1
|
Pai RK, Eslinger C, Lee K, Farchoukh LF, Walden D, Emiloju O, Storandt M, Hagen CE, Pfeiffer A, Sonbol MB, Ahn D, Bekaii-Saab T, Ness A, Hubbard J, Wu C, Westerling-Bui T, Bao R, Ou FS, Pai RK. Quantitative analysis of rectal cancer biopsies with the digital pathology segmentation algorithm QuantCRC associates with therapy response and recurrence. J Transl Med 2025:104187. [PMID: 40311875 DOI: 10.1016/j.labinv.2025.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
We examined whether QuantCRC, a digital pathology segmentation algorithm, on pre-therapy rectal cancer biopsies is associated with pathologic complete response (pCR) to neoadjuvant therapy, recurrence-free survival (RFS), and transcriptomic spatial profiling. QuantCRC was evaluated in an observational cohort of 288 pre-therapy biopsies and a separate validation cohort of 37 pre-therapy biopsies of rectal adenocarcinoma from patients undergoing neoadjuvant therapy. Associations between QuantCRC features and clinical outcomes, pCR, and RFS were analyzed using multivariable logistic regression and Cox proportional hazards modeling, respectively. QuantCRC variables were also correlated with transcriptomic digital spatial profiling of 37 pre-treatment biopsies of cT3N+ rectal cancer. QuantCRC-derived lymphocytes per mm2 of tumor epithelium (TILs) was significantly associated with pCR (multivariate OR 1.05, 95% CI 1.02-1.10, P=0.038). QuantCRC-derived TILs were significantly higher in pre-therapy biopsies with pCR (91.3 vs. 55.9 lymphocytes per mm2, P=0.004). The validation cohort confirmed that only QuantCRC-derived TILs in pre-therapy biopsies of rectal cancer were significantly associated with complete response to neoadjuvant therapy. QuantCRC %high tumor grade was independently associated with worse RFS (multivariate HR 1.27, 95% CI 1.09-1.47, P=0.002). Patients with ≥10.1% high tumor grade identified by QuantCRC had significantly reduced RFS (5-year RFS 69% vs 83%, log-rank p=0.007). Transcriptomic profiling identified high IL-6/JAK/STAT3 signaling within immune cells to be associated with worse RFS (adjusted P=0.01). Tumors with low IL-6/JAK/STAT3 expression within immune cells had significantly higher TILs compared to tumors with high expression (median 152 vs. 97 TILs per mm2, P=0.039). Biopsy-adapted QuantCRC in pre-therapy rectal cancer may be helpful in identifying patients who achieve pCR and are at risk for recurrence.
Collapse
Affiliation(s)
- Reetesh K Pai
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | | | - Kenneth Lee
- Department of Surgery, Division of Surgical Oncology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Lama Farhat Farchoukh
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Catherine E Hagen
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ashlyn Pfeiffer
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Daniel Ahn
- Mayo Clinic Cancer Center, Phoenix, Arizona, USA
| | | | - Andrew Ness
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Christina Wu
- Mayo Clinic Cancer Center, Phoenix, Arizona, USA
| | | | - Riyue Bao
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA; Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Fang-Shu Ou
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Rish K Pai
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
2
|
Abdel Hamid M, Pammer LM, Oberparleiter S, Günther M, Amann A, Gruber RA, Mair A, Nocera FI, Ormanns S, Zimmer K, Gerner RR, Kocher F, Vorbach SM, Wolf D, Riedl JM, Huemer F, Seeber A. Multidimensional differences of right- and left-sided colorectal cancer and their impact on targeted therapies. NPJ Precis Oncol 2025; 9:116. [PMID: 40263545 PMCID: PMC12015310 DOI: 10.1038/s41698-025-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Despite advances in metastatic colorectal cancer (mCRC) treatment, long-term survival remains poor, particularly in right-sided colorectal cancer (RCRC), which has a worse prognosis compared to left-sided CRC (LCRC). This disparity is driven by the complex biological diversity of these malignancies. RCRC and LCRC differ not only in clinical presentation and outcomes but also in their underlying molecular and genetic profiles. This article offers a detailed literature review focusing on the distinctions between RCRC and LCRC. We explore key differences across embryology, anatomy, pathology, omics, and the tumor microenvironment (TME), providing insights into how these factors contribute to prognosis and therapeutic responses. Furthermore, we examine the therapeutic implications of these differences, considering whether the conventional classification of CRC into right- and left-sided forms should be refined. Recent molecular findings suggest that this binary classification may overlook critical biological complexities. Therefore, we propose that future approaches should integrate molecular insights to better guide personalized treatments, especially anti-EGFR therapies, and improve patient outcomes.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Oberparleiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca A Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mair
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabienne I Nocera
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Medicine III, Hematology and Oncology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, 85354, Freising, Germany
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Samuel M Vorbach
- Department of Radiation Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Oncology, Hematology and Palliative Care, General Hospital Oberwart, Oberwart, Austria.
| |
Collapse
|
3
|
Kowalczyk AE, Śliwińska-Jewsiewicka A, Kraziński BE, Piotrowska A, Grzegrzółka J, Godlewski J, Dzięgiel P, Kmieć Z. Reduced Expression of SATB2 in Colorectal Cancer and Its Association with Demographic and Clinicopathological Parameters. Int J Mol Sci 2025; 26:2374. [PMID: 40076993 PMCID: PMC11901120 DOI: 10.3390/ijms26052374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Special AT-rich sequence-binding protein 2 (SATB2), as a nuclear matrix-associated protein and transcription factor engaged in chromatin remodeling and the regulation of gene expression, plays an important role in growth and development processes. SATB2 has been shown to have tissue-specific expression, also related to some cancers, including colorectal cancer (CRC). The aim of this study was to compare SATB2 gene expression in tumor and matched non-involved colorectal tissues obtained from CRC patients, and to investigate its association with clinicopathological and demographic parameters, as well as patients' overall survival. SATB2 mRNA levels in the tested tissues were assessed by quantitative polymerase chain reaction, while SATB2 protein expression was determined by immunohistochemistry. We found that the average levels of both SATB2 mRNA and protein were significantly lower in tumor specimens than in matched non-involved colon tissues. Moreover, SATB2 immunoreactivity was associated with patients' sex, tumor localization, and grade of differentiation. Lower immunoreactivity of SATB2 protein was noted in high-grade tumors, in women, and in tumors located in the cecum, ascending, and transverse colon. However, the results of the present study did not show an association between SATB2 expression levels and patients' overall survival. Our findings indicate the involvement of impaired SATB2 expression, significantly reduced in high-grading tumors, in the pathogenesis of CRC, while its sex- and localization-specificity should be further elucidated.
Collapse
Affiliation(s)
- Anna Ewa Kowalczyk
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| | - Agnieszka Śliwińska-Jewsiewicka
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| | - Bartłomiej Emil Kraziński
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Janusz Godlewski
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Zbigniew Kmieć
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| |
Collapse
|
4
|
Lee I, Takahashi Y, Sasaki T, Yamauchi Y, Sato R. Human colon organoid differentiation from induced pluripotent stem cells using an improved method. FEBS Lett 2025; 599:912-924. [PMID: 39716027 PMCID: PMC11931984 DOI: 10.1002/1873-3468.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024]
Abstract
The colonic epithelium plays a crucial role in gastrointestinal homeostasis, and colon organoids enable investigation into the molecular mechanisms underlying colonic physiology. However, the method for differentiating induced pluripotent stem cells (iPSCs) into human colon organoids (HCOs) is not necessarily standardized, and studies using HCOs are limited. This study refines the differentiation of HCOs by comparing two protocols reported in Cell Stem Cell and Nature Medicine journals. The former protocol, which uses transient bone morphogenetic protein 2 (BMP2) signaling activation, demonstrated superior efficacy in upregulating colon-specific markers. Additionally, adenovirus-mediated transduction of the transcription factors HOXD13 or SATB2 during hindgut endoderm development, together with BMP2 treatment, enhanced colonic identity, suggesting improved colonic maturation. This optimized protocol advances the generation of mature HCOs, offering a better model for investigating colonic epithelial biology and pathology.
Collapse
Affiliation(s)
- I‐Ting Lee
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| | - Takashi Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| | - Ryuichiro Sato
- Nutri‐Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoJapan
| |
Collapse
|
5
|
Sirniö P, Elomaa H, Tuomisto A, Äijälä VK, Karjalainen H, Kastinen M, Tapiainen VV, Sirkiä O, Ahtiainen M, Helminen O, Wirta EV, Rintala J, Meriläinen S, Saarnio J, Rautio T, Seppälä TT, Böhm J, Mecklin JP, Mäkinen MJ, Väyrynen JP. CDX2 and SATB2 loss are associated with myeloid cell infiltration and poor survival in colorectal cancer. Cancer Immunol Immunother 2025; 74:111. [PMID: 39998677 PMCID: PMC11861821 DOI: 10.1007/s00262-025-03964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Caudal-type homeobox 2 (CDX2) and special AT-rich sequence-binding protein 2 (SATB2) are transcription factors playing important roles in intestinal homeostasis and participating in the regulation of intestinal inflammation. In colorectal cancer (CRC), reduced expression levels of CDX2 and SATB2 have been associated with poor differentiation and worse survival. However, their prognostic significance still needs further clarification, and the associations between CDX2 and SATB2 and immune cell infiltration into the CRC microenvironment are largely unknown. METHODS We analyzed CDX2 and SATB2 expression in two large cohorts of stages I-IV CRC patients (N = 2302) and analyzed their associations with clinicopathologic parameters, the density of local immune cells (determined with three multiplex immunohistochemistry panels and conventional immunohistochemistry), and survival. RESULTS In mismatch repair-proficient tumors, reduced CDX2 and SATB2 expression were associated with higher densities of immature monocytic cells, macrophages, and M2-like macrophages. Low expression of CDX2 was associated with shorter cancer-specific survival independent of conventional prognostic parameters in both cohorts. In the larger cohort, adjusted hazard ratio (HR) for negative (vs. high) CDX2 expression was 3.62 (95% CI 2.08-6.31, ptrend < 0.0001), and adjusted HR for negative (vs. high) SATB2 level was 1.61 (95% CI 0.97-2.67, ptrend = 0.002). CONCLUSION This study indicates that reduced CDX2 and SATB2 expression levels are associated with myeloid cell infiltration in the CRC microenvironment and represent markers for poor outcome. These findings highlight the potential of CDX2 and SATB2 as biomarkers for classifying CRC patients and support their role in regulating the tumor microenvironment.
Collapse
Affiliation(s)
- Päivi Sirniö
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Hanna Elomaa
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Education and Research, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Anne Tuomisto
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Ville K Äijälä
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Henna Karjalainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Meeri Kastinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Vilja V Tapiainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Onni Sirkiä
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maarit Ahtiainen
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Olli Helminen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Erkki-Ville Wirta
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Jukka Rintala
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Sanna Meriläinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Juha Saarnio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Tero Rautio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Toni T Seppälä
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Well Being Services County of Central Finland, Jyväskylä, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Markus J Mäkinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Juha P Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| |
Collapse
|
6
|
McHugh KE, Pai RK, Grant RC, Gallinger S, Davison J, Ma C, Pai RK. Claudin 18.2 Expression in 1404 Digestive Tract Adenocarcinomas Including 1175 Colorectal Carcinomas: Distinct Colorectal Carcinoma Subtypes Are Claudin 18.2 Positive. Mod Pathol 2025; 38:100712. [PMID: 39826799 DOI: 10.1016/j.modpat.2025.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Claudin 18.2 (CLDN18.2) immunohistochemical (IHC) expression can be used to select patients with gastric/gastroesophageal junction adenocarcinomas for zolbetuximab (IMAB362) therapy, zolbetuximab (IMAB362) being a monoclonal antibody targeting CLDN18.2. The aim of this study was to correlate IHC expression of CLDN18.2 with clinicopathologic and molecular features in a large series of digestive tract cancers. IHC for CLDN18.2 was performed on tissue microarrays from 1404 adenocarcinomas including 155 gastric/gastroesophageal, 74 pancreatic ductal, and 1175 colorectal (576 in the initial test cohort; 599 in the subsequent validation cohort), and correlated with HER2 and mismatch repair (MMR) status. Cases were scored as CLDN18.2 positive or negative, with positivity defined as moderate-to-strong membranous staining in ≥75% of tumor cells. CLDN18.2 expression was correlated with clinicopathologic and molecular features for all colorectal adenocarcinomas. CLDN18.2 was positive in 39% (61/155) of gastric/gastroesophageal adenocarcinomas, 38% (28/74) of pancreatic ductal adenocarcinomas, and 3.4% (40/1175) of colorectal adenocarcinomas (P < .001). For gastric/gastroesophageal and pancreatic ductal adenocarcinoma, there was no correlation between CLDN18.2 expression and either HER2 or MMR status. In contrast, CLDN18.2-positive colorectal adenocarcinomas had distinct clinicopathologic and molecular features. CLDN18.2-positive colorectal adenocarcinomas were more frequently proximally located and were more often MMR deficient and BRAF V600E positive (all with P < .05). Quantitative pathologic analysis using the digital pathology biomarker QuantCRC (Aiforia) demonstrated marked differences in histologic features between CLDN18.2-positive and CLDN18.2-negative colorectal adenocarcinomas, with CLDN18.2-positive tumors having an increased tumor:stroma ratio and %mucin but decreased %immature stroma in both the test and validation cohorts (all with P < .05). In conclusion, CLDN18.2-positive colorectal adenocarcinomas are frequently MMR deficient and BRAF V600E mutated, and demonstrate distinct histologic features. Future studies addressing the efficacy of zolbetuximab therapy in this subset of colorectal cancers are needed.
Collapse
Affiliation(s)
- Kelsey E McHugh
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Robert C Grant
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Jon Davison
- Department of Pathology, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Changqing Ma
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
Nkosi D, Crowe WE, Altman BJ, Oltvai ZN, Giampoli EJ, Velez MJ. SATB2 is an Emergent Biomarker of Anaplastic Thyroid Carcinoma: A Series with Comprehensive Biomarker and Molecular Studies. Endocr Pathol 2024; 35:432-441. [PMID: 39499447 DOI: 10.1007/s12022-024-09833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/07/2024]
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and aggressive thyroid malignancy typically comprised of undifferentiated tumor cells with various histologic morphologies, which makes the diagnosis challenging. These tumors commonly show loss of thyroglobulin and TTF1 with preservation of cytokeratin (67%) and Paired Box Gene 8 (PAX8) (55%) expression. Identification of a sensitive immunohistochemical stain to aid in the diagnosis of ATC would be beneficial. Immunohistochemistry (IHC) against special AT-rich sequence-binding protein 2 (SATB2) protein is a sensitive and specific marker expressed in colorectal adenocarcinoma and bone or soft tissue tumors with osteoblastic differentiation. However, SATB2 is also expressed in other sarcomatous/undifferentiated neoplasms lacking osteoblastic differentiation. Using quantitative reverse transcription PCR (RT-qPCR) we showed that there is variable expression of SATB2 mRNA expression in ATCs. To evaluate the role of SATB2 protein expression in ATC, we performed PAX8, SATB2, pancytokeratin (AE1/AE3 & CAM5.2), claudin-4 and TTF1 immunostaining on 23 cases. ATCs showed retained expression of PAX8 in 65% (15/23); SATB2 was detected in 74% (17/23); pancytokeratin was expressed in 65% (15/23); claudin-4 was expressed in 35% (8/23) and TTF1 showed expression in 13% (3/23) of cases. Furthermore, 83% (5/6) of ATCs which lacked SATB2 expression, retained PAX8 expression, while 88% (7/8) of the tumors without PAX8 expression were positive for SATB2. Differentiated follicular cell-derived thyroid cancers (n = 30), differentiated high grade thyroid carcinoma (n = 3), and poorly differentiated thyroid carcinoma (n = 8) were negative for SATB2 immunoreactivity. Next-generation selected cases detected the commonly identified oncogenic variants including those in BRAF, RAS, TP53, and TERT promoter. Overall, we hereby demonstrate that SATB2 IHC may be used to support the diagnosis of ATC.
Collapse
Affiliation(s)
- Dingani Nkosi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - William E Crowe
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Zoltán N Oltvai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ellen J Giampoli
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Moises J Velez
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
8
|
Shenoy K, Byrnes K. Utility of special AT-rich sequence-binding protein 2 (SATB2) immunohistochemistry as a marker for secondary perianal paget disease. Virchows Arch 2024; 485:1127-1132. [PMID: 39186079 DOI: 10.1007/s00428-024-03906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
A panel-based approach using immunohistochemistry (IHC) is currently used for subtyping perianal Paget disease (PPD) in the absence of a synchronous neoplasm. Special AT-rich Sequence Binding Protein 2 (SATB2) has been established as a sensitive and specific marker for lower gastrointestinal tract carcinomas. We evaluated its performance as a marker of secondary PPD. A panel of IHCs including CK7, CK20, GCDFP-15, CDX2, and SATB2 were performed on fifteen cases of PPD (identified between 1991-2001) and seven cases of primary vulvar Paget disease with perianal involvement. Eight cases (53%) were classified as secondary PPD based on the presence of a synchronous (n = 7) or a metachronous neoplasm (n = 1). There was no differential staining for CK7 (positive in 7/7 primary vs. 7/8 secondary PPD; P = 1.00) and CK20 (positive in 4/7 primary vs. 8/8 secondary PPD; P = .08). GCDFP-15 was positive in 5/7 cases of primary PPD while negative in all cases of secondary PPD (P = .01). CDX2 was positive in all cases of secondary PPD (P = .001) while SATB2 was positive in 7/8 cases of secondary PPD (P = .01). Both CDX2 and SATB2 were positive in 1/7 cases of primary PPD. The addition of an IHC panel in conjunction with clinical/imaging findings can help definitively classify PPD as either primary or secondary in most cases. We show that SATB2 has comparable performance to CDX2 and can be a helpful additional tool.
Collapse
Affiliation(s)
- Krithika Shenoy
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Kathleen Byrnes
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Kato S, Koshino A, Lasota J, Komura M, Wang C, Ebi M, Ogasawara N, Kojima K, Tsuzuki T, Kasai K, Takahashi S, Miettinen M, Kasugai K, Inaguma S. Use of SATB2 and CDX2 Immunohistochemistry to Characterize and Diagnose Colorectal Cancer. Appl Immunohistochem Mol Morphol 2024; 32:362-370. [PMID: 39076030 DOI: 10.1097/pai.0000000000001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
SATB2 has been reported to be highly specific for lower gastrointestinal tract tumors. On the basis of its ileum-colon conversion effects, which involve the activation of colonic genes in cooperation with CDX2 and HNF4A, we hypothesized that SATB2 and CDX2 might define the characteristics of colorectal cancers (CRCs). In the present study, the clinicopathologic and immunohistochemical characteristics of 269 CRCs were analyzed according to SATB2 and CDX2 expression. CRCs with SATB2- and/or CDX2- phenotypes showed associations with poorly differentiated histotypes ( P <0.00001), mucus production ( P =0.0019), and mismatch repair-deficient phenotypes ( P <0.00001). SATB2-/CDX2- CRCs were significantly associated with CK20-negativity, with or without CK7 expression ( P <0.00001), as well as with MUC5AC-positivity ( P <0.00001), and CD10-negativity ( P =0.00047). Negativity for SATB2 or CDX2 was associated with the expression of PD-L1 in both all CRC ( P <0.00001) and mismatch repair-proficient CRC ( P =0.000091). Multivariate Cox hazard regression analysis identified negativity for SATB2 and/or CDX2 as potential independent risk factors for patients with CRC. Regarding the diagnostic utility of SATB2, all of the 44 CRC metastases could be diagnosed as colorectal in origin if the immunohistochemical phenotypes (including CK7, CK20, and p53) of the primary lesions and patient history were considered. Among the other 684 tumors, we were unable to distinguish a case of CK7-/CK20+/CDX2+/SATB2+ ovarian mucinous cystadenocarcinoma from metastatic CRC without the patient history and clinical information.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department of Internal Medicine, Division of Gastroenterology
| | - Akira Koshino
- Department of Internal Medicine, Division of Gastroenterology
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Masahide Ebi
- Department of Internal Medicine, Division of Gastroenterology
| | | | | | | | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Kunio Kasugai
- Department of Internal Medicine, Division of Gastroenterology
| | - Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
- Pathology, Nagoya City University East Medical Center, Nagoya, Japan
| |
Collapse
|
11
|
Kazemi A, Rasouli-Saravani A, Gharib M, Albuquerque T, Eslami S, Schüffler PJ. A systematic review of machine learning-based tumor-infiltrating lymphocytes analysis in colorectal cancer: Overview of techniques, performance metrics, and clinical outcomes. Comput Biol Med 2024; 173:108306. [PMID: 38554659 DOI: 10.1016/j.compbiomed.2024.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
The incidence of colorectal cancer (CRC), one of the deadliest cancers around the world, is increasing. Tissue microenvironment (TME) features such as tumor-infiltrating lymphocytes (TILs) can have a crucial impact on diagnosis or decision-making for treating patients with CRC. While clinical studies showed that TILs improve the host immune response, leading to a better prognosis, inter-observer agreement for quantifying TILs is not perfect. Incorporating machine learning (ML) based applications in clinical routine may promote diagnosis reliability. Recently, ML has shown potential for making progress in routine clinical procedures. We aim to systematically review the TILs analysis based on ML in CRC histological images. Deep learning (DL) and non-DL techniques can aid pathologists in identifying TILs, and automated TILs are associated with patient outcomes. However, a large multi-institutional CRC dataset with a diverse and multi-ethnic population is necessary to generalize ML methods.
Collapse
Affiliation(s)
- Azar Kazemi
- Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Institute of General and Surgical Pathology, Technical University of Munich, Munich, Germany.
| | - Ashkan Rasouli-Saravani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Saeid Eslami
- Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Informatics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Peter J Schüffler
- Institute of General and Surgical Pathology, Technical University of Munich, Munich, Germany; TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; Munich Center for Machine Learning, Munich, Germany; Munich Data Science Institute, Munich, Germany.
| |
Collapse
|
12
|
Ghaffar SA, Pfau D, Madhuripan N, Harmon RC, Galvao Neto A, Gleisner AL. Intrabiliary metastasis of colorectal mucinous adenocarcinoma mimicking choledocholithiasis 18 years after the primary tumor. Radiol Case Rep 2024; 19:1781-1790. [PMID: 38390428 PMCID: PMC10883780 DOI: 10.1016/j.radcr.2024.01.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
This case report presents a 62-year-old male who had previously undergone curative colectomy and neoadjuvant chemotherapy in 2005 for colorectal cancer. He presented with jaundice, which was initially attributed to choledocholithiasis. After cholecystectomy and repeat ERCPs, hyperbilirubinemia persisted. There was persistent dilation of the right posterior duct on imaging, concerning for biliary stricture, possibly due to cholangiocarcinoma or intraductal papillary neoplasm. During a right posterior hepatectomy, a peripheral liver lesion was found in association with the dilated bile duct. On frozen evaluation, the lesion was found to be invasive adenocarcinoma. The final pathology was compatible with a metastatic mucinous adenocarcinoma of colonic origin. A repeat colonoscopy was done with no recurrence or new lesion in the colon. This case underscores the challenges associated with diagnosing biliary issues and assessing liver lesions in patients with a remote history of cancer. It raises the question of when and whether, after primary cancer treatment, it becomes safe to explore alternative diagnoses without immediately suspecting metastasis. Another significant challenge arises in ascertaining the most suitable therapeutic approaches for these patients. This is because these extremely late recurrences might be linked to an indolent, slow-growing type of tumor, but also have been linked to cancer stem cells, and as any recurrence, demands attention.
Collapse
Affiliation(s)
- Sumaya Abdul Ghaffar
- Surgical Oncology Division, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, 12631 E. 17th Ave, Building AO1 - 6th floor, Aurora, CO 80045, USA
| | - David Pfau
- Department of Radiology, University of Colorado Denver, Anschutz Medical Campus, 12631 E. 17th Ave, Building AO1 - MS 8200, Aurora, CO 80045, USA
| | - Nikhil Madhuripan
- Department of Radiology, University of Colorado Denver, Anschutz Medical Campus, 12631 E. 17th Ave, Building AO1 - MS 8200, Aurora, CO 80045, USA
| | - Robert Christopher Harmon
- Peak Gastroenterology Associates, Colorado Springs, 2920 N Cascade Ave, 3rd floor, Springs , CO 80907, USA
| | - Antonio Galvao Neto
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, 12631 E. 17th Ave, Building AO1 - 2nd floor, Aurora, CO 80045, USA
| | - Ana Luiza Gleisner
- Surgical Oncology Division, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, 12631 E. 17th Ave, Building AO1 - 6th floor, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Li J, Zeng Q, Lin J, Huang H, Chen L. Loss of SATB2 and CDX2 expression is associated with DNA mismatch repair protein deficiency and BRAF mutation in colorectal cancer. Med Mol Morphol 2024; 57:1-10. [PMID: 37583001 DOI: 10.1007/s00795-023-00366-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
The relationship between the expression of the SATB2 and CDX2 proteins and common molecular changes and clinical prognosis in colorectal cancer (CRC) still needs further clarification. We collected 1180 cases of CRC and explored the association between the expression of SATB2 and CDX2 and clinicopathological characteristics, molecular alterations, and overall survival of CRC using whole-slide immunohistochemistry. Our results showed that negative expression of SATB2 and CDX2 was more common in MMR-protein-deficient CRC than in MMR-protein-proficient CRC (15.8% vs. 6.0%, P = 0.001; 14.5% vs. 4.0%, P = 0.000, respectively). Negative expression of SATB2 and CDX2 was more common in BRAF-mutant CRC than in BRAF wild-type CRC (17.2% vs. 6.1%, P = 0.003; 13.8% vs. 4. 2%; P = 0.004, respectively). There was no relationship between SATB2 and/or CDX2 negative expression and KRAS, NRAS, and PIK3CA mutations. The lack of expression of SATB2 and CDX2 was associated with poor histopathological features of CRC. In multivariate analysis, negative expression of SATB2 (P = 0.030), negative expression of CDX2 (P = 0.043) and late clinical stage (P = 0.000) were associated with decreased overall survival of CRC. In conclusion, the lack of SATB2 and CDX2 expression in CRC was associated with MMR protein deficiency and BRAF mutation, but not with KRAS, NRAS and PIK3CA mutation. SATB2 and CDX2 are prognostic biomarkers in patients with CRC.
Collapse
Affiliation(s)
- Jiezhen Li
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qiang Zeng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Jie Lin
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Haijian Huang
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Lingfeng Chen
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| |
Collapse
|
14
|
Sinha S, Alcantara J, Perry K, Castillo V, Espinoza CR, Taheri S, Vidales E, Tindle C, Adel A, Amirfakhri S, Sawires JR, Yang J, Bouvet M, Sahoo D, Ghosh P. Machine-Learning Identifies a Strategy for Differentiation Therapy in Solid Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.13.557628. [PMID: 37745574 PMCID: PMC10515918 DOI: 10.1101/2023.09.13.557628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Although differentiation therapy can cure some hematologic malignancies, its curative potential remains unrealized in solid tumors. This is because conventional computational approaches succumb to the thunderous noise of inter-/intratumoral heterogeneity. Using colorectal cancers (CRCs) as an example, here we outline a machine learning(ML)-based approach to track, differentiate, and selectively target cancer stem cells (CSCs). METHODS A transcriptomic network was built and validated using healthy colon and CRC tissues in diverse gene expression datasets (~5,000 human and >300 mouse samples). Therapeutic targets and perturbation strategies were prioritized using ML, with the goal of reinstating the expression of a transcriptional identifier of the differentiated colonocyte, CDX2, whose loss in poorly differentiated (CSC-enriched) CRCs doubles the risk of relapse/death. The top candidate target was then engaged with a clinical-grade drug and tested on 3 models: CRC lines in vitro, xenografts in mice, and in a prospective cohort of healthy (n = 3) and CRC (n = 23) patient-derived organoids (PDOs). RESULTS The drug shifts the network predictably, induces CDX2 and crypt differentiation, and shows cytotoxicity in all 3 models, with a high degree of selectivity towards all CDX2-negative cell lines, xenotransplants, and PDOs. The potential for effective pairing of therapeutic efficacy (IC50) and biomarker (CDX2-low state) is confirmed in PDOs using multivariate analyses. A 50-gene signature of therapeutic response is derived and tested on 9 independent cohorts (~1700 CRCs), revealing the impact of CDX2-reinstatement therapy could translate into a ~50% reduction in the risk of mortality/recurrence. CONCLUSIONS Findings not only validate the precision of the ML approach in targeting CSCs, and objectively assess its impact on clinical outcome, but also exemplify the use of ML in yielding clinical directive information for enhancing personalized medicine.
Collapse
|
15
|
Musulen E, Gené M, Cuatrecasas M, Amat I, Veiga JA, Fernández-Aceñero MJ, Chimisana VF, Tarragona J, Jurado I, Fernández-Victoria R, Martínez-Ciarpaglini C, Alenda González C, Zac C, Fernández-Figueras MT, Esteller M. Gastric metaplasia as a precursor of nonconventional dysplasia in inflammatory bowel disease. Hum Pathol 2024; 143:50-61. [PMID: 38000679 DOI: 10.1016/j.humpath.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Gastric metaplasia in colonic mucosa with inflammatory bowel disease (IBD) develops as an adaptation mechanism. The association between gastric metaplasia and nonconventional and/or conventional dysplasia as precursors of colitis-associated colorectal cancer is unknown. To address this question, we retrospectively reviewed a series of 33 IBD colectomies to identify gastric metaplasia in 76 precursor lesions. We obtained 61 nonconventional and 15 conventional dysplasias. Among nonconventional dysplasia, 31 (50.8 %) were low-grade (LGD), 4 (6.5 %) were high-grade (HGD), 9 (14.8 %) had both LGD and HGD, and 17 (27.9 %) had no dysplasia (ND), while 14 (93 %) conventional dysplasias had LGD, and 1 (7 %) had LGD and HGD. Gastric metaplasia was assessed by concomitant immunoexpression of MUC5AC and loss of CDX2 staining. Expression of a p53-mut pattern was considered as a surrogate for gene mutation, and complete loss of MLH1 staining as presence of MLH1 hypermethylation. In nonconventional dysplasia, MUC5AC immunoexpression decreased as the degree of dysplasia increased, being 78 % in LGD and 39 % in HGD (p = 0.006). CDX2 was lost in epithelial glands with high expression of MUC5AC (p < 0.001). The p53-mut pattern was observed in 77 % HGD, 45 % LGD, and in 6 % with ND (p < 0.001). Neither nonconventional nor conventional dysplasia showed complete loss of MLH1 staining. Gastric metaplasia was also present in mucosa adjacent to nonconventional dysplasia with chronic changes or active inflammation. Our results show that gastric metaplasia appears in IBD-inflamed colon mucosa, it is the substrate of most nonconventional dysplasia and occurs prior to p53 alterations.
Collapse
Affiliation(s)
- Eva Musulen
- Pathology Department, Hospital Universitari General de Catalunya-Grupo QuironSalud, 08915 Sant Cugat Del Vallès, Barcelona, Spain; Institut de Recerca Contra La Leucèmia Josep Carreras (IJC), 08916 Badalona, Barcelona, Spain.
| | - Míriam Gené
- Pathology Department, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain; Surgery Department, Programme of Surgery and Morphological Sciences, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola Del Vallès, Spain
| | - Míriam Cuatrecasas
- Pathology Department, Hospital Clínic, 08036 Barcelona, Spain; Department of Basic Clinical Practice, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Irene Amat
- Pathology Department, Complejo Hospitalario de Navarra, 31008 Navarra, Spain
| | - Jesús Alberto Veiga
- Pathology Department, Complejo Hospitalario Universitario de Ferrol, 15405 Ferrol, Spain
| | | | | | - Jordi Tarragona
- Pathology Department, Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain
| | - Ismael Jurado
- Pathology Department, Consorci Sanitari de Terrassa, 08227 Terrassa, Spain
| | | | - Carolina Martínez-Ciarpaglini
- Pathology Department, Hospital Clínico Universitario de Valencia, INCLIVA- Instituto de Investigación Sanitaria, Universidad de Valencia, 46010 Valencia, Spain
| | - Cristina Alenda González
- Pathology Department, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 031010 Alicante, Spain
| | - Carlos Zac
- Pathology Department, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - María Teresa Fernández-Figueras
- Pathology Department, Hospital Universitari General de Catalunya-Grupo QuironSalud, 08915 Sant Cugat Del Vallès, Barcelona, Spain; School of Medicine, Campus Sant Cugat Del Vallès, Universitat Internacional de Catalunya (UIC), 08917 Sant Cugat Del Vallès, Spain
| | - Manel Esteller
- Institut de Recerca Contra La Leucèmia Josep Carreras (IJC), 08916 Badalona, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010 Barcelona, Spain; Faculty of Medicine and Health Sciences, Department of Physiological Sciences, Universitat de Barcelona (UB), 08007 Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
16
|
Garcia P, Hartman D, Choudry H, Pai RK. CD8 + T-cell Density Is an Independent Predictor of Survival and Response to Adjuvant Chemotherapy in Stage III Colon Cancer. Appl Immunohistochem Mol Morphol 2023; 31:69-76. [PMID: 36508180 PMCID: PMC11199076 DOI: 10.1097/pai.0000000000001094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
We assessed CD8 + T-cell density in 351 resected stage II to III colon cancers from 2011 to 2015 and correlated the findings with disease-free survival and survival effect of adjuvant chemotherapy. Most tumors (70%) had high/intermediate CD8 + T-cell density, and this was significantly associated with mismatch repair deficiency compared with tumors with low CD8 + T-cell density (28% vs. 13%, P =0.003). Fewer tumors with high/intermediate CD8 + T-cell density had adverse histologic features compared with tumors with low CD8 + T-cell density including high tumor budding (16% vs. 27%) and venous (22% vs. 35%), lymphatic (54% vs. 65%), and perineural (23% vs. 33%) invasion (all with P <0.05). In the stage III cohort, high/intermediate CD8 + T-cell density was an independent predictor of disease-free survival on multivariate analysis (hazard ratio: 0.39, 0.21 to 0.71 95% CI, P =0.002). For stage III patients with high/intermediate CD8 + T-cell density, adjuvant chemotherapy was significantly associated with improved disease-free survival (hazard ratio: 0.28, 0.11 to 0.74 95% CI, P =0.01) whereas stage III patients with low CD8 + T-cell density did not have improved survival with adjuvant chemotherapy. In conclusion, in stage III colon cancer, CD8 + T-cell density is an independent prognostic biomarker for disease-free survival and may help to identify patients who benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Paulo Garcia
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Douglas Hartman
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Haroon Choudry
- Departments of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Reetesh K. Pai
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
17
|
Pai RK, Banerjee I, Shivji S, Jain S, Hartman D, Buchanan DD, Jenkins MA, Schaeffer DF, Rosty C, Como J, Phipps AI, Newcomb PA, Burnett-Hartman AN, Marchand LL, Samadder NJ, Patel B, Swallow C, Lindor NM, Gallinger SJ, Grant RC, Westerling-Bui T, Conner J, Cyr DP, Kirsch R, Pai RK. Quantitative Pathologic Analysis of Digitized Images of Colorectal Carcinoma Improves Prediction of Recurrence-Free Survival. Gastroenterology 2022; 163:1531-1546.e8. [PMID: 35985511 PMCID: PMC9716432 DOI: 10.1053/j.gastro.2022.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS To examine whether quantitative pathologic analysis of digitized hematoxylin and eosin slides of colorectal carcinoma (CRC) correlates with clinicopathologic features, molecular alterations, and prognosis. METHODS A quantitative segmentation algorithm (QuantCRC) was applied to 6468 digitized hematoxylin and eosin slides of CRCs. Fifteen parameters were recorded from each image and tested for associations with clinicopathologic features and molecular alterations. A prognostic model was developed to predict recurrence-free survival using data from the internal cohort (n = 1928) and validated on an internal test (n = 483) and external cohort (n = 938). RESULTS There were significant differences in QuantCRC according to stage, histologic subtype, grade, venous/lymphatic/perineural invasion, tumor budding, CD8 immunohistochemistry, mismatch repair status, KRAS mutation, BRAF mutation, and CpG methylation. A prognostic model incorporating stage, mismatch repair, and QuantCRC resulted in a Harrell's concordance (c)-index of 0.714 (95% confidence interval [CI], 0.702-0.724) in the internal test and 0.744 (95% CI, 0.741-0.754) in the external cohort. Removing QuantCRC from the model reduced the c-index to 0.679 (95% CI, 0.673-0.694) in the external cohort. Prognostic risk groups were identified, which provided a hazard ratio of 2.24 (95% CI, 1.33-3.87, P = .004) for low vs high-risk stage III CRCs and 2.36 (95% CI, 1.07-5.20, P = .03) for low vs high-risk stage II CRCs, in the external cohort after adjusting for established risk factors. The predicted median 36-month recurrence rate for high-risk stage III CRCs was 32.7% vs 13.4% for low-risk stage III and 15.8% for high-risk stage II vs 5.4% for low-risk stage II CRCs. CONCLUSIONS QuantCRC provides a powerful adjunct to routine pathologic reporting of CRC. A prognostic model using QuantCRC improves prediction of recurrence-free survival.
Collapse
Affiliation(s)
- Reetesh K. Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Imon Banerjee
- Department of Radiology and Machine Intelligence in Medicine and Imaging Center (MI-2), Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Sameer Shivji
- Department of Pathology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Suchit Jain
- Department of Radiology and Machine Intelligence in Medicine and Imaging Center (MI-2), Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Douglas Hartman
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC, Australia
| | - David F. Schaeffer
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Amanda I. Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Andrea N. Burnett-Hartman
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Institute for Health Research, Kaiser Permanente Colorado, Denver, Colorado, USA
| | - Loic Le Marchand
- Department of Epidemiology, University of Hawaii, Seattle, Washington, USA
| | - Niloy J. Samadder
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Bhavik Patel
- Department of Radiology and Machine Intelligence in Medicine and Imaging Center (MI-2), Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Carol Swallow
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre and Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Noralane M. Lindor
- Department of Health Sciences Research Mayo Clinic, Scottsdale, Arizona, USA
| | - Steven J. Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Robert C. Grant
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - James Conner
- Department of Pathology, Mount Sinai Hospital, Toronto, ON, Canada
| | - David P. Cyr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre and Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Richard Kirsch
- Department of Pathology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rish K. Pai
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
18
|
Siesing C, Petersson A, Ulfarsdottir T, Chattopadhyay S, Nodin B, Eberhard J, Brändstedt J, Syk I, Gisselsson D, Jirström K. Delineating the intra-patient heterogeneity of molecular alterations in treatment-naïve colorectal cancer with peritoneal carcinomatosis. Mod Pathol 2022; 35:979-988. [PMID: 35169225 PMCID: PMC9249627 DOI: 10.1038/s41379-022-01012-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
In a non-negligible number of patients with metastatic colorectal cancer (mCRC), the peritoneum is the predominant site of dissemination. Cure can be achieved by cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC), but this procedure is associated with long-term morbidity and high relapse rates. Thus, there is a pressing need for improved therapeutic strategies and complementary biomarkers. The present study explored the molecular heterogeneity in mCRC with peritoneal carcinomatosis (PC), and the potential clinical implications thereof. Multi-region immunohistochemical profiling and deep targeted DNA-sequencing was performed on chemotherapy-naïve tumours from seven patients with synchronous colorectal PC who underwent CRS and HIPEC. In total, 88 samples (5-19 per patient) were analysed, representing primary tumour, lymph node metastases, tumour deposits, PC and liver metastases. Expression of special AT-rich sequence-binding protein 2 (SATB2), a marker of colorectal lineage, was lacking in the majority of cases, and a conspicuous intra-patient heterogeneity was denoted for expression of the proposed prognostic and predictive biomarker RNA-binding motif protein 3 (RBM3). Loss of mismatch repair proteins MLH1 and PSM2, observed in one case, was concordant with microsatellite instability and the highest tumour mutational burden. When present in a patient, mutations in key CRC driver genes, i.e., KRAS, APC and TP53, were homogenously distributed across all samples, while less common mutations were more heterogenous. On the same note, copy number variations showed intra-patient as well inter-patient heterogeneity. In two out of seven cases, hierarchical clustering revealed that samples from the PC and lymph node metastases were more similar to each other than to the primary tumour. In summary, these findings should encourage additional studies addressing the potential distinctiveness of mCRC with PC, which might pave the way for improved personalized treatment of these patients.
Collapse
Affiliation(s)
- Christina Siesing
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Alexandra Petersson
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Subhayan Chattopadhyay
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jakob Eberhard
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jenny Brändstedt
- Division of Surgery, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Ingvar Syk
- Division of Surgery, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
19
|
DNA Mismatch Repair-deficient Rectal Cancer Is Frequently Associated With Lynch Syndrome and With Poor Response to Neoadjuvant Therapy. Am J Surg Pathol 2022; 46:1260-1268. [PMID: 35551135 DOI: 10.1097/pas.0000000000001918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We evaluated 368 consecutively resected rectal cancers with neoadjuvant therapy for DNA mismatch repair (MMR) protein status, tumor response to neoadjuvant therapy, histopathologic features, and patient survival. Nine (2.4%) rectal cancers were mismatch repair-deficient (MMRD): 8 (89%) Lynch syndrome-associated tumors and 1 (11%) sporadic MLH1-deficient tumor. Of the 9 MMRD rectal cancers, 89% (8/9) had a tumor regression score 3 (poor response) compared with 23% (81/359) of MMR proficient rectal cancers (P<0.001). Patients with MMRD rectal cancer less often had downstaging after neoadjuvant therapy compared with patients with MMR proficient rectal cancer (11% vs. 57%, P=0.007). In the multivariable logistic regression analysis, MMRD in rectal cancer was associated with a 25.11-fold increased risk of poor response to neoadjuvant therapy (tumor regression score 3) (95% confidence interval [CI]: 3.08-44.63, P=0.003). In the multivariable Cox regression analysis, the only variables significantly associated with disease-free survival were pathologic stage III disease (hazard ratio [HR]=2.46, 95% CI: 1.54-3.93, P<0.001), College of American Pathologists (CAP) tumor regression score 2 to 3 (HR=3.44, 95% CI: 1.76-6.73, P<0.001), and positive margins (HR=2.86, 95% CI: 1.56-5.25, P=0.001). In conclusion, we demonstrated that MMRD in rectal cancer is an independent predictor of poor response to neoadjuvant therapy and infrequently results in pathologic downstaging following neoadjuvant therapy. We also confirmed that MMRD in rectal cancer is strongly associated with a diagnosis of Lynch syndrome. Our results suggest that MMR status may help to provide a more patient-centered approach when selecting neoadjuvant treatment regimens and may help predict tumor response to neoadjuvant therapy.
Collapse
|
20
|
Warmke LM, Maloney N, Leung CH, Lin H, Lazar AJ, Wang WL. SATB2 Expression in Undifferentiated Pleomorphic Sarcomas of Bone. Am J Clin Pathol 2022; 158:235-241. [PMID: 35311957 DOI: 10.1093/ajcp/aqac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES SATB2 is a transcriptional regulator that plays an important role in osteoblastic differentiation. We examined the prevalence and potential significance of SATB2 expression in undifferentiated pleomorphic sarcoma (UPS) of bone. METHODS We examined 38 cases of bone UPS without osteoid. The male-to-female ratio was 1:1.4, with a median age of 48 years (range, 23-83 years). Tumors occurred primarily in the femur (n = 8) and ilium (n = 8), with a median tumor size of 9.5 cm (range, 1.8-27.0 cm). The median follow-up was 24.7 months (range, 2-82 months): 11 patients developed local recurrences, and 18 patients had metastases, mainly to lung and bone. RESULTS SATB2 expression (nuclear labeling ≥5%) was seen in 21 of 38 (55%) cases: 5 with focal (nuclear labeling 5%), 11 with patchy (nuclear labeling 5%-50%), and 5 with diffuse (nuclear labeling ≥50%) staining. Among this group, diffuse SATB2 expression demonstrated superior metastasis-free survival (P = .036) and event-free survival (P = .024). For comparison, 100 soft tissue UPS were stained; the majority were negative (75/100 [75%]). CONCLUSIONS UPS of bone demonstrated more frequent SATB2 expression compared with its soft tissue counterpart. In this series, diffuse SATB2 expression in UPS of bone was associated with better outcomes. Additional studies are still needed to determine its significance.
Collapse
Affiliation(s)
- Laura M Warmke
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nolan Maloney
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheuk Hong Leung
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Choi HB, Pyo JS, Son S, Kim K, Kang G. Diagnostic and Prognostic Roles of CDX2 Immunohistochemical Expression in Colorectal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12030757. [PMID: 35328309 PMCID: PMC8947721 DOI: 10.3390/diagnostics12030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
The study is aimed to evaluate the diagnostic and prognostic role of the immunohistochemical expression of the Caudal-type homeobox transcription factor 2 (CDX2) in colorectal cancers (CRCs) through a meta-analysis. By searching relevant databases, 38 articles were eligible to be included in this study. We extracted the information for CDX2 expression rates and the correlation between CDX2 expression and clinicopathological characteristics. The estimated rates of CDX2 expression were 0.882 [95% confidence interval (CI) 0.774−0.861] and 0.893 (95% CI 0.820−0.938) in primary and metastatic CRCs, respectively. Furthermore, based on their histologic subtype, CDX2 expression rates of adenocarcinoma and medullary carcinoma were 0.886 (95% CI 0.837−0.923) and 0.436 (95% CI 0.269−0.618), respectively. There was a significant difference in CDX2 expression rates between adenocarcinoma and medullary carcinoma in the meta-regression test (p < 0.001). In addition, CDX2 expression was significantly lower in CRCs with the BRAFV600E mutation than in CRCs without mutation. Patients with CDX2 expression had better overall and cancer-specific survival rates than those without CDX2 expression. Thus, CDX2 is a useful diagnostic and prognostic marker CRCs.
Collapse
Affiliation(s)
- Hong Bae Choi
- Department of Surgery, Daehang Hospital, Seoul 06699, Korea
| | - Jung-Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea
| | - Soomin Son
- Division of Molecular Life and Chemical Sciences, College of Natural Sciences, Ewha Woman's University, Seoul 03760, Korea
| | | | - Guhyun Kang
- Department of Pathology, Daehang Hospital, Seoul 06699, Korea
| |
Collapse
|
22
|
Lee JA, Seo MK, Yoo SY, Cho NY, Kwak Y, Lee K, Kim JH, Kang GH. Comprehensive clinicopathologic, molecular, and immunologic characterization of colorectal carcinomas with loss of three intestinal markers, CDX2, SATB2, and KRT20. Virchows Arch 2022; 480:543-555. [PMID: 35029777 DOI: 10.1007/s00428-021-03260-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/04/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
Caudal-type homeobox 2 (CDX2), special AT-rich sequence-binding protein 2 (SATB2), and keratin 20 (KRT20) are frequently used as intestinal epithelium-specific markers in immunohistochemical studies. However, subsets of colorectal carcinomas (CRCs) show loss of these markers. We analyzed The Cancer Genome Atlas data to explore molecular correlates of CDX2, SATB2, and KRT20 genes in 390 CRCs. The decreased mRNA expression of each of the three genes commonly correlated with microsatellite instability-high (MSI-H), CpG island methylator phenotype-high (CIMP-H), BRAF/RNF43 mutations, consensus molecular subtype 1, and high tumor mutational burden. The downregulation of CDX2 or SATB2 was dependent on both MSI-H and CIMP-H, whereas that of KRT20 was more dependent on MSI-H than on CIMP-H. Next, we evaluated the immunohistochemical expression of CDX2, SATB2, and KRT20 in 436 primary CRCs. In contrast to RNA-level expression, decreased expression of CDX2 and SATB2 was more dependent on CIMP-H than on MSI-H. However, consistent with RNA-level expression, decreased expression of KRT20 was more dependent on MSI-H than on CIMP-H. CIMP-H and lymphatic invasion were consistently associated with both CDX2 loss and SATB2 loss in CRCs, regardless of MSI status. In microsatellite stable CRCs, CDX2 loss correlated with BRAF mutation, whereas SATB2 loss was associated with KRAS mutations and decreased T-cell infiltration. Cases with concurrent loss of all three markers were found exclusively in MLH1-methylated MSI-H/CIMP-H CRCs. In conclusion, MSI-H and/or CIMP-H are major common correlates of decreased CDX2/SATB2/KRT20 expression in CRCs, but the specific features associated with the loss of each marker are different in CRCs.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Mi-Kyoung Seo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea.,Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
23
|
Loss of SATB2 Occurs More Frequently Than CDX2 Loss in Colorectal Carcinoma and Identifies Particularly Aggressive Cancers in High-Risk Subgroups. Cancers (Basel) 2021; 13:cancers13246177. [PMID: 34944797 PMCID: PMC8699173 DOI: 10.3390/cancers13246177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The immunohistochemical analysis of Special AT-rich sequence-binding protein 2 (SATB2) is increasingly being used to detect colorectal differentiation. Our study aimed to investigate SATB2 expression levels and the prognostic relevance of SATB2 loss in colorectal carcinoma (CRC), especially in comparison with CDX2, the standard marker of colorectal differentiation. We tested SATB2 expression in 1039 CRCs and identified SATB2 as a strong prognosticator in the overall cohort as well as in specific subcohorts, including high-risk subgroups. Compared to CDX2, SATB2 showed a higher prognostic power but was lost at a much higher frequency, generally rendering SATB2 as the less sensitive marker for colorectal differentiation compared to CDX2. Abstract Background: Special AT-rich sequence-binding protein 2 (SATB2) has emerged as an alternative immunohistochemical marker to CDX2 for colorectal differentiation. However, the distribution and prognostic relevance of SATB2 expression in colorectal carcinoma (CRC) have to be further elucidated. Methods: SATB2 expression was analysed in 1039 CRCs and correlated with clinicopathological and morphological factors, CDX2 expression as well as survival parameters within the overall cohort and in clinicopathological subgroups. Results: SATB2 loss was a strong prognosticator in univariate analyses of the overall cohort (p < 0.001 for all survival comparisons) and in numerous subcohorts including high-risk scenarios (UICC stage III/high tumour budding). SATB2 retained its prognostic relevance in multivariate analyses of these high-risk scenarios (e.g., UICC stage III: DSS: p = 0.007, HR: 1.95), but not in the overall cohort (DSS: p = 0.1, HR: 1.25). SATB2 loss was more frequent than CDX2 loss (22.2% vs. 10.2%, p < 0.001) and of higher prognostic relevance with only moderate overlap between SATB2/CDX2 expression groups. Conclusions: SATB2 loss is able to identify especially aggressive CRCs in high-risk subgroups. While SATB2 is the prognostically superior immunohistochemical parameter compared to CDX2 in univariate analyses, it appears to be the less sensitive marker for colorectal differentiation as it is lost more frequently.
Collapse
|
24
|
Loss of CDX2 in colorectal cancer is associated with histopathologic subtypes and microsatellite instability but is prognostically inferior to hematoxylin-eosin-based morphologic parameters from the WHO classification. Br J Cancer 2021; 125:1632-1646. [PMID: 34616012 PMCID: PMC8651779 DOI: 10.1038/s41416-021-01553-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Immunohistochemical loss of CDX2 has been proposed as a biomarker of dismal survival in colorectal carcinoma (CRC), especially in UICC Stage II/III. However, it remains unclear, how CDX2 expression is related to central hematoxylin-eosin (HE)-based morphologic parameters defined by 2019 WHO classification and how its prognostic relevance is compared to these parameters. METHODS We evaluated CDX2 expression in 1003 CRCs and explored its prognostic relevance compared to CRC subtypes, tumour budding and WHO grade in the overall cohort and in specific subgroups. RESULTS CDX2-low/absent CRCs were enriched in specific morphologic subtypes, right-sided and microsatellite-instable (MSI-H) CRCs (P < 0.001) and showed worse survival characteristics in the overall cohort/UICC Stage II/III (e.g. DFS: P = 0.005) and in microsatellite stable and left-sided CRCs, but not in MSI-H or right-sided CRCs. Compared with CDX2, all HE-based markers showed a significantly better prognostic discrimination in all scenarios. In multivariate analyses including all morphologic parameters, CDX2 was not an independent prognostic factor. CONCLUSION CDX2 loss has some prognostic impact in univariate analyses, but its prognostic relevance is considerably lower compared to central HE-based morphologic parameters defined by the WHO classification and vanishes in multivariate analyses incorporating these factors.
Collapse
|
25
|
Le Page C, Almadani N, Turashvili G, Bataillon G, Portelance L, Provencher D, Mes-Masson AM, Gilks B, Hoang L, Rahimi K. SATB2 Expression in Uterine Sarcoma: A Multicenter Retrospective Study. Int J Gynecol Pathol 2021; 40:487-494. [PMID: 33720083 DOI: 10.1097/pgp.0000000000000730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Uterine sarcomas represent a clinical challenge because of their difficult diagnosis and the poor prognosis of certain subtypes. The aim of this study was to evaluate the expression of the special AT-rich sequence-binding protein 2 (SATB2) in endometrial stromal sarcoma (ESS) and other types of uterine sarcoma by immunohistochemistry. We studied the expression of SATB2 on 71 full tissue sections of endometrial stromal nodule, low-grade ESS, uterine leiomyomas and leiomyosarcoma, undifferentiated uterine sarcoma, adenosarcoma, and carcinosarcoma samples. Nuclear SATB2 expression was then evaluated in an extended sample set using a tissue microarray, including 78 additional uterine tumor samples. Overall, with a cut-off of ≥10% of tumor cell staining as positive, the nuclear SATB2 score was negative in all endometrial stromal nodule samples (n=10) and positive in 83% of low-grade ESS samples (n=29/35), 40% of undifferentiated uterine sarcoma (n=4/10), 13% of leiomyosarcoma (n=2/16), 14% of adenosarcoma (n=3/22), and 8% carcinosarcoma (n=2/25) samples. Furthermore, in ESS patients, direct comparison of nuclear SATB2 scores with clinicopathologic parameters and other reported biomarkers such as progesterone receptor and estrogen receptor showed that nuclear SATB2 was associated with PR expression and a decreased risk of disease-specific death (odds ratio=0.06, 95% confidence interval=0.04-0.81, P=0.04). Our data suggest that SATB2 could be a marker with relative sensitivity (83%) for distinguishing between endometrial stromal nodule and ESS with potential prognostic value.
Collapse
|
26
|
Pai RK, Hartman D, Schaeffer DF, Rosty C, Shivji S, Kirsch R, Pai RK. Development and initial validation of a deep learning algorithm to quantify histological features in colorectal carcinoma including tumour budding/poorly differentiated clusters. Histopathology 2021; 79:391-405. [PMID: 33590485 DOI: 10.1111/his.14353] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022]
Abstract
AIMS To develop and validate a deep learning algorithm to quantify a broad spectrum of histological features in colorectal carcinoma. METHODS AND RESULTS A deep learning algorithm was trained on haematoxylin and eosin-stained slides from tissue microarrays of colorectal carcinomas (N = 230) to segment colorectal carcinoma digitised images into 13 regions and one object. The segmentation algorithm demonstrated moderate to almost perfect agreement with interpretations by gastrointestinal pathologists, and was applied to an independent test cohort of digitised whole slides of colorectal carcinoma (N = 136). The algorithm correctly classified mucinous and high-grade tumours, and identified significant differences between mismatch repair-proficient and mismatch repair-deficient (MMRD) tumours with regard to mucin, inflammatory stroma, and tumour-infiltrating lymphocytes (TILs). A cutoff of >44.4 TILs per mm2 carcinoma gave a sensitivity of 88% and a specificity of 73% in classifying MMRD carcinomas. Algorithm measures of tumour budding (TB) and poorly differentiated clusters (PDCs) outperformed TB grade derived from routine sign-out, and compared favourably with manual counts of TB/PDCs with regard to lymphatic, venous and perineural invasion. Comparable associations were seen between algorithm measures of TB/PDCs and manual counts of TB/PDCs for lymph node metastasis (all P < 0.001); however, stronger correlations were seen between the proportion of positive lymph nodes and algorithm measures of TB/PDCs. Stronger associations were also seen between distant metastasis and algorithm measures of TB/PDCs (P = 0.004) than between distant metastasis and TB (P = 0.04) and TB/PDC counts (P = 0.06). CONCLUSIONS Our results highlight the potential of deep learning to identify and quantify a broad spectrum of histological features in colorectal carcinoma.
Collapse
Affiliation(s)
- Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Douglas Hartman
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David F Schaeffer
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,Envoi Specialist Pathologists, University of Queensland, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Sameer Shivji
- Department of Pathology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Richard Kirsch
- Department of Pathology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rish K Pai
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
27
|
Yaseen A, Ladenheim A, Olson KA, Libertini SJ, McPherson JD, Matsukuma K. Whole exome sequencing of a gut-associated lymphoid tissue neoplasm points to precursor or early form of sporadic colon carcinoma. Pathol Res Pract 2021; 220:153406. [PMID: 33740545 DOI: 10.1016/j.prp.2021.153406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Gut-associated lymphoid tissue (GALT) carcinoma is a colorectal neoplasm characterized by cystically dilated neoplastic glands that extend into prominent, well-circumscribed submucosal lymphoid tissue. Although often subtle, lamina propria between and around the neoplastic glands (identified by plasma cells, scattered eosinophils, etc.) is frequent in cases with classic morphology, arguing (at least in such cases) in favor of adenoma extending into lymphoglandular complexes rather than true invasive carcinoma. Some have postulated that the tumor arises from M-cells, specialized epithelial cells overlying GALT, and others have suggested it represents a unique pathway to carcinoma, specific to the environmental conditions of epithelium overlying lymphoid tissue. Although both hypotheses are intriguing, definitive phenotypic and genetic support is currently lacking. To address these possibilities, we undertook whole exome sequencing and immunohistochemical characterization of a GALT neoplasm recently identified on our clinical service. We discovered well-known mutations in both APC and KRAS, as well as mutations in several Wnt pathway components (MED12, BCL9L, RFX4, DACT3). No immunohistochemical expression of GP2, a marker of M-cell differentiation, was identified. Expression of CDX2, SATB2, and the DNA mismatch repair proteins was observed, while expression of both CK7 and CK20 was absent. No PD-L1 expression was present on tumor cells, but PD-L1 expression was noted in a subset of tumor-adjacent mononuclear cells. Overall, the findings suggest that GALT neoplasms, although morphologically distinct, may be a precursor or early form of typical sporadic colon carcinoma.
Collapse
Affiliation(s)
- Alae Yaseen
- University of California Davis, Department of Pathology and Laboratory Medicine, United States
| | - Alexander Ladenheim
- University of California Davis, Department of Pathology and Laboratory Medicine, United States
| | - Kristin A Olson
- University of California Davis, Department of Pathology and Laboratory Medicine, United States
| | - Stephen J Libertini
- University of California Davis, Department of Biochemistry and Molecular Medicine, United States
| | - John D McPherson
- University of California Davis, Department of Biochemistry and Molecular Medicine, United States
| | - Karen Matsukuma
- University of California Davis, Department of Pathology and Laboratory Medicine, United States.
| |
Collapse
|
28
|
Zhang HW, Shi Y, Liu JB, Wang HM, Wang PY, Wu ZJ, Li L, Gu LP, Cao PS, Wang GR, Ma YS, Fu D. Cancer-associated fibroblast-derived exosomal microRNA-24-3p enhances colon cancer cell resistance to MTX by down-regulating CDX2/HEPH axis. J Cell Mol Med 2021; 25:3699-3713. [PMID: 33621425 PMCID: PMC8051723 DOI: 10.1111/jcmm.15765] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNA‐24‐3p (miR‐24‐3p) has been implicated as a key promoter of chemotherapy resistance in numerous cancers. Meanwhile, cancer‐associated fibroblasts (CAFs) can secret exosomes to transfer miRNAs, which mediate tumour development. However, little is known regarding the molecular mechanism of CAF‐derived exosomal miR‐24‐3p in colon cancer (CC). Hence, this study intended to characterize the functional relevance of CAF‐derived exosomal miR‐24‐3p in CC cell resistance to methotrexate (MTX). We identified differentially expressed HEPH, CDX2 and miR‐24‐3p in CC through bioinformatics analyses, and validated their expression in CC tissues and cells. The relationship among HEPH, CDX2 and miR‐24‐3p was verified using ChIP and dual‐luciferase reporter gene assays. Exosomes were isolated from miR‐24‐3p inhibitor–treated CAFs (CAFs‐exo/miR‐24‐3p inhibitor), which were used in combination with gain‐of‐function and loss‐of‐function experiments and MTX treatment. CCK‐8, flow cytometry and colony formation assays were conducted to determine cell viability, apoptosis and colony formation, respectively. Based on the findings, CC tissues and cells presented with high expression of miR‐24‐3p and low expression of HEPH and CDX2. CDX2 was a target gene of miR‐24‐3p and could up‐regulate HEPH. Under MTX treatment, overexpressed CDX2 or HEPH and down‐regulated miR‐24‐3p reduced cell viability and colony formation and elevated cell apoptosis. Furthermore, miR‐24‐3p was transferred into CC cells via CAF‐derived exosomes. CAF‐derived exosomal miR‐24‐3p inhibitor diminished cell viability and colony formation and increased cell apoptosis in vitro and inhibited tumour growth in vivo under MTX treatment. Altogether, CAF‐derived exosomal miR‐24‐3p accelerated resistance of CC cells to MTX by down‐regulating CDX2/HEPH axis.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi-Jun Wu
- Department of Oncology, Nantong Second People's Hospital, Nantong, China.,Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Liu Li
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Sheng Cao
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gao-Ren Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Farchoukh L, Hartman DJ, Ma C, Celebrezze J, Medich D, Bahary N, Frank M, Pantanowitz L, Pai RK. Intratumoral budding and automated CD8-positive T-cell density in pretreatment biopsies can predict response to neoadjuvant therapy in rectal adenocarcinoma. Mod Pathol 2021; 34:171-183. [PMID: 32661298 DOI: 10.1038/s41379-020-0619-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
Tumor budding and CD8-positive (+) T-cells are recognized as prognostic factors in colorectal adenocarcinoma. We assessed CD8+ T-cell density and intratumoral budding in pretreatment rectal cancer biopsies to determine if they are predictive biomarkers for response to neoadjuvant therapy and survival. Pretreatment biopsies of locally advanced rectal adenocarcinoma from 117 patients were evaluated for CD8+ T-cell density using automated quantitative digital image analysis and for intratumoral budding and correlated with clinicopathological variables on postneoadjuvant surgical resection specimens, response to neoadjuvant therapy, and survival. Patients with high CD8+ T-cell density (≥157 per mm2) on biopsy were significantly more likely to exhibit complete/near complete response to neoadjuvant therapy (66% vs. 33%, p = 0.001) and low tumor stage (0 or I) on resection (62% vs. 30%, p = 0.001) compared with patients with low CD8+ T-cell density. High CD8+ T-cell density was an independent predictor of response to neoadjuvant therapy with a 2.63 higher likelihood of complete response (95% CI 1.04-6.65, p = 0.04) and a 3.66 higher likelihood of complete/near complete response (95% CI 1.60-8.38, p = 0.002). The presence of intratumoral budding on biopsy was significantly associated with a reduced likelihood of achieving complete/near complete response to neoadjuvant therapy (odds ratio 0.36, 95% CI 0.13-0.97, p = 0.048). Patients with intratumoral budding on biopsy had a significantly reduced disease-free survival compared with patients without intratumoral budding (5-year survival 39% vs 87%, p < 0.001). In the multivariable model, the presence of intratumoral budding on biopsy was associated with a 3.35-fold increased risk of tumor recurrence (95% CI 1.25-8.99, p = 0.02). In conclusion, CD8+ T-cell density and intratumoral budding in pretreatment biopsies of rectal adenocarcinoma are independent predictive biomarkers of response to neoadjuvant therapy and intratumoral budding associates with patient survival. These biomarkers may be helpful in selecting patients who will respond to neoadjuvant therapy and identifying patients at risk for recurrence.
Collapse
Affiliation(s)
- Lama Farchoukh
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Douglas J Hartman
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Changqing Ma
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - James Celebrezze
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David Medich
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nathan Bahary
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Madison Frank
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Mismatch repair phenotype determines the implications of tumor grade and CDX2 expression in stage II-III colon cancer. Mod Pathol 2021; 34:161-170. [PMID: 32737450 DOI: 10.1038/s41379-020-0634-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Mismatch repair (MMR) deficiency is an indicator of good prognosis in localized colon cancer but also associated with lack of expression of caudal-type homeobox transcription factor 2 (CDX2) and high tumor grade; markers that in isolation indicate a poor prognosis. Our study aims to identify clinically relevant prognostic subgroups by combining information about tumor grade, MMR phenotype, and CDX2 expression. Immunohistochemistry for MMR proteins and CDX2 was performed in 544 patients with colon cancer stage II-III, including a cohort from a randomized trial. In patients with proficient MMR (pMMR) and CDX2 negativity, hazard ratio (HR) for cancer death was 2.93 (95% CI 1.23-6.99, p = 0.015). Cancer-specific survival for pMMR/CDX2-negative cases was 35.8 months (95% CI 23.4-48.3) versus 52.1-53.5 months (95% CI 45.6-58.6, p = 0.001) for the remaining cases (CDX2-positive tumors or deficient MMR (dMMR)/CDX2-negative tumors). In our randomized cohort, high tumor grade was predictive of response to adjuvant fluorouracil-levamisole in pMMR patients, with a significant interaction between tumor grade and treatment (p = 0.036). For pMMR patients, high tumor grade was a significant marker of poor prognosis in the surgery-only group (HR 4.60 (95% CI 1.68-12.61), p = 0.003) but not in the group receiving chemotherapy (HR 0.66 (95% CI 0.15-3.00), p = 0.587). To conclude, patients with pMMR and CDX2 negativity have a very poor prognosis. Patients with pMMR and high-graded tumors have a poor prognosis but respond well to adjuvant chemotherapy. CDX2 expression and tumor grade did not impact prognosis in patients with dMMR.
Collapse
|
31
|
Neri G, Arpa G, Guerini C, Grillo F, Lenti MV, Giuffrida P, Furlan D, Sessa F, Quaquarini E, Viglio A, Ubezio C, Pasini A, Ferrero S, Sampietro G, Ardizzone S, Latella G, Mescoli C, Rugge M, Zingone F, Barresi V, Ciccocioppo R, Pedrazzoli P, Corazza GR, Luinetti O, Solcia E, Paulli M, Di Sabatino A, Vanoli A. Small Bowel Adenocarcinomas Featuring Special AT-Rich Sequence-Binding Protein 2 (SATB2) Expression and a Colorectal Cancer-Like Immunophenotype: A Potential Diagnostic Pitfall. Cancers (Basel) 2020; 12:3441. [PMID: 33228145 PMCID: PMC7699330 DOI: 10.3390/cancers12113441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Special AT-rich sequence-binding protein 2 (SATB2) is a transcription factor expressed by colonic cryptic epithelium and epithelial neoplasms of the lower gastrointestinal (GI) tract, as well as by small bowel adenocarcinomas (SBAs), though at a lower rate. Nevertheless, up to now, only small SBA series, often including a very limited number of Crohn's disease-associated SBAs (CrD-SBAs) and celiac disease-associated SBAs (CD-SBA), have been investigated for SATB2 expression. We evaluated the expression of SATB2 and other GI phenotypic markers (cytokeratin (CK) 7 and CK20, caudal type homeobox 2 (CDX2) and alpha-methylacyl-CoA racemase (AMACR)), as well as mismatch repair (MMR) proteins, in 100 SBAs, encompassing 34 CrD-SBAs, 28 CD-SBAs and 38 sporadic cases (Spo-SBAs). Any mutual association and correlation with other clinico-pathologic features, including patient prognosis, were searched. Twenty (20%) SATB2-positive SBAs (4 CrD-SBAs, 7 CD-SBAs and 9 Spo-SBAs) were identified. The prevalence of SATB2 positivity was lower in CrD-SBA (12%) in comparison with both CD-SBAs (25%) and Spo-SBAs (24%). Interestingly, six SBAs (two CD-SBAs and four Spo-SBAs) displayed a full colorectal carcinoma (CRC)-like immunoprofile (CK7-/CK20+/CDX2+/AMACR+/SATB2+); none of them was a CrD-SBA. No association between SATB2 expression and MMR status was observed. Although SATB2-positive SBA patients showed a more favorable outcome in comparison with SATB2-negative ones, the difference did not reach statistical significance. When cancers were stratified according to CK7/CK20 expression patterns, we found that CK7-/CK20- SBAs were enriched with MMR-deficient cases (71%) and patients with CK7-/CK20- or CK7-/CK20+ SBAs had a significantly better survival rate compared to those with CK7+/CK20- or CK7+/CK20+ cancers (p = 0.002). To conclude, we identified a small (6%) subset of SBAs featuring a full CRC-like immunoprofile, representing a potential diagnostic pitfall in attempts to identify the site of origin of neoplasms of unknown primary site. In contrast with data on colorectal carcinoma, SATB2 expression is not associated with MMR status in SBAs. CK patterns influence patient survival, as CK7-/CK20- cancers show better prognosis, a behavior possibly due to the high rate of MMR-deficient SBAs within this subgroup.
Collapse
Affiliation(s)
- Giuseppe Neri
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Lombardy, Italy; (G.N.); (G.A.); (C.G.); (A.V.); (O.L.); (E.S.); (M.P.)
| | - Giovanni Arpa
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Lombardy, Italy; (G.N.); (G.A.); (C.G.); (A.V.); (O.L.); (E.S.); (M.P.)
| | - Camilla Guerini
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Lombardy, Italy; (G.N.); (G.A.); (C.G.); (A.V.); (O.L.); (E.S.); (M.P.)
| | - Federica Grillo
- Pathology Unit, Department of Surgical and Diagnostic Sciences, University of Genoa and Ospedale Policlinico San Martino University Hospital, 16132 Genoa, Liguria, Italy;
| | - Marco Vincenzo Lenti
- Department of Internal Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Lombardy, Italy; (M.V.L.); (P.G.); (C.U.); (A.P.); (P.P.); (G.R.C.); (A.D.S.)
| | - Paolo Giuffrida
- Department of Internal Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Lombardy, Italy; (M.V.L.); (P.G.); (C.U.); (A.P.); (P.P.); (G.R.C.); (A.D.S.)
| | - Daniela Furlan
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Lombardy, Italy; (D.F.); (F.S.)
| | - Fausto Sessa
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Lombardy, Italy; (D.F.); (F.S.)
| | - Erica Quaquarini
- Medical Oncology Unit, IRCCS ICS Maugeri and Experimental Medicine School, University of Pavia, 27100 Pavia, Lombardy, Italy;
| | - Alessandra Viglio
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Lombardy, Italy; (G.N.); (G.A.); (C.G.); (A.V.); (O.L.); (E.S.); (M.P.)
| | - Cristina Ubezio
- Department of Internal Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Lombardy, Italy; (M.V.L.); (P.G.); (C.U.); (A.P.); (P.P.); (G.R.C.); (A.D.S.)
| | - Alessandra Pasini
- Department of Internal Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Lombardy, Italy; (M.V.L.); (P.G.); (C.U.); (A.P.); (P.P.); (G.R.C.); (A.D.S.)
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Lombardy, Italy;
| | | | - Sandro Ardizzone
- Gastroenterology Unit, Luigi Sacco University Hospital, 20157 Milan, Lombardy, Italy;
| | - Giovanni Latella
- Gastroenterology Unit, Department of Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Abruzzo, Italy;
| | - Claudia Mescoli
- Pathology Unit, Department of Medicine DIMED, University of Padua, 35121 Padova, Veneto, Italy; (C.M.); (M.R.)
| | - Massimo Rugge
- Pathology Unit, Department of Medicine DIMED, University of Padua, 35121 Padova, Veneto, Italy; (C.M.); (M.R.)
- Veneto Tumor Registry, 35121 Padova, Veneto, Italy
| | - Fabiana Zingone
- Gastroenterology Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Veneto, Italy;
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, 37126 Verona, Veneto, Italy;
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi, University of Verona, 37134 Verona, Veneto, Italy;
| | - Paolo Pedrazzoli
- Department of Internal Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Lombardy, Italy; (M.V.L.); (P.G.); (C.U.); (A.P.); (P.P.); (G.R.C.); (A.D.S.)
- Oncology Unit, IRCCS San Matteo Hospital, 27100 Pavia, Lombardy, Italy
| | - Gino Roberto Corazza
- Department of Internal Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Lombardy, Italy; (M.V.L.); (P.G.); (C.U.); (A.P.); (P.P.); (G.R.C.); (A.D.S.)
| | - Ombretta Luinetti
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Lombardy, Italy; (G.N.); (G.A.); (C.G.); (A.V.); (O.L.); (E.S.); (M.P.)
| | - Enrico Solcia
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Lombardy, Italy; (G.N.); (G.A.); (C.G.); (A.V.); (O.L.); (E.S.); (M.P.)
| | - Marco Paulli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Lombardy, Italy; (G.N.); (G.A.); (C.G.); (A.V.); (O.L.); (E.S.); (M.P.)
| | - Antonio Di Sabatino
- Department of Internal Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Lombardy, Italy; (M.V.L.); (P.G.); (C.U.); (A.P.); (P.P.); (G.R.C.); (A.D.S.)
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Lombardy, Italy; (G.N.); (G.A.); (C.G.); (A.V.); (O.L.); (E.S.); (M.P.)
| |
Collapse
|
32
|
Wang Y, Zhang M, Hu X, Qin W, Wu H, Wei M. Colon cancer-specific diagnostic and prognostic biomarkers based on genome-wide abnormal DNA methylation. Aging (Albany NY) 2020; 12:22626-22655. [PMID: 33202377 PMCID: PMC7746390 DOI: 10.18632/aging.103874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
Abnormal DNA methylation is a major early contributor to colon cancer (COAD) development. We conducted a cohort-based systematic investigation of genome-wide DNA methylation using 299 COAD and 38 normal tissue samples from TCGA. Through conditional screening and machine learning with a training cohort, we identified one hypomethylated and nine hypermethylated differentially methylated CpG sites as potential diagnostic biomarkers, and used them to construct a COAD-specific diagnostic model. Unlike previous models, our model precisely distinguished COAD from nine other cancer types (e.g., breast cancer and liver cancer; error rate ≤ 0.05) and from normal tissues in the training cohort (AUC = 1). The diagnostic model was verified using a validation cohort from The Cancer Genome Atlas (AUC = 1) and five independent cohorts from the Gene Expression Omnibus (AUC ≥ 0.951). Using Cox regression analyses, we established a prognostic model based on six CpG sites in the training cohort, and verified the model in the validation cohort. The prognostic model sensitively predicted patients’ survival (p ≤ 0.00011, AUC ≥ 0.792) independently of important clinicopathological characteristics of COAD (e.g., gender and age). Thus, our DNA methylation analysis provided precise biomarkers and models for the early diagnosis and prognostic evaluation of COAD.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, Liaoning Province, P. R. China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, Liaoning Province, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, Liaoning Province, P. R. China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, Liaoning Province, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, Liaoning Province, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, Liaoning Province, P. R. China
| |
Collapse
|
33
|
Analysis of Cross-Association between mRNA Expression and RNAi Efficacy for Predictive Target Discovery in Colon Cancers. Cancers (Basel) 2020; 12:cancers12113091. [PMID: 33114107 PMCID: PMC7690798 DOI: 10.3390/cancers12113091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary This study focused on finding genes for which mRNA expression was able to predict the anticancer efficacy of its RNAi treatment. Predictive target discovery is of critical importance in developing biomarker-based strategies of precision medicine. We demonstrated this carrying out cross-association analysis on collateral mRNA expression and RNAi treatment data of ~12,000 genes on a colon cell line panel. The analysis revealed several genes with significant association between mRNA expression level and the inhibitory efficacy of its RNAi treatment. The experimental validation confirm that this simple approach has general applications for studying gene association between omics data from diverse cancer lineages. Abstract The availability of large-scale, collateral mRNA expression and RNAi data from diverse cancer cell types provides useful resources for the discovery of anticancer targets for which inhibitory efficacy can be predicted from gene expression. Here, we calculated bidirectional cross-association scores (predictivity and descriptivity) for each of approximately 18,000 genes identified from mRNA and RNAi (i.e., shRNA and sgRNA) data from colon cancer cell lines. The predictivity score measures the difference in RNAi efficacy between cell lines with high vs. low expression of the target gene, while the descriptivity score measures the differential mRNA expression between groups of cell lines exhibiting high vs. low RNAi efficacy. The mRNA expression of 90 and 74 genes showed significant (p < 0.01) cross-association scores with the shRNA and sgRNA data, respectively. The genes were found to be from diverse molecular classes and have different functions. Cross-association scores for the mRNA expression of six genes (CHAF1B, HNF1B, HTATSF1, IRS2, POLR2B and SATB2) with both shRNA and sgRNA efficacy were significant. These genes were interconnected in cancer-related transcriptional networks. Additional experimental validation confirmed that siHNF1B efficacy is correlated with HNF1B mRNA expression levels in diverse colon cancer cell lines. Furthermore, KIF26A and ZIC2 gene expression, with which shRNA efficacy displayed significant scores, were found to correlate with the survival rate from colon cancer patient data. This study demonstrates that bidirectional predictivity and descriptivity calculations between mRNA and RNAi data serve as useful resources for the discovery of predictive anticancer targets.
Collapse
|
34
|
Automated Quantitation of CD8-positive T Cells Predicts Prognosis in Colonic Adenocarcinoma With Mucinous, Signet Ring Cell, or Medullary Differentiation Independent of Mismatch Repair Protein Status. Am J Surg Pathol 2020; 44:991-1001. [PMID: 32205483 DOI: 10.1097/pas.0000000000001468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite their association with DNA mismatch repair (MMR) protein deficiency, colonic adenocarcinomas with mucinous, signet ring cell, or medullary differentiation have not been associated with improved survival compared with conventional adenocarcinomas in most studies. Recent studies indicate that increased T-cell infiltration in the tumor microenvironment has a favorable prognostic effect in colonic adenocarcinoma. However, the prognostic effect of tumor-associated T cells has not been evaluated in histologic subtypes of colonic adenocarcinoma. We evaluated CD8-positive T-cell density in 259 patients with colonic adenocarcinoma, including 113 patients with tumors demonstrating mucinous, signet ring cell, or medullary differentiation, using a validated automated quantitative digital image analysis platform and correlated CD8-positive T-cell density with histopathologic variables, MMR status, molecular alterations, and survival. CD8-positive T-cell densities were significantly higher for MMR protein-deficient tumors (P<0.001), BRAF V600E mutant tumors (P=0.004), and tumors with medullary differentiation (P<0.001) but did not correlate with mucinous or signet ring cell histology (P>0.05 for both). In the multivariable model of factors predicting disease-free survival, increased CD8-positive T-cell density was associated with improved survival both in the entire cohort (hazard ratio=0.34, 95% confidence interval, 0.15-0.75, P=0.008) and in an analysis of patients with tumors with mucinous, signet ring cell, or medullary differentiation (hazard ratio=0.06, 95% confidence interval, 0.01-0.54, P=0.01). The prognostic effect of CD8-positive T-cell density was independent of tumor stage, MMR status, KRAS mutation, and BRAF mutation. Venous invasion was the only other variable independently associated with survival in both the entire cohort and in patients with tumors with mucinous, signet ring cell, or medullary differentiation. In summary, our results indicate that the prognostic value of MMR protein deficiency is most likely attributed to increased tumor-associated CD8-positive T cells and that automated quantitative CD8 T-cell analysis is a better biomarker of patient survival, particularly in patients with tumors demonstrating mucinous, signet ring cell, or medullary differentiation.
Collapse
|
35
|
Song Y, Jiang K, Wang BM, Liu WT, Lin R. miR‑31 promotes tumorigenesis in ulcerative colitis‑associated neoplasia via downregulation of SATB2. Mol Med Rep 2020; 22:4801-4809. [PMID: 33173968 PMCID: PMC7646903 DOI: 10.3892/mmr.2020.11573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) features chronic, non-infectious inflammation of the colon. The risk of ulcerative colitis‑associated neoplasia (UCAN) increases in direct association with the duration of this disease. Whether miRNAs exert a regulatory effect on the pathogenesis of UCAN has remained to be elucidated. In the present study, differentially expressed genes (DEGs) and microRNAs (miRNAs/miRs) were identified using bioinformatics analysis of Gene Expression Omnibus datasets. Enrichment analyses were performed to determine the function of the DEGs. The target genes of key miRNAs were predicted using miRWalk. Validation of DEGs and miRNAs in patients with UC, UC with low‑grade dysplasia and UC with high‑grade dysplasia (UC‑HGD) was performed using reverse transcription‑quantitative PCR analysis. A total of 38 differentially expressed miRNAs and 307 mRNAs were identified from the profiles and miR‑31 was validated as being overexpressed in UCAN tissues, particularly in the UC‑HGD samples. Furthermore, special AT‑rich DNA‑binding protein 2 (SATB2) was validated as a target gene of miR‑31 and SATB2 expression was negatively correlated with miR‑31 expression. Therefore, miR‑31 is upregulated in UCAN and it may promote tumorigenesis through downregulation of SATB2.
Collapse
Affiliation(s)
- Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wen-Tian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rui Lin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
36
|
Roy SK, Shrivastava A, Srivastav S, Shankar S, Srivastava RK. SATB2 is a novel biomarker and therapeutic target for cancer. J Cell Mol Med 2020; 24:11064-11069. [PMID: 32885593 PMCID: PMC7576221 DOI: 10.1111/jcmm.15755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several studies have confirmed the involvement of cancer stem cells (CSC) in tumour progression, metastasis, drug resistance and cancer relapse. SATB2 (special AT-rich binding protein-2) acts as a transcriptional co-factor and modulates chromatin architecture to regulate gene expression. The purpose of this review was to discuss the pathophysiological roles of SATB2 and assess whether it could be used as a therapeutic target for cancer. SATB2 modulated the expression of those genes which regulated pluripotency and self-renewal. Overexpression of SATB2 gene in normal epithelial cells was shown to induce transformation, as a result transformed cells gained CSC's characteristics by expressing stem cell markers and pluripotency maintaining factors, suggesting its role as an oncogene. In addition, SATB2 induced epithelial-mesenchymal transition (EMT) and metastasis. Interestingly, the expression of SATB2 was positively correlated with the activation of β-catenin/TCF-LEF pathway. Furthermore, SATB2 silencing inhibited EMT and their positive regulators, and tumour growth, and suppressed the expression of stem cell markers, pluripotency maintaining factors, cell cycle and cell survival genes, and TCF/LEF targets. Based on the cancer genome atlas (TCGA) expression data and published papers, SATB2 alone or in combination with other proteins could be used a diagnostic biomarker for cancer. Although there is no pharmacological inhibitor of SATB2, studies using genetic approaches suggest that SATB2 could be a potential target for cancer treatment and prevention.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | | | - Sudesh Srivastav
- Department of Biostatistics and Data ScienceSchool of Public Health and Tropical MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Sharmila Shankar
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLAUSA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLAUSA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| |
Collapse
|
37
|
Metastatic colon cancer of the small intestine diagnosed using genetic analysis: a case report. Diagn Pathol 2020; 15:106. [PMID: 32867793 PMCID: PMC7457373 DOI: 10.1186/s13000-020-01019-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Intestinal-type adenocarcinoma is widely detected in the gastrointestinal tract, head and neck, lower respiratory and urinary systems. Determining the nature (monoclonal or multicentric) of the intestinal adenocarcinoma is sometimes a diagnostic challenge owing to its occurrence at various locations of the body, especially in the lower gastrointestinal tract. Herein, we successfully diagnosed metastatic colon cancer in the small intestine using tumor protein 53 gene (TP53) mutation analysis. CASE PRESENTATION An 83-year-old woman presented with severe abdominal pain and nausea at the emergency department of the hospital. Her history included surgery and adjuvant chemotherapy for colon and breast cancers. Abdominal computed tomography revealed small intestinal dilation, which was associated with the mural nodule detected on fluorodeoxyglucose positron emission tomography. Laparoscopy-assisted small bowel resection was performed based on the diagnosis of small bowel obstruction, probably due to recurrence of the colon or breast cancer. Macroscopically, an ulcerated tumor was present in the resected small intestine. Histologically, the cancer cells showed infiltrative growth of colonic dysplastic glands, whose non-specific finding made it difficult to determine the relationship with past colon cancers. Retrospective pathological examination confirmed that the previous breast and colon carcinomas were primary cancers. Immunohistochemical analysis revealed that the small intestinal and colon cancer cells showed diffuse positive tumor protein 53 (p53) expression. However, the breast cancer cells showed only weakly positive p53 expression. In addition, TP53 mutational analysis detected an identical missense mutation (p.T211I) between the two intestinal cancers. Moreover, further molecular genetic work-up revealed that both small intestinal and colon adenocarcinomas harbored an identical missense mutation (p.G12D) of KRAS gene. In conclusion, the small intestinal cancer in this case was identified as a metastatic adenocarcinoma arising from a past colon cancer. CONCLUSIONS Genetic analyses help in clarifying the identity of the cells in multiple cancer cases. In morphologically indeterminate cases, molecular analysis of common cancer-related genes can be useful for a precise and reproducible diagnosis.
Collapse
|
38
|
Laohawetwanit T, Klaikaew N. Pathological aspects of mucinous cholangiocarcinoma: A single-center experience and systematic review. Pathol Int 2020; 70:661-670. [PMID: 32638458 DOI: 10.1111/pin.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
Cholangiocarcinoma is a malignant neoplasm originating from the biliary epithelium. Its incidence is highest in Southeast Asia, especially in Thailand. Mucinous intrahepatic cholangiocarcinoma (mucinous iCCA), characterized by an abundant extracellular mucin pool accounting for at least 50% of total tumor volume, is an extremely rare variant of such malignancy and is notorious for rapid progression and dismal prognosis. We conducted an 11-year retrospective analysis of resected mucinous iCCAs from our institution with a systematic review on mucinous iCCAs and combined hepatocellular-mucinous cholangiocarcinoma (cHCC-mCCA). There were four resected mucinous iCCA specimens at our institution (prevalence = 0.5%). Most of the patients were male. The clinicopathological characteristics were variable. The diagnosis of mucinous iCCAs could not be rendered without pathological evaluation. Either intraductal papillary neoplasm or biliary intraepithelial neoplasia was present in three out of four cases. One patient passed away at 11 months following liver resection. A total of 19 mucinous iCCAs and four cHCC-mCCAs from previously published literature were analyzed. The 1-year mortality rate of mucinous iCCAs from our series and published literature is 35%. The present study confirmed that mucinous iCCA is an exceedingly uncommon variant of iCCA. The differential diagnoses include metastatic carcinoma with mucinous component and cHCC-mCCA.
Collapse
Affiliation(s)
- Thiyaphat Laohawetwanit
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naruemon Klaikaew
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Khisroon M, Khan A, Ayub A, Ullah I, Farooqi J, Ullah A. DNA damage analysis concerning GSTM1 and GSTT1 gene polymorphism in gold jewellery workers from Peshawar Pakistan. Biomarkers 2020; 25:483-489. [PMID: 32615823 DOI: 10.1080/1354750x.2020.1791253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the genotoxic effects of gold jewellery fumes and its association with GSTM1 and GSTT1 genetic polymorphisms. MATERIALS AND METHODS We examined 94 subjects including 54 gold jewellery workers and 40 controls. The DNA damage was evaluated by alkaline comet assay and genotyping by PCR. RESULTS The mean total comet score (TCS) in gold jewellery workers was significantly higher as compared to the control subjects (128.0 ± 60.6 versus 47.7 ± 21.4; p = 0.0001). Duration of occupational exposure had positive correlation (r = 0.453, p < 0.01) with DNA damage. Age and tobacco use had significant effects on the TCS of the exposed group as compared to the control group (p < 0.05). The frequency of the GSTM1-null genotype in the exposed group was significant (p = 0.004) as compared to the control group. No significant association (p > 0.05) between the GSTM1 and GSTT1 genotypes and DNA damage was found. CONCLUSIONS Our results suggest that there is increased DNA damage in gold jewellery workers due to their occupational surroundings. Hence there is a strong need to educate the workers about the adverse health effects of potentially hazardous chemicals and highlight the importance of using protective measures.
Collapse
Affiliation(s)
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Asma Ayub
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacology, Poonch Medical College Rawalakot, Rawalakot, Pakistan
| | - Javeed Farooqi
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Abid Ullah
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
40
|
Loss of SATB2 Expression Is a Biomarker of Inflammatory Bowel Disease-associated Colorectal Dysplasia and Adenocarcinoma. Am J Surg Pathol 2020; 43:1314-1322. [PMID: 31318711 DOI: 10.1097/pas.0000000000001330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SATB2 is a sensitive immunohistochemistry marker of colorectal carcinoma and non-neoplastic colorectal epithelium that is complementary to CDX2. However, its expression is affected by molecular alterations. Inflammatory bowel disease-associated neoplasia demonstrates molecular alterations that are different from those in sporadic colorectal neoplasia. Given these differences, we examined SATB2 expression in 73 cases of inflammatory bowel disease-associated neoplasia including 37 dysplasia cases and 36 carcinomas and compared the expression patterns with 50 cases of nondysplastic colorectal mucosa in patients with active inflammatory bowel disease, 40 sporadic colonic polyps (20 conventional adenomas and 20 sessile serrated lesions/polyps), and 343 sporadic colorectal adenocarcinomas to assess SATB2 immunohistochemistry as a biomarker of inflammatory bowel disease-associated neoplasia. Loss of SATB2 expression was only identified in colorectal dysplasia arising in inflammatory bowel disease (15/37, 41%) and was not seen in nondysplastic colorectal mucosa with active inflammatory bowel disease or sporadic colonic polyps (P<0.001). Loss of SATB2 expression was identified in both endoscopically visible dysplasia (11/28, 39%) and invisible (4/9, 44%) dysplasia. Loss of SATB2 expression was identified in 67% (24/36) of inflammatory bowel disease-associated carcinomas and was significantly more frequent compared with sporadic colorectal carcinomas (47/343, 14%, P<0.001). There was no difference in positive CDX2 expression between inflammatory bowel disease-associated colorectal carcinoma and sporadic colorectal carcinoma (89% vs. 85%, P=1.0). In conclusion, loss of SATB2 expression is common in inflammatory bowel disease-associated colorectal dysplasia and adenocarcinoma and may be a helpful ancillary biomarker when evaluating for inflammatory bowel disease-associated dysplasia.
Collapse
|
41
|
Villatoro TM, Ma C, Pai RK. Switch/sucrose nonfermenting nucleosome complex-deficient colorectal carcinomas have distinct clinicopathologic features. Hum Pathol 2020; 99:53-61. [PMID: 32222462 DOI: 10.1016/j.humpath.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023]
Abstract
The switch/sucrose nonfermenting (SWI/SNF) nucleosome complex consists of several proteins that are involved in cellular proliferation and tumor suppression. The aim of this study was to correlate immunohistochemical expression of four SWI/SNF complex subunits, SMARCA2, SMARCB1, SMARCA4, and ARID1A, with clinicopathologic and molecular features and patient survival in 338 patients with colorectal adenocarcinoma using a tissue microarray approach. Twenty-three (7%) colorectal adenocarcinomas demonstrated deficient SWI/SNF expression: 7 had SMARCA2 deficiency, 12 had ARID1A deficiency, and 4 had both SMARCA2 and ARID1A deficiency. No cases were SMARCB1 or SMARCA4 deficient. Twelve (52%) SWI/SNF complex-deficient tumors demonstrated mismatch repair (MMR) deficiency (p = 0.02), 6 (26%) showed medullary differentiation (p = 0.001), and 9 were negative for CDX2 expression (p < 0.001). Among the MMR-deficient SWI/SNF complex-deficient tumors, 8 were sporadic MLH1 deficient, and 4 were seen in patients with Lynch syndrome. Compared with tumors with ARID1A deficiency alone, SMARCA2-deficient tumors were less likely to exhibit MMR deficiency (27% vs. 75%, p = 0.04), medullary differentiation (0% vs. 50%, p = 0.01), and mucinous differentiation (0% vs. 42%, p = 0.04). Conventional gland-forming histology was more often identified in SMARCA2-deficient tumors (11/11, 100%) than in tumors with ARID1A deficiency alone (4/12, 33%) (p = 0.001). There was no difference in KRAS mutation, BRAF mutation, stage, disease-specific survival, or disease-free survival for patients stratified by SWI/SNF expression (all with p > 0.05). In conclusion, SMARCA2-deficient and ARID1A-deficient colorectal carcinomas had distinctly different clinicopathologic features, with ARID1A-deficient tumors exhibiting medullary and mucinous differentiation and MMR deficiency and SMARCA2-deficient tumors demonstrating conventional gland-forming histologic growth with less frequent MMR deficiency.
Collapse
Affiliation(s)
- Tatiana M Villatoro
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Changqing Ma
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Lv Y, Lin SY, Hu FF, Ye Z, Zhang Q, Wang Y, Guo AY. Landscape of cancer diagnostic biomarkers from specifically expressed genes. Brief Bioinform 2019; 21:2175-2184. [PMID: 31814027 DOI: 10.1093/bib/bbz131] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/25/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
Although there has been great progress in cancer treatment, cancer remains a serious health threat to humans because of the lack of biomarkers for diagnosis, especially for early-stage diagnosis. In this study, we comprehensively surveyed the specifically expressed genes (SEGs) using the SEGtool based on the big data of gene expression from the The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) projects. In 15 solid tumors, we identified 233 cancer-specific SEGs (cSEGs), which were specifically expressed in only one cancer and showed great potential to be diagnostic biomarkers. Among them, three cSEGs (OGDH, MUDENG and ACO2) had a sample frequency >80% in kidney cancer, suggesting their high sensitivity. Furthermore, we identified 254 cSEGs as early-stage diagnostic biomarkers across 17 cancers. A two-gene combination strategy was applied to improve the sensitivity of diagnostic biomarkers, and hundreds of two-gene combinations were identified with high frequency. We also observed that 13 SEGs were targets of various drugs and nearly half of these drugs may be repurposed to treat cancers with SEGs as their targets. Several SEGs were regulated by specific transcription factors in the corresponding cancer, and 39 cSEGs were prognosis-related genes in 7 cancers. This work provides a survey of cancer biomarkers for diagnosis and early diagnosis and new insights to drug repurposing. These biomarkers may have great potential in cancer research and application.
Collapse
Affiliation(s)
- Yao Lv
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Sheng-Yan Lin
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Fei-Fei Hu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zheng Ye
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.,Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Spine and Spinal Cord, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yan Wang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|