1
|
Kim M, Han JH, Ahn J, Kim E, Bang CH, Kim C, Lee JH, Choi W. In vivo 3D photoacoustic and ultrasound analysis of hypopigmented skin lesions: A pilot study. PHOTOACOUSTICS 2025; 43:100705. [PMID: 40161359 PMCID: PMC11951020 DOI: 10.1016/j.pacs.2025.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 04/02/2025]
Abstract
Vitiligo needs early identification for proper intervention. Current adjunct diagnostic methods rely mostly on subjective visual inspection. Thus, identification of early or atypical vitiligo lesions among other hypopigmentation disorders may pose challenges. To overcome this, we investigate the feasibility of a three-dimensional (3D) photoacoustic (PA) and ultrasound (US) imaging technique as a new adjuvant analytic tool providing quantitative characterization of hypopigmentation features. This cross-sectional study was conducted at Seoul St. Mary's Hospital (Seoul, Republic of Korea) between August 2022 and January 2024. Lesions diagnosed vitiligo or IGH in locations that could safely be irradiated with laser were analyzed with 3D PA/US imaging along with the conventional diagnostic methods. A total of 53 lesions consisted of 36 vitiligo lesions and 17 IGH lesions from 39 participants with confirmed diagnosis were analyzed. The PA amplitude greatly differed between normal skin and hypopigmentation lesions, and the mean PA amplitudes of vitiligo lesions were slightly higher than that of IGH [mean (standard deviation, SD): vitiligo: 0.117 (0.043); IGH: 0.135 (0.028)]. The local SD of the PA amplitude were higher in IGH than in vitiligo lesions [vitiligo: 0.043 (0.018); IGH: 0.067 (0.017)]. The mean PA slope across the lesion boundary was significantly higher in IGH than in vitiligo [vitiligo: 0.173 (0.061); IGH: 0.342 (0.099)], whereas the PA peak depth was deeper in vitiligo than in IGH [vitiligo: 0.568 (0.262); IGH: 0.266 (0.116)]. Unlike conventional qualitative methods, 3D PA/US imaging can non-invasively provide quantitative metrics which might aid in the differentiation of vitiligo from IGH lesions.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, POSTECH-CATHOLIC Biomedical Engineering Institute, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ju Hee Han
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, POSTECH-CATHOLIC Biomedical Engineering Institute, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Esther Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hwan Bang
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, and Medical Science and Engineering, POSTECH-CATHOLIC Biomedical Engineering Institute, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wonseok Choi
- Department of Biomedical Engineering and Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Li W, Zhong X, Huang J, Bai X, Liang Y, Cheng L, Jin L, Tang HC, Lai Y, Guan BO. Wavelength-time-division multiplexed fiber-optic sensor array for wide-field photoacoustic microscopy. PHOTOACOUSTICS 2025; 43:100725. [PMID: 40331015 PMCID: PMC12051156 DOI: 10.1016/j.pacs.2025.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Photoacoustic microscopy (PAM) faces a fundamental trade-off between detection sensitivity and field of view (FOV). While optical ultrasound sensors offer high-sensitivity unfocused detection, implementing multichannel detection remains challenging. Here, we present a wavelength-time-division multiplexed (WTDM) fiber-optic sensor array that assigns distinct wavelengths to individual sensors and employs varying-length delay fibers for temporal separation, enabling efficient multichannel detection through a single photodetector. Using a 4-element sensor array, we achieved an expanded FOV of 5 × 8 mm² while maintaining high temporal resolution (160 kHz A-line rate, 0.25 Hz frame rate) and microscopic spatial resolution (10.7 μm). The system's capabilities were validated through comparative monitoring of cerebral and intestinal hemodynamics in mice during hypercapnia challenge, revealing distinct temporal patterns with notably delayed recovery in cerebral vascular response compared to intestinal vasculature. This WTDM approach establishes a promising platform for large-field, high-speed photoacoustic imaging in biomedical applications.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Xiaoxuan Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jie Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Xue Bai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Linghao Cheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Long Jin
- MOE Key Laboratory of Laser Life Science, Guangdong Key Laboratory of Laser Life Science, School of Optoelectronic Science & Engineering, South China Normal University, Guangzhou, China
| | - Hao-Cheng Tang
- Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinyan Lai
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Lei H, Cui H, Xia Y, Sun F, Zhang W. Illuminating Hope for Tumors: The Progress of Light-Activated Nanomaterials in Skin Cancer. Int J Nanomedicine 2025; 20:5081-5118. [PMID: 40264819 PMCID: PMC12013650 DOI: 10.2147/ijn.s506000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Skin cancer is a common malignant tumor that poses significant global health and economic burdens. The main clinical types include malignant melanoma and non-melanoma. Complications such as post-surgical recurrence, wound formation, or disfigurement can severely impact the patient's mental well-being. Traditional treatments such as surgery, chemotherapy, radiation therapy, and immunotherapy often face limitations. These challenges not only reduce the effectiveness of treatments but also negatively impact patients' quality of life. Phototherapy, a widely used and long-standing method in dermatology, presents a promising alternative for skin cancer treatment. Light-triggered nanomaterials further enhance the potential of phototherapy by offering advantages such as improved therapeutic precision, controlled drug release, minimal invasiveness, and reduced damage to surrounding healthy tissues. This review summarizes the application of light-triggered nanomaterials in skin cancer treatment, focusing on the principles, advantages, and design strategies of photodynamic therapy (PDT), photothermal therapy (PTT), and photoacoustic therapy (PAT). In this manuscript we have an in-depth discussion on overcoming translational barriers, including strategies to enhance light penetration, mitigate toxicity, reduce production costs, and optimize delivery systems. Additionally, we discuss the challenges associated with their clinical translation, including limited light penetration in deep tissues, potential toxicity, high production costs, and the need for advanced delivery systems.
Collapse
Affiliation(s)
- Huaqing Lei
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, People’s Republic of China
| | - Hengqing Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Institute of Aesthetic Plastic Surgery and Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yu Xia
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Fujia Sun
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Huang C, Zheng E, Zheng W, Zhang H, Cheng Y, Zhang X, Shijo V, Bing RW, Komornicki I, Harris LM, Bonaccio E, Takabe K, Zhang E, Xu W, Xia J. Enhanced clinical photoacoustic vascular imaging through a skin localization network and adaptive weighting. PHOTOACOUSTICS 2025; 42:100690. [PMID: 39916976 PMCID: PMC11800082 DOI: 10.1016/j.pacs.2025.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Photoacoustic tomography (PAT) is an emerging imaging modality with widespread applications in both preclinical and clinical studies. Despite its promising capabilities to provide high-resolution images, the visualization of vessels might be hampered by skin signals and attenuation in tissues. In this study, we have introduced a framework to retrieve deep vessels. It combines a deep learning network to segment skin layers and an adaptive weighting algorithm to compensate for attenuation. Evaluation of enhancement using vessel occupancy metrics and signal-to-noise ratio (SNR) demonstrates that the proposed method significantly recovers deep vessels across various body positions and skin tones. These findings indicate the method's potential to enhance quantitative analysis in preclinical and clinical photoacoustic research.
Collapse
Affiliation(s)
- Chuqin Huang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Wenhan Zheng
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Yanda Cheng
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Xiaoyu Zhang
- Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Varun Shijo
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
- Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Robert W. Bing
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Isabel Komornicki
- Department of Surgery, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Linda M. Harris
- Department of Surgery, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Ermelinda Bonaccio
- Department of Breast Imaging, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, United States
| | - Kazuaki Takabe
- Department of Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Emma Zhang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Wenyao Xu
- Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
- Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14228, United States
| |
Collapse
|
5
|
Yang M, Qu Z, Amjadian M, Tang X, Chen J, Wang L. All-fiber three-wavelength laser for functional photoacoustic microscopy. PHOTOACOUSTICS 2025; 42:100703. [PMID: 40084182 PMCID: PMC11905847 DOI: 10.1016/j.pacs.2025.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Advanced multi-wavelength pulsed laser is a key technique for functional optical-resolution photoacoustic microscopy (OR-PAM). By utilizing the stimulated Raman scattering (SRS) effect, we can generate various wavelengths from a single-wavelength pump laser, offering a simple and cost-effective solution for OR-PAM. However, existing multi-wavelength SRS lasers typically require fine alignment of many free-space optical components with single-mode fibers, which are susceptible to mechanical disturbances and temperature fluctuations, leading to high maintenance costs. To address this challenge, we develop an all-fiber three-wavelength SRS laser source for functional OR-PAM. A pump laser beam is launched into an optical fiber network, which splits and delays these laser pulses and generates different optical wavelengths in different fiber branches, and then merges them at the output end of the fiber network. This approach requires only one instance of fiber launching, dramatically simplifying the alignment and improving the laser stability. Using a decoding algorithm, we can separate the PA signals from different optical wavelengths and then calculate oxygen saturation (sO2) and flow speed. The SRS fiber network provides stable energy ratios among different optical wavelengths during long-time operation. We use the all-fiber OR-PAM system to monitor the brain function for four hours, demonstrating exceptional stability in functional imaging. The small size, simple structure, and low cost make it suitable for many preclinical and clinical applications.
Collapse
Affiliation(s)
- Mingxuan Yang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
| | - Zheng Qu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
| | - Mohammadreza Amjadian
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
| | - Xu Tang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
| | - Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
- School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong 518057, China
| |
Collapse
|
6
|
Ahn J, Choi H, Lim S, Kim JY, Park J. Wide-Field High-Speed Scanning Acoustic/Photoacoustic Microscopy for Whole-Body Imaging of Small Animals. BIOSENSORS 2025; 15:200. [PMID: 40277516 PMCID: PMC12024576 DOI: 10.3390/bios15040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Photoacoustic (PA) imaging combines optical contrast with ultrasound (US) detection, enabling high-resolution imaging of biological tissues with greater penetration depth than conventional optical techniques. Among its various implementations, photoacoustic microscopy (PAM) achieves micrometer-scale resolution by focusing laser excitation and detecting ultrasonic signals, allowing for the detailed visualization of microvascular structures and fine tissue morphology. Over the last decade, PAM imaging speed has significantly increased by adopting PA scanners that steer optical and acoustic waves. However, these scanners must be placed after focusing optics to co-align the waves on a spot, which creates bent focal lines along the scanning direction and limits the scanning range. To achieve wide-field imaging, various image mosaic algorithms have been applied, but these methods require multiple manual operations, which take more time than the imaging itself. In this study, we developed a wide-field, high-speed scanning acoustic/photoacoustic microscopy (SA/PAM) system equipped with a transparent ultrasound transducer and a moving magnet linear stage, which eliminates the need for complex mosaic algorithms. This system enables wide-field imaging up to 50 × 50 mm2 while maintaining high lateral resolution, achieving an imaging speed of 50 Hz in a B-scan image. Through in vivo mouse US/PA imaging, the system demonstrated its capability to visualize blood vessels and organs across the whole body of small animals. These findings suggest that the SA/PAM system is a practical tool for biomedical research, allowing for efficient visualization of vascular networks and anatomical structures in various preclinical studies.
Collapse
Affiliation(s)
- Joongho Ahn
- Departments of Electrical Engineering and Convergence IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (J.A.); (H.C.)
- Opticho Inc., Pohang 37673, Republic of Korea
| | - Hyoseok Choi
- Departments of Electrical Engineering and Convergence IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (J.A.); (H.C.)
- Opticho Inc., Pohang 37673, Republic of Korea
| | - Seongjun Lim
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jin Young Kim
- Departments of Electrical Engineering and Convergence IT Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (J.A.); (H.C.)
- Opticho Inc., Pohang 37673, Republic of Korea
| | - Jeongwoo Park
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Advanced Bioconvergence, Kyungpook National University, Daegu 41566, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
7
|
Yao M, Fuentes-Domínguez R, Cavera SL, Pérez-Cota F, Smith RJ, Clark M. Optoacoustic lenses for lateral sub-optical resolution elasticity imaging. PHOTOACOUSTICS 2025; 41:100663. [PMID: 39649108 PMCID: PMC11625152 DOI: 10.1016/j.pacs.2024.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/10/2024]
Abstract
In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time. Agreement of the experiment with a numerical model suggests that we can generate a focused acoustic beam down to ∼ 250 nm. A clear focusing effect is observed experimentally as a modulation of the envelope of the time-resolved Brillouin scattering (TRBS) signal. These findings are a crucial step toward their application in high-resolution acoustic microscopy. This work experimentally demonstrates a method to narrow the lateral size of picosecond laser-generated phonon fields in an aqueous environment, making it well-suited for 3D imaging applications in biological systems using TRBS.
Collapse
Affiliation(s)
- Mengting Yao
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom
| | - Rafael Fuentes-Domínguez
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom
| | - Salvatore La Cavera
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom
| | - Fernando Pérez-Cota
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom
| | - Richard J. Smith
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom
| | - Matt Clark
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom
| |
Collapse
|
8
|
Barulin A, Barulina E, Oh DK, Jo Y, Park H, Park S, Kye H, Kim J, Yoo J, Kim J, Bak G, Kim Y, Kang H, Park Y, Park JC, Rho J, Park B, Kim I. Axially multifocal metalens for 3D volumetric photoacoustic imaging of neuromelanin in live brain organoid. SCIENCE ADVANCES 2025; 11:eadr0654. [PMID: 39813359 PMCID: PMC11734735 DOI: 10.1126/sciadv.adr0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Optical resolution photoacoustic imaging of uneven samples without z-scanning is transformative for the fast analysis and diagnosis of diseases. However, current approaches to elongate the depth of field (DOF) typically imply cumbersome postprocessing procedures, bulky optical element ensembles, or substantial excitation beam side lobes. Metasurface technology allows for the phase modulation of light and the miniaturization of imaging systems to wavelength-size thickness. Here, we propose a metalens composed of submicrometer-thick titanium oxide nanopillars, which generates an elongated beam of diffraction-limited diameter with an aspect ratio of 286 and a uniform intensity throughout the DOF. The metalens enhances visualization of phantom samples with tilted surfaces compared to conventional lenses. Moreover, the volumetric imaging of neuromelanin is facilitated for depths of up to 500 micrometers within the human midbrain and forebrain organoids that are 3D biological models of human brain regions. This approach provides a miniaturized platform for neurodegenerative disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russia
| | - Elena Barulina
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yongjae Jo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemi Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soomin Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunjun Kye
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeesu Kim
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jinhee Yoo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junhyung Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyusoo Bak
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yangkyu Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jong-Chan Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Qiu C, Zhang Z, Xu Z, Qiao L, Ning L, Zhang S, Su M, Wu W, Song K, Xu Z, Chen LQ, Zheng H, Liu C, Qiu W, Li F. Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging. Nat Commun 2024; 15:10580. [PMID: 39632872 PMCID: PMC11618688 DOI: 10.1038/s41467-024-55032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Photoacoustic imaging is a promising non-invasive functional imaging modality for fundamental research and clinical diagnosis. However, achieving capillary-level resolution, wide field-of-view, and high frame rates remains challenging. To address this, we propose a transparent ultrasonic transducer design using our developed transparent Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Our fabrication technique incorporates quartz-glass-and-epoxy matching layers with low-resistance indium-tin-oxide electrodes through a brass-ring based structure, enabling a high frequency (28.5 MHz), wide bandwidth (78%), and enhanced pulse-echo sensitivity (2.5 V under 2-μJ pulse excitation). Our Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3-based transparent ultrasonic transducer demonstrates a four-fold enhancement in photoacoustic detection sensitivity when compared to the LiNbO3-based counterpart, leading to a 13 dB improvement of signal-to-noise ratio in microvascular photoacoustic imaging. This enables dynamic monitoring of mouse cerebral cortex microvasculature during seizures at 0.8 Hz frame rates over a 1.5 × 1.5 mm2 field-of-view. Our work paves the way for high-performance and compact photoacoustic imaging systems using advanced piezoelectric materials.
Collapse
Affiliation(s)
- Chaorui Qiu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Zhang
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liao Qiao
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Li Ning
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shujun Zhang
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, Australia
| | - Min Su
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weichang Wu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kexin Song
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhuo Xu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Long-Qing Chen
- Materials Research Institute, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Hairong Zheng
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Weibao Qiu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fei Li
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Kim D, Ahn J, Kim D, Kim JY, Yoo S, Lee JH, Ghosh P, Luke MC, Kim C. Quantitative volumetric photoacoustic assessment of vasoconstriction by topical corticosteroid application in mice skin. PHOTOACOUSTICS 2024; 40:100658. [PMID: 39553383 PMCID: PMC11563941 DOI: 10.1016/j.pacs.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Topical corticosteroids manage inflammatory skin conditions via their action on the immune system. An effect of application of corticosteroids to the skin is skin blanching caused by peripheral vasoconstriction. This has been used to characterize, in some cases relative potency and also as a way to compare skin penetration. Chromameters have been used to assess skin blanching-the outcome of vasoconstriction caused by topical corticosteroids-but do not directly measure vasoconstriction. Here, we demonstrate quantitative volumetric photoacoustic microscopy (PAM) as a tool for directly assessing the vasoconstriction followed by topical corticosteroid application, noninvasively visualizing skin vasculature without any exogeneous contrast agent. We photoacoustically differentiated the vasoconstrictive ability of four topical corticosteroids in small animals through multiparametric analyses, offering detailed 3D insights into vasoconstrictive mechanisms across different skin depths. Our findings highlight the potential of PAM as a noninvasive tool for measurement of comparative vasoconstriction with potential for clinical, pharmaceutical, and bioequivalence applications.
Collapse
Affiliation(s)
- Donggyu Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Joongho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Donghyun Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jin Young Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Seungah Yoo
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Priyanka Ghosh
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Markham C. Luke
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| |
Collapse
|
11
|
Wang N, Yao J. Sound Out the Deep Clarity: Super-Resolution Photoacoustic Imaging at Depths. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1801-1813. [PMID: 39222445 PMCID: PMC11872017 DOI: 10.1109/tuffc.2024.3451986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photoacoustic imaging (PAI), also known as optoacoustic imaging, is a hybrid imaging modality that combines the rich contrast of optical imaging with the deep penetration of ultrasound (US) imaging. Over the past decade, PAI has been increasingly utilized in biomedical studies, providing high-resolution high-contrast images of endogenous and exogenous chromophores in various fundamental and clinical research. However, PAI faces challenges in achieving high imaging resolution and deep tissue penetration simultaneously, limited by the optical and acoustic interactions with tissues. Overcoming these limitations is crucial for maximizing the potential of PAI for biomedical applications. Recent advances in super-resolution (SR) PAI have opened new possibilities for achieving high imaging resolution at greater depths. This review provides a comprehensive summary of these promising strategies, highlights their representative applications, envisions the potential future directions, and discusses the broader impact on biomedical imaging.
Collapse
|
12
|
Zhang J, Shi Y, Zhang Y, Liu H, Li S, Liu L. Resolution Enhancement Strategies in Photoacoustic Microscopy: A Comprehensive Review. MICROMACHINES 2024; 15:1463. [PMID: 39770216 PMCID: PMC11677640 DOI: 10.3390/mi15121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Photoacoustic imaging has emerged as a promising modality for medical imaging since its introduction. Photoacoustic microscopy (PAM), which is based on the photoacoustic effect, combines the advantages of both optical and acoustic imaging modalities. PAM facilitates high-sensitivity, high-resolution, non-contact, and non-invasive imaging by employing optical absorption as its primary contrast mechanism. The ability of PAM to specifically image parameters such as blood oxygenation and melanin content makes it a valuable addition to the suite of modern biomedical imaging techniques. This review aims to provide a comprehensive overview of the diverse technical approaches and methods employed by researchers to enhance the resolution of photoacoustic microscopy. Firstly, the fundamental principles of the photoacoustic effect and photoacoustic imaging will be presented. Subsequently, resolution enhancement methods for both acoustic-resolution photoacoustic microscopy (AR-PAM) and optical-resolution photoacoustic microscopy (OR-PAM) will be discussed independently. Finally, the aforementioned resolution enhancement methods for photoacoustic microscopy will be critically evaluated, and the current challenges and future prospects of this technology will be summarized.
Collapse
Affiliation(s)
- Jinying Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314001, China
| | - Yifan Shi
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| | - Yexiaotong Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| | - Haoran Liu
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| | - Shihao Li
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| | - Linglu Liu
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| |
Collapse
|
13
|
Kim J, Heo D, Cho S, Ha M, Park J, Ahn J, Kim M, Kim D, Jung DH, Kim HH, Kim HM, Kim C. Enhanced dual-mode imaging: Superior photoacoustic and ultrasound endoscopy in live pigs using a transparent ultrasound transducer. SCIENCE ADVANCES 2024; 10:eadq9960. [PMID: 39576852 PMCID: PMC11584001 DOI: 10.1126/sciadv.adq9960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Dual-mode photoacoustic/ultrasound endoscopy (ePAUS) is a promising tool for preclinical and clinical interventions. To be clinically useful, ePAUS must deliver high-performance ultrasound imaging comparable to commercial systems and maintain high photoacoustic imaging performance at long working distances. This requires a transducer with an intact physical aperture and coaxial alignment of acoustic and optical beams within the probe, a challenging integration task. We present a high-performance ePAUS probe with a miniaturized, optically transparent ultrasonic transducer (TUT) called ePAUS-TUT. The 1.8-mm-diameter probe, fitting into standard endoscopic channels, aligns acoustic and optical beams efficiently, achieving commercial-level ultrasound and high-resolution photoacoustic imaging over long distances. These imaging capabilities were validated through in vivo imaging of a rat's rectum and a pig's esophagus. The ePAUS-TUT system substantially enhances feasibility and potential for clinical applications.
Collapse
Affiliation(s)
- Jaewoo Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Opticho Inc., Pohang 37673 Republic of Korea
| | - Dasom Heo
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seonghee Cho
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Opticho Inc., Pohang 37673 Republic of Korea
| | - Mingyu Ha
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeongwoo Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Biomedical Convergence Science and Technology, School of Convergence, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joongho Ahn
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Opticho Inc., Pohang 37673 Republic of Korea
| | - Minsu Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Donggyu Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Da Hyun Jung
- Department of Gastroenterology, Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyung Ham Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hee Man Kim
- Cancer Prevention Center, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Opticho Inc., Pohang 37673 Republic of Korea
| |
Collapse
|
14
|
Zhu X, Menozzi L, Cho SW, Yao J. High speed innovations in photoacoustic microscopy. NPJ IMAGING 2024; 2:46. [PMID: 39525278 PMCID: PMC11541221 DOI: 10.1038/s44303-024-00052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Photoacoustic microscopy (PAM) is a key implementation of photoacoustic imaging (PAI). PAM merges rich optical contrast with deep acoustic detection, allowing for broad biomedical research and diverse clinical applications. Recent advancements in PAM technology have dramatically improved its imaging speed, enabling real-time observation of dynamic biological processes in vivo and motion-sensitive targets in situ, such as brain activities and placental development. This review introduces the engineering principles of high-speed PAM, focusing on various excitation and detection methods, each presenting unique benefits and challenges. Driven by these technological innovations, high-speed PAM has expanded its applications across fundamental, preclinical, and clinical fields. We highlight these notable applications, discuss ongoing technical challenges, and outline future directions for the development of high-speed PAM.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Soon-Woo Cho
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
15
|
Kim J, Choi S, Kim C, Kim J, Park B. Review on Photoacoustic Monitoring after Drug Delivery: From Label-Free Biomarkers to Pharmacokinetics Agents. Pharmaceutics 2024; 16:1240. [PMID: 39458572 PMCID: PMC11510789 DOI: 10.3390/pharmaceutics16101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Photoacoustic imaging (PAI) is an emerging noninvasive and label-free method for capturing the vasculature, hemodynamics, and physiological responses following drug delivery. PAI combines the advantages of optical and acoustic imaging to provide high-resolution images with multiparametric information. In recent decades, PAI's abilities have been used to determine reactivity after the administration of various drugs. This study investigates photoacoustic imaging as a label-free method of monitoring drug delivery responses by observing changes in the vascular system and oxygen saturation levels across various biological tissues. In addition, we discuss photoacoustic studies that monitor the biodistribution and pharmacokinetics of exogenous contrast agents, offering contrast-enhanced imaging of diseased regions. Finally, we demonstrate the crucial role of photoacoustic imaging in understanding drug delivery mechanisms and treatment processes.
Collapse
Affiliation(s)
- Jiwoong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Seongwook Choi
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Yoon C, Park E, Misra S, Kim JY, Baik JW, Kim KG, Jung CK, Kim C. Deep learning-based virtual staining, segmentation, and classification in label-free photoacoustic histology of human specimens. LIGHT, SCIENCE & APPLICATIONS 2024; 13:226. [PMID: 39223152 PMCID: PMC11369251 DOI: 10.1038/s41377-024-01554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
In pathological diagnostics, histological images highlight the oncological features of excised specimens, but they require laborious and costly staining procedures. Despite recent innovations in label-free microscopy that simplify complex staining procedures, technical limitations and inadequate histological visualization are still problems in clinical settings. Here, we demonstrate an interconnected deep learning (DL)-based framework for performing automated virtual staining, segmentation, and classification in label-free photoacoustic histology (PAH) of human specimens. The framework comprises three components: (1) an explainable contrastive unpaired translation (E-CUT) method for virtual H&E (VHE) staining, (2) an U-net architecture for feature segmentation, and (3) a DL-based stepwise feature fusion method (StepFF) for classification. The framework demonstrates promising performance at each step of its application to human liver cancers. In virtual staining, the E-CUT preserves the morphological aspects of the cell nucleus and cytoplasm, making VHE images highly similar to real H&E ones. In segmentation, various features (e.g., the cell area, number of cells, and the distance between cell nuclei) have been successfully segmented in VHE images. Finally, by using deep feature vectors from PAH, VHE, and segmented images, StepFF has achieved a 98.00% classification accuracy, compared to the 94.80% accuracy of conventional PAH classification. In particular, StepFF's classification reached a sensitivity of 100% based on the evaluation of three pathologists, demonstrating its applicability in real clinical settings. This series of DL methods for label-free PAH has great potential as a practical clinical strategy for digital pathology.
Collapse
Affiliation(s)
- Chiho Yoon
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Eunwoo Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sampa Misra
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Jin Woo Baik
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Kwang Gi Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
| | - Chan Kwon Jung
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Opticho Inc., Pohang, Republic of Korea.
| |
Collapse
|
17
|
Wang Z, Yang F, Zhang W, Xiong K, Yang S. Towards in vivo photoacoustic human imaging: Shining a new light on clinical diagnostics. FUNDAMENTAL RESEARCH 2024; 4:1314-1330. [PMID: 39431136 PMCID: PMC11489505 DOI: 10.1016/j.fmre.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Multiscale visualization of human anatomical structures is revolutionizing clinical diagnosis and treatment. As one of the most promising clinical diagnostic techniques, photoacoustic imaging (PAI), or optoacoustic imaging, bridges the spatial-resolution gap between pure optical and ultrasonic imaging techniques, by the modes of optical illumination and acoustic detection. PAI can non-invasively capture multiple optical contrasts from the endogenous agents such as oxygenated/deoxygenated hemoglobin, lipid and melanin or a variety of exogenous specific biomarkers to reveal anatomy, function, and molecular for biological tissues in vivo, showing significant potential in clinical diagnostics. In 2001, the worldwide first clinical prototype of the photoacoustic system was used to screen breast cancer in vivo, which opened the prelude to photoacoustic clinical diagnostics. Over the past two decades, PAI has achieved monumental discoveries and applications in human imaging. Progress towards preclinical/clinical applications includes breast, skin, lymphatics, bowel, thyroid, ovarian, prostate, and brain imaging, etc., and there is no doubt that PAI is opening new avenues to realize early diagnosis and precise treatment of human diseases. In this review, the breakthrough researches and key applications of photoacoustic human imaging in vivo are emphatically summarized, which demonstrates the technical superiorities and emerging applications of photoacoustic human imaging in clinical diagnostics, providing clinical translational orientations for the photoacoustic community and clinicians. The perspectives on potential improvements of photoacoustic human imaging are finally highlighted.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
18
|
Sgouralis I, Xu LWQ, Jalihal AP, Kilic Z, Walter NG, Pressé S. BNP-Track: a framework for superresolved tracking. Nat Methods 2024; 21:1716-1724. [PMID: 39039336 PMCID: PMC11399105 DOI: 10.1038/s41592-024-02349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024]
Abstract
Superresolution tools, such as PALM and STORM, provide nanoscale localization accuracy by relying on rare photophysical events, limiting these methods to static samples. By contrast, here, we extend superresolution to dynamics without relying on photodynamics by simultaneously determining emitter numbers and their tracks (localization and linking) with the same localization accuracy per frame as widefield superresolution on immobilized emitters under similar imaging conditions (≈50 nm). We demonstrate our Bayesian nonparametric track (BNP-Track) framework on both in cellulo and synthetic data. BNP-Track develops a joint (posterior) distribution that learns and quantifies uncertainty over emitter numbers and their associated tracks propagated from shot noise, camera artifacts, pixelation, background and out-of-focus motion. In doing so, we integrate spatiotemporal information into our distribution, which is otherwise compromised by modularly determining emitter numbers and localizing and linking emitter positions across frames. For this reason, BNP-Track remains accurate in crowding regimens beyond those accessible to other single-particle tracking tools.
Collapse
Affiliation(s)
- Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - Lance W Q Xu
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Ameya P Jalihal
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA.
- Department of Physics, Arizona State University, Tempe, AZ, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
19
|
Hong X, Tang F, Wang L, Chen J. Unsupervised deep learning enables real-time image registration of fast-scanning optical-resolution photoacoustic microscopy. PHOTOACOUSTICS 2024; 38:100632. [PMID: 39100197 PMCID: PMC11296048 DOI: 10.1016/j.pacs.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
A fast scanner of optical-resolution photoacoustic microscopy is inherently vulnerable to perturbation, leading to severe image distortion and significant misalignment among multiple 2D or 3D images. Restoration and registration of these images is critical for accurately quantifying dynamic information in long-term imaging. However, traditional registration algorithms face a great challenge in computational throughput. Here, we develop an unsupervised deep learning based registration network to achieve real-time image restoration and registration. This method can correct artifacts from B-scan distortion and remove misalignment among adjacent and repetitive images in real time. Compared with conventional intensity based registration algorithms, the throughput of the developed algorithm is improved by 50 times. After training, the new deep learning method performs better than conventional feature based image registration algorithms. The results show that the proposed method can accurately restore and register the images of fast-scanning photoacoustic microscopy in real time, offering a powerful tool to extract dynamic vascular structural and functional information.
Collapse
Affiliation(s)
- Xiaobin Hong
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Furong Tang
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China
| | - Jiangbo Chen
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
20
|
Kim J, Lee J, Choi S, Lee H, Yang J, Jeon H, Sung M, Kim WJ, Kim C. 3D Multiparametric Photoacoustic Computed Tomography of Primary and Metastatic Tumors in Living Mice. ACS NANO 2024; 18:18176-18190. [PMID: 38941553 PMCID: PMC11256897 DOI: 10.1021/acsnano.3c12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Photoacoustic computed tomography (PACT), an emerging imaging modality in preclinical cancer research, can provide multiparametric 3D information about structures, physiological functions, and pharmacokinetics. Here, we demonstrate the use of high-definition 3D multiparametric PACT imaging of both primary and metastatic tumors in living mice to noninvasively monitor angiogenesis, carcinogenesis, hypoxia, and pharmacokinetics. The high-definition PACT system with a 1024-element hemispherical ultrasound transducer array provides an isotropic spatial resolution of 380 μm, an effective volumetric field-of-view of 12.8 mm × 12.8 mm × 12.8 mm without scanning, and an acquisition time of <30 s for a whole mouse body. Initially, we monitor the structural progression of the tumor microenvironment (e.g., angiogenesis and vessel tortuosity) after tumor cell inoculation. Then, we analyze the change in oxygen saturation of the tumor during carcinogenesis, verifying induced hypoxia in the tumor's core region. Finally, the whole-body pharmacokinetics are photoacoustically imaged after intravenous injection of micelle-loaded IR780 dye, and the in vivo PACT results are validated in vivo and ex vivo by fluorescence imaging. By employing the premium PACT system and applying multiparametric analyses to subcutaneous primary tumors and metastatic liver tumors, we demonstrate that this PACT system can provide multiparametric analyses for comprehensive cancer research.
Collapse
Affiliation(s)
- Jiwoong Kim
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jihye Lee
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seongwook Choi
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyori Lee
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jinge Yang
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyunseo Jeon
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minsik Sung
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Won Jong Kim
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chulhong Kim
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
21
|
Yang F, Wang Z, Shi W, Wang M, Ma R, Zhang W, Li X, Wang E, Xie W, Zhang Z, Shen Q, Zhou F, Yang S. Advancing insights into in vivo meningeal lymphatic vessels with stereoscopic wide-field photoacoustic microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:96. [PMID: 38664374 PMCID: PMC11045809 DOI: 10.1038/s41377-024-01450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Meningeal lymphatic vessels (mLVs) play a pivotal role in regulating metabolic waste from cerebrospinal fluid (CSF). However, the current limitations in field of view and resolution of existing imaging techniques impede understanding the stereoscopic morphology and dynamic behavior of mLVs in vivo. Here, we utilized dual-contrast functional photoacoustic microscopy to achieve wide-field intravital imaging of the lymphatic system, including mLVs and glymphatic pathways. The stereoscopic photoacoustic microscopy based on opto-acoustic confocal features has a depth imaging capability of 3.75 mm, facilitating differentiation between mLVs on the meninges and glymphatic pathways within the brain parenchyma. Subsequently, using this imaging technique, we were able to visualize the dynamic drainage of mLVs and identify a peak drainage period occurring around 20-40 min after injection, along with determining the flow direction from CSF to lymph nodes. Inspiringly, in the Alzheimer's disease (AD) mouse model, we observed that AD mice exhibit a ~ 70% reduction in drainage volume of mLVs compared to wild-type mice. With the development of AD, there is be continued decline in mLVs drainage volume. This finding clearly demonstrates that the AD mouse model has impaired CSF drainage. Our study opens up a horizon for understanding the brain's drainage mechanism and dissecting mLVs-associated neurological disorders.
Collapse
Affiliation(s)
- Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenbin Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Miao Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570100, China
| | - Rui Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Erqi Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenjie Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhan Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Feifan Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570100, China.
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Chang KW, Karthikesh MS, Zhu Y, Hudson HM, Barbay S, Bundy D, Guggenmos DJ, Frost S, Nudo RJ, Wang X, Yang X. Photoacoustic imaging of squirrel monkey cortical responses induced by peripheral mechanical stimulation. JOURNAL OF BIOPHOTONICS 2024; 17:e202300347. [PMID: 38171947 PMCID: PMC10961203 DOI: 10.1002/jbio.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | | | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Heather M. Hudson
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Scott Barbay
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - David Bundy
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - David J. Guggenmos
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Shawn Frost
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Randolph J. Nudo
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Xinmai Yang
- Bioengineering Graduate Program and Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, 66045, United States
| |
Collapse
|
23
|
Nguyen VP, Hu J, Zhe J, Ramasamy S, Ahmed U, Paulus YM. Advanced nanomaterials for imaging of eye diseases. ADMET AND DMPK 2024; 12:269-298. [PMID: 38720929 PMCID: PMC11075159 DOI: 10.5599/admet.2182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Indexed: 05/12/2024] Open
Abstract
Background and purpose Vision impairment and blindness present significant global challenges, with common causes including age-related macular degeneration, diabetes, retinitis pigmentosa, and glaucoma. Advanced imaging tools, such as optical coherence tomography, fundus photography, photoacoustic microscopy, and fluorescence imaging, play a crucial role in improving therapeutic interventions and diagnostic methods. Contrast agents are often employed with these tools to enhance image clarity and signal detection. This review aims to explore the commonly used contrast agents in ocular disease imaging. Experimental approach The first section of the review delves into advanced ophthalmic imaging techniques, outlining their importance in addressing vision-related issues. The emphasis is on the efficacy of therapeutic interventions and diagnostic methods, establishing a foundation for the subsequent exploration of contrast agents. Key results This review focuses on the role of contrast agents, with a specific emphasis on gold nanoparticles, particularly gold nanorods. The discussion highlights how these contrast agents optimize imaging in ocular disease diagnosis and monitoring, emphasizing their unique properties that enhance signal detection and imaging precision. Conclusion The final section, we explores both organic and inorganic contrast agents and their applications in specific conditions such as choroidal neovascularization, retinal neovascularization, and stem cell tracking. The review concludes by addressing the limitations of current contrast agent usage and discussing potential future clinical applications. This comprehensive exploration contributes to advancing our understanding of contrast agents in ocular disease imaging and sets the stage for further research and development in the field.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sanjay Ramasamy
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Umayr Ahmed
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
24
|
Zhao M, Zhang Q, Li D, Tao C, Liu X. Highly sensitive self-focused ultrasound transducer with a bionic back-reflector for multiscale-resolution photoacoustic microscopy. OPTICS EXPRESS 2024; 32:1501-1511. [PMID: 38297700 DOI: 10.1364/oe.513574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
In this study, we designed a self-focused ultrasonic transducer made of polyvinylidene fluoride (PVDF). This transducer involves a back-reflector, which is modeled after tapetum lucidum in the eyes of some nocturnal animals. The bionic structure reflects the ultrasound, which passes through the PVDF membrane, back to PVDF and provides a second chance for the PVDF to convert the ultrasound to electric signals. This design increases the amount of ultrasound absorbed by the PVDF, thereby improving the detection sensitivity. Both ultrasonic and photoacoustic (PA) experiments were conduct to characterize the performance of the transducer. The results show that the fabricated transducer has a center frequency of 13.07 MHz, and a bandwidth of 96% at -6 dB. With an acoustic numerical aperture (NA) of 0.64, the transducer provides a lateral resolution of 140µm. Importantly, the bionic design improves the detection sensitivity of the transducer about 30%. Finally, we apply the fabricated transducer to optical-resolution (OR) and acoustic-resolution photoacoustic microscopy (AR-PAM) to achieve multiscale-resolution PA imaging. Imaging of the bamboo leaf and the leaf skeleton demonstrates that the proposed transducer can provide high spatial resolution, better imaging intensity and contrast. Therefore, the proposed transducer design will be useful to enhance the performance of multiscale-resolution PAM.
Collapse
|
25
|
Cho SW, Nguyen VT, DiSpirito A, Yang J, Kim CS, Yao J. Sounding out the dynamics: a concise review of high-speed photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11521. [PMID: 38323297 PMCID: PMC10846286 DOI: 10.1117/1.jbo.29.s1.s11521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Significance Photoacoustic microscopy (PAM) offers advantages in high-resolution and high-contrast imaging of biomedical chromophores. The speed of imaging is critical for leveraging these benefits in both preclinical and clinical settings. Ongoing technological innovations have substantially boosted PAM's imaging speed, enabling real-time monitoring of dynamic biological processes. Aim This concise review synthesizes historical context and current advancements in high-speed PAM, with an emphasis on developments enabled by ultrafast lasers, scanning mechanisms, and advanced imaging processing methods. Approach We examine cutting-edge innovations across multiple facets of PAM, including light sources, scanning and detection systems, and computational techniques and explore their representative applications in biomedical research. Results This work delineates the challenges that persist in achieving optimal high-speed PAM performance and forecasts its prospective impact on biomedical imaging. Conclusions Recognizing the current limitations, breaking through the drawbacks, and adopting the optimal combination of each technology will lead to the realization of ultimate high-speed PAM for both fundamental research and clinical translation.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Pusan National University, Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Busan, Republic of Korea
| | - Van Tu Nguyen
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Anthony DiSpirito
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Joseph Yang
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Chang-Seok Kim
- Pusan National University, Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Busan, Republic of Korea
| | - Junjie Yao
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
26
|
Zafar M, McGuire LS, Ranjbaran SM, Matchynski JI, Manwar R, Conti AC, Perrine SA, Avanaki K. Spiral laser scanning photoacoustic microscopy for functional brain imaging in rats. NEUROPHOTONICS 2024; 11:015007. [PMID: 38344025 PMCID: PMC10855442 DOI: 10.1117/1.nph.11.1.015007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 11/22/2024]
Abstract
Significance There are many neuroscience questions that can be answered by a high-resolution functional brain imaging system. Such a system would require the capability to visualize vasculature and measure neural activity by imaging the entire brain continually and in rapid succession in order to capture hemodynamic changes. Utilizing optical excitation and acoustic detection, photoacoustic technology enables label-free quantification of changes in endogenous chromophores, such as oxyhemoglobin, deoxyhemoglobin, and total hemoglobin. Aim Our aim was to develop a sufficiently high-resolution, fast frame-rate, and wide field-of-view (FOV) photoacoustic microscopy (PAM) system for the purpose of imaging vasculature and hemodynamics in a rat brain. Approach Although the most PA microscopy systems use raster scanning (or less commonly Lissajous scanning), we have developed a simple-to-implement laser scanning optical resolution PAM system with spiral scanning (which we have named "spiral laser scanning photoacoustic microscopy" or sLS-PAM) to acquire an 18 mm diameter image at fast frame rate (more than 1 fps). Such a system is designed to permit continuous rat brain imaging without the introduction of photobleaching artifacts. Conclusion We demonstrated the functional imaging capability of the sLS-PAM system by imaging cerebral hemodynamics in response to whisker and electrical stimulation and used it for vascular imaging of a modeled brain injury. We believe that we have demonstrated the development of a simple-to-implement PAM system, which could become an affordable functional neuroimaging tool for researchers.
Collapse
Affiliation(s)
- Mohsin Zafar
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - Laura Stone McGuire
- University of Illinois at Chicago, Department of Neurosurgery, Chicago, Illinois, United States
| | - Seyed Mohsen Ranjbaran
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - James I Matchynski
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - Alana C Conti
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Detroit, Michigan, United States
| | - Shane A Perrine
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|
27
|
Harary T, Nagli M, Suleymanov N, Goykhman I, Rosenthal A. Large-field-of-view optical-resolution optoacoustic microscopy using a stationary silicon-photonics acoustic detector. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11511. [PMID: 38187934 PMCID: PMC10768684 DOI: 10.1117/1.jbo.29.s1.s11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Significance Optical-resolution optoacoustic microscopy (OR-OAM) enables label-free imaging of the microvasculature by using optical pulse excitation and acoustic detection, commonly performed by a focused optical beam and an ultrasound transducer. One of the main challenges of OR-OAM is the need to combine the excitation and detection in a coaxial configuration, often leading to a bulky setup that requires physically scanning the ultrasound transducer to achieve a large field of view. Aim The aim of this work is to develop an OR-OAM configuration that does not require physically scanning the ultrasound transducer or the acoustic beam path. Approach Our OR-OAM system is based on a non-coaxial configuration in which the detection is performed by a silicon-photonics acoustic detector (SPADE) with a semi-isotropic sensitivity. The system is demonstrated in both epi- and trans-illumination configurations, where in both configurations SPADE remains stationary during the imaging procedure and only the optical excitation beam is scanned. Results The system is showcased for imaging resolution targets and for the in vivo visualization of the microvasculature in a mouse ear. Optoacoustic imaging with focal spots down to 1.3 μ m , lateral resolution of 4 μ m , and a field of view higher than 4 mm in both lateral dimensions were demonstrated. Conclusions We showcase a new OR-OAM design, compatible with epi-illumination configuration. This setup enables relatively large fields of view without scanning the acoustic detector or acoustic beam path. Furthermore, it offers the potential for high-speed imaging within compact, miniature probe and could potentially facilitate the clinical translation of OR-OAM technology.
Collapse
Affiliation(s)
- Tamar Harary
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Michael Nagli
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Nathan Suleymanov
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Ilya Goykhman
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
- The Hebrew University of Jerusalem, Institute of Applied Physics and Institute of Chemistry, Faculty of Science, Jerusalem, Israel
| | - Amir Rosenthal
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| |
Collapse
|
28
|
Oh D, Lee D, Heo J, Kweon J, Yong U, Jang J, Ahn YJ, Kim C. Contrast Agent-Free 3D Renal Ultrafast Doppler Imaging Reveals Vascular Dysfunction in Acute and Diabetic Kidney Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303966. [PMID: 37847902 PMCID: PMC10754092 DOI: 10.1002/advs.202303966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/19/2023] [Indexed: 10/19/2023]
Abstract
To combat the irreversible decline in renal function associated with kidney disease, it is essential to establish non-invasive biomarkers for assessing renal microcirculation. However, the limited resolution and/or vascular sensitivity of existing diagnostic imaging techniques hinders the visualization of complex cortical vessels. Here, a 3D renal ultrafast Doppler (UFD) imaging system that uses a high ultrasound frequency (18 MHz) and ultrahigh frame rate (1 KHz per slice) to scan the entire volume of a rat's kidney in vivo is demonstrated. The system, which can visualize the full 3D renal vascular branching pyramid at a resolution of 167 µm without any contrast agent, is used to chronically and noninvasively monitor kidneys with acute kidney injury (AKI, 3 days) and diabetic kidney disease (DKD, 8 weeks). Multiparametric UFD analyses (e.g., vessel volume occupancy (VVO), fractional moving blood volume (FMBV), vessel number density (VND), and vessel tortuosity (VT)) describe rapid vascular rarefaction from AKI and long-term vascular degeneration from DKD, while the renal pathogeneses are validated by in vitro blood serum testing and stained histopathology. This work demonstrates the potential of 3D renal UFD to offer valuable insights into assessing kidney perfusion levels for future research in diabetes and kidney transplantation.
Collapse
Affiliation(s)
- Donghyeon Oh
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Donghyun Lee
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinseok Heo
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jooyoung Kweon
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Uijung Yong
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinah Jang
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Yong Joo Ahn
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Chulhong Kim
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
29
|
Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication 2023; 16:012003. [PMID: 37944186 PMCID: PMC10658349 DOI: 10.1088/1758-5090/ad0b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function. The review starts by providing a comprehensive overview of the entire bioprinting process, spanning from pre-bioprinting stages to post-printing processing, including perfusion and maturation. Next, recent advancements in vascularization strategies that can be seamlessly integrated with bioprinting are discussed. Further, tissue-specific examples illustrating how these vascularization approaches are customized for diverse anatomical tissues towards enhancing clinical relevance are discussed. Finally, the underexplored intraoperative bioprinting (IOB) was highlighted, which enables the direct reconstruction of tissues within defect sites, stressing on the possible synergy shaped by combining IOB with vascularization strategies for improved regeneration.
Collapse
Affiliation(s)
- Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Anwita Sarkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Irem Deniz Derman
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, United States of America
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
30
|
Barulin A, Park H, Park B, Kim I. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: A simulation study. PHOTOACOUSTICS 2023; 32:100545. [PMID: 37645253 PMCID: PMC10461252 DOI: 10.1016/j.pacs.2023.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Photoacoustic microscopy is advancing with research on utilizing ultraviolet and visible light. Dual-wavelength approaches are sought for observing DNA/RNA- and vascular-related disorders. However, the availability of high numerical aperture lenses covering both ultraviolet and visible wavelengths is severely limited due to challenges such as chromatic aberration in the optics. Herein, we present a groundbreaking proposal as a pioneering simulation study for incorporating multilayer metalenses into ultraviolet-visible photoacoustic microscopy. The proposed metalens has a thickness of 1.4 µm and high numerical aperture of 0.8. By arranging cylindrical hafnium oxide nanopillars, we design an achromatic transmissive lens for 266 and 532 nm wavelengths. The metalens achieves a diffraction-limited focal spot, surpassing commercially available objective lenses. Through three-dimensional photoacoustic simulation, we demonstrate high-resolution imaging with superior endogenous contrast of targets with ultraviolet and visible optical absorption bands. This metalens will open new possibilities for downsized multispectral photoacoustic microscopy in clinical and preclinical applications.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemi Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
31
|
Kim D, Ahn J, Park E, Kim JY, Kim C. In vivo quantitative photoacoustic monitoring of corticosteroid-induced vasoconstriction. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082805. [PMID: 36844430 PMCID: PMC9951467 DOI: 10.1117/1.jbo.28.8.082805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Significance Corticosteroids-commonly prescribed medications for skin diseases-inhibit the secretion of vasodilators, such as prostaglandin, thereby exerting anti-inflammatory action by constricting capillaries in the dermis. The effectiveness of corticosteroids is determined by the degree of vasoconstriction followed by skin whitening, namely, the blanching effect. However, the current method of observing the blanching effect indirectly evaluates the effects of corticosteroids. Aim In this study, we employed optical-resolution photoacoustic (PA) microscopy (OR-PAM) to directly visualize the blood vessels and quantitatively evaluate vasoconstriction. Approach Using OR-PAM, the vascular density in mice skin was monitored for 60 min after performing each experimental procedure for four groups, and the vasoconstriction was quantified. Volumetric PA data were segmented into the papillary dermis, reticular dermis, and hypodermis based on the vascular characteristics obtained through OR-PAM. The vasoconstrictive effect of each skin layer was quantified according to the dermatological treatment method. Results In the case of corticosteroid topical application, vasoconstriction was observed in the papillary ( 56.4 ± 10.9 % ) and reticular ( 45.1 ± 4.71 % ) dermis. For corticosteroid subcutaneous injection, constriction was observed solely in the reticular ( 49.5 ± 9.35 % ) dermis. In contrast, no vasoconstrictions were observed with nonsteroidal topical application. Conclusions Our results indicate that OR-PAM can quantitatively monitor the vasoconstriction induced by corticosteroids, thereby validating OR-PAMs potential as a practical evaluation tool for predicting the effectiveness of corticosteroids in dermatology.
Collapse
Affiliation(s)
- Donggyu Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Joongho Ahn
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Eunwoo Park
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Jin Young Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| |
Collapse
|
32
|
Zhang Y, Chen J, Zhang J, Zhu J, Liu C, Sun H, Wang L. Super-Low-Dose Functional and Molecular Photoacoustic Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302486. [PMID: 37310419 PMCID: PMC10427362 DOI: 10.1002/advs.202302486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/21/2023] [Indexed: 06/14/2023]
Abstract
Photoacoustic microscopy can image many biological molecules and nano-agents in vivo via low-scattering ultrasonic sensing. Insufficient sensitivity is a long-standing obstacle for imaging low-absorbing chromophores with less photobleaching or toxicity, reduced perturbation to delicate organs, and more choices of low-power lasers. Here, the photoacoustic probe design is collaboratively optimized and a spectral-spatial filter is implemented. A multi-spectral super-low-dose photoacoustic microscopy (SLD-PAM) is presented that improves the sensitivity by ≈33 times. SLD-PAM can visualize microvessels and quantify oxygen saturation in vivo with ≈1% of the maximum permissible exposure, dramatically reducing potential phototoxicity or perturbation to normal tissue function, especially in imaging of delicate tissues, such as the eye and the brain. Capitalizing on the high sensitivity, direct imaging of deoxyhemoglobin concentration is achieved without spectral unmixing, avoiding wavelength-dependent errors and computational noises. With reduced laser power, SLD-PAM can reduce photobleaching by ≈85%. It is also demonstrated that SLD-PAM achieves similar molecular imaging quality using 80% fewer contrast agents. Therefore, SLD-PAM enables the use of a broader range of low-absorbing nano-agents, small molecules, and genetically encoded biomarkers, as well as more types of low-power light sources in wide spectra. It is believed that SLD-PAM offers a powerful tool for anatomical, functional, and molecular imaging.
Collapse
Affiliation(s)
- Yachao Zhang
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Jiangbo Chen
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super‐Diamond and Advanced Films)City University of Hong KongHong KongSAR999077China
| | - Jingyi Zhu
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Chao Liu
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super‐Diamond and Advanced Films)City University of Hong KongHong KongSAR999077China
| | - Lidai Wang
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina518057
| |
Collapse
|
33
|
Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano- and micro- to macro-scale. NANO CONVERGENCE 2023; 10:29. [PMID: 37335405 PMCID: PMC10279631 DOI: 10.1186/s40580-023-00377-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Functional photoacoustic imaging is a promising biological imaging technique that offers such unique benefits as scalable resolution and imaging depth, as well as the ability to provide functional information. At nanoscale, photoacoustic imaging has provided super-resolution images of the surface light absorption characteristics of materials and of single organelles in cells. At the microscopic and macroscopic scales. photoacoustic imaging techniques have precisely measured and quantified various physiological parameters, such as oxygen saturation, vessel morphology, blood flow, and the metabolic rate of oxygen, in both human and animal subjects. This comprehensive review provides an overview of functional photoacoustic imaging across multiple scales, from nano to macro, and highlights recent advances in technology developments and applications. Finally, the review surveys the future prospects of functional photoacoustic imaging in the biomedical field.
Collapse
Affiliation(s)
- Byullee Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghyeon Oh
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
34
|
Sgouralis I, Xu (徐伟青) LW, Jalihal AP, Walter NG, Pressé S. BNP-Track: A framework for superresolved tracking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535459. [PMID: 37066320 PMCID: PMC10104004 DOI: 10.1101/2023.04.03.535459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Assessing dynamic processes at single molecule scales is key toward capturing life at the level of its molecular actors. Widefield superresolution methods, such as STORM, PALM, and PAINT, provide nanoscale localization accuracy, even when distances between fluorescently labeled single molecules ("emitters") fall below light's diffraction limit. However, as these superresolution methods rely on rare photophysical events to distinguish emitters from both each other and background, they are largely limited to static samples. In contrast, here we leverage spatiotemporal correlations of dynamic widefield imaging data to extend superresolution to simultaneous multiple emitter tracking without relying on photodynamics even as emitter distances from one another fall below the diffraction limit. We simultaneously determine emitter numbers and their tracks (localization and linking) with the same localization accuracy per frame as widefield superresolution does for immobilized emitters under similar imaging conditions (≈50nm). We demonstrate our results for both in cellulo data and, for benchmarking purposes, on synthetic data. To this end, we avoid the existing tracking paradigm relying on completely or partially separating the tasks of emitter number determination, localization of each emitter, and linking emitter positions across frames. Instead, we develop a fully joint posterior distribution over the quantities of interest, including emitter tracks and their total, otherwise unknown, number within the Bayesian nonparametric paradigm. Our posterior quantifies the full uncertainty over emitter numbers and their associated tracks propagated from origins including shot noise and camera artefacts, pixelation, stochastic background, and out-of-focus motion. Finally, it remains accurate in more crowded regimes where alternative tracking tools cannot be applied.
Collapse
Affiliation(s)
- Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Lance W.Q. Xu (徐伟青)
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Ameya P. Jalihal
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Nils G. Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
35
|
Wan N, Zhang P, Liu Z, Li Z, Niu W, Rui X, Wang S, Seong M, He P, Liang S, Zhou J, Yang R, Chen SL. Implantable QR code subcutaneous microchip using photoacoustic and ultrasound microscopy for secure and convenient individual identification and authentication. PHOTOACOUSTICS 2023; 31:100504. [PMID: 37214429 PMCID: PMC10196719 DOI: 10.1016/j.pacs.2023.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Individual identification and authentication techniques are merged into many aspects of human life with various applications, including access control, payment or banking transfer, and healthcare. Yet conventional identification and authentication methods such as passwords, biometrics, tokens, and smart cards suffer from inconvenience and/or insecurity. Here, inspired by quick response (QR) code and implantable microdevices, implantable and minimally-invasive QR code subcutaneous microchips (QRC-SMs) are proposed to be an effective approach to carry useful and private information, thus enabling individual identification and authentication. Two types of QRC-SMs, QRC-SMs with "hole" and "flat" elements and QRC-SMs with "titanium-coated" and "non-coated" elements, are designed and fabricated to store personal information. Corresponding ultrasound microscopy and photoacoustic microscopy are used for imaging the QR code pattern underneath skin, and open-source artificial intelligence algorithm is applied for QR code detection and recognition. Ex vivo experiments under tissue and in vivo experiments with QRC-SMs implanted in live mice have been performed, demonstrating successful information retrieval from implanted QRC-SMs. QRC-SMs are hidden subcutaneously and invisible to the eyes. They cannot be forgotten, misplaced or lost, and can always be ready for timely medical identification, access control, and payment or banking transfer. Hence, QRC-SMs provide promising routes towards private, secure, and convenient individual identification and authentication.
Collapse
Affiliation(s)
- Nan Wan
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengcheng Zhang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zuheng Liu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Niu
- Department of Nephrology, Huadong Hospital Affiliated, Fudan University, Shanghai 200040, China
| | - Xiuye Rui
- Bosch Future Intelligent Driving and Control (Shanghai) R&D Center, Shanghai 200000, China
| | - Shibo Wang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Myeongsu Seong
- Department of Mechatronics and Robotics, School of Advanced Technology, Xi'an Jiaotong–Liverpool University, Suzhou 215123, China
| | - Pengbo He
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siqi Liang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiasheng Zhou
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Yang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sung-Liang Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai 200030, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240 China
| |
Collapse
|
36
|
Lee C, Cho S, Lee D, Lee J, Park JI, Kim HJ, Park SH, Choi W, Kim U, Kim C. Panoramic volumetric clinical handheld photoacoustic and ultrasound imaging. PHOTOACOUSTICS 2023; 31:100512. [PMID: 37252650 PMCID: PMC10208888 DOI: 10.1016/j.pacs.2023.100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Photoacoustic (PA) imaging has gained much attention, providing structural and functional information in combination with clinical ultrasound (US) imaging systems. 2D PA and US imaging is easily implemented, but its heavy dependence on operator skills makes 3D imaging preferable. In this study, we propose a panoramic volumetric clinical PA and US imaging system equipping a handheld imaging scanner weighing 600 g and measuring 70 × 62 × 110 mm3. Multiple PA/US scans were performed to cover a large field-of-view (FOV), and the acquired PA/US volumes were mosaic-stitched after manually correcting the positions and rotations in a total of 6 degrees of freedom. PA and US maximum amplitude projection images were visualized online, while spectral unmixed data was quantified offline. The performance of the system was tested via tissue-mimicking phantom experiments. The system's potential was confirmed in vivo by panoramically imaging vascular networks in human arms and necks, with FOVs of 331 × 38 and 129 × 120 mm2, respectively. Further, we quantified hemoglobin oxygen saturation levels in the radial artery, brachial artery, carotid artery, and jugular vein. We hope that this system can be applied for various clinical fields such as cardiovascular imaging, dermatology, vascular surgery, internal medicine, and oncology.
Collapse
Affiliation(s)
- Changyeop Lee
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seonghee Cho
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Donghyun Lee
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jonghun Lee
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jong-Il Park
- Division of Cardiology, Department of Internal Medicine, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Hong-Ju Kim
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Seoul 03722, Republic of Korea
| | - Sae Hyun Park
- Division of Cardiology, Department of Internal Medicine, Daegu Veterans Hospital, Daegu 42835, Republic of Korea
| | - Wonseok Choi
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ung Kim
- Division of Cardiology, Department of Internal Medicine, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
37
|
Wang Z, Yang F, Shi W, Xie W, Zhang Z, Yang S. Monitoring the perivascular cerebrospinal fluid dynamics of the glymphatic pathway using co-localized photoacoustic microscopy. OPTICS LETTERS 2023; 48:2265-2268. [PMID: 37126250 DOI: 10.1364/ol.486129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In vivo imaging plays an important role in investigating how the glymphatic system drains metabolic waste and pathological proteins from the central nervous system. However, the spatial resolutions and imaging specificities of the available preclinical imaging methods for the glymphatic system are insufficient, and they cannot simultaneously locate the cerebrovascular and glymphatic pathways to enable the monitoring of the perivascular cerebrospinal fluid dynamics. This Letter proposes an imaging strategy for the in vivo monitoring of cerebrospinal fluid flow using co-localized photoacoustic volumetric microscopy. Imaging results showed that the glymphatic pathway is one of the crucial pathways for the drainage of cerebrospinal fluid, and it mainly enters the brain parenchyma along periarterial routes. Continuous intravital imaging enables the monitoring of the cerebrospinal fluid flow as well as the drainage and clearance from the glymphatic system after the tracer has entered the cerebrospinal fluid. The technique can enhance understanding of the cerebrospinal fluid circulation and open up new insights into neurodegenerative brain diseases.
Collapse
|
38
|
Jiang X, Shen M, Lun DPK, Chen W, Somekh MG. A total-internal-reflection-based Fabry-Pérot resonator for ultra-sensitive wideband ultrasound and photoacoustic applications. PHOTOACOUSTICS 2023; 30:100466. [PMID: 36926115 PMCID: PMC10011501 DOI: 10.1016/j.pacs.2023.100466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In photoacoustic and ultrasound imaging, optical transducers offer a unique potential to provide higher responsivity, wider bandwidths, and greatly reduced electrical and acoustic impedance mismatch when compared with piezoelectric transducers. In this paper, we propose a total-internal-reflection-based Fabry-Pérot resonator composed of a 12-nm-thick gold layer and a dielectric resonant cavity. The resonator uses the same Kretschmann configuration as surface plasmon resonators (SPR). The resonators were analyzed both theoretically and experimentally. The experimental results were compared with those for an SPR for benchmarking. The 1.9-μm-thick-PMMA- and 3.4-μm-thick-PDMS-based resonators demonstrated responsivities of 3.6- and 30-fold improvements compared with the SPR, respectively. The measured bandwidths for the PMMA, PDMS devices are 110 MHz and 75 MHz, respectively. Single-shot sensitivity of 160 Pa is obtained for the PDMS device. The results indicate that, with the proposed resonator in imaging applications, sensitivity and the signal-to-noise ratio can be improved significantly without compromising the bandwidth.
Collapse
Affiliation(s)
- Xiaoping Jiang
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Mengqi Shen
- Guangdong Laboratory of Machine Perception and Intelligent Computing, The Faculty of Engineering, Shenzhen MSU-BIT University, Shenzhen 518172, Guangdong, China
| | - Daniel Pak-Kong Lun
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen Chen
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael G. Somekh
- The Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Ahn J, Baik JW, Kim D, Choi K, Lee S, Park SM, Kim JY, Nam SH, Kim C. In vivo photoacoustic monitoring of vasoconstriction induced by acute hyperglycemia. PHOTOACOUSTICS 2023; 30:100485. [PMID: 37082618 PMCID: PMC10112177 DOI: 10.1016/j.pacs.2023.100485] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Postprandial hyperglycemia, blood glucose spikes, induces endothelial dysfunction, increasing cardiovascular risks. Endothelial dysfunction leads to vasoconstriction, and observation of this phenomenon is important for understanding acute hyperglycemia. However, high-resolution imaging of microvessels during acute hyperglycemia has not been fully developed. Here, we demonstrate that photoacoustic microscopy can noninvasively monitor morphological changes in blood vessels of live animals' extremities when blood glucose rises rapidly. As blood glucose level rose from 100 to 400 mg/dL following intraperitoneal glucose injection, heart/breath rate, and body temperature remained constant, but arterioles constricted by approximately -5.7 ± 1.1% within 20 min, and gradually recovered for another 40 min. In contrast, venular diameters remained within about 0.6 ± 1.5% during arteriolar constriction. Our results experimentally and statistically demonstrate that acute hyperglycemia produces transitory vasoconstriction in arterioles, with an opposite trend of change in blood glucose. These findings could help understanding vascular glucose homeostasis and the relationship between diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin Woo Baik
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Donggyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Karam Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea
| | - Seunghyun Lee
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung-Min Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Hyun Nam
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea
- Corresponding authors.
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Corresponding authors.
| |
Collapse
|
40
|
Xia Y, Wang Y, Liang T, Peng Z, He L, Wang Z. Modeling of Rapid Pam Systems Based on Electrothermal Micromirror for High-Resolution Facial Angiography. SENSORS (BASEL, SWITZERLAND) 2023; 23:2592. [PMID: 36904795 PMCID: PMC10007024 DOI: 10.3390/s23052592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In this paper, a portable photoacoustic microscopy (PAM) system is proposed based on a large stroke electrothermal micromirror to achieve high resolution and fast imaging. The crucial micromirror in the system realizes a precise and efficient 2-axis control. Two different designs of electrothermal actuators with "O" and "Z" shape are evenly located around the four directions of mirror plate. With a symmetrical structure, the actuator realized single direction drive only. The finite element modelling of both two proposed micromirror has realized a large displacement over 550 μm and the scan angle over ±30.43° at 0-10 V DC excitation. In addition, the steady-state and transient-state response show a high linearity and quick response respectively, which can contribute to a fast and stable imaging. Using the Linescan model, the system achieves an effective imaging area of 1 mm × 3 mm in 14 s and 1 mm × 4 mm in 12 s for the "O" and "Z" types, respectively. The proposed PAM systems have advantages in image resolution and control accuracy, indicating a significant potential in the field of facial angiography.
Collapse
|
41
|
Hwang SH, Kim J, Heo C, Yoon J, Kim H, Lee SH, Park HW, Heo MS, Moon HE, Kim C, Paek SH, Jang J. 3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis. Acta Biomater 2023; 157:137-148. [PMID: 36460287 DOI: 10.1016/j.actbio.2022.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Generally, brain angiogenesis is a tightly regulated process, which scarcely occurred in the absence of specific pathological conditions. Delivery of exogenous angiogenic factors enables the induction of desired angiogenesis by stimulating neovasculature formation. However, effective strategies of mimicking the angiogenesis process with exogenous factors have not yet been fully explored. Herein, we develop a 3D printed spatiotemporally compartmentalized cerebral angiogenesis inducing (SCAI) hydrogel patch, releasing dual angiogenic growth factors (GFs), using extracellular matrix-based hybrid inks. We introduce a new hybrid biomaterial-based ink for printing patches through dual crosslinking mechanisms: Chemical crosslinking with aza-Michael addition reaction with combining methacrylated hyaluronic acid (HAMA) and vascular-tissue-derived decellularized extracellular matrix (VdECM), and thermal crosslinking of VdECM. 3D printing technology, a useful approach with fabrication versatility with customizable systems and multiple biomaterials, is adopted to print three-layered hydrogel patch with spatially separated dual GFs as outer- and inner-layers that provide tunable release profiles of multiple GFs and fabrication versatility. Consequently, these layers of the patch spatiotemporally separated with dual GFs induce excellent neovascularization in the brain area, monitored by label-free photoacoustic microscopy in vivo. The developed multi-GFs releasing patch may offer a promising therapeutic approach of spatiotemporal drugs releasing such as cerebral ischemia, ischemic heart diseases, diabetes, and even use as vaccines. STATEMENT OF SIGNIFICANCE: Effective strategies of mimicking the angiogenesis process with exogenous factors have not yet been fully explored. In this study, we develop a 3D printed spatiotemporally compartmentalized cerebral angiogenesis inducing (SCAI) hydrogel patch, releasing dual angiogenic growth factors (GFs) using extracellular matrix-based hybrid inks. We introduce a new hybrid biomaterial-based ink through dual crosslinking mechanisms: Chemical crosslinking with aza-Michael addition, and thermal crosslinking. 3D printing technology is adopted to print three-layered hydrogel patch with spatially separated dual GFs as outer- and inner-layers that provide tunable release profiles of multiple GFs and fabrication versatility. Consequently, these layers of the patch spatiotemporally separated with dual GFs induce excellent neovascularization in the brain area, monitored by photoacoustic microscopy in vivo.
Collapse
Affiliation(s)
- Seung Hyeon Hwang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jongbeom Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Chaejeong Heo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Se-Hwan Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Hyung Woo Park
- Department of Neurosurgery, Cancer Research Institute, Ischemia/Hypoxia Disease Institute, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Man Seung Heo
- Department of Neurosurgery, Cancer Research Institute, Ischemia/Hypoxia Disease Institute, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Cancer Research Institute, Ischemia/Hypoxia Disease Institute, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Chulhong Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Departments of Electrical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Ischemia/Hypoxia Disease Institute, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
42
|
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem Rev 2023. [PMID: 36642892 DOI: 10.1021/acs.chemrev.2c00627] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Seongwook Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jongbeom Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
43
|
Zhong F, Hu S. Thin-film optical-acoustic combiner enables high-speed wide-field multi-parametric photoacoustic microscopy in reflection mode. OPTICS LETTERS 2023; 48:195-198. [PMID: 36638416 PMCID: PMC10238147 DOI: 10.1364/ol.475373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 05/14/2023]
Abstract
Multi-parametric photoacoustic microscopy (PAM) is uniquely capable of simultaneous high-resolution mapping of blood oxygenation and flow in vivo. However, its speed has been limited by the dense sampling required for blood flow quantification. To overcome this limitation, we have developed a high-speed multi-parametric PAM system, which enables simultaneous acquisition of ∼500 densely sampled B-scans by superposing the rapid optical scanning across the line-shaped focus of a cylindrically focused ultrasonic transducer over the conventional mechanical scan of the optical-acoustic dual foci. A novel, to the best of our knowledge, optical-acoustic combiner (OAC) is designed and implemented to accommodate the short working distance of the transducer, enabling convenient confocal alignment of the dual foci in reflection mode. A resonant galvanometer (GM) provides stabilized high-speed large-angle scanning. This new system can continuously monitor microvascular blood oxygenation (sO2) and flow over a 4.5 × 3 mm2 area in the awake mouse brain with high spatial and temporal resolutions (6.9 µm and 0.3 Hz, respectively).
Collapse
Affiliation(s)
- Fenghe Zhong
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, Missouri 63130, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, Missouri 63130, USA
| |
Collapse
|
44
|
Yoo J, Oh D, Kim C, Kim HH, Um JY. Switchable preamplifier for dual modal photoacoustic and ultrasound imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:89-105. [PMID: 36698663 PMCID: PMC9842014 DOI: 10.1364/boe.476453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Photoacoustic (PA) imaging is a high-fidelity biomedical imaging technique based on the principle of molecular-specific optical absorption of biological tissue constitute. Because PA imaging shares the same basic principle as that of ultrasound (US) imaging, the use of PA/US dual-modal imaging can be achieved using a single system. However, because PA imaging is limited to a shallower depth than US imaging due to the optical extinction in biological tissue, the PA signal yields a lower signal-to-noise ratio (SNR) than US images. To selectively amplify the PA signal, we propose a switchable preamplifier for acoustic-resolution PA microscopy implemented on an application-specific integrated circuit. Using the preamplifier, we measured the increments in the SNR with both carbon lead and wire phantoms. Furthermore, in vivo whole-body PA/US imaging of a mouse with a preamplifier showed enhancement of SNR in deep tissues, unveiling deeply located organs and vascular networks. By selectively amplifying the PA signal range to a level similar to that of the US signal without contrast agent administration, our switchable amplifier strengthens the mutual complement between PA/US imaging. PA/US imaging is impending toward clinical translation, and we anticipate that this study will help mitigate the imbalance of image depth between the two imaging modalities.
Collapse
Affiliation(s)
- Jinhee Yoo
- School of Interdisciplinary Bioscience and
Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Contributed equally
| | - Donghyeon Oh
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Contributed equally
| | - Chulhong Kim
- School of Interdisciplinary Bioscience and
Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and
Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of
Korea
- Equal contribution
| | - Ji-Yong Um
- Department of Medical IT
Convergence Engineering, Kumoh National Institute of
Technology, Gumi 39253, Republic
of Korea
- Equal contribution
| |
Collapse
|
45
|
Chen M, Jiang L, Cook C, Zeng Y, Vu T, Chen R, Lu G, Yang W, Hoffmann U, Zhou Q, Yao J. High-speed wide-field photoacoustic microscopy using a cylindrically focused transparent high-frequency ultrasound transducer. PHOTOACOUSTICS 2022; 28:100417. [PMID: 36299642 PMCID: PMC9589025 DOI: 10.1016/j.pacs.2022.100417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/07/2023]
Abstract
Combining focused optical excitation and high-frequency ultrasound detection, optical-resolution photoacoustic microscopy (OR-PAM) can provide micrometer-level spatial resolution with millimeter-level penetration depth and has been employed in a variety of biomedical applications. However, it remains a challenge for OR-PAM to achieve a high imaging speed and a large field of view at the same time. In this work, we report a new approach to implement high-speed wide-field OR-PAM, using a cylindrically-focused transparent ultrasound transducer (CFT-UT). The CFT-UT is made of transparent lithium niobate coated with indium-tin-oxide as electrodes. A transparent cylindrical lens is attached to the transducer surface to provide an acoustic focal line with a length of 9 mm. The excitation light can pass directly through the CFT-UT from the above and thus enables a reflection imaging mode. High-speed imaging is achieved by fast optical scanning of the focused excitation light along the CFT-UT focal line. With the confocal alignment of the optical excitation and acoustic detection, a relatively high detection sensitivity is maintained over the entire scanning range. The CFT-UT-based OR-PAM system has achieved a cross-sectional frame rate of 500 Hz over the scanning range of 9 mm. We have characterized the system's performance on phantoms and demonstrated its application on small animal models in vivo. We expect the new CFT-UT-based OR-PAM will find matched biomedical applications that need high imaging speed over a large field of view.
Collapse
Affiliation(s)
- Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Clare Cook
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ruimin Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anaesthesiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ulrike Hoffmann
- Multidisciplinary Brain Protection Program, Department of Anaesthesiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
46
|
Choi S, Yang J, Lee SY, Kim J, Lee J, Kim WJ, Lee S, Kim C. Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202089. [PMID: 36354200 PMCID: PMC9811490 DOI: 10.1002/advs.202202089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Indexed: 05/19/2023]
Abstract
Photoacoustic computed tomography (PACT) has become a premier preclinical and clinical imaging modality. Although PACT's image quality can be dramatically improved with a large number of ultrasound (US) transducer elements and associated multiplexed data acquisition systems, the associated high system cost and/or slow temporal resolution are significant problems. Here, a deep learning-based approach is demonstrated that qualitatively and quantitively diminishes the limited-view artifacts that reduce image quality and improves the slow temporal resolution. This deep learning-enhanced multiparametric dynamic volumetric PACT approach, called DL-PACT, requires only a clustered subset of many US transducer elements on the conventional multiparametric PACT. Using DL-PACT, high-quality static structural and dynamic contrast-enhanced whole-body images as well as dynamic functional brain images of live animals and humans are successfully acquired, all in a relatively fast and cost-effective manner. It is believed that the strategy can significantly advance the use of PACT technology for preclinical and clinical applications such as neurology, cardiology, pharmacology, endocrinology, and oncology.
Collapse
Affiliation(s)
- Seongwook Choi
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinge Yang
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Soo Young Lee
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jiwoong Kim
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jihye Lee
- Department of ChemistryPOSTECH‐CATHOLIC Biomedical Engineering InstitutePohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Won Jong Kim
- Department of ChemistryPOSTECH‐CATHOLIC Biomedical Engineering InstitutePohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Seungchul Lee
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Chulhong Kim
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
47
|
Seong D, Yi S, Han S, Lee J, Park S, Hwang YH, Kim J, Kim HK, Jeon M. Target ischemic stroke model creation method using photoacoustic microscopy with simultaneous vessel monitoring and dynamic photothrombosis induction. PHOTOACOUSTICS 2022; 27:100376. [PMID: 35734368 PMCID: PMC9207728 DOI: 10.1016/j.pacs.2022.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 06/02/2023]
Abstract
The ischemic stroke animal model evaluates the efficacy of reperfusion and neuroprotective strategies for ischemic injuries. Various conventional methods have been reported to induce the ischemic models; however, controlling specific neurological deficits, mortality rates, and the extent of the infarction is difficult as the size of the affected region is not precisely controlled. In this paper, we report a single laser-based localized target ischemic stroke model development method by simultaneous vessel monitoring and photothrombosis induction using photoacoustic microscopy (PAM), which has minimized the infarct size at precise location with high reproducibility. The proposed method has significantly reduced the infarcted region by illuminating the precise localization. The reproducibility and validity of suggested method have been demonstrated through repeated experiments and histological analyses. These results demonstrate that our method can provide the ischemic stroke model closest to the clinical pathology for brain ischemia research from inducement, occurrence mechanisms to the recovery process.
Collapse
Affiliation(s)
- Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Soojin Yi
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Institute of Biomedical Engineering, School of Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Jaeyul Lee
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sungjo Park
- Pohang Innotown Center, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Hong Kyun Kim
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| |
Collapse
|
48
|
Ahn J, Baik JW, Kim Y, Choi K, Park J, Kim H, Kim JY, Kim HH, Nam SH, Kim C. Fully integrated photoacoustic microscopy and photoplethysmography of human in vivo. PHOTOACOUSTICS 2022; 27:100374. [PMID: 35646590 PMCID: PMC9133750 DOI: 10.1016/j.pacs.2022.100374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic microscopy (PAM) is used to visualize blood vessels and to monitor their time-dependent changes. Photoplethysmography (PPG) measures hemodynamic time-series changes such as heart rate. However, PPG's limited visual access to the dynamic changes of blood vessels has prohibited further understanding of hemodynamics. Here, we propose a novel, fully integrated PAM and photoplethysmography (PAM-PPG) system to understand hemodynamic features in detail. Using the PAM-PPG system, we simultaneously acquire vascular images (by PAM) and changes in the blood volume (by PPG) from human fingers. Next, we determine the heart rate from changes in the PA signals, which match well with the PPG signals. These changes can be measured if the blood flow is not blocked. From the results, we believe that PAM-PPG could be a useful clinical tool in various clinical fields such as cardiology and endocrinology.
Collapse
Affiliation(s)
- Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jin Woo Baik
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Yeonggeon Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Karam Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jeongwoo Park
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Hyojin Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Hyung Ham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Sung Hyun Nam
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| |
Collapse
|
49
|
Chen N, Yu J, Liu L, Xu Z, Gao R, Chen T, Song L, Zheng W, Liu C. Video-rate high-resolution single-pixel nonscanning photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3823-3835. [PMID: 35991922 PMCID: PMC9352284 DOI: 10.1364/boe.459363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) is widely utilized in biomedical applications because of its ability to noninvasively image biological tissues in vivo while providing high-resolution morphological and functional information. However, one drawback of conventional OR-PAM is its imaging speed, which is restricted by the scanning technique employed. To achieve a higher imaging frame rate, we present video-rate high-resolution single-pixel nonscanning photoacoustic microscopy (SPN-PAM), which utilizes Fourier orthogonal basis structured planar illumination to overcome the above-mentioned limitations. A 473 × 473 µm2 imaging field of view (FOV) with 3.73 µm lateral resolution and video-rate imaging of 30 Hz were achieved. In addition, in both in vitro cell and in vivo mouse vascular hemodynamic imaging experiments, high-quality images were obtained at ultralow sampling rates. Thus, the proposed high-resolution SPN-PAM with video-rate imaging speed provides new insights into high-speed PA imaging and could be a powerful tool for rapid biological imaging.
Collapse
Affiliation(s)
- Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Equal contributors
| | - Jia Yu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Equal contributors
| | - Liangjian Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
- National Innovation Center for Advanced Medical Devices, Shenzhen 518131, China
- Equal contributors
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tao Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
50
|
Kang MS, Lee H, Jeong SJ, Eom TJ, Kim J, Han DW. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines 2022; 10:biomedicines10061374. [PMID: 35740396 PMCID: PMC9219987 DOI: 10.3390/biomedicines10061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photoacoustic imaging using energy conversion from light to ultrasound waves has been developed as a powerful tool to investigate in vivo phenomena due to their complex characteristics. In photoacoustic imaging, endogenous chromophores such as oxygenated hemoglobin, deoxygenated hemoglobin, melanin, and lipid provide useful biomedical information at the molecular level. However, these intrinsic absorbers show strong absorbance only in visible or infrared optical windows and have limited light transmission, making them difficult to apply for clinical translation. Therefore, the development of novel exogenous contrast agents capable of increasing imaging depth while ensuring strong light absorption is required. We report here the application of carbon nanomaterials that exhibit unique physical, mechanical, and electrochemical properties as imaging probes in photoacoustic imaging. Classified into specific structures, carbon nanomaterials are synthesized with different substances according to the imaging purposes to modulate the absorption spectra and highly enhance photoacoustic signals. In addition, functional drugs can be loaded into the carbon nanomaterials composite, and effective in vivo monitoring and photothermal therapy can be performed with cell-specific targeting. Diverse applied cases suggest the high potential of carbon nanomaterial-based photoacoustic imaging in in vivo monitoring for clinical research.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Seung Jo Jeong
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| |
Collapse
|