1
|
Rothermel F, Toulouse A, Thiele S, Jung C, Drozella J, Steinhoff R, Giessen H, Herkommer AM. Magnetically actuatable 3D-printed endoscopic microsystems. COMMUNICATIONS ENGINEERING 2025; 4:69. [PMID: 40204987 PMCID: PMC11982310 DOI: 10.1038/s44172-025-00403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
In endoscopy, there is a crucial demand for compact system designs to allow for imaging in narrow spaces and reduce the risk of damage during endoscopic procedures. Enhanced functionality of lensed endoscopes can be realized by integrating actuatable imaging systems with flexible fiber bundles. Conventionally fabricated actuatable endoscopes are, however, limited in their miniaturization capability, typically resulting in system diameters greater than 1 mm. In this work, we present highly compact magnetically actuatable 3D-printed and endoscopically integrated microsystems that are fabricated on the end-facet of imaging fiber bundles using two-photon polymerization. Electromagnetic microcoils affixed to the fiber bundles are utilized to stimulate embedded polymer-magnets to achieve axial, lateral, or rotatory displacement of microoptical elements leading to zooming, resolution enhancement, and increased field of view capabilities. All demonstrated systems achieve overall system diameters well below 900 µm, marking a distinct advancement in the miniaturization of actuatable endoscopic devices. This work demonstrates the feasibility of integrating highly functional and compact optical systems within endoscopes, unlocking new potential for their application in diverse fields, for example in minimally invasive ("keyhole") surgery or intravascular imaging.
Collapse
Affiliation(s)
- Florian Rothermel
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany.
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany.
| | - Andrea Toulouse
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany.
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany.
| | | | | | - Johannes Drozella
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Robert Steinhoff
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Harald Giessen
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
- 4th Physics Institute, University of Stuttgart, Stuttgart, Germany
| | - Alois M Herkommer
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Liang W, Liu Y, Guan H, Sakulsaengprapha V, Luby-Phelps K, Mahendroo M, Li X. Cervical Collagen Network Porosity Assessed by SHG Endomicroscopy Distinguishes Preterm and Normal Pregnancy-A Pilot Study. IEEE Trans Biomed Eng 2025; 72:777-785. [PMID: 39352817 PMCID: PMC11875912 DOI: 10.1109/tbme.2024.3472015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Preterm birth (PTB) remains a pressing global health concern associated with premature cervical ripening and weakened cervical mechanical strength. Second harmonic generation (SHG) microscopy has proved instrumental in tracking progressive changes in cervical collagen morphology during pregnancy. To translate this imaging modality into clinical practice, we have developed a flexible SHG endomicroscope for label-free visualization of cervical collagen architecture. This study aims to assess the feasibility of our SHG endomicroscope for non-invasive differentiation of normal and PTB mouse models, with the ultimate goal of enabling early diagnosis and risk assessment of PTB in vivo. METHODS in this pilot investigation, we conducted endomicroscopic SHG imaging on frozen cervical tissue sections and intact cervices resected from both normal pregnant mice and mifepristone-induced PTB mouse models, and then analyzed the acquired images to identify collagen morphology characteristics associated with abnormal cervical collagen remodeling. RESULTS quantitative image analysis revealed significantly altered collage spatial distribution, larger collagen fiber diameter and pore size, along with reduced pore numbers in SHG endomicroscopy images from PTB mouse models compared to normal pregnant mice. Similar trends were consistent across SHG endomicroscopy images of subepithelial collagen fibers acquired directly from intact cervices. CONCLUSION/SIGNIFICANCE overall, the experiment results underscore the potential of SHG endomicroscopy, coupled with quantitative image analysis, for clinically evaluating cervical collagen remodeling and PTB risk.
Collapse
|
3
|
Gharib N, Yousefi Darestani MR, Takahata K. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. MICROMACHINES 2025; 16:111. [PMID: 39858766 PMCID: PMC11767618 DOI: 10.3390/mi16010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging. This new scanner architecture removes the need for a separate prism mirror and holding mechanics to drastically simplify the scanner design and thus, potentially enhancing device miniaturization and reliability. The first proof-of-concept is developed using 3D printing and experimentally analyzed to reveal the ability of both angular stepping at 45° and high-speed rotation up to 1500 rpm within the biologically safe temperature range, a key function for multimodal imaging. Preliminary optical testing demonstrates continuous circumferential scanning of the laser beam with no blind spot caused by power leads to the actuator. The results indicate the fundamental feasibility of the developed actuator as an endoscopic distal scanner, a significant step to further development toward advancing optical endoscope technology.
Collapse
Affiliation(s)
- Nirvana Gharib
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Kenichi Takahata
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Calvarese M, Corbetta E, Contreras J, Bae H, Lai C, Reichwald K, Meyer-Zedler T, Pertzborn D, Mühlig A, Hoffmann F, Messerschmidt B, Guntinas-Lichius O, Schmitt M, Bocklitz T, Popp J. Endomicroscopic AI-driven morphochemical imaging and fs-laser ablation for selective tumor identification and selective tissue removal. SCIENCE ADVANCES 2024; 10:eado9721. [PMID: 39661684 PMCID: PMC11633757 DOI: 10.1126/sciadv.ado9721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/09/2024] [Indexed: 12/13/2024]
Abstract
The rising incidence of head and neck cancer represents a serious global health challenge, requiring more accurate diagnosis and innovative surgical approaches. Multimodal nonlinear optical microscopy, combining coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG) with deep learning-based analysis routines, offers label-free assessment of the tissue's morphochemical composition and allows early-stage and automatic detection of disease. For clinical intraoperative application, compact devices are required. In this preclinical study, a cohort of 15 patients was examined with a newly developed rigid CARS/TPEF/SHG endomicroscope. To detect head and neck tumor from the multimodal data, deep learning-based semantic segmentation models were used. This preclinical study yields in a diagnostic sensitivity of 88% and a specificity of 96%. To combine diagnostics with therapy, machine learning-inspired image-guided selective tissue removal was used by integrating femtosecond laser ablation into the endomicroscope. This enables a powerful approach of intraoperative "seek and treat," paving the way to advanced surgical treatment.
Collapse
Affiliation(s)
- Matteo Calvarese
- Leibniz-Institute of Photonic Technology (IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Elena Corbetta
- Leibniz-Institute of Photonic Technology (IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jhonatan Contreras
- Leibniz-Institute of Photonic Technology (IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Hyeonsoo Bae
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Chenting Lai
- GRINTECH GmbH, Otto-Eppenstein-Str. 7, Jena, Germany
| | | | - Tobias Meyer-Zedler
- Leibniz-Institute of Photonic Technology (IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - David Pertzborn
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Anna Mühlig
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | | | | | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Thomas Bocklitz
- Leibniz-Institute of Photonic Technology (IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Institute of Computer Science, Faculty of Mathematics, Physics & Computer Science, University Bayreuth, Universitaetsstraße 30, 95447 Bayreuth, Germany
| | - Juergen Popp
- Leibniz-Institute of Photonic Technology (IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Veil C, Sawodny O. Intraoperative Multi-Sensor Tissue Differentiation in (Uro-)Oncology - A Short Review. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039869 DOI: 10.1109/embc53108.2024.10782728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Precise differentiation of pathological tissue during surgery is crucial in oncology. The current gold standard, histopathological analysis, involves delays due to tissue processing, impacting real-time decision-making. Furthermore, it does not always give information about the extent and heterogeneity of the tumorous tissue. This paper examines our research efforts in developing novel multimodal sensors tailored for uro-oncology. These sensors measure optical, electrical, and mechanical tissue properties, aiming to provide comprehensive tissue differentiation during surgery. Along with this, a review of recent advances in the field of intraoperative tissue differentiation is given. Altered physical properties in tumorous tissues are discussed and the suitability of various sensor modalities for detecting these changes is investigated, especially infrared and Raman spectroscopy, and electrical and mechanical measurements. A digital frameworks for spatial localization of measurements within the organ is is crucial for integrating sensor data to achieve comprehensive tissue characterization. Our focus lies in presenting these innovative sensor technologies and their potential to transform intraoperative tissue assessment. By providing real-time information, these sensors could significantly enhance diagnostic precision in urological oncology, potentially improving patient outcomes.Clinical relevance- Supporting real-time decision making during urological surgeries.
Collapse
|
6
|
Fan Y, Liu S, Gao E, Guo R, Dong G, Li Y, Gao T, Tang X, Liao H. The LMIT: Light-mediated minimally-invasive theranostics in oncology. Theranostics 2024; 14:341-362. [PMID: 38164160 PMCID: PMC10750201 DOI: 10.7150/thno.87783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Minimally-invasive diagnosis and therapy have gradually become the trend and research hotspot of current medical applications. The integration of intraoperative diagnosis and treatment is a development important direction for real-time detection, minimally-invasive diagnosis and therapy to reduce mortality and improve the quality of life of patients, so called minimally-invasive theranostics (MIT). Light is an important theranostic tool for the treatment of cancerous tissues. Light-mediated minimally-invasive theranostics (LMIT) is a novel evolutionary technology that integrates diagnosis and therapeutics for the less invasive treatment of diseased tissues. Intelligent theranostics would promote precision surgery based on the optical characterization of cancerous tissues. Furthermore, MIT also requires the assistance of smart medical devices or robots. And, optical multimodality lay a solid foundation for intelligent MIT. In this review, we summarize the important state-of-the-arts of optical MIT or LMIT in oncology. Multimodal optical image-guided intelligent treatment is another focus. Intraoperative imaging and real-time analysis-guided optical treatment are also systemically discussed. Finally, the potential challenges and future perspectives of intelligent optical MIT are discussed.
Collapse
Affiliation(s)
- Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Shuai Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Enze Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Guozhao Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Yangxi Li
- Dept. of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, 100084
| | - Tianxin Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Hongen Liao
- Dept. of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, 100084
| |
Collapse
|
7
|
Shaked NT, Boppart SA, Wang LV, Popp J. Label-free biomedical optical imaging. NATURE PHOTONICS 2023; 17:1031-1041. [PMID: 38523771 PMCID: PMC10956740 DOI: 10.1038/s41566-023-01299-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/22/2023] [Indexed: 03/22/2024]
Abstract
Label-free optical imaging employs natural and nondestructive approaches for the visualisation of biomedical samples for both biological assays and clinical diagnosis. Currently, this field revolves around multiple broad technology-oriented communities, each with a specific focus on a particular modality despite the existence of shared challenges and applications. As a result, biologists or clinical researchers who require label-free imaging are often not aware of the most appropriate modality to use. This manuscript presents a comprehensive review of and comparison among different label-free imaging modalities and discusses common challenges and applications. We expect this review to facilitate collaborative interactions between imaging communities, push the field forward and foster technological advancements, biophysical discoveries, as well as clinical detection, diagnosis, and monitoring of disease.
Collapse
Affiliation(s)
- Natan T Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering,; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Vora N, Polleys CM, Sakellariou F, Georgalis G, Thieu HT, Genega EM, Jahanseir N, Patra A, Miller E, Georgakoudi I. Restoration of metabolic functional metrics from label-free, two-photon human tissue images using multiscale deep-learning-based denoising algorithms. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:126006. [PMID: 38144697 PMCID: PMC10742979 DOI: 10.1117/1.jbo.28.12.126006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Significance Label-free, two-photon excited fluorescence (TPEF) imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, noise and other artifacts present in these images severely complicate the extraction of biologically useful information. Aim We aim to employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-signal-to-noise ratio (SNR), TPEF images. Approach TPEF images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used to assess the impact of various denoising models, preprocessing methods, and data on metrics of image quality and the recovery of six metrics of metabolic function from the images relative to ground truth images. Results Optimized recovery of the redox ratio and mitochondrial organization is achieved using a novel algorithm based on deep denoising in the wavelet transform domain. This algorithm also leads to significant improvements in peak-SNR (PSNR) and structural similarity index measure (SSIM) for all images. Interestingly, other models yield even higher PSNR and SSIM improvements, but they are not optimal for recovery of metabolic function metrics. Conclusions Denoising algorithms can recover diagnostically useful information from low SNR label-free TPEF images and will be useful for the clinical translation of such imaging.
Collapse
Affiliation(s)
- Nilay Vora
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Christopher M. Polleys
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | | | - Georgios Georgalis
- Tufts University, Data Intensive Studies Center, Medford, Massachusetts, United States
| | - Hong-Thao Thieu
- Tufts University School of Medicine, Tufts Medical Center, Department of Obstetrics and Gynecology, Boston, Massachusetts, United States
| | - Elizabeth M. Genega
- Tufts University School of Medicine, Tufts Medical Center, Department of Pathology and Laboratory Medicine, Boston, Massachusetts, United States
| | - Narges Jahanseir
- Tufts University School of Medicine, Tufts Medical Center, Department of Pathology and Laboratory Medicine, Boston, Massachusetts, United States
| | - Abani Patra
- Tufts University, Data Intensive Studies Center, Medford, Massachusetts, United States
- Tufts University, Department of Mathematics, Medford, Massachusetts, United States
| | - Eric Miller
- Tufts University, Department of Electrical and Computer Engineering, Medford, Massachusetts, United States
- Tufts University, Tufts Institute for Artificial Intelligence, Medford, Massachusetts, United States
| | - Irene Georgakoudi
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| |
Collapse
|
9
|
Stark SL, Gross H, Reglinski K, Messerschmidt B, Eggeling C. Field curvature reduction in miniaturized high numerical aperture and large field-of-view objective lenses with sub 1 µm lateral resolution. BIOMEDICAL OPTICS EXPRESS 2023; 14:6190-6205. [PMID: 38420300 PMCID: PMC10898576 DOI: 10.1364/boe.499785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 03/02/2024]
Abstract
In this paper the development of a miniaturized endoscopic objective lens for various biophotonics applications is presented. While limiting the mechanical dimensions to 2.2 mm diameter and 13 mm total length, a numerical aperture of 0.7 in water and a field-of-view (FOV) diameter of 282 µm are achieved. To enable multimodal usage a wavelength range of 488 nm to 632 nm was considered. The performed broad design study aimed for field curvature reduction when maintaining the sub 1 µm resolution over a large FOV. Moreover, the usage of GRadient-INdex (GRIN) lenses was investigated. The resolution, field curvature improvement and chromatic performance of the novel device were validated by means of a confocal laser-scanning-microscope.
Collapse
Affiliation(s)
| | - Herbert Gross
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Katharina Reglinski
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien-Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany
- University Hospital Jena, Bachstr. 18, 07743 Jena, Germany
| | | | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien-Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
10
|
Wang C, Chen Q, Liu H, Wu R, Jiang X, Fu Q, Zhao Z, Zhao Y, Gao Y, Yu B, Jiao H, Wang A, Xiao S, Feng L. Miniature Two-Photon Microscopic Imaging Using Dielectric Metalens. NANO LETTERS 2023; 23:8256-8263. [PMID: 37651617 DOI: 10.1021/acs.nanolett.3c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Miniature two-photon microscopy has emerged as a powerful technique for investigating brain activity in freely moving animals. Ongoing research objectives include reducing probe weight and minimizing animal behavior constraints caused by probe attachment. Employing dielectric metalenses, which enable the use of sizable optical components in flat device structures while maintaining imaging resolution, is a promising solution for addressing these challenges. In this study, we designed and fabricated a titanium dioxide metalens with a wavelength of 920 nm and a high aspect ratio. Furthermore, a meta-optic two-photon microscope weighing 1.36 g was developed. This meta-optic probe has a lateral resolution of 0.92 μm and an axial resolution of 18.08 μm. Experimentally, two-photon imaging of mouse brain structures in vivo was also demonstrated. The flat dielectric metalens technique holds promising opportunities for high-performance integrated miniature nonlinear microscopy and endomicroscopy platforms in the biomedical field.
Collapse
Affiliation(s)
- Conghao Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Qinmiao Chen
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huilan Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Precision Opto-Mechatronics Technology (Ministry of Education), Beihang University, Beijing 100191, China
| | - Runlong Wu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiong Jiang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qiang Fu
- Beijing Transcend Vivoscope Biotech Co., Ltd, Beijing 100049, China
| | - Zhe Zhao
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ye Zhao
- Beijing Transcend Vivoscope Biotech Co., Ltd, Beijing 100049, China
| | - Yuqian Gao
- Beijing Transcend Vivoscope Biotech Co., Ltd, Beijing 100049, China
| | - Bosong Yu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Hongchen Jiao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Aimin Wang
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics, Peking University, Beijing 100871, China
| | - Shumin Xiao
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lishuang Feng
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Precision Opto-Mechatronics Technology (Ministry of Education), Beihang University, Beijing 100191, China
- Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310063, China
| |
Collapse
|
11
|
Zhang S, Huang X, Kang D, Miao J, Zhan Z, Guan G, Chen J, Zhou Y, Li L. Optical second-harmonic generation imaging for identifying gastrointestinal stromal tumors. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2023; 16. [DOI: 10.1142/s1793545823500074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors arising in the digest tract. It brings a challenge to diagnosis because it is asymptomatic clinically. It is well known that tumor development is often accompanied by the changes in the morphology of collagen fibers. Nowadays, an emerging optical imaging technique, second-harmonic generation (SHG), can directly identify collagen fibers without staining due to its noncentrosymmetric properties. Therefore, in this study, we attempt to assess the feasibility of SHG imaging for detecting GISTs by monitoring the morphological changes of collagen fibers in tumor microenvironment. We found that collagen alterations occurred obviously in the GISTs by comparing with normal tissues, and furthermore, two morphological features from SHG images were extracted to quantitatively assess the morphological difference of collagen fibers between normal muscular layer and GISTs by means of automated image analysis. Quantitative analyses show a significant difference in the two collagen features. This study demonstrates the potential of SHG imaging as an adjunctive diagnostic tool for label-free identification of GISTs.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Jikui Miao
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Zhenlin Zhan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, P. R. China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yongjian Zhou
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
12
|
Bae H, Rodewald M, Meyer-Zedler T, Bocklitz TW, Matz G, Messerschmidt B, Press AT, Bauer M, Guntinas-Lichius O, Stallmach A, Schmitt M, Popp J. Feasibility studies of multimodal nonlinear endoscopy using multicore fiber bundles for remote scanning from tissue sections to bulk organs. Sci Rep 2023; 13:13779. [PMID: 37612362 PMCID: PMC10447453 DOI: 10.1038/s41598-023-40944-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Here, we report on the development and application of a compact multi-core fiber optical probe for multimodal non-linear imaging, combining the label-free modalities of Coherent Anti-Stokes Raman Scattering, Second Harmonic Generation, and Two-Photon Excited Fluorescence. Probes of this multi-core fiber design avoid moving and voltage-carrying parts at the distal end, thus providing promising improved compatibility with clinical requirements over competing implementations. The performance characteristics of the probe are established using thin cryo-sections and artificial targets before the applicability to clinically relevant samples is evaluated using ex vivo bulk human and porcine intestine tissues. After image reconstruction to counteract the data's inherently pixelated nature, the recorded images show high image quality and morpho-chemical conformity on the tissue level compared to multimodal non-linear images obtained with a laser-scanning microscope using a standard microscope objective. Furthermore, a simple yet effective reconstruction procedure is presented and demonstrated to yield satisfactory results. Finally, a clear pathway for further developments to facilitate a translation of the multimodal fiber probe into real-world clinical evaluation and application is outlined.
Collapse
Affiliation(s)
- Hyeonsoo Bae
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), PO Box 100239, 07702, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
| | - Marko Rodewald
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), PO Box 100239, 07702, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), PO Box 100239, 07702, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Thomas W Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Gregor Matz
- GRINTECH GmbH, Schillerstraße 1, 07745, Jena, Germany
| | | | - Adrian T Press
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Medical Faculty, Friedrich-Schiller University Jena, Kastanienstr. 1, 07747, Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), PO Box 100239, 07702, Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
| |
Collapse
|
13
|
Vora N, Polleys CM, Sakellariou F, Georgalis G, Thieu HT, Genega EM, Jahanseir N, Patra A, Miller E, Georgakoudi I. Restoration of metabolic functional metrics from label-free, two-photon cervical tissue images using multiscale deep-learning-based denoising algorithms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544033. [PMID: 37333366 PMCID: PMC10274804 DOI: 10.1101/2023.06.07.544033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Label-free, two-photon imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, this modality suffers from low signal arising from limitations imposed by the maximum permissible dose of illumination and the need for rapid image acquisition to avoid motion artifacts. Recently, deep learning methods have been developed to facilitate the extraction of quantitative information from such images. Here, we employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-SNR, two-photon images. Two-photon excited fluorescence (TPEF) images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used. We assess the impact of the specific denoising model, loss function, data transformation, and training dataset on established metrics of image restoration when comparing denoised single frame images with corresponding six frame averages, considered as the ground truth. We further assess the restoration accuracy of six metrics of metabolic function from the denoised images relative to ground truth images. Using a novel algorithm based on deep denoising in the wavelet transform domain, we demonstrate optimal recovery of metabolic function metrics. Our results highlight the promise of denoising algorithms to recover diagnostically useful information from low SNR label-free two-photon images and their potential importance in the clinical translation of such imaging.
Collapse
Affiliation(s)
- Nilay Vora
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | - Hong-Thao Thieu
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Elizabeth M. Genega
- Department of Pathology and Laboratory Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Narges Jahanseir
- Department of Pathology and Laboratory Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
- Department of Mathematics, Tufts University, Medford, MA 02155, USA
| | - Eric Miller
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA
- Tufts Institute for Artificial Intelligence, Tufts University, Medford, MA 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
14
|
Lai C, Calvarese M, Reichwald K, Bae H, Vafaeinezhad M, Meyer-Zedler T, Hoffmann F, Mühlig A, Eidam T, Stutzki F, Messerschmidt B, Gross H, Schmitt M, Guntinas-Lichius O, Popp J. Design and test of a rigid endomicroscopic system for multimodal imaging and femtosecond laser ablation. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:066004. [PMID: 37388219 PMCID: PMC10306116 DOI: 10.1117/1.jbo.28.6.066004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Significance Conventional diagnosis of laryngeal cancer is normally made by a combination of endoscopic examination, a subsequent biopsy, and histopathology, but this requires several days and unnecessary biopsies can increase pathologist workload. Nonlinear imaging implemented through endoscopy can shorten this diagnosis time, and localize the margin of the cancerous area with high resolution. Aim Develop a rigid endomicroscope for the head and neck region, aiming for in-vivo multimodal imaging with a large field of view (FOV) and tissue ablation. Approach Three nonlinear imaging modalities, which are coherent anti-Stokes Raman scattering, two-photon excitation fluorescence, and second harmonic generation, as well as the single photon fluorescence of indocyanine green, are applied for multimodal endomicroscopic imaging. High-energy femtosecond laser pulses are transmitted for tissue ablation. Results This endomicroscopic system consists of two major parts, one is the rigid endomicroscopic tube 250 mm in length and 6 mm in diameter, and the other is the scan-head (10 × 12 × 6 cm 3 in size) for quasi-static scanning imaging. The final multimodal image accomplishes a maximum FOV up to 650 μ m , and a resolution of 1 μ m is achieved over 560 μ m FOV. The optics can easily guide sub-picosecond pulses for ablation. Conclusions The system exhibits large potential for helping real-time tissue diagnosis in surgery, by providing histological tissue information with a large FOV and high resolution, label-free. By guiding high-energy fs laser pulses, the system is even able to remove suspicious tissue areas, as has been shown for thin tissue sections in this study.
Collapse
Affiliation(s)
| | - Matteo Calvarese
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | | | - Hyeonsoo Bae
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | - Mohammadsadegh Vafaeinezhad
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | - Franziska Hoffmann
- Jena University Hospital, Department of Otorhinolaryngology, Jena, Germany
| | - Anna Mühlig
- Jena University Hospital, Department of Otorhinolaryngology, Jena, Germany
| | - Tino Eidam
- Active Fiber Systems GmbH, Jena, Germany
| | | | | | - Herbert Gross
- Fraunhofer Institute for Applied Optics and Precision Engineering, Jena, Germany
| | - Michael Schmitt
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany
| |
Collapse
|
15
|
Quansah E, Gardey E, Ramoji A, Meyer-Zedler T, Goehrig B, Heutelbeck A, Hoeppener S, Schmitt M, Waldner M, Stallmach A, Popp J. Intestinal epithelial barrier integrity investigated by label-free techniques in ulcerative colitis patients. Sci Rep 2023; 13:2681. [PMID: 36792686 PMCID: PMC9931702 DOI: 10.1038/s41598-023-29649-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The intestinal epithelial barrier, among other compartments such as the mucosal immune system, contributes to the maintenance of intestinal homeostasis. Therefore, any disturbance within the epithelial layer could lead to intestinal permeability and promote mucosal inflammation. Considering that disintegration of the intestinal epithelial barrier is a key element in the etiology of ulcerative colitis, further assessment of barrier integrity could contribute to a better understanding of the role of epithelial barrier defects in ulcerative colitis (UC), one major form of chronic inflammatory bowel disease. Herein, we employ fast, non-destructive, and label-free non-linear methods, namely coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), two-photon excited fluorescence (TPEF), and two-photon fluorescence lifetime imaging (2P-FLIM), to assess the morpho-chemical contributions leading to the dysfunction of the epithelial barrier. For the first time, the formation of epithelial barrier gaps was directly visualized, without sophisticated data analysis procedures, by the 3D analysis of the colonic mucosa from severely inflamed UC patients. The results were compared with histopathological and immunofluorescence images and validated using transmission electron microscopy (TEM) to indicate structural alterations of the apical junction complex as the underlying cause for the formation of the epithelial barrier gaps. Our findings suggest the potential advantage of non-linear multimodal imaging is to give precise, detailed, and direct visualization of the epithelial barrier in the gastrointestinal tract, which can be combined with a fiber probe for future endomicroscopy measurements during real-time in vivo imaging.
Collapse
Affiliation(s)
- Elsie Quansah
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Elena Gardey
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany.
- Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich Schiller University Jena, Erlanger Allee 101, 07747, Jena, Germany.
| | - Tobias Meyer-Zedler
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Bianca Goehrig
- Institute for Occupational, Social, and Environmental Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Astrid Heutelbeck
- Institute for Occupational, Social, and Environmental Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Maximillian Waldner
- Department of Medicine, University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
16
|
Buttigieg E, Scheller A, El Waly B, Kirchhoff F, Debarbieux F. Contribution of Intravital Neuroimaging to Study Animal Models of Multiple Sclerosis. Neurotherapeutics 2023; 20:22-38. [PMID: 36653665 PMCID: PMC10119369 DOI: 10.1007/s13311-022-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a complex and long-lasting neurodegenerative disease of the central nervous system (CNS), characterized by the loss of myelin within the white matter and cortical fibers, axonopathy, and inflammatory responses leading to consequent sensory-motor and cognitive deficits of patients. While complete resolution of the disease is not yet a reality, partial tissue repair has been observed in patients which offers hope for therapeutic strategies. To address the molecular and cellular events of the pathomechanisms, a variety of animal models have been developed to investigate distinct aspects of MS disease. Recent advances of multiscale intravital imaging facilitated the direct in vivo analysis of MS in the animal models with perspective of clinical transfer to patients. This review gives an overview of MS animal models, focusing on the current imaging modalities at the microscopic and macroscopic levels and emphasizing the importance of multimodal approaches to improve our understanding of the disease and minimize the use of animals.
Collapse
Affiliation(s)
- Emeline Buttigieg
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Bilal El Waly
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Franck Debarbieux
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France.
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
17
|
Quansah E, Ramoji A, Thieme L, Mirza K, Goering B, Makarewicz O, Heutelbeck A, Meyer-Zedler T, Pletz MW, Schmitt M, Popp J. Label-free multimodal imaging of infected Galleria mellonella larvae. Sci Rep 2022; 12:20416. [PMID: 36437287 PMCID: PMC9701796 DOI: 10.1038/s41598-022-24846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Non-linear imaging modalities have enabled us to obtain unique morpho-chemical insights into the tissue architecture of various biological model organisms in a label-free manner. However, these imaging techniques have so far not been applied to analyze the Galleria mellonella infection model. This study utilizes for the first time the strength of multimodal imaging techniques to explore infection-related changes in the Galleria mellonella larvae due to massive E. faecalis bacterial infection. Multimodal imaging techniques such as fluorescent lifetime imaging (FLIM), coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) were implemented in conjunction with histological HE images to analyze infection-associated tissue damage. The changes in the larvae in response to the infection, such as melanization, vacuolization, nodule formation, and hemocyte infiltration as a defense mechanism of insects against microbial pathogens, were visualized after Enterococcus faecalis was administered. Furthermore, multimodal imaging served for the analysis of implant-associated biofilm infections by visualizing biofilm adherence on medical stainless steel and ePTFE implants within the larvae. Our results suggest that infection-related changes as well as the integrity of the tissue of G. mellonella larvae can be studied with high morphological and chemical contrast in a label-free manner.
Collapse
Affiliation(s)
- Elsie Quansah
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Anuradha Ramoji
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Lara Thieme
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Kamran Mirza
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Bianca Goering
- grid.9613.d0000 0001 1939 2794ena University Hospital, Institute for Occupational, Social, and Environmental Medicine, J, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Oliwia Makarewicz
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Astrid Heutelbeck
- grid.9613.d0000 0001 1939 2794ena University Hospital, Institute for Occupational, Social, and Environmental Medicine, J, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tobias Meyer-Zedler
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Mathias W. Pletz
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Michael Schmitt
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
18
|
Schmitt M, Meyer-Zedler T, Guntinas-Lichius O, Popp J. [Multimodal spectroscopic imaging : A new, powerful tool for intraoperative tumor diagnostics]. CHIRURGIE (HEIDELBERG, GERMANY) 2022; 93:948-955. [PMID: 35925143 DOI: 10.1007/s00104-022-01663-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The increasing number of cancer cases requires new imaging approaches for intraoperative tumor characterization. OBJECTIVE Utilization of new optical/photonic methods in combination with artificial intelligence (AI) approaches to address urgent challenges in clinical pathology in terms of intraoperative computational spectral histopathology. METHODS Multimodal nonlinear imaging by combining the spectroscopic methods coherent anti-Stokes Raman scattering (CARS), two-photon excited autofluorescence (TPEF), fluorescence lifetime imaging microscopy (FLIM), and second harmonic generation (SHG). RESULTS By using multimodal spectroscopic imaging, tissue morphochemistry, i.e., its morphology and molecular structure can be visualized in a label-free manner. The multimodal images can be automatically analyzed using AI-based image analysis approaches. For clinical application in terms of frozen section diagnostics or in vivo use, the presented multimodal imaging approach can be translated into a compact microscope or endoscopic probe concepts. CONCLUSIONS The synergistic combination of spectroscopic imaging modalities in combination with automated data analysis has great potential for fast and precise tumor diagnostics e.g., in terms of precise surgical guidance in laser or robotic surgery. Overall, intraoperative multimodal spectroscopic imaging may represent an innovative advancement for tumor diagnostics in the future, directly leading to improved patient care and significant cost savings.
Collapse
Affiliation(s)
- Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Jena, Deutschland
| | - Tobias Meyer-Zedler
- Leibniz Institut für Photonische Technologien, Mitglied Leibniz Gesundheitstechnologien, Albert-Einstein-Str. 9, 07745, Jena, Deutschland
| | - Orlando Guntinas-Lichius
- Klinik und Poliklinik für Hals-. Nasen- und Ohrenheilkunde, Universitätsklinikum Jena, Jena, Deutschland
| | - Juergen Popp
- Institut für Physikalische Chemie und Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Jena, Deutschland.
- Leibniz Institut für Photonische Technologien, Mitglied Leibniz Gesundheitstechnologien, Albert-Einstein-Str. 9, 07745, Jena, Deutschland.
| |
Collapse
|
19
|
An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat Commun 2022; 13:4183. [PMID: 35853875 PMCID: PMC9296535 DOI: 10.1038/s41467-022-31902-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Dispersion engineering is essential to the performance of most modern optical systems including fiber-optic devices. Even though the chromatic dispersion of a meter-scale single-mode fiber used for endoscopic applications is negligible, optical lenses located on the fiber end face for optical focusing and imaging suffer from strong chromatic aberration. Here we present the design and nanoprinting of a 3D achromatic diffractive metalens on the end face of a single-mode fiber, capable of performing achromatic and polarization-insensitive focusing across the entire near-infrared telecommunication wavelength band ranging from 1.25 to 1.65 µm. This represents the whole single-mode domain of commercially used fibers. The unlocked height degree of freedom in a 3D nanopillar meta-atom largely increases the upper bound of the time-bandwidth product of an achromatic metalens up to 21.34, leading to a wide group delay modulation range spanning from -8 to 14 fs. Furthermore, we demonstrate the use of our compact and flexible achromatic metafiber for fiber-optic confocal imaging, capable of creating in-focus sharp images under broadband light illumination. These results may unleash the full potential of fiber meta-optics for widespread applications including hyperspectral endoscopic imaging, femtosecond laser-assisted treatment, deep tissue imaging, wavelength-multiplexing fiber-optic communications, fiber sensing, and fiber lasers.
Collapse
|
20
|
Wang C, Liu H, Cui H, Ma J, Li Y, Tian J, Jin C, Chen Y, Gao Y, Fu Q, Hu Y, Wu D, Yu F, Wu R, Wang A, Feng L. Two-photon endomicroscopy with microsphere-spliced double-cladding antiresonant fiber for resolution enhancement. OPTICS EXPRESS 2022; 30:26090-26101. [PMID: 36236806 DOI: 10.1364/oe.461325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate a miniature fiber-optic two two-photon endomicroscopy with microsphere-spliced double-cladding antiresonant fiber for resolution enhancement. An easy-to-operate process for fixing microsphere permanently in an antiresonant fiber core, by arc discharge, is proposed. The flexible fiber-optic probe is integrated with a parameter of 5.8 mm × 49.1 mm (outer diameter × rigid length); the field of view is 210 µm, the resolution is 1.3 µm, and the frame rate is 0.7 fps. The imaging ability is verified using ex-vivo mouse kidney, heart, stomach, tail tendon, and in-vivo brain neural imaging.
Collapse
|
21
|
Septier D, Mytskaniuk V, Habert R, Labat D, Baudelle K, Cassez A, Brévalle-Wasilewski G, Conforti M, Bouwmans G, Rigneault H, Kudlinski A. Label-free highly multimodal nonlinear endoscope. OPTICS EXPRESS 2022; 30:25020-25033. [PMID: 36237042 PMCID: PMC9363033 DOI: 10.1364/oe.462361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate a 2 mm diameter highly multimodal nonlinear micro-endoscope allowing label-free imaging of biological tissues. The endoscope performs multiphoton fluorescence (3-photon, 2-photon), harmonic generation (second-SHG and third-THG) and coherent anti-Stokes Raman scattering (CARS) imaging over a field of view of 200 µm. The micro-endoscope is based on a double-clad antiresonant hollow core fiber featuring a high transmission window (850 nm to 1800 nm) that is functionalized with a short piece of graded-index (GRIN) fiber. When combined with a GRIN micro-objective, the micro-endoscope achieves a 1.1 µm point spread function (PSF). We demonstrate 3-photon, 2-photon, THG, SHG, and CARS high resolution images of unlabelled biological tissues.
Collapse
Affiliation(s)
- D. Septier
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - R. Habert
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - D. Labat
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - K. Baudelle
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - A. Cassez
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - M. Conforti
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - G. Bouwmans
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - H. Rigneault
- Lightcore Technologies, Cannes, France
- Aix Marseille Univ., CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - A. Kudlinski
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
22
|
Xi P, Wei X, Qu J, Tuchin VV. Shedding light on biology and healthcare-preface to the special issue on Biomedical Optics. LIGHT, SCIENCE & APPLICATIONS 2022; 11:156. [PMID: 35650200 PMCID: PMC9160079 DOI: 10.1038/s41377-022-00804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 05/11/2023]
Abstract
This special issue collects 20 excellent papers, spanning NIR II imaging, high-speed imaging, adaptive wavefront shaping, label-free imaging, ultrasensitive detection, polarization optics, photodynamic therapy, and preclinical applications. [Image: see text]
Collapse
Affiliation(s)
- Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.
| | - Xunbin Wei
- Department of Biomedical Engineering, Peking University, 100081, Beijing, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, 518060, Shenzhen, China
| | - Valery V Tuchin
- Saratov State University, 83 Astrakhanskaya str., Saratov, 410012, Russia
| |
Collapse
|
23
|
The development and clinical application of microscopic endoscopy for in vivo optical biopsies: Endocytoscopy and confocal laser endomicroscopy. Photodiagnosis Photodyn Ther 2022; 38:102826. [PMID: 35337998 DOI: 10.1016/j.pdpdt.2022.102826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Endoscopies are crucial for detecting and diagnosing diseases in gastroenterology, pulmonology, urology, and other fields. To accurately diagnose diseases, sample biopsies are indispensable and are currently considered the gold standard. However, random 4-quadrant biopsies have sampling errors and time delays. To provide intraoperative real-time microscopic images of suspicious lesions, microscopic endoscopy for in vivo optical biopsy has been developed, including endocytoscopy and confocal laser endomicroscopy. This article reviews recent advances in technology and clinical applications, as well as their shortcomings and future directions.
Collapse
|
24
|
Yang K, Wu J, Ao J, Hao Q, Yan M, Huang K, Ji M, Zeng H. Generation of broadband parabolic pulses based on a pre-chirper free, core-pumped nonlinear fiber amplifier for coherent anti-Stokes Raman imaging. OPTICS EXPRESS 2022; 30:7636-7646. [PMID: 35299521 DOI: 10.1364/oe.448975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We report the generation of parabolic pulses with broadband spectrum from a core-pumped Yb-doped fiber amplifier seeded by a dispersion managed fiber oscillator. The net cavity dispersion of Yb-doped oscillator was continuously changed from 0.074 to -0.170 ps2, which enabled us to achieve dissipative soliton, stretched pulse and soliton mode-locking operations. Spectral evolution processes in the core-pumped nonlinear fiber amplifier seeded by various input solitons were investigated experimentally and theoretically. Our finding indicates that cavity dispersion of oscillator can be used to engineer the input pulse parameter for amplifier, thus forming a pre-chirper free fiber amplification structure. In the experiment, we obtained 410-mW parabolic pulses with spectral bandwidth up to 56 nm. In combination with a passively synchronized frequency-doubled Er-doped fiber laser, we have demonstrated coherent anti-Stokes Raman imaging. The compact dual-color fiber laser source may facilitate practical applications of nonlinear biomedical imaging beyond the laboratory environment.
Collapse
|
25
|
Beaudette K, Li J, Lamarre J, Majeau L, Boudoux C. Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. BIOSENSORS 2022; 12:90. [PMID: 35200350 PMCID: PMC8869713 DOI: 10.3390/bios12020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Optical fibers have been used to probe various tissue properties such as temperature, pH, absorption, and scattering. Combining different sensing and imaging modalities within a single fiber allows for increased sensitivity without compromising the compactness of an optical fiber probe. A double-clad fiber (DCF) can sustain concurrent propagation modes (single-mode, through its core, and multimode, through an inner cladding), making DCFs ideally suited for multimodal approaches. This study provides a technological review of how DCFs are used to combine multiple sensing functionalities and imaging modalities. Specifically, we discuss the working principles of DCF-based sensors and relevant instrumentation as well as fiber probe designs and functionalization schemes. Secondly, we review different applications using a DCF-based probe to perform multifunctional sensing and multimodal bioimaging.
Collapse
Affiliation(s)
- Kathy Beaudette
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Jiawen Li
- Institute for Photonics and Advanced Sensing, School of Electrical Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Joseph Lamarre
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Lucas Majeau
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Caroline Boudoux
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
26
|
Pikálek T, Stibůrek M, Simpson S, Čižmár T, Trägårdh J. Suppression of the non-linear background in a multimode fibre CARS endoscope. BIOMEDICAL OPTICS EXPRESS 2022; 13:862-874. [PMID: 35284193 PMCID: PMC8884213 DOI: 10.1364/boe.450375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Multimode fibres show great potential for use as miniature endoscopes for imaging deep in tissue with minimal damage. When used for coherent anti-Stokes Raman scattering (CARS) microscopy with femtosecond excitation sources, a high band-width probe is required to efficiently focus the broadband laser pulses at the sample plane. Although graded-index (GRIN) fibres have a large bandwidth, it is accompanied by a strong background signal from four-wave mixing and other non-linear processes occurring inside the fibre. We demonstrate that using a composite probe consisting of a GRIN fibre with a spliced on step-index fibre reduces the intensity of the non-linear background by more than one order of magnitude without significantly decreasing the focusing performance of the probe. Using this composite probe we acquire CARS images of biologically relevant tissue such as myelinated axons in the brain with good contrast.
Collapse
Affiliation(s)
- Tomáš Pikálek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Miroslav Stibůrek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Stephen Simpson
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Applied Optics, Friedrich Schiller University Jena, Fröbelstieg 1, 07743 Jena, Germany
| | - Johanna Trägårdh
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| |
Collapse
|
27
|
Wang X, Zhang D, Zhang X, Xing Y, Wu J, Sui X, Huang X, Chang G, Li L. Application of Multiphoton Microscopic Imaging in Study of Gastric Cancer. Technol Cancer Res Treat 2022; 21:15330338221133244. [PMID: 36379591 PMCID: PMC9676310 DOI: 10.1177/15330338221133244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Multiphoton microscopy (MPM) imaging relies on the nonlinear interaction between ultrashort optical pulses and the samples to achieve image contrast. Featuring larger penetration depth, less phototoxicity, 3-dimensional sectioning capability, no need for labeling, MPM become a powerful medical imaging technique that can identify structural characteristics of tissues at the cellular and subcellular levels. In this review paper, we introduce the working principle of MPM imaging, present the current results of MPM imaging applied to the study of gastric tumors, and discuss the future prospects of this interdisciplinary research field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Strategic Support Force Medical Center, Beijing, China
| | - Di Zhang
- Ningxia Jingyuan County People's Hospital, Ningxia, China
| | - Xiaochun Zhang
- General Hospital of Ningxia Medical University, Ningxia, China
| | - Yuting Xing
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- Strategic Support Force Medical Center, Beijing, China
| | - Xinke Sui
- Strategic Support Force Medical Center, Beijing, China
| | - Xin Huang
- Strategic Support Force Medical Center, Beijing, China
| | - Guoqing Chang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lianyong Li
- Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|