (TCR)/CD3 activation-inert latently infected T cells. RNA-level analysis identified extensive transcriptomic differences between uninfected, TCR/CD3 activation-responsive and -inert T cells, but did not reveal a gene expression signature that could functionally explain TCR/CD3 signaling inertness. Network analysis suggested a largely stochastic nature of these gene expression changes (transcriptomic noise), raising the possibility that widespread gene dysregulation could provide a reactivation threshold by impairing overall signal transduction efficacy. Indeed, compounds that are known to induce genetic noise, such as HDAC inhibitors impeded the ability of TCR/CD3 activation to trigger HIV-1 reactivation. Unlike for transcriptomic data, pathway enrichment analysis based on phospho-proteomic data directly identified an altered TCR signaling motif. Network analysis of this data set identified drug targets that would promote TCR/CD3-mediated HIV-1 reactivation in the fraction of otherwise TCR/CD3-reactivation inert latently HIV-1 infected T cells, regardless of whether the latency models were based on T cell lines or primary T cells. The data emphasize that latent HIV-1 infection is largely the result of extensive, stable biomolecular changes to the signaling network of the host T cells harboring latent HIV-1 infection events. In extension, the data imply that therapeutic restoration of host cell responsiveness prior to the use of any activating stimulus will likely have to be an element of future HIV-1 cure therapies. A curative therapy for HIV-1 infection will at least require the eradication of a small pool of CD4+ helper T cells in which the virus can persist in an inactive, latent state, even after years of successful antiretroviral therapy. It has been assumed that activation of these viral reservoir T cells will also reactivate the latent virus, which is a prerequisite for the destruction of these cells. Remarkably, this is not always the case and following application of even the most potent stimuli that activate normal T cells through their T cell receptor, a large portion of the latent virus pool remains in a dormant state. Herein we demonstrate that a large part of latent HIV-1 infection events reside in T cells that have been rendered activation inert. We provide a systemwide, biomolecular description of the changes that render latently HIV-1 infected T cells activation inert and using this description, devise pharmacologic interference strategies that render initially activation inert T cells responsive to stimulation. This in turn allows for efficient triggering of HIV-1 reactivation in a large part of the otherwise unresponsive latently HIV-1 infected T cell reservoir.
Collapse
|
38
|
Hussein KH, Park KM, Yu L, Kwak HH, Woo HM. Decellularized hepatic extracellular matrix hydrogel attenuates hepatic stellate cell activation and liver fibrosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111160. [PMID: 32806289 DOI: 10.1016/j.msec.2020.111160] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
Liver fibrosis results from excessive accumulation of extracellular matrix (ECM) proteins that distort the hepatic architecture. Progression of liver fibrosis results in cirrhosis and liver failure, and often, liver transplantation is required. The decellularized liver tissue contains different components that mimic the natural hepatic environment. We hypothesized that a decellularized liver hydrogel can be used to replace the necrotic hepatocytes and damaged ECM. Therefore, our aim in this study is to develop a therapy for treating liver fibrosis. Mice livers were decellularized and processed to form a hepatic hydrogel. We evaluated the biocompatibility and bioactivity of the hydrogel. The ability of the hydrogel to enhance the migration of hepatocytes and endothelial cells was investigated. Human hepatic stellate cell line (LX-2) activated by transforming growth factor-β1 (TGF-β1) was used as in vitro model for fibrogenesis. Then, the hydrogel was injected into the liver parenchyma of mice after the induction of liver fibrosis using thioacetamide. The resulting hydrogel maintained a complex composition, which included glycosaminoglycans, collagen, elastin, and growth factors. Hepatocytes and endothelial cells were shown to migrate toward the hydrogel in vitro. Liver hydrogel improved TGF-β1-induced LX-2 cells activation via blocking the TGF-β1/Smad pathway. The matrix was delivered successfully in vivo and enhanced the reduction of fibrosis and recovery to a nearly normal structure. In conclusion, we have demonstrated that the liver hydrogel can be utilized as an injectable biomaterial for liver tissue engineering in order to reduce the degree of fibrosis.
Collapse
Affiliation(s)
- Kamal H Hussein
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Department of Animal Surgery, College of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Lina Yu
- Stem Cell institute, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ho-Hyun Kwak
- Stem Cell institute, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Heung-Myong Woo
- Stem Cell institute, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
39
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
40
|
Lee DY, Yun SM, Song MY, Ji SD, Son JG, Kim EH. Administration of Steamed and Freeze-Dried Mature Silkworm Larval Powder Prevents Hepatic Fibrosis and Hepatocellular Carcinogenesis by Blocking TGF-β/STAT3 Signaling Cascades in Rats. Cells 2020; 9:E568. [PMID: 32121064 PMCID: PMC7140417 DOI: 10.3390/cells9030568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide and the majority of HCC patients occur with a background of hepatic fibrosis and cirrhosis. We have previously reported the hepatoprotective effects of steamed and freeze-dried mature silkworm larval powder (SMSP) in a chronic ethanol-treated rat model. Here, we assessed the anti-fibrotic and anti-carcinogenic effects of SMSP on diethylnitrosamine (DEN)-treated rats. Wistar rats were intraperitoneally injected with DEN once a week for 12 or 16 weeks with or without SMSP administration (0.1 and 1 g/kg). SMSP administration significantly attenuated tumor foci formation and proliferation in the livers of the rats treated with DEN for 16 weeks. SMSP administration also inhibited hepatic fibrosis by decreasing the levels of collagen fiber and the expression of pro-collagen I and alpha-smooth muscle actin (α-SMA). Moreover, SMSP supplementation improved the major parameters of fibrosis such as transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), tumor necrosis factor-alpha (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and collagen type I (Col1A1) in the livers from the rats treated with DEN for 16 weeks. As s possible mechanisms, we investigated the effects of SMSP on the TGF-β and signal transducer and activator of transcription 3 (STAT3)-mediated signaling cascades, which are known to promote hepatic fibrosis. We found that SMSP treatment inhibited the activation of TGF-β and the phosphorylation of STAT3 pathway in DEN-treated rats. Moreover, SMSP administration suppressed the expressions of the target genes of TGF-β and STAT3 induced by DEN treatment. Our findings provide experimental evidences that SMSP administration has inhibitory effects of hepatic fibrosis and HCC induced by DEN in vivo and could be a promising strategy for the prevention or treatment of hepatic fibrosis and hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Sang-Deok Ji
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea; (S.-D.J.); (J.-G.S.)
| | - Jong-Gon Son
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea; (S.-D.J.); (J.-G.S.)
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| |
Collapse
|
41
|
Öztürk Akcora B, Vassilios Gabriël A, Ortiz-Perez A, Bansal R. Pharmacological inhibition of STAT3 pathway ameliorates acute liver injury in vivo via inactivation of inflammatory macrophages and hepatic stellate cells. FASEB Bioadv 2020; 2:77-89. [PMID: 32123858 PMCID: PMC7003653 DOI: 10.1096/fba.2019-00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 08/23/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Liver diseases represent a major health problem worldwide, in particular, acute liver injury is associated with high mortality and morbidity. Inflammatory macrophages and hepatic stellate cells (HSCs) are known to be involved in the pathogenesis of acute liver injury. In this study, we have investigated the implication of STAT3 inhibition in acute liver injury/early fibrogenesis. In fibrotic human livers, we found STAT3 mRNA expression was significantly upregulated and correlated with collagen I expression. In vitro, STAT3 signaling pathway was found to be activated in TGFβ-activated HSCs and inflammatory macrophages. STAT3 inhibitor, WP1066 significantly inhibited TGFβ-induced collagen I, vimentin and α-SMA expression, and contractility in human HSCs. In LPS- and IFNγ-induced pro-inflammatory macrophages, WP1066 strongly attenuated nitric-oxide release and expression of major inflammatory markers such as TNF-α, iNOS, CCL2, IL-1β, IL-6, and CCR2. In vivo in CCl4-induced acute liver injury mouse model, WP1066 significantly reduced collagen expression, HSCs activation, and intrahepatic inflammation. Finally, in LPS-induced human hepatic 3D spheroid model, WP1066 inhibited LPS-induced fibrotic and inflammatory parameters. In conclusion, our results demonstrate that the therapeutic inhibition of STAT3 pathway using WP1066 targeting HSCs and inflammatory macrophages suggests a potential pharmacological approach for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Büsra Öztürk Akcora
- Department of Biomaterials Science and Technology Technical Medical Centre Faculty of Science and Technology University of Twente Enschede The Netherlands
| | - Alexandros Vassilios Gabriël
- Department of Biomaterials Science and Technology Technical Medical Centre Faculty of Science and Technology University of Twente Enschede The Netherlands
| | - Ana Ortiz-Perez
- Department of Biomaterials Science and Technology Technical Medical Centre Faculty of Science and Technology University of Twente Enschede The Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology Technical Medical Centre Faculty of Science and Technology University of Twente Enschede The Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute of Pharmacy University of Groningen Groningen The Netherlands
| |
Collapse
|
42
|
Bao Q, Zhang B, Suo Y, Liu C, Yang Q, Zhang K, Yuan M, Yuan M, Zhang Y, Li G. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis. eLife 2020; 9:e49923. [PMID: 31934850 PMCID: PMC6992386 DOI: 10.7554/elife.49923] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), known to be independently associated with cardiovascular diseases. However, the effect of IH on cardiac fibrosis and molecular events involved in this process are unclear. Here, we tested IH in angiotensin II (Ang II)-induced cardiac fibrosis and signaling linked to fibroblast activation. IH triggered cardiac fibrosis and aggravated Ang II-induced cardiac dysfunction in mice. Plasma thrombospondin-1 (TSP1) content was upregulated in both IH-exposed mice and OSA patients. Moreover, both in vivo and in vitro results showed IH-induced cardiac fibroblast activation and increased TSP1 expression in cardiac fibroblasts. Mechanistically, phosphorylation of STAT3 at Tyr705 mediated the IH-induced TSP1 expression and fibroblast activation. Finally, STAT3 inhibitor S3I-201 or AAV9 carrying a periostin promoter driving the expression of shRNA targeting Stat3 significantly attenuated the synergistic effects of IH and Ang II on cardiac fibrosis in mice. This work suggests a potential therapeutic strategy for OSA-related fibrotic heart disease.
Collapse
Affiliation(s)
- Qiankun Bao
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Bangying Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Ya Suo
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Chen Liu
- Department of Clinical LaboratoryPeking University People's HospitalBeijingChina
| | - Qian Yang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Kai Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Ming Yuan
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Meng Yuan
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yue Zhang
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Guangping Li
- Tianjin key laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
43
|
Chen W, Li Y, Hsu CT, Niu CS, Pen WH, Cheng KC, Niu HS. Connective tissue growth factor in hepatocytes is elevated by carbon tetrachloride via STAT3 activation. Mol Med Rep 2020; 21:1390-1398. [PMID: 31922209 DOI: 10.3892/mmr.2020.10916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
Carbon tetrachloride (CCl4) is widely used to induce hepatic fibrosis. Therapeutic agents alleviate hepatic fibrosis by inhibiting signal transducer and activator of transcription 3 (STAT3) activation. To understand the direct effects of CCl4 on STAT3 expression in the liver, the present study incubated cultured hepatocytes expressing connective tissue growth factor (CTGF) with CCl4. Rats exposed to CCl4 for 8 weeks exhibited hepatic fibrosis, which was confirmed through the assessment of plasma biomarkers. Isolated liver samples were used to determine the protein levels of CTGF and STAT3 using western blotting. In addition, STAT3 expression was silenced in α mouse liver 12 (AML‑12) cells using small interfering RNA transfection. In addition, a pharmacological inhibitor, stattic, was used to inhibit STAT3 expression. The incubation of AML‑12 cells with CCl4 induced a dose‑dependent increase in CTGF expression and STAT3 activation. Notably, silymarin, an extract from milk thistle, inhibited these changes in AML‑12 cells and the antioxidant tiron produced similar effects. Silencing of STAT3 reduced the CTGF expression promoted by CCl4 in the hepatocytes. Additionally, similar to tiron, stattic inhibited CTGF expression induced by CCl4. In conclusion, CCl4 may activate STAT3 through oxidative stress to promote CTGF expression, which is one of the main factors contributing to the risk of hepatic fibrosis.
Collapse
Affiliation(s)
- Wenhsu Chen
- Department of Internal Medicine, E‑Da Hospital, I‑Shou University, Kaohsiung 82401, Taiwan, R.O.C
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Chao-Tien Hsu
- Department of Pathology, E‑Da Hospital, I‑Shou University, Kaohsiung 82401, Taiwan, R.O.C
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan, R.O.C
| | - Wen-Huang Pen
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Kai-Chun Cheng
- Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan, R.O.C
| |
Collapse
|
44
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Rewiring Host Signaling: Hepatitis C Virus in Liver Pathogenesis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037366. [PMID: 31501266 DOI: 10.1101/cshperspect.a037366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease including metabolic disease, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HCV induces and promotes liver disease progression by perturbing a range of survival, proliferative, and metabolic pathways within the proinflammatory cellular microenvironment. The recent breakthrough in antiviral therapy using direct-acting antivirals (DAAs) can cure >90% of HCV patients. However, viral cure cannot fully eliminate the HCC risk, especially in patients with advanced liver disease or comorbidities. HCV induces an epigenetic viral footprint that promotes a pro-oncogenic hepatic signature, which persists after DAA cure. In this review, we summarize the main signaling pathways deregulated by HCV infection, with potential impact on liver pathogenesis. HCV-induced persistent signaling patterns may serve as biomarkers for the stratification of HCV-cured patients at high risk of developing HCC. Moreover, these signaling pathways are potential targets for novel chemopreventive strategies.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.,Institut Universitaire de France (IUF), 75231 Paris, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
45
|
Zhou Z, Qi J, Zhao J, Lim CW, Kim J, Kim B. Dual TBK1/IKKɛ inhibitor amlexanox attenuates the severity of hepatotoxin-induced liver fibrosis and biliary fibrosis in mice. J Cell Mol Med 2020; 24:1383-1398. [PMID: 31821710 PMCID: PMC6991653 DOI: 10.1111/jcmm.14817] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022] Open
Abstract
Although numerous studies have suggested that canonical IκB kinases (IKK) play a key role in the progression of liver fibrosis, the role of non-canonical IKKε and TANK-binding kinase 1 (TBK1) on the development and progression of liver fibrosis remains unclear. To demonstrate such issue, repeated injection of CCl4 was used to induce hepatotoxin-mediated chronic liver injury and biliary fibrosis was induced by 0.1% diethoxycarbonyl-1, 4-dihydrocollidine diet feeding for 4 weeks. Mice were orally administered with amlexanox (25, 50, and 100 mg/kg) during experimental period. Significantly increased levels of TBK1 and IKKε were observed in fibrotic livers or hepatic stellate cells (HSCs) isolated from fibrotic livers. Interestingly, amlexanox treatment significantly inhibited the phosphorylation of TBK1 and IKKε accompanied by reduced liver injury as confirmed by histopathologic analysis, decreased serum biochemical levels and fibro-inflammatory responses. Additionally, treatment of amlexanox promoted the fibrosis resolution. In accordance with these findings, amlexanox treatment suppressed HSC activation and its related fibrogenic responses by partially inhibiting signal transducer and activator of transcription 3. Furthermore, amlexanox decreased the activation and inflammatory responses in Kupffer cells. Collectively, we found that inhibition of the TBK1 and IKKε by amlexanox is a promising therapeutic strategy to cure liver fibrosis.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program)College of Veterinary MedicineJeonbuk National UniversityIksanKorea
| | - Jing Qi
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program)College of Veterinary MedicineJeonbuk National UniversityIksanKorea
| | - Jing Zhao
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program)College of Veterinary MedicineJeonbuk National UniversityIksanKorea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program)College of Veterinary MedicineJeonbuk National UniversityIksanKorea
| | - Jong‐Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program)College of Veterinary MedicineJeonbuk National UniversityIksanKorea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program)College of Veterinary MedicineJeonbuk National UniversityIksanKorea
| |
Collapse
|
46
|
(-)-Catechin-7- O-β-d-Apiofuranoside Inhibits Hepatic Stellate Cell Activation by Suppressing the STAT3 Signaling Pathway. Cells 2019; 9:cells9010030. [PMID: 31861943 PMCID: PMC7017110 DOI: 10.3390/cells9010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is characterized by the abnormal deposition of extracellular matrix (ECM) proteins. During hepatic fibrogenesis, hepatic stellate cell (HSC) activation followed by chronic injuries is considered a key event in fibrogenesis, and activated HSCs are known to comprise approximately 90% of ECM-producing myofibroblasts. Here, we demonstrated that (–)-catechin-7-O-β-d-apiofuranoside (C7A) significantly inhibited HSC activation via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This is the first study to show the hepatic protective effects of C7A with possible mechanisms in vitro and in vivo. In our bioactivity screening, we figured out that the EtOH extract of Ulmus davidiana var. japonica root barks, which have been used as a Korean traditional medicine, inhibited collagen synthesis in HSCs. Four catechins isolated from the EtOAc fraction of the EtOH extract were compared with each other in terms of reduction in collagen, which is considered as a marker of hepatic protective effects, and C7A showed the strongest inhibitory effects on HSC activation in protein and qPCR analyses. As a possible mechanism, we investigated the effects of C7A on the STAT3 signaling pathway, which is known to activate HSCs. We found that C7A inhibited phosphorylation of STAT3 and translocation of STAT3 to nucleus. C7A also inhibited expressions of MMP-2 and MMP-9, which are downstream genes of STAT3 signaling. Anti-fibrotic effects of C7A were evaluated in a thioacetamide (TAA)-induced liver fibrosis model, which indicated that C7A significantly inhibited ECM deposition through inhibiting STAT3 signaling. C7A decreased serum levels of aspartate amino transferase and alanine transaminase, which were markedly increased by TAA injection. Moreover, ECM-associated proteins and mRNA expression were strongly suppressed by C7A. Our study provides the experimental evidence that C7A has inhibitory effects on HSC activation after live injury and has preventive and therapeutic potentials for the management of hepatic fibrosis.
Collapse
|
47
|
Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis. Cells 2019; 8:cells8111311. [PMID: 31653030 PMCID: PMC6912778 DOI: 10.3390/cells8111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Collapse
|
48
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alanazi AZ, Alsanea S, As Sobeai HM, Almutairi MM, Mahmood HM, Attia SM. The Stat3 inhibitor, S3I-201, downregulates lymphocyte activation markers, chemokine receptors, and inflammatory cytokines in the BTBR T+ Itpr3tf/J mouse model of autism. Brain Res Bull 2019; 152:27-34. [DOI: 10.1016/j.brainresbull.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/15/2022]
|
49
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17:309. [PMID: 31521169 PMCID: PMC6744664 DOI: 10.1186/s12967-019-2058-1] [Citation(s) in RCA: 483] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosynthesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and receptors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with collagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysiological functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic options that can be readily translated from bench to bedside. The emerging understanding of the structural properties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
50
|
Feng J, Wang C, Liu T, Li J, Wu L, Yu Q, Li S, Zhou Y, Zhang J, Chen J, Ji J, Chen K, Mao Y, Wang F, Dai W, Fan X, Wu J, Guo C. Procyanidin B2 inhibits the activation of hepatic stellate cells and angiogenesis via the Hedgehog pathway during liver fibrosis. J Cell Mol Med 2019; 23:6479-6493. [PMID: 31328391 PMCID: PMC6714206 DOI: 10.1111/jcmm.14543] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Liver fibrosis is a wound-healing process of liver featured by the over-deposition of extracellular matrix (ECM) and angiogenesis. However, the effective treatment is lacking. Procyanidin B2 (PB2) is a flavonoid extract abundant in grape seeds with anti-oxidant, anti-inflammatory and anti-cancer properties. The present study aimed to determine effects of PB2 on liver fibrosis. METHOD The CCl4-induced mouse liver fibrosis model and a human hepatic stellate cell (HSC) line (LX2 cells) were used to study the activation, ECM production and angiogenesis of HSCs through Western blotting analysis, immunohistochemistry, immunofluorescence staining, flow cytometry and tubulogenesis assay. A Hedgehog (Hh) pathway inhibitor (cyclopamine) and Smoothened agonist (SAG) were used to investigate the role of PB2 on Hh pathway. RESULTS The results showed that PB2 could inhibit the proliferation and induce apoptosis of HSCs. PB2 could also down-regulate the expressions of VEGF-A, HIF-1α, α-SMA, Col-1 and TGF-β1 of HSCs in vivo and in vitro. The application of SAG and cyclopamine proved that PB2 targets on Hh pathway. CONCLUSIONS PB2 inhibited the Hh pathway to suppress the activation, ECM production and angiogenesis of HSCs, therefore reverses the progression of liver fibrosis in vivo and in vitro.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Chengfen Wang
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Shanghai Tenth HospitalSchool of Clinical Medicine of Nanjing Medical UniversityShanghaiChina
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yuqing Mao
- Department of Gerontology, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Fan Wang
- Department of Oncology, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Department of GastroenterologyZhongshan Hospital of Fudan UniversityShanghaiChina
- Shanghai Institute of Liver DiseasesZhongshan Hospital of Fudan UniversityShanghaiChina
| | - Xiaoming Fan
- Department of GastroenterologyJinshan Hospital of Fudan UniversityJinshan, ShanghaiChina
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's HospitalTongji University School of MedicineShanghaiChina
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|