1
|
Chen C, Xu J, Sussman JH, Vincent T, Tumulty JS, Yoshimura S, Alikarami F, Yu W, Ding YY, Chen CH, Li EY, Yang A, Qin X, Bandyopadhyay S, Peng J, Pölönen P, Newman H, Wood BL, Hu J, Shraim R, Hughes AD, Diorio C, Uppuluri L, Shi G, Ryan T, Fuller T, Loh ML, Raetz EA, Hunger SP, Pounds SB, Mullighan CG, Frank D, Yang JJ, Bernt KM, Teachey DT, Tan K. Single-cell panleukemia signatures of HSPC-like blasts predict drug response and clinical outcome. Blood 2025; 145:2685-2700. [PMID: 40089994 PMCID: PMC12163743 DOI: 10.1182/blood.2024027270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/18/2025] Open
Abstract
ABSTRACT The critical role of leukemia-initiating cells as a therapy-resistant population in myeloid leukemia is well established. However, the molecular signatures of such cells in acute lymphoblastic leukemia remain underexplored. Moreover, their role in therapy response and patient prognosis is yet to be systematically investigated across various types of acute leukemia. We used single-cell multiomics to analyze diagnostic specimens from 96 pediatric patients with acute lymphoblastic, myeloid, and lineage-ambiguous leukemias. Through the integration of single-cell multiomics with extensive bulk RNA sequencing and clinical data sets, we uncovered a prevalent, chemotherapy-resistant subpopulation that resembles hematopoietic stem and progenitor cells (HSPC-like) and is associated with poor clinical outcomes across all subtypes investigated. We identified a core transcriptional regulatory network (TRN) in HSPC-like blasts that is combinatorially controlled by HOXA/AP1/CEBPA. This TRN signature can predict chemotherapy response and long-term clinical outcomes. We identified shared potential therapeutic targets against HSPC-like blasts, including FLT3, BCL2, and the PI3K pathway. Our study provides a framework for linking intratumoral heterogeneity with therapy response, patient outcomes, and the discovery of new therapeutic targets for pediatric acute leukemias.
Collapse
Affiliation(s)
- Changya Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathan H. Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tiffaney Vincent
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Joseph S. Tumulty
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Fatemeh Alikarami
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yang-yang Ding
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Chia-hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Austin Yang
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Xiaohuan Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA
| | - Jacqueline Peng
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Petri Pölönen
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Haley Newman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Brent L. Wood
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Jianzhong Hu
- Induced Proximity Platform, Amgen, Thousand Oaks, CA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Andrew D. Hughes
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lahari Uppuluri
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Gongping Shi
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Theresa Ryan
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Tori Fuller
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Hospital, Seattle, WA
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Seattle Children’s Hospital, Seattle, WA
| | - Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY
| | - Stephen P. Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Stanley B. Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Frank
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Kathrin M. Bernt
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David T. Teachey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
2
|
Li Q, Xing S, Zhang H, Mao X, Xiao M, Wang Y. FISH combined with RT-PCR facilitates classification of Chinese adult patients with B-other ALL through improved identification of ZNF384 rearrangement. Leuk Lymphoma 2025; 66:507-515. [PMID: 39520726 DOI: 10.1080/10428194.2024.2426055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
ZNF384 gene rearrangements are a distinct subtype of adult B cell acute lymphoblastic leukemia (B-ALL). We screened 46 B-other ALL patients for ZNF384 fusions using fluorescent in situ hybridization (FISH) and reverse transcription-polymerase chain reaction (RT-PCR). Clinical data, treatment response, and minimal residual disease (MRD) status were analyzed. Ten (21.7%) patients were ZNF384-r positive (nine by FISH, nine by RT-PCR, eight by both). FISH showed atypical signals, including 3' signal gain and 5' signal deletion. EP300 was the main fusion partner (n = 5). TAF15::ZNF384, SYNRG::ZNF384, CREBBP::ZNF384, and TCF3::ZNF384 fusions were found in one patient each; one case's partner gene is unknown. One patient was MRD-negative at the end of the first induction, lower than in patients without ZNF384-r. ZNF384-r incidence matched B-other ALL incidence in Chinese patients. Combined FISH and RT-PCR improved detection. ALL with ZNF384-r has unique features, and lower MRD-negative response may indicate a negative impact on traditional treatments.
Collapse
Affiliation(s)
- Qinlu Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shugang Xing
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Boer JM, Koudijs MJ, Kester LA, Sonneveld E, Hehir-Kwa JY, Snijder S, Waanders E, Buijs A, de Haas V, van der Sluis IM, Pieters R, den Boer ML, Tops BB. Challenging Conventional Diagnostic Methods by Comprehensive Molecular Diagnostics: A Nationwide Prospective Comparison in Children With ALL. JCO Precis Oncol 2025; 9:e2400788. [PMID: 40020210 PMCID: PMC11913173 DOI: 10.1200/po-24-00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
PURPOSE Treatment stratification in ALL includes diverse (cyto)genetic aberrations, requiring diverse tests to yield conclusive data. We optimized the diagnostic workflow to detect all relevant aberrations with a limited number of tests in a clinically relevant time frame. METHODS In 467 consecutive patients with ALL (0-20 years), we compared RNA sequencing (RNAseq), fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), karyotyping, single-nucleotide polymorphism (SNP) array, and multiplex ligation-dependent probe amplification (MLPA) for technical success, concordance of results, and turnaround time. RESULTS To detect stratifying fusions (ETV6::RUNX1, BCR::ABL1, ABL-class, KMT2Ar, TCF3::HLF, IGH::MYC), RNAseq and FISH were conclusive for 97% and 96% of patients, respectively, with 99% concordance. RNAseq performed well in samples with a low leukemic cell percentage or low RNA quality. RT-PCR for six specific fusions was conclusive for >99% but false-negative for six patients with alternatively fused exons. RNAseq also detected gene fusions not yet used for stratification in 14% of B-cell precursor-ALL and 33% of T-ALL. For aneuploidies and intrachromosomal amplification of chromosome 21, SNP array gave a conclusive result in 99%, thereby outperforming karyotyping, which was conclusive for 64%. To identify deletions in eight stratifying genes/regions, SNP array was conclusive in 99% and MLPA in 95% of patients, with 98% concordance. The median turnaround times were 10 days for RNAseq, 9 days for FISH, 10 days for SNP array, and <7 days for MLPA and RT-PCR in this real-world prospective study. CONCLUSION Combining RNAseq and SNP array outperformed current diagnostic tools to detect all stratifying genetic aberrations in ALL. The turnaround time is <15 days matching major treatment decision time points. Moreover, combining RNAseq and SNP array has the advantage of detecting new lesions for studies on prognosis and pathobiology.
Collapse
Affiliation(s)
- Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marco J. Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lennart A. Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Simone Snijder
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Esme Waanders
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Arjan Buijs
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Valérie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
4
|
Kusano S, Ueno-Yokohata H, Hori M, Ishibashi T, Fujimura J, Shimizu T, Ohki K, Kiyokawa N. TCF3::ZNF384 induces steroid resistance in B-cell precursor acute lymphoblastic leukemia cells. Pediatr Int 2025; 67:e70078. [PMID: 40391410 DOI: 10.1111/ped.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/26/2024] [Accepted: 02/25/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND ZNF384 rearrangements (ZNF384-r) are associated with distinct subgroups of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and the mixed phenotype of acute leukemia. Types of BCP-ALL with ZNF384-r exhibit common immunophenotypic characteristics, whereas their clinical features are not uniform and TCF3::ZNF384-positive patients show a significantly poorer steroid response and higher frequency of relapse, while EP300::ZNF384-positive patients exhibit a favorable response to conventional chemotherapy. Therefore, we aimed to investigate the differences in biological effects between these two ZNF384-r molecules. METHOD We transduced BCP-ALL cell lines with both TCF3::ZNF384 and EP300::ZNF384 by retrovirus-mediated gene transduction, and examined the biological effects. RESULTS Flow cytometric analysis and RT-qPCR revealed down-regulation of CD10 in BCP-ALL cells after transduction with both TCF3::ZNF384 and EP300::ZNF384. The annexin-V binding apoptosis assay indicated that TCF3::ZNF384-, but not EP300::ZNF384-, expressing cells exhibited increased resistance to dexamethasone-induced apoptosis. By means of an oligonucleotide microarray and RT-qPCR, we observed that the transduction of TCF3::ZNF384, but not EP300::ZNF384, leads to significant enhancement of cyclin D2 (CCND2) gene expression in BCP-ALL cells, but no growth advantage was observed. CONCLUSION Our data suggest that the acquisition of dexamethasone resistance in BCP-ALL cell lines is an effect of TCF3::ZNF384 protein distinct from EP300::ZNF384. Other than the common functions of ZNF384-r that contribute to the development of leukemia with a lineage-ambiguous phenotype, TCF3::ZNF384 may exhibit a fusion partner-dependent function distinct from EP300::ZNF384 and participate in the formation of characteristic clinical features of TCF3::ZNF384-expressing ALL patients.
Collapse
Affiliation(s)
- Shinpei Kusano
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Hitomi Ueno-Yokohata
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Japan
| | - Momoka Hori
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Japan
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Takeshi Ishibashi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Junya Fujimura
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Setagaya-ku, Japan
| |
Collapse
|
5
|
Cafaro C, Ali Z, Lamarca A, Di Bello DT, Lozano LD, Ekdahl L, Thodberg M, Pertesi M, De Lapuente Portilla AL, Nilsson B. The insertion/deletion polymorphism rs201494641 at ITGA9 influences blood CD34 + cell levels by altering ZNF384 binding. Haematologica 2024; 109:3059-3062. [PMID: 38721738 PMCID: PMC11367236 DOI: 10.3324/haematol.2024.285363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 09/03/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Caterina Cafaro
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Zain Ali
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Antton Lamarca
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Daniela Torres Di Bello
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Laura Duran Lozano
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Ludvig Ekdahl
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Malte Thodberg
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Maroulio Pertesi
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Aitzkoa Lopez De Lapuente Portilla
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden; Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden; Broad Institute, 415 Main Street, Cambridge, MA 02142.
| |
Collapse
|
6
|
Schmitt AD, Sikkink K, Ahmed AA, Melnyk S, Reid D, Van Meter L, Guest EM, Lansdon LA, Pastinen T, Pushel I, Yoo B, Farooqi MS. Evaluation of Hi-C Sequencing for Detection of Gene Fusions in Hematologic and Solid Tumor Pediatric Cancer Samples. Cancers (Basel) 2024; 16:2936. [PMID: 39272793 PMCID: PMC11394547 DOI: 10.3390/cancers16172936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Hi-C sequencing is a DNA-based next-generation sequencing method that preserves the 3D genome conformation and has shown promise in detecting genomic rearrangements in translational research studies. To evaluate Hi-C as a potential clinical diagnostic platform, analytical concordance with routine laboratory testing was assessed using primary pediatric leukemia and sarcoma specimens. Archived viable and non-viable frozen leukemic cells and formalin-fixed paraffin-embedded (FFPE) tumor specimens were analyzed. Pediatric acute myeloid leukemia (AML) and alveolar rhabdomyosarcoma (A-RMS) specimens with known genomic rearrangements were subjected to Hi-C to assess analytical concordance. Subsequently, a discovery cohort consisting of AML and acute lymphoblastic leukemia (ALL) cases without known genomic rearrangements based on prior clinical diagnostic testing was evaluated to determine whether Hi-C could detect rearrangements. Using a standard sequencing depth of 50 million raw read-pairs per sample, or approximately 5X raw genomic coverage, we observed 100% concordance between Hi-C and previous clinical cytogenetic and molecular testing. In the discovery cohort, a clinically relevant gene fusion was detected in 45% of leukemia cases (5/11). This study provides an institutional proof of principle evaluation of Hi-C sequencing to medical diagnostic testing as it identified several clinically relevant rearrangements, including those that were missed by current clinical testing workflows.
Collapse
Affiliation(s)
| | - Kristin Sikkink
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Atif A Ahmed
- Department of Pathology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Shadi Melnyk
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Derek Reid
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Logan Van Meter
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Erin M Guest
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Lisa A Lansdon
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Tomi Pastinen
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Irina Pushel
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Byunggil Yoo
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Midhat S Farooqi
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
7
|
Garcia C, Miller-Awe MD, Witkowski MT. Concepts in B cell acute lymphoblastic leukemia pathogenesis. J Leukoc Biol 2024; 116:18-32. [PMID: 38243586 PMCID: PMC11869204 DOI: 10.1093/jleuko/qiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions. This review highlights the mechanistic underpinnings governing B-ALL transformation. Beginning with exploring normative B cell lymphopoiesis, we delineate the influence of recurrent germline and somatic genetic aberrations on the perturbation of B cell progenitor differentiation and protumorigenic signaling, thereby facilitating the neoplastic transformation underlying B-ALL progression. Additionally, we highlight recent advances in the multifaceted landscape of B-ALL, encompassing metabolic reprogramming, microbiome influences, inflammation, and the discernible impact of socioeconomic and racial disparities on B-ALL transformation and patient survival.
Collapse
Affiliation(s)
- Clarissa Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Megan D. Miller-Awe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
8
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
9
|
Schmitt AD, Sikkink K, Ahmed AA, Melnyk S, Reid D, Van Meter L, Guest EM, Lansdon LA, Pastinen T, Pushel I, Yoo B, Farooqi MS. Evaluation of Hi-C sequencing for the detection of gene fusions in hematologic and solid pediatric cancer samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.10.24306838. [PMID: 38765974 PMCID: PMC11100933 DOI: 10.1101/2024.05.10.24306838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome and has shown promise in detecting genomic rearrangements in translational research studies. To evaluate HiC as a potential clinical diagnostic platform, analytical concordance with routine laboratory testing was assessed using primary pediatric leukemia and sarcoma specimens previously positive for clinically significant genomic rearrangements. Archived specimen types tested included viable and nonviable frozen leukemic cells, as well as formalin-fixed paraffin-embedded (FFPE) tumor tissues. Initially, pediatric acute myeloid leukemia (AML) and alveolar rhabdomyosarcoma (A-RMS) specimens with known genomic rearrangements were subjected to HiC analysis to assess analytical concordance. Subsequently, a discovery cohort consisting of AML and acute lymphoblastic leukemia (ALL) cases with no known genomic rearrangements based on prior clinical diagnostic testing were evaluated to determine whether HiC could detect rearrangements. Using a standard sequencing depth of 50 million raw read-pairs per sample, or approximately 5X raw genomic coverage, 100% concordance was observed between HiC and previous clinical cytogenetic and molecular testing. In the discovery cohort, a clinically relevant gene fusion was detected in 45% of leukemia cases (5/11). This study demonstrates the value of HiC sequencing to medical diagnostic testing as it identified several clinically significant rearrangements, including those that might have been missed by current clinical testing workflows. Key points HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome, facilitating detection of genomic rearrangements.HiC was 100% concordant with clinical diagnostic testing workflows for detecting clinically significant genomic rearrangements in pediatric leukemia and rhabdomyosarcoma specimens.HiC detected clinically significant genomic rearrangements not previously detected by prior clinical cytogenetic and molecular testing.HiC performed well with archived non-viable and viable frozen leukemic cell samples, as well as archived formalin-fixed paraffin-embedded tumor tissue specimens.
Collapse
|
10
|
Gutierrez-Camino A, Richer C, Ouimet M, Fuchs C, Langlois S, Khater F, Caron M, Beaulieu P, St-Onge P, Bataille AR, Sinnett D. Characterisation of FLT3 alterations in childhood acute lymphoblastic leukaemia. Br J Cancer 2024; 130:317-326. [PMID: 38049555 PMCID: PMC10803556 DOI: 10.1038/s41416-023-02511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Alterations of FLT3 are among the most common driver events in acute leukaemia with important clinical implications, since it allows patient classification into prognostic groups and the possibility of personalising therapy thanks to the availability of FLT3 inhibitors. Most of the knowledge on FLT3 implications comes from the study of acute myeloid leukaemia and so far, few studies have been performed in other leukaemias. METHODS A comprehensive genomic (DNA-seq in 267 patients) and transcriptomic (RNA-seq in 160 patients) analysis of FLT3 in 342 childhood acute lymphoblastic leukaemia (ALL) patients was performed. Mutations were functionally characterised by in vitro experiments. RESULTS Point mutations (PM) and internal tandem duplications (ITD) were detected in 4.3% and 2.7% of the patients, respectively. A new activating mutation of the TKD, G846D, conferred oncogenic properties and sorafenib resistance. Moreover, a novel alteration involving the circularisation of read-through transcripts (rt-circRNAs) was observed in 10% of the cases. Patients presenting FLT3 alterations exhibited higher levels of the receptor. In addition, patients with ZNF384- and MLL/KMT2A-rearranged ALL, as well as hyperdiploid subtype, overexpressed FLT3. DISCUSSION Our results suggest that specific ALL subgroups may also benefit from a deeper understanding of the biology of FLT3 alterations and their clinical implications.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Manon Ouimet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Claire Fuchs
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sylvie Langlois
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Fida Khater
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Maxime Caron
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Alain R Bataille
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Buckley J, Schmidt RJ, Ostrow D, Maglinte D, Bootwalla M, Ruble D, Govindarajan A, Ji J, Kovach AE, Orgel E, Raca G, Navid F, Mascarenhas L, Pawel B, Robison N, Gai X, Biegel JA. An Exome Capture-Based RNA-Sequencing Assay for Genome-Wide Identification and Prioritization of Clinically Important Fusions in Pediatric Tumors. J Mol Diagn 2024; 26:127-139. [PMID: 38008288 DOI: 10.1016/j.jmoldx.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
This study reports the development of an exome capture-based RNA-sequencing assay to detect recurring and novel fusions in hematologic, solid, and central nervous system tumors. The assay used Twist Comprehensive Exome capture with either fresh or formalin-fixed samples and a bioinformatic platform that provides fusion detection, prioritization, and downstream curation. A minimum of 50 million uniquely mapped reads, a consensus read alignment/fusion calling approach using four callers (Arriba, FusionCatcher, STAR-Fusion, and Dragen), and custom software were used to integrate, annotate, and rank the candidate fusion calls. In an evaluation of 50 samples, the number of calls varied substantially by caller, from a mean of 24.8 with STAR-Fusion to 259.6 with FusionCatcher; only 1.1% of calls were made by all four callers. Therefore a filtering and ranking algorithm was developed based on multiple criteria, including number of supporting reads, calling consensus, genes involved, and cross-reference against databases of known cancer-associated or likely false-positive fusions. This approach was highly effective in pinpointing known clinically relevant fusions, ranking them first in 47 of 50 samples (94%). Detection of pathogenic gene fusions in three diagnostically challenging cases highlights the importance of a genome-wide and nontargeted method for fusion detection in pediatric cancer.
Collapse
Affiliation(s)
- Jonathan Buckley
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Ryan J Schmidt
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Dejerianne Ostrow
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dennis Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Moiz Bootwalla
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - David Ruble
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ananthanarayanan Govindarajan
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Alexandra E Kovach
- Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Etan Orgel
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Gordana Raca
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Fariba Navid
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Leo Mascarenhas
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Bruce Pawel
- Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Nathan Robison
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California.
| |
Collapse
|
12
|
De Sa H, Leonard J. Novel Biomarkers and Molecular Targets in ALL. Curr Hematol Malig Rep 2024; 19:18-34. [PMID: 38048037 DOI: 10.1007/s11899-023-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is a widely heterogeneous disease in terms of genomic alterations, treatment options, and prognosis. While ALL is considered largely curable in children, adults tend to have higher risk disease subtypes and do not respond as favorably to conventional chemotherapy. Identifying genomic drivers of leukemogenesis and applying targeted therapies in an effort to improve disease outcomes is an exciting focus of current ALL research. Here, we review recent updates in ALL targeted therapy and present promising opportunities for future research. RECENT FINDINGS With the utilization of next-generation sequencing techniques, the genomic landscape of ALL has greatly expanded to encompass novel subtypes characterized by recurrent chromosomal rearrangements, gene fusions, sequence mutations, and distinct gene expression profiles. The evolution of small molecule inhibitors and immunotherapies, and the exploration of unique therapy combinations are some examples of recent advancements in the field. Targeted therapies are becoming increasingly important in the treatment landscape of ALL to improve outcomes and minimize toxicity. Significant recent advancements have been made in the detection of susceptible genomic drivers and the use of novel therapies to target them.
Collapse
Affiliation(s)
- Hong De Sa
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA
| | - Jessica Leonard
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA.
| |
Collapse
|
13
|
Kovach AE, Wood BL. Updates on lymphoblastic leukemia/lymphoma classification and minimal/measurable residual disease analysis. Semin Diagn Pathol 2023; 40:457-471. [PMID: 37953192 DOI: 10.1053/j.semdp.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Lymphoblastic leukemia/lymphoma (ALL/LBL), especially certain subtypes, continues to confer morbidity and mortality despite significant therapeutic advances. The pathologic classification of ALL/LBL, especially that of B-ALL, has recently substantially expanded with the identification of several distinct and prognostically important genetic drivers. These discoveries are reflected in both current classification systems, the World Health Organization (WHO) 5th edition and the new International Consensus Classification (ICC). In this article, novel subtypes of B-ALL are reviewed, including DUX4, MEF2D and ZNF384-rearranged B-ALL; the rare pediatric entity B-ALL with TLF3::HLF, now added to the classifications, is discussed; updates to the category of B-ALL with BCR::ABL1-like features (Ph-like B-ALL) are summarized; and emerging genetic subtypes of T-ALL are presented. The second half of the article details current approaches to minimal/measurable residual disease (MRD) detection in B-ALL and T-ALL and presents anticipated challenges to current approaches in the burgeoning era of antigen-directed immunotherapy.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Yin H, Wang J, Tan Y, Jiang M, Zhang H, Meng G. Transcription factor abnormalities in B-ALL leukemogenesis and treatment. Trends Cancer 2023; 9:855-870. [PMID: 37407363 DOI: 10.1016/j.trecan.2023.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
The biological regulation of transcription factors (TFs) and repressor proteins is an important mechanism for maintaining cell homeostasis. In B cell acute lymphoblastic leukemia (B-ALL) TF abnormalities occur at high frequency and are often recognized as the major driving factor in carcinogenesis. We provide an in-depth review of molecular mechanisms of six major TF rearrangements in B-ALL, including DUX4-rearranged (DUX4-R), MEF2D-R, ZNF384-R, ETV6-RUNX1 and TCF3-PBX1 fusions, and KMT2A-R. In addition, the therapeutic options and prognoses for patients who harbor these TF abnormalities are discussed. This review aims to provide an up-to-date panoramic view of how TF-based oncogenic fusions might drive carcinogenesis and impact on potential therapeutic exploration of B-ALL treatments.
Collapse
Affiliation(s)
- Hongxin Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Junfei Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Hao Zhang
- Institute for Translational Brain Research, Ministry of Education (MOE) Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
15
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
16
|
Liu YC, Geyer JT. Pediatric Hematopathology in the Era of Advanced Molecular Diagnostics: What We Know and How We Can Apply the Updated Classifications. Pathobiology 2023; 91:30-44. [PMID: 37311434 PMCID: PMC10857803 DOI: 10.1159/000531480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Pediatric hematologic malignancies often show genetic features distinct from their adult counterparts, which reflect the differences in their pathogenesis. Advances in the molecular diagnostics including the widespread use of next-generation sequencing technology have revolutionized the diagnostic workup for hematologic disorders and led to the identification of new disease subgroups as well as prognostic information that impacts the clinical treatment. The increasing recognition of the importance of germline predisposition in various hematologic malignancies also shapes the disease models and management. Although germline predisposition variants can occur in patients with myelodysplastic syndrome/neoplasm (MDS) of all ages, the frequency is highest in the pediatric patient population. Therefore, evaluation for germline predisposition in the pediatric group can have significant clinical impact. This review discusses the recent advances in juvenile myelomonocytic leukemia, pediatric acute myeloid leukemia, B-lymphoblastic leukemia/lymphoma, and pediatric MDS. This review also includes a brief discussion of the updated classifications from the International Consensus Classification (ICC) and the 5th edition World Health Organization (WHO) classification regarding these disease entities.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Obiorah I, Courville EL. Diagnostic Flow Cytometry in the Era of Targeted Therapies: Lessons from Therapeutic Monoclonal Antibodies and Chimeric Antigen Receptor T-cell Adoptive Immunotherapy. Surg Pathol Clin 2023; 16:423-431. [PMID: 37149367 DOI: 10.1016/j.path.2023.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Therapeutic monoclonal antibodies (therapeutic mAb) and adoptive immunotherapy have become increasingly more common in the treatment of hematolymphoid neoplasms, with practical implications for diagnostic flow cytometry. Their use can reduce the sensitivity of flow cytometry for populations of interest owing to downregulation/loss of the target antigen, competition for the target antigen, or lineage switch. Expanded flow panels, marker redundancy, and exhaustive gating strategies can overcome this limitation. Therapeutic mAb have been reported to cause pseudo-light chain restriction, and awareness of this potential artifact is key. Established guidelines do not yet exist for antigen expression by flow cytometry for therapeutic purposes.
Collapse
Affiliation(s)
- Ifeyinwa Obiorah
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA
| | - Elizabeth L Courville
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA.
| |
Collapse
|
18
|
Goodlad JR, Xiao W, Amador C, Cook JR, Happ L, Thakkar D, Dave S, Dogan A, Duffield A, Nejati R, Ott G, Wasik M, Czader M. Phenotypic and genotypic infidelity in B-lineage neoplasms, including transdifferentiation following targeted therapy: Report from the 2021 SH/EAHP Workshop. Am J Clin Pathol 2023:7135991. [PMID: 37085149 DOI: 10.1093/ajcp/aqad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVES Session 2 of the 2021 Society for Hematopathology and European Association for Haematopathology Workshop collected examples of lineage infidelity and transdifferentiation in B-lineage neoplasms, including after targeted therapy. METHODS Twenty cases were submitted. Whole-exome sequencing and genome-wide RNA expression analysis were available on a limited subsample. RESULTS A diagnosis of B-cell acute lymphoblastic leukemia (B-ALL) was rendered on at least 1 biopsy from 13 patients. There was 1 case of acute myeloid leukemia (AML); the remaining 6 cases were mature B-cell neoplasms. Targeted therapy was administered in 7 cases of B-ALL and 4 cases of mature B-cell neoplasms. Six cases of B-ALL underwent lineage switch to AML or mixed-phenotype acute leukemia at relapse, 5 of which had rearranged KMT2A. Changes in maturational state without lineage switch were observed in 2 cases. Examples of de novo aberrant T-cell antigen expression (n = 2) were seen among the mature B-cell lymphoma cohort, and their presence correlated with alterations in tumor cell gene expression patterns. CONCLUSIONS This cohort of cases enabled us to illustrate, discuss, and review current concepts of lineage switch and aberrant antigen expression in a variety of B-cell neoplasms and draw attention to the role targeted therapies may have in predisposing neoplasms to transdifferentiation as well as other, less expected changes in maturational status.
Collapse
Affiliation(s)
- John R Goodlad
- Department of Pathology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, US
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, US
| | | | | | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University School of Medicine, Durham, NC, US
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Amy Duffield
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, US
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, US
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, US
| |
Collapse
|
19
|
Davis K, Sheikh T, Aggarwal N. Emerging molecular subtypes and therapies in acute lymphoblastic leukemia. Semin Diagn Pathol 2023; 40:202-215. [PMID: 37120350 DOI: 10.1053/j.semdp.2023.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
Tremendous strides have been made in the molecular and cytogenetic classification of acute lymphoblastic leukemia based on gene expression profiling data, leading to an expansion of entities in the recent International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias and 2022 WHO Classification of Tumours: Haematolymphoid Tumors, 5th edition. This increased diagnostic and therapeutic complexity can be overwhelming, and this review compares nomenclature differences between the ICC and WHO 5th edition publications, compiles key features of each entity, and provides a diagnostic algorithmic approach. In covering B-lymphoblastic leukemia (B-ALL), we divided the entities into established (those present in the revised 4th edition WHO) and novel (those added to either the ICC or WHO 5th edition) groups. The established B-ALL entities include B-ALL with BCR::ABL1 fusion, BCR::ABL1-like features, KMT2A rearrangement, ETV6::RUNX1 rearrangement, high hyperdiploidy, hypodiploidy (focusing on near haploid and low hypodiploid), IGH::IL3 rearrangement, TCF3::PBX1 rearrangement, and iAMP21. The novel B-ALL entities include B-ALL with MYC rearrangement; DUX4 rearrangement; MEF2D rearrangement; ZNF384 or ZNF362 rearrangement, NUTM1 rearrangement; HLF rearrangement; UBTF::ATXN7L3/PAN3,CDX2; mutated IKZF1 N159Y; mutated PAX5 P80R; ETV6::RUNX1-like features; PAX5 alteration; mutated ZEB2 (p.H1038R)/IGH::CEBPE; ZNF384 rearranged-like; KMT2A-rearranged-like; and CRLF2 rearrangement (non-Ph-like). Classification of T-ALL is complex with some variability in how the subtypes are defined in recent literature. It was classified as early T-precursor lymphoblastic leukemia/lymphoma and T-ALL, NOS in the WHO revised 4th edition and WHO 5th edition. The ICC added an entity into early T-cell precursor ALL, BCL11B-activated, and also added provisional entities subclassified based on transcription factor families that are aberrantly activated.
Collapse
Affiliation(s)
- Katelynn Davis
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA
| | | | - Nidhi Aggarwal
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA.
| |
Collapse
|
20
|
Schwab C, Cranston RE, Ryan SL, Butler E, Winterman E, Hawking Z, Bashton M, Enshaei A, Russell LJ, Kingsbury Z, Peden JF, Barretta E, Murray J, Gibson J, Hinchliffe AC, Bain R, Vora A, Bentley DR, Ross MT, Moorman AV, Harrison CJ. Integrative genomic analysis of childhood acute lymphoblastic leukaemia lacking a genetic biomarker in the UKALL2003 clinical trial. Leukemia 2023; 37:529-538. [PMID: 36550215 PMCID: PMC9991913 DOI: 10.1038/s41375-022-01799-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Incorporating genetics into risk-stratification for treatment of childhood B-progenitor acute lymphoblastic leukaemia (B-ALL) has contributed significantly to improved survival. In about 30% B-ALL (B-other-ALL) without well-established chromosomal changes, new genetic subtypes have recently emerged, yet their true prognostic relevance largely remains unclear. We integrated next generation sequencing (NGS): whole genome sequencing (WGS) (n = 157) and bespoke targeted NGS (t-NGS) (n = 175) (overlap n = 36), with existing genetic annotation in a representative cohort of 351 B-other-ALL patients from the childhood ALL trail, UKALL2003. PAX5alt was most frequently observed (n = 91), whereas PAX5 P80R mutations (n = 11) defined a distinct PAX5 subtype. DUX4-r subtype (n = 80) was defined by DUX4 rearrangements and/or ERG deletions. These patients had a low relapse rate and excellent survival. ETV6::RUNX1-like subtype (n = 21) was characterised by multiple abnormalities of ETV6 and IKZF1, with no reported relapses or deaths, indicating their excellent prognosis in this trial. An inferior outcome for patients with ABL-class fusions (n = 25) was confirmed. Integration of NGS into genomic profiling of B-other-ALL within a single childhood ALL trial, UKALL2003, has shown the added clinical value of NGS-based approaches, through improved accuracy in detection and classification into the range of risk stratifying genetic subtypes, while validating their prognostic significance.
Collapse
Affiliation(s)
- Claire Schwab
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ruth E Cranston
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra L Ryan
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ellie Butler
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Emily Winterman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Zoe Hawking
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Matthew Bashton
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Zoya Kingsbury
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - John F Peden
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - James Murray
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jude Gibson
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Andrew C Hinchliffe
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Robert Bain
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - David R Bentley
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Mark T Ross
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.
| |
Collapse
|
21
|
Kovach AE, Raca G. Modern Classification and Management of Pediatric B-cell Leukemia and Lymphoma. Surg Pathol Clin 2023; 16:249-266. [PMID: 37149359 DOI: 10.1016/j.path.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Although pediatric hematopathology overlaps with that of adults, certain forms of leukemia and lymphoma, and many types of reactive conditions affecting the bone marrow and lymph nodes, are unique to children. As part of this series focused on lymphomas, this article (1) details the novel subtypes of lymphoblastic leukemia seen primarily in children and described since the 2017 World Health Organization classification and (2) discusses unique concepts in pediatric hematopathology, including nomenclature changes and evaluation of surgical margins in selected lymphomas.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Division of Laboratory Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Clinical Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| | - Gordana Raca
- Clinical Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; Division of Genomic Medicine, Department of Pathology and Laboratory Medicine, Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Chiaretti S, Taherinasab A, Della Starza I, Canichella M, Ansuinelli M, De Propris MS, Messina M, Spinelli O, Santoro A, De Novi LA, Cardinali D, Schipani M, Arena V, Bassan R, Guarini A, Foà R. ZNF384 rearrangement is the most frequent genetic lesion in adult PH-negative and Ph-like-negative B-other acute lymphoblastic leukemia. Biological and clinical findings. Leuk Lymphoma 2023; 64:483-486. [PMID: 36533589 DOI: 10.1080/10428194.2022.2148217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Akram Taherinasab
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy.,Fondazione GIMEMA Onlus, Rome, Italy
| | - Martina Canichella
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maria Stefania De Propris
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Orietta Spinelli
- Haematology and Bone Marrow Transplant Unit, ASST-Papa Giovanni XXIII, Bergamo
| | - Alessandra Santoro
- Department of Hemato Oncology, AOR "VillaSofia-Cervello", Palermo, Italy
| | - Lucia Anna De Novi
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Deborah Cardinali
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Mattia Schipani
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | | | - Renato Bassan
- Division of Hematology, Ospedale dell'Angelo, Mestre, Venezia, Italy
| | - Anna Guarini
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
23
|
Ohki K, Butler ER, Kiyokawa N, Hirabayashi S, Bergmann AK, Möricke A, Boer JM, Cavé H, Cazzaniga G, Yeoh AEJ, Sanada M, Imamura T, Inaba H, Mullighan CG, Loh ML, Norén-Nyström U, Shih LY, Zaliova M, Pui CH, Haas OA, Harrison CJ, Moorman AV, Manabe A. Clinical characteristics and outcomes of B-cell precursor ALL with MEF2D rearrangements: a retrospective study by the Ponte di Legno Childhood ALL Working Group. Leukemia 2023; 37:212-216. [PMID: 36309560 PMCID: PMC9883149 DOI: 10.1038/s41375-022-01737-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ellie R Butler
- Leukaemia Research Cytogenetics Group, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinsuke Hirabayashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Anke K Bergmann
- Hannover Medical School, Institute of Human Genetics, Hannover, Germany
| | - Anja Möricke
- Department of Pediatrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Hélène Cavé
- Department of Genetics, Robert Debré Hospital and Université Paris Cité, Paris, France
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Pediatrics, University of Milano Bicocca, Monza, Italy
- Medical Genetics, School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Allen Eng Juh Yeoh
- Khoo Teck Puat - National University Children's Medical Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroto Inaba
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Marketa Zaliova
- CLIP, Department of Paediatric Haematology/Oncology, Second Faculty of Medicine of Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Oskar A Haas
- Children's Cancer Research Institute, Vienna, Austria
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
24
|
Duffield AS, Mullighan CG, Borowitz MJ. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch 2023; 482:11-26. [PMID: 36422706 PMCID: PMC10646822 DOI: 10.1007/s00428-022-03448-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
The updated International Consensus Classification (ICC) of B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL) includes both revisions to subtypes previously outlined in the 2016 WHO classification and several newly described entities. The ICC classification incorporates recent clinical, cytogenetic, and molecular data, with a particular emphasis on whole transcriptome analysis and gene expression (GEX) clustering studies. B-ALL classification is modified to further subclassify BCR::ABL1-positive B-ALL and hypodiploid B-ALL. Additionally, nine new categories of B-ALL are defined, including seven that contain distinguishing gene rearrangements, as well as two new categories that are characterized by a specific single gene mutation. Four provisional entities are also included in the updated B-ALL classification, although definitive identification of these subtypes requires GEX studies. T-ALL classification is also updated to incorporate BCL11B-activating rearrangements into early T-precursor (ETP) ALL taxonomy. Additionally, eight new provisional entities are added to the T-ALL subclassification. The clinical implications of the new entities are discussed, as are practical approaches to the use of different technologies in diagnosis. The enhanced specificity of the new classification will allow for improved risk stratification and optimized treatment plans for patients with ALL.
Collapse
Affiliation(s)
- Amy S. Duffield
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
25
|
Sudutan T, Erbilgin Y, Hatirnaz Ng O, Karaman S, Karakas Z, Kucukcankurt F, Celkan T, Timur C, Ozdemir GN, Hacısalihoglu S, Gelen SA, Sayitoğlu M. Zinc finger protein 384 ( ZNF384) impact on childhood mixed phenotype acute leukemia and B-cell precursor acute lymphoblastic leukemia. Leuk Lymphoma 2022; 63:2931-2939. [PMID: 35921545 DOI: 10.1080/10428194.2022.2095630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a heterogeneous malignancy and consists of several genetic abnormalities. Some of these abnormalities are used in clinics for risk calculation and treatment decisions. Patients with ZNF384 rearrangements had a distinct expression profile regardless of their diagnosis, BCP-ALL or mixed phenotype acute leukemia (MPAL) and defined as a new subtype of ALL. In this study, we screened 42 MPAL and 91 BCP-ALL patients for the most common ZNF384 fusions; ZNF384::TCF3, ZNF384::EP300 and ZNF384::TAF15 by using PCR. We identified ZNF384 fusions in 9.5% of MPAL and 7.6% of BCP-ALL. A novel breakpoint was identified in ZNF384::TCF3 fusion in one BCP-ALL patient. T-myeloid MPAL patients showed significantly lower ZNF384 expression compared to lymphoid groups. Patients with ZNF384r had intermediate survival rates based on other subtypes. Prognostic and patient-specific treatment evaluation of ZNF384 fusions in both ALL and MPAL might help to improve risk characterization of patients.
Collapse
Affiliation(s)
- Tugce Sudutan
- Genetics Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Yucel Erbilgin
- Genetics Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Genetics Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Medical Biology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Pediatric Hematology Department, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Karakas
- Pediatric Hematology Department, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | | | - Tiraje Celkan
- Faculty of Medicine, Pediatric Hematology Oncology Department, Istinye University, Istanbul, Turkey
| | - Cetin Timur
- Pediatric Hematology Department, Yeditepe University Hospital, Istanbul, Turkey
| | - Gul Nihal Ozdemir
- Faculty of Medicine, Pediatric Hematology Oncology Department, Istinye University, Istanbul, Turkey.,Faculty of Medicine, Division of Pediatric Hematology, Kocaeli University, Istanbul, Turkey
| | - Sadan Hacısalihoglu
- Faculty of Medicine, Division of Pediatric Hematology, Kocaeli University, Istanbul, Turkey
| | - Sema Aylan Gelen
- Pediatric Hematology Division, Istanbul Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Müge Sayitoğlu
- Genetics Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
Yasuda T, Sanada M, Tsuzuki S, Hayakawa F. Oncogenic lesions and molecular subtypes in adults with B-cell acute lymphoblastic leukemia. Cancer Sci 2022; 114:8-15. [PMID: 36106363 PMCID: PMC9807527 DOI: 10.1111/cas.15583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL), a genetically heterogeneous disease, is classified into different molecular subtypes that are defined by recurrent gene rearrangements, gross chromosomal abnormalities, or specific gene mutations. Cells with these genetic alterations acquire a leukemia-initiating ability and show unique expression profiles. The distribution of B-ALL molecular subtypes is greatly dependent on age, which also affects treatment responsiveness and long-term survival, partly accounting for the inferior outcome in adolescents and young adults (AYA) and (older) adults with B-ALL. Recent advances in sequencing technology, especially RNA sequencing and the application of these technologies in large B-ALL cohorts have uncovered B-ALL molecular subtypes prevalent in AYA and adults. These new insights supply more precise estimations of prognoses and targeted therapies informed by sequencing results, as well as a deeper understanding of the genetic basis of AYA/adult B-ALL. This article provides an account of these technological advances and an overview of the recent major findings of B-ALL molecular subtypes in adults.
Collapse
Affiliation(s)
- Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
27
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1435] [Impact Index Per Article: 478.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Zhao X, Wang P, Diedrich JD, Smart B, Reyes N, Yoshimura S, Zhang J, Yang W, Barnett K, Xu B, Li Z, Huang X, Yu J, Crews K, Yeoh AEJ, Konopleva M, Wei CL, Pui CH, Savic D, Yang JJ. Epigenetic activation of the FLT3 gene by ZNF384 fusion confers a therapeutic susceptibility in acute lymphoblastic leukemia. Nat Commun 2022; 13:5401. [PMID: 36104354 PMCID: PMC9474531 DOI: 10.1038/s41467-022-33143-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
FLT3 is an attractive therapeutic target in acute lymphoblastic leukemia (ALL) but the mechanism for its activation in this cancer is incompletely understood. Profiling global gene expression in large ALL cohorts, we identify over-expression of FLT3 in ZNF384-rearranged ALL, consistently across cases harboring different fusion partners with ZNF384. Mechanistically, we discover an intergenic enhancer element at the FLT3 locus that is exclusively activated in ZNF384-rearranged ALL, with the enhancer-promoter looping directly mediated by the fusion protein. There is also a global enrichment of active enhancers within ZNF384 binding sites across the genome in ZNF384-rearranged ALL cells. Downregulation of ZNF384 blunts FLT3 activation and decreases ALL cell sensitivity to FLT3 inhibitor gilteritinib in vitro. In patient-derived xenograft models of ZNF384-rearranged ALL, gilteritinib exhibits significant anti-leukemia efficacy as a monotherapy in vivo. Collectively, our results provide insights into FLT3 regulation in ALL and point to potential genomics-guided targeted therapy for this patient population.
Collapse
Affiliation(s)
- Xujie Zhao
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jonathan D Diedrich
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon Smart
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Noemi Reyes
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingliao Zhang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kelly Barnett
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen Eng Juh Yeoh
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Marina Konopleva
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
29
|
Wallace PK. Issue Highlights-September 2022. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:337-341. [PMID: 36106576 DOI: 10.1002/cyto.b.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
30
|
Charakopoulos E, Diamantopoulos PT, Zervakis K, Giannakopoulou N, Psichogiou M, Viniou NA. A case report of a fulminant Aeromonas hydrophila soft tissue infection in a patient with acute lymphoblastic leukemia harboring a rare translocation. Curr Med Res Opin 2022; 38:1125-1132. [PMID: 35575163 DOI: 10.1080/03007995.2022.2078079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Aeromonads are gram-negative opportunistic bacteria, mainly found in aquatic environments. Hematologic patients are particularly at risk of Aeromonas soft tissue infections and septicemia, especially during chemotherapy-induced neutropenia. CASE DESCRIPTION A 46-year-old man was diagnosed with acute lymphoblastic leukemia characterized by the rare t(12;17)(p13;q21)/TAF15-ZNF384 aberration. On day 22 of chemotherapy, he developed febrile neutropenia followed by necrotizing fasciitis in his upper right extremity. Despite appropriate antibiotic therapy and prompt surgical intervention, he died within 36 h after the appearance of a fever. A multi-sensitive Aeromonas hydrophila was isolated from all cultural sites. DISCUSSION AND CONCLUSIONS In a previous paper we characterized the patient's aberration with cytogenetic and FISH analysis. Here, we provide details regarding the patient's rapidly progressing infection and underline the importance of maintaining high clinical suspicion of Aeromonas infections in acute leukemia. Given the unusually rapid progression of an infection caused by a rare non-resistant pathogen, and after considering data on the implication of metalloproteinase function in immune system regulation, a correlation between risk of severe infection and TAF15-ZNF384 aberrated acute lymphoblastic leukemia cannot be ruled out.
Collapse
Affiliation(s)
- Emmanouil Charakopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Konstantinos Zervakis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Mina Psichogiou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
31
|
Wang YZ, Qin YZ, Chang Y, Yuan XY, Chen WM, He LL, Hao L, Shi WH, Jiang Q, Jiang H, Huang XJ, Liu YR. Immunophenotypic characteristics of ZNF384 rearrangement compared with BCR-ABL1, KMT2A rearrangement, and other adult B-cell precursor acute lymphoblastic leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:360-369. [PMID: 35735203 DOI: 10.1002/cyto.b.22086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND ZNF384 rearrangement has been recently identified as a new subtype of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive studies clarifying immunophenotypic features and discriminating them from non-ZNF384 in adult BCP-ALL remain scarce to date. METHODS Flow cytometric assessments were retrospectively performed in 43 patients with ZNF384 rearrangement, 45 with BCR-ABL1, 29 with KMT2A rearrangement and 44 with other BCP-ALL in the analysis cohort. RESULTS CD33- and CD13-positive frequencies were significantly higher in patients with ZNF384 rearrangement than in those with non-ZNF384; however, no significant difference was observed in CD10- and CD123-positive frequencies. Analysis of antigen-positive cell proportion and median fluorescence intensity (MFI) further indicated that patients with ZNF384 rearrangement had significantly lower CD10 and higher CD33, CD13, and CD123 proportion and MFI. However, compared with KMT2A rearrangement, the CD10 expression in patients with ZNF384 rearrangement was higher, with the median percentage and MFI of 36.16 (3.63-94.79)% versus 4.53 (0.03-21.00)%, and 4.50 (0.86-32.26) versus 2.06 (0.87-4.04), respectively (p < 0.0001). Furthermore, compared with BCR-ABL1 and other BCP-ALL, ZNF384 rearrangement had significantly higher CD33 and CD13 proportion and MFI (p < 0.0001 and p < 0.05, respectively). In addition, higher CD123 proportion and MFI in ZNF384 rearrangement than those in the other three groups were reported for the first time (p < 0.01). A flow cytometry scoring system, including CD10%, CD33MFI, CD13%, and CD123MFI, was proposed and verified to predict ZNF384 rearrangement with high sensitivity and specificity, that is, 76.74% and 91.53% in the analysis and 87.50% and 91.30% in the validation cohort. CONCLUSIONS The multiparameter immunophenotypic scoring system could suggest ZNF384 rearrangement.
Collapse
Affiliation(s)
- Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ling-Ling He
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Le Hao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wei-Hua Shi
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
32
|
Kimura S, Montefiori L, Iacobucci I, Zhao Y, Gao Q, Paietta EM, Haferlach C, Laird AD, Mead PE, Gu Z, Stock W, Litzow M, Rowe JM, Luger SM, Hunger SP, Ryland GL, Schmidt B, Ekert PG, Oshlack A, Grimmond SM, Rehn J, Breen J, Yeung D, White DL, Aldoss I, Jabbour EJ, Pui CH, Meggendorfer M, Walter W, Kern W, Haferlach T, Brady S, Zhang J, Roberts KG, Blombery P, Mullighan CG. Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood 2022; 139:3519-3531. [PMID: 35192684 PMCID: PMC9203703 DOI: 10.1182/blood.2022015444] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 01/14/2023] Open
Abstract
Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Lindsey Montefiori
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yaqi Zhao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | | | | | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
- Departments of Computational and Quantitative Medicine, and Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA
| | - Wendy Stock
- Department of Hematology and Oncology, University of Chicago, Chicago, IL
| | - Mark Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Jacob M Rowe
- Department of Hematology, Rambam Health Care Campus, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Selina M Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Precision Oncology, Centre for Cancer Research, and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Breon Schmidt
- Computational Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Paul G Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre and School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Alicia Oshlack
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | | - Jacqueline Rehn
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - David Yeung
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Hematology Department, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Deborah L White
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Elias J Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | - Samuel Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia; and
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
33
|
Semchenkova A, Mikhailova E, Komkov A, Gaskova M, Abasov R, Matveev E, Kazanov M, Mamedov I, Shmitko A, Belova V, Miroshnichenkova A, Illarionova O, Olshanskaya Y, Tsaur G, Verzhbitskaya T, Ponomareva N, Bronin G, Kondratchik K, Fechina L, Diakonova Y, Vavilova L, Myakova N, Novichkova G, Maschan A, Maschan M, Zerkalenkova E, Popov A. Lineage Conversion in Pediatric B-Cell Precursor Acute Leukemia under Blinatumomab Therapy. Int J Mol Sci 2022; 23:4019. [PMID: 35409391 PMCID: PMC8999738 DOI: 10.3390/ijms23074019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 12/28/2022] Open
Abstract
We report incidence and deep molecular characteristics of lineage switch in 182 pediatric patients affected by B-cell precursor acute lymphoblastic leukemia (BCP-ALL), who were treated with blinatumomab. We documented six cases of lineage switch that occurred after or during blinatumomab exposure. Therefore, lineage conversion was found in 17.4% of all resistance cases (4/27) and 3.2% of relapses (2/63). Half of patients switched completely from BCP-ALL to CD19-negative acute myeloid leukemia, others retained CD19-positive B-blasts and acquired an additional CD19-negative blast population: myeloid or unclassifiable. Five patients had KMT2A gene rearrangements; one had TCF3::ZNF384 translocation. The presented cases showed consistency of gene rearrangements and fusion transcripts across initially diagnosed leukemia and lineage switch. In two of six patients, the clonal architecture assessed by IG/TR gene rearrangements was stable, while in others, loss of clones or gain of new clones was noted. KMT2A-r patients demonstrated very few additional mutations, while in the TCF3::ZNF384 case, lineage switch was accompanied by a large set of additional mutations. The immunophenotype of an existing leukemia sometimes changes via different mechanisms and with different additional molecular changes. Careful investigation of all BM compartments together with all molecular -minimal residual disease studies can lead to reliable identification of lineage switch.
Collapse
Affiliation(s)
- Alexandra Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Alexander Komkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117998 Moscow, Russia
| | - Marina Gaskova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Ruslan Abasov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Evgenii Matveev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), 127051 Moscow, Russia
| | - Marat Kazanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), 127051 Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Ilgar Mamedov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117998 Moscow, Russia
| | - Anna Shmitko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 119334 Moscow, Russia; (A.S.); (V.B.)
| | - Vera Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 119334 Moscow, Russia; (A.S.); (V.B.)
| | - Anna Miroshnichenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Olga Illarionova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Grigory Tsaur
- Regional Clinical Children Hospital, 620149 Ekaterinburg, Russia; (G.T.); (T.V.); (L.F.)
- Research Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia
| | - Tatiana Verzhbitskaya
- Regional Clinical Children Hospital, 620149 Ekaterinburg, Russia; (G.T.); (T.V.); (L.F.)
- Research Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia
| | | | - Gleb Bronin
- Morozov City Children Clinical Hospital, 119049 Moscow, Russia; (G.B.); (K.K.)
| | | | - Larisa Fechina
- Regional Clinical Children Hospital, 620149 Ekaterinburg, Russia; (G.T.); (T.V.); (L.F.)
- Research Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia
| | - Yulia Diakonova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Liudmila Vavilova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Natalia Myakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia; (A.S.); (E.M.); (A.K.); (M.G.); (R.A.); (E.M.); (M.K.); (I.M.); (A.M.); (O.I.); (Y.O.); (Y.D.); (L.V.); (N.M.); (G.N.); (A.M.); (M.M.); (E.Z.)
| |
Collapse
|
34
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
35
|
ZNF384 rearrangement in acute lymphocytic leukemia with renal involvement as the first manifestation is associated with a poor prognosis: a case report. Mol Cytogenet 2022; 15:4. [PMID: 35164825 PMCID: PMC8842518 DOI: 10.1186/s13039-022-00583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background Novel fusion genes such as ZNF384, have been identified in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in recent years. Patients harboring ZNF384 rearrangements have a distinctive immunophenotype with weak CD10 and aberrant CD13 and/or CD33 expression. Thus, ZNF384-rearranged ALL is a unique subtype of BCP-ALL. However, research on the prognostic significance of ZNF384 rearrangements has been limited to date, especially in adolescents. Case presentation We described a 17-year-old adolescent who was diagnosed with ALL and had renal involvement as the first manifestation, which was very rare in the existing studies. FISH analysis indicated a rearrangement of ZNF384 according to its probe. The patient had a typical characteristic immunophenotype of ZNF384 rearrangement, with CD10 negativity and CD13 and CD33 positivity. She had an unfavorable prognosis because she responded poorly to chemotherapy and developed a relapse shortly after reaching CR. Conclusion The importance of ZNF384 rearrangements in terms of prognosis remains unclear. We reported an adolescent who was diagnosed with ZNF384-rearranged ALL with renal involvement. She underwent different therapies, but her prognosis remained poor. Since ZNF384 rearrangements may act as a prognostic predictor in children or adolescents, early detection based on its characteristic immunophenotype is of great necessity. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-022-00583-4.
Collapse
|
36
|
Single-cell analysis identifies dynamic gene expression networks that govern B cell development and transformation. Nat Commun 2021; 12:6843. [PMID: 34824268 PMCID: PMC8617197 DOI: 10.1038/s41467-021-27232-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Integration of external signals and B-lymphoid transcription factor activities organise B cell lineage commitment through alternating cycles of proliferation and differentiation, producing a diverse repertoire of mature B cells. We use single-cell transcriptomics/proteomics to identify differentially expressed gene networks across B cell development and correlate these networks with subtypes of B cell leukemia. Here we show unique transcriptional signatures that refine the pre-B cell expansion stages into pre-BCR-dependent and pre-BCR-independent proliferative phases. These changes correlate with reciprocal changes in expression of the transcription factor EBF1 and the RNA binding protein YBX3, that are defining features of the pre-BCR-dependent stage. Using pseudotime analysis, we further characterize the expression kinetics of different biological modalities across B cell development, including transcription factors, cytokines, chemokines, and their associated receptors. Our findings demonstrate the underlying heterogeneity of developing B cells and characterise developmental nodes linked to B cell transformation.
Collapse
|
37
|
Transcriptional and Mutational Profiling of B-Other Acute Lymphoblastic Leukemia for Improved Diagnostics. Cancers (Basel) 2021; 13:cancers13225653. [PMID: 34830809 PMCID: PMC8616234 DOI: 10.3390/cancers13225653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common cancer in children, and significant progress has been made in diagnostics and the treatment of this disease based on the subtypes of BCP-ALL. However, in a large proportion of cases (B-other), recurrent BCP-ALL-associated genomic alterations remain unidentifiable by current diagnostic procedures. In this study, we performed RNA sequencing and analyzed gene fusions, expression profiles, and mutations in diagnostic samples of 185 children with BCP-ALL. Gene expression clustering showed that a subset of B-other samples partially clusters with some of the known subgroups, particularly DUX4-positive. Mutation analysis coupled with gene expression profiling revealed the presence of distinctive BCP-ALL subgroups, characterized by the presence of mutations in known ALL driver genes, e.g., PAX5 and IKZF1. Moreover, we identified novel fusion partners of lymphoid lineage transcriptional factors ETV6, IKZF1 and PAX5. In addition, we report on low blast count detection thresholds and show that the use of EDTA tubes for sample collection does not have adverse effects on sequencing and downstream analysis. Taken together, our findings demonstrate the applicability of whole-transcriptome sequencing for personalized diagnostics in pediatric ALL, including tentative classification of the B-other cases that are difficult to diagnose using conventional methods.
Collapse
|
38
|
Abstract
Fusion of the ZNF384 gene as the 3' partner to several different 5' partner genes occurs recurrently in B-cell precursor acute lymphoblastic and mixed phenotype B/myeloid leukemia. These canonical fusions (ZNF384r) contain the complete ZNF384 coding sequence and are associated with a specific gene expression signature. Cases with this signature, but without canonical ZNF384 fusions (ZNF384r-like cases), have been described previously. Although some have been shown to harbor ZNF362 fusions, the primary aberrations remain unknown in a major proportion. We studied 3 patients with the ZNF384r signature and unknown primary genetic background and identified a previously unknown class of genetic aberration affecting the last exon of ZNF384 and resulting in disruption of the C-terminal portion of the ZNF384 protein. Importantly, in 2 cases, the ZNF384 aberration, indel, was missed during the bioinformatic analysis but revealed by the manual, targeted reanalysis. Two cases with the novel aberrations had a mixed (B/myeloid) immunophenotype commonly associated with canonical ZNF384 fusions. In conclusion, we present leukemia cases with a novel class of ZNF384 aberrations that phenocopy leukemia with ZNF384r. Therefore, we show that part of the so-called ZNF384r-like cases represent the same genetic subtype as leukemia with canonical ZNF384 fusions.
Collapse
|
39
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
40
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
41
|
Lin N, Yan X, Cai D, Wang L. Leukemia With TCF3-ZNF384 Rearrangement as a Distinct Subtype of Disease With Distinct Treatments: Perspectives From A Case Report and Literature Review. Front Oncol 2021; 11:709036. [PMID: 34395283 PMCID: PMC8357369 DOI: 10.3389/fonc.2021.709036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background ZNF384 rearrangements are found in 5-10% of B-cell acute lymphoblastic leukemia (B-ALL) and 48% of B cell/myeloid mixed phenotype acute leukemia (B/M MPAL). ZNF384-rearranged B-ALL is prone to lineage conversion after chemotherapy. TCF3 is the second most common rearrangement partner of ZNF384 in B-ALL (27.5%) and the most common partner in B/M MPAL (53.3%). TCF3-ZNF384 fusion is related to a poor steroid response and a high frequency of relapse. It is mostly reported in children and adolescents but rarely seen in adults. Patients and Methods Here, we report a rare case of adult common B-ALL with TCF3-ZNF384 fusion in which the patient relapsed after one cycle of consolidation chemotherapy. Relapsed leukemia cells from the bone marrow were cultured for 72 hours ex vivo, and a panel of 156 kinds of cytotoxic drugs, targeted therapy drugs, combination chemotherapy drugs, etc., was used for sensitivity screening. The literature on TCF3-ZNF384 fusion was reviewed, and reported cases with TCF3-ZNF384 fusion were summarized. Clinical characteristics were compared between B-ALL and MPAL with TCF3-ZNF384 fusion. Results The relapsed lymphoblasts showed moderate sensitivity to both acute myelocytic leukemia (AML) - and acute lymphoblastic leukemia (ALL)-directed combination chemotherapy schemes, as well as to multiple targeted therapeutic drugs. The hyper-CVAD (B) scheme showed synergistic effects with multiple targeted compounds and had the highest sensitivity. The patient chose the hyper-CVAD (B) scheme combined with sorafenib and achieved complete remission (CR), then consolidated with myeloid-directed homoharringtonine+cytarabine+daunorubicin (HAD) scheme and gained molecular CR. By reviewing the literature, we found that both the genomic landscapes and gene expression profiles of ZNF384-rearranged B-ALL and MPAL are similar and that both diseases have lineage plasticity. The gene expression profile in TCF3-ZNF384-positive patients shows enrichment of hematopoietic stem cell features. No significant differences in clinical characteristics were found between TCF3-ZNF384-positive ALL and MPAL. Conclusion TCF3-ZNF384-positive leukemia may be a distinct subtype of leukemia regardless of immunophenotype. Considering the frequent lineage switches and sensitivity to both ALL- and AML-directed schemes, a uniform strategy directed at both lymphoid and myeloid lineages or at hematopoietic stem cells may be better for TCF3-ZNF384-positive leukemia. Small molecule targeted therapies may be promising treatment options and deserve further investigation.
Collapse
Affiliation(s)
- Na Lin
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dali Cai
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Janet NB, Kulkarni U, Arun AK, Bensega B, Devasia AJ, Korula A, Abraham A, George B, Mathews V, Balasubramanian P. Systematic application of fluorescence in situ hybridization and immunophenotype profile for the identification of ZNF384 gene rearrangements in B cell acute lymphoblastic leukemia. Int J Lab Hematol 2021; 43:658-663. [PMID: 33988307 DOI: 10.1111/ijlh.13580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION ZNF384 gene fusions resulting from translocations with several partner genes have been described in B cell acute lymphoblastic leukemia (B-ALL) with a characteristic immunophenotype (aberrant CD13 and or CD33 with dim CD10). The prognosis of patients with this rearrangement appears to depend on the fusion partner. ZNF384 rearrangements have been identified by high through put technologies such as RNA sequencing in most of the studies published. We tested the feasibility of using the characteristic immunophenotype as a tool to screen for patients with ZNF384 translocations which can be subsequently confirmed by cytogenetic / molecular methodologies. METHODS ZNF384 rearrangements in B-ALL patients at diagnosis with CD10 <80% and were negative for the BCR-ABL1 fusion (n = 109) were identified by fluorescence in situ hybridization followed by confirmation by reverse transcriptase-polymerase chain reaction and Sanger sequencing. The end of induction measurable residual disease evaluated by flow cytometry for these patients was obtained from patient records. RESULTS ZNF384 translocations were identified in 14 patients and were cytogenetically cryptic in 13. EP300-ZNF384 was the most common fusion partner (n = 12), while TAF15-ZNF384 and TCF3-ZNF384 were identified in 1 patient each. End of induction MRD by flow cytometry was positive in 5 of 8 patients with the EP300-ZNF384 fusion treated at our center. CONCLUSION Our findings show a practical approach for the identification of ZNF384 gene rearrangements by widely available technologies and indicate that the response to therapy may be heterogeneous even in this subset, which has been reported as having a favorable prognosis.
Collapse
Affiliation(s)
- Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, India
| | - Uday Kulkarni
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Bexy Bensega
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anup J Devasia
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
43
|
Inaba H, Pui CH. Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:1926. [PMID: 33946897 PMCID: PMC8124693 DOI: 10.3390/jcm10091926] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
The outcomes of pediatric acute lymphoblastic leukemia (ALL) have improved remarkably during the last five decades. Such improvements were made possible by the incorporation of new diagnostic technologies, the effective administration of conventional chemotherapeutic agents, and the provision of better supportive care. With the 5-year survival rates now exceeding 90% in high-income countries, the goal for the next decade is to improve survival further toward 100% and to minimize treatment-related adverse effects. Based on genome-wide analyses, especially RNA-sequencing analyses, ALL can be classified into more than 20 B-lineage subtypes and more than 10 T-lineage subtypes with prognostic and therapeutic implications. Response to treatment is another critical prognostic factor, and detailed analysis of minimal residual disease can detect levels as low as one ALL cell among 1 million total cells. Such detailed analysis can facilitate the rational use of molecular targeted therapy and immunotherapy, which have emerged as new treatment strategies that can replace or reduce the use of conventional chemotherapy.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|