1
|
Fu P, Liu CP, Liu CY, Zhang YCF, Xu JP, Mao RT, Ding XY, Li F, Zhang YL, Yang HL, Zhu JN, Zhang G, Jing J. The Hypothalamic Medial Preoptic Area-Paraventricular Nucleus Circuit Modulates Depressive-Like Behaviors in a Mouse Model of Postpartum Depression. RESEARCH (WASHINGTON, D.C.) 2025; 8:0701. [PMID: 40370500 PMCID: PMC12076219 DOI: 10.34133/research.0701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
Estrogen fluctuations have been implicated in various mood disorders, including perimenopausal and postpartum depression (PPD), likely through complex neural networks. γ-aminobutyric acid-ergic (GABAergic) neurons in the medial preoptic area (MPOA) that express estrogen receptor 1 (ESR1) are essential for the development and expression of depressive-like behaviors in ovarian hormone withdrawal (HW) mice. However, the precise circuit mechanisms through which MPOA GABAergic neurons influence behavior remain incompletely understood. Here, we identified robust projections from MPOA GABAergic neurons to the paraventricular nucleus of the hypothalamus (PVN). In HW mice, chemogenetic activation of MPOA GABAergic neurons targeting PVN attenuated depressive-like behaviors. Conversely, in nonhormone withdrawal (NHW) control mice (which received continuous estrogen), suppression of MPOA GABAergic projections to PVN exacerbated depressive-like behaviors. Further analyses using quantitative polymerase chain reaction and immunostaining identified arginine vasopressin (AVP) as a key neuropeptide in this pathway in the HW mouse model. Chemogenetic inhibition of PVNAVP neurons significantly alleviated depressive-like behaviors in HW mice, while their activation in NHW mice worsened depressive-like behaviors. These behaviors were dependent on AVP expression in PVNAVP neurons. Moreover, in HW mice, chemogenetic inhibition of PVNAVP neurons receiving MPOA input mitigated depressive-like behaviors. Conversely, in NHW mice, activation of these neurons exacerbated depressive-like behaviors. Electrophysiological recordings demonstrated that MPOA GABAergic neurons directly inhibit PVNAVP neurons. Thus, our findings suggest that PVNAVP neurons serve as downstream effectors of MPOA GABAergic neurons via monosynaptic inhibitory signaling to regulate depressive-like behaviors. Targeting this circuit may offer a novel therapeutic strategy for PPD.
Collapse
Affiliation(s)
- Ping Fu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Cui-Ping Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Cheng-Yi Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Chu-Fei Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Ju-Ping Xu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Rui-Ting Mao
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Xue-Ying Ding
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Fan Li
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Yi-Long Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Hai-Long Yang
- Department of Medical Psychology, Nanjing Drum Tower Hospital,
The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Jing-Ning Zhu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Guo Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
| | - Jian Jing
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences,
Nanjing University, Nanjing, Jiangsu, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
2
|
Kore MS, Mamsa R, Patil D, Bhatt LK. Ghrelin in Depression: A Promising Therapeutic Target. Mol Neurobiol 2025; 62:4237-4249. [PMID: 39424690 DOI: 10.1007/s12035-024-04554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Depression is a widespread disease affecting over 300 million individuals of various ethnicities and socioeconomic backgrounds globally. It frequently strikes early in life and becomes a chronic or recurring lifelong illness. Out of the various hypotheses for the pathophysiology of depression, the gut-brain axis and stress hypothesis are the ones that need to be researched, as psychological stress impairs one or more pathways of the brain-gut axis and is likely to cause brain-gut axis dysfunction and depression. A dysfunctional reciprocal gut-brain relationship may contribute to many diseases, including inflammatory disorders, abnormal stress responses, impaired behavior, and metabolic changes. The hormone ghrelin is a topic of interest concerning the gut-brain axis as it interacts with the gut-brain axis indirectly via the central nervous system or via crossing the blood-brain barrier. Ghrelin release is also affected by the gut microbes, which has also been discussed in the review. This review elaborates on Ghrelin's role in depression and its effect on various aspects like neurogenesis, HPA axis, and neuroinflammation. Furthermore, this review focuses on ghrelin as a potential target for alleviation of depressive symptoms.
Collapse
Affiliation(s)
- Mikhil Santosh Kore
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Rumaiza Mamsa
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
3
|
Chaki S. Orexin receptors: possible therapeutic targets for psychiatric disorders. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06767-1. [PMID: 40153060 DOI: 10.1007/s00213-025-06767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
RATIONALE Orexins, comprising orexin-A and orexin-B, are neuropeptides with extensive projections throughout the central nervous system. They are implicated in a variety of physiological processes through their receptors, orexin type 1 (OX1) and orexin type 2 (OX2) receptors. Among the physiological functions of orexins, their role in sleep/wake regulation has garnered significant attention. Consequently, three orexin receptor antagonists that block both OX1 and OX2 receptors (dual orexin receptor antagonist; DORA) are available on the market for the treatment of insomnia. Additionally, another DORA, vornorexant, has been submitted for approval. OBJECTIVE Beyond sleep disorders, the orexin system is deeply implicated in the pathophysiology of several psychiatric disorders, including depression, anxiety, and substance use disorders. RESULTS Accumulating evidence indicates that orexin receptor antagonists improve behavioral abnormalities that mimic certain psychiatric disorders in animal models and are effective in treating these disorders or their symptoms in humans. Moreover, orexin receptor antagonists are expected not only to alleviate core symptoms of psychiatric disorders but also to improve sleep disturbances, which are often comorbid with these conditions. CONCLUSION Drug discovery and development targeting orexin receptors should provide novel therapeutic options for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Taisho Pharmaceutical Co., Ltd, Toshima-Ku, Tokyo, 170-8633, Japan.
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
4
|
Amaral IM, Ouaidat S, Scheffauer L, Granza AE, Monteiro DG, Salti A, Hofer A, El Rawas R. Exploring the role of orexins in the modulation of social reward. Psychopharmacology (Berl) 2025; 242:401-412. [PMID: 39302438 PMCID: PMC11775052 DOI: 10.1007/s00213-024-06688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
RATIONALE positive social interactions are essential for mental health, by offering emotional support, reducing stress levels, and promoting resilience against drugs of abuse effects. However, not all individuals perceive social interaction as rewarding. OBJECTIVES the goal of this study was to investigate whether the modulation of the orexin system can shift passive coping and non-social behavior (vulnerable) to active coping and social behavior (resilient). This knowledge is primordial for stress- and addiction-related disorders, and for other psychiatric disorders involving impairment in social interaction. METHODS male C57/BL6N mice categorized into social and non-social groups, received injections of SB334867, a selective orexin 1 receptor (OX1R) antagonist, before the conditioning sessions with a male conspecific of the same weight and age. RESULTS our results from the conditioned place preference test (CPP) show that SB334867 has no effect on social preference in non-social mice, but it reduces their stress levels and depression-like behavior. These effects appear to be due to a higher OX1R expression in the basolateral amygdala (BLA), a stress-related brain area, of non-social mice compared to their social counterparts. CONCLUSIONS these data suggest that the orexin system may be a target to alleviate stress and depression-like behavior in non-social individuals rather than to promote social reward.
Collapse
Affiliation(s)
- Inês M Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Sara Ouaidat
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
- University Clinic of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Laura Scheffauer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Anna E Granza
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Diogo G Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Ahmad Salti
- University Clinic of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
5
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2025; 564:126-134. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Serefko A, Wróbel J, Szopa A, Dobrowolski P, Kluz T, Wdowiak A, Bojar I, Poleszak E, Romejko-Wolniewicz E, Derlatka P, Grabowska-Derlatka L, Kacperczyk-Bartnik J, Gieleta AW, Bartnik P, Jakimiuk A, Misiek M, Wróbel A. The Orexin OX 2 Receptor-Dependent Pathway Is Implicated in the Development of Overactive Bladder and Depression in Rats Exposed to Corticosterone. Neurourol Urodyn 2025; 44:229-244. [PMID: 39402852 DOI: 10.1002/nau.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 12/24/2024]
Abstract
AIM In the present study, we wanted to check whether TCS OX2 29 (TCS), a potent selective antagonist of OX2 receptors, would have positive effects in an animal model of detrusor overactivity co-existed with the depression-like state in Wistar male rats. METHODS The forced swim test with the measurement of spontaneous locomotor activity, conscious cystometry, determination of c-Fos expression in central micturition areas, and a set of biochemical analyses (with the use of urine, hippocampus, bladder urothelium, and detrusor muscle of tested animals) were carried out. RESULTS The outcomes showed that a 7-day administration of TCS (3 mg/kg/day, subcutaneously) normalizes the cystometric parameters corresponding to overactivity of the detrusor and reverses the pro-depressive response. Furthermore, the antagonism of OX2 receptors restored the abnormal levels of overactive bladder markers (i.e., ATP, CGRP, OCT3, TRPV1, ROCK1, and VAChT), diminished neuronal overactivity in central micturition areas (i.e., pontine micturition center, ventrolateral periaqueductal gray, and medial preoptic area) as well as restored the altered hippocampal levels of CRF, cytokines (IL-1β, IL-6, IL-10, and TNF-α), and growth factors (BDNF and NGF) that reflected biochemical disturbances detected in depressed people. CONCLUSIONS It seems that our findings open new perspectives regarding the implication of the orexin system in the functioning of the urinary bladder and in the pathophysiology of depression.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Iwona Bojar
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Romejko-Wolniewicz
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Derlatka
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Paweł Bartnik
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Center for Reproductive Health, Institute of Mother and Child, Warsaw, Poland
| | - Marcin Misiek
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Yang J, Cai JH, Wu TX, Gao ZQ, Zhou C, Wu Q, Ji MJ. Salvinorin A ameliorates pilocarpine-induced seizures by regulating hippocampal microglia polarization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118697. [PMID: 39154669 DOI: 10.1016/j.jep.2024.118697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia divinorum (Epling and Játiva) is a psychoactive plant traditionally used by the Latinos for various medicinal purposes. Salvinorin A (Sal A), the main bioactive constituent of S. divinorum, is a natural highly selective kappa opioid receptor (KOR) agonist. Considering the anti-inflammatory effect of S. divinorum and endogenous hippocampal dynorphin/kappa opioid receptor (KOR) system playing an anticonvulsant function, we hypothesis that Sal A can be a potential candidate to treat epilepsy. Here, we identified whether Sal A ameliorated epileptic seizures and neuronal damages in animal model and in vitro model and investigated its underlying mechanisms. MATERIALS AND METHODS Mice epilepsy model was induced by pilocarpine following seizures assessed by Racine classification. Hippocampus tissues were obtained for genetic, protein, and histological investigation. Furthermore, lipopolysaccharide (LPS)-activated BV2 microglial cells were utilized to validate the anti-inflammatory and microglia polarization regulation effects of Sal A. RESULTS Sal A treatment significantly prolonged the latency to status epileptics (SE) and shortened the duration of SE in the pilocarpine-induced model. It also alleviated neuronal damages via activation of the AMPK/JNK/p-38 MAPK pathway and inhibition of apoptosis-related protein in hippocampus tissues. Furthermore, Sal A dose-dependently reduced microglia-mediated expression of pro-inflammatory cytokines and increased anti-inflammatory factors levels in SE mice and LPS-activated BV2 microglial cells by regulating microglia polarization. In addition, the effect of Sal A in vitro was totally blocked by KOR antagonist nor-BNI. CONCLUSION Sal A treatment protects against epileptic seizures and neuronal damages in pilocarpine-induced models by suppressing the inflammation response through regulating microglial M1/M2 polarization. This study might serve as a theoretical basis for clinical applications of Sal A and its analogs and provide a new insight into the development of anti-seizure drugs.
Collapse
Affiliation(s)
- Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Ji-Heng Cai
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China; Department of Anesthesiology, Sheyang County People's Hospital, Yancheng, 224300, China.
| | - Tong-Xuan Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhi-Qiang Gao
- School of Pharmacology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chao Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
8
|
Li J, Wang S, He Y, Song Y. Orexin improves chronic restraint stress induced depressive-like behavior via modulating the lateral septum in mice. Biochem Biophys Res Commun 2024; 735:150679. [PMID: 39265365 DOI: 10.1016/j.bbrc.2024.150679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The orexin system participates in the regulation of depression; however, its effects show significant heterogeneity, indicating the involvement of complex downstream neural circuit mechanisms. The lateral septum (LS), located downstream of the orexin system, contributes to depression. However, the effects and mechanisms underlying the orexin-mediated modulation of the LS in patients with depression remain unclear. Herein, we applied fiber photometry, chemogenetics, neuropharmacology, and in vitro electrophysiology to show that LS orexinergic afferents are sensitive to acute restraint and that chronic restraint stress (CRS) inhibits LS-projecting orexin neurons. Chemogenetic activation of LS orexinergic afferents or injection of orexin-A into the LS improved CRS-induced depression-like behavior. In vitro perfusion of orexin-A increased the action potential of somatostatin neurons in the LS. Overall, this study provides evidence that orexin improves depressive-like behavior by modulating the LS, and that this effect is probably mediated by the upregulation of LS somatostatin neurons.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Yuting He
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Yunyun Song
- Department of Medical Psychology, Airforce Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Lengvenyte A, Cognasse F, Hamzeh-Cognasse H, Sénèque M, Strumila R, Olié E, Courtet P. Baseline circulating biomarkers, their changes, and subsequent suicidal ideation and depression severity at 6 months: A prospective analysis in patients with mood disorders. Psychoneuroendocrinology 2024; 168:107119. [PMID: 39003840 DOI: 10.1016/j.psyneuen.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Identifying circulating biomarkers associated with prospective suicidal ideation (SI) and depression could help better understand the dynamics of these phenomena and identify people in need of intense care. In this study, we investigated the associations between baseline peripheral biomarkers implicated in neuroplasticity, vascular homeostasis and inflammation, and prospective SI and depression severity during 6 months of follow-up in patients with mood disorders. METHODS 149 patients underwent a psychiatric evaluation and gave blood to measure 32 plasma soluble proteins. At follow-up, SI incidence over six months was measured with the Columbia Suicide Severity Rating Scale, and depressive symptoms were assessed with the Inventory for Depressive Symptomatology. Ninety-six patients provided repeated blood samples. Statistical analyses included Spearman partial correlation and Elastic Net regression, followed by the covariate-adjusted regression models. RESULTS 51.4 % (N = 71) of patients reported SI during follow-up. After adjustment for covariates, higher baseline levels of interferon-γ were associated with SI occurrence during follow-up. Higher baseline interferon-γ and lower orexin-A were associated with increased depression severity, and atypical and anxious, but not melancholic, symptoms. There was also a tendency for associations of elevated baseline levels of interferon-γ, interleukin-1β, and lower plasma serotonin levels with SI at the six-month follow-up time point. Meanwhile, reduction in transforming growth factor- β1 (TGF-β1) plasma concentration correlated with atypical symptoms reduction. CONCLUSION We identified interferon-γ and orexin-A as potential predictive biomarkers of SI and depression, whereas TGF-β1 was identified as a possible target of atypical symptoms.
Collapse
Affiliation(s)
- Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania.
| | - Fabrice Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France; Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Maude Sénèque
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Emilie Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
10
|
Jiang S, Wu H. The Cerebellum Modulates Mood with Movement. Neurosci Bull 2024; 40:1396-1398. [PMID: 38769203 PMCID: PMC11365889 DOI: 10.1007/s12264-024-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
- Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
11
|
Haidary M, Arif S, Hossaini D, Madadi S, Akbari E, Rezayee H. Pain-Insomnia-Depression Syndrome: Triangular Relationships, Pathobiological Correlations, Current Treatment Modalities, and Future Direction. Pain Ther 2024; 13:733-744. [PMID: 38814408 PMCID: PMC11255165 DOI: 10.1007/s40122-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Pain-insomnia-depression syndrome (PIDS) is a complex triad of chronic pain, insomnia, and depression that has profound effects on an individual's quality of life and mental health. The pathobiological context of PIDS involves complex neurobiological and physiological mechanisms, including alterations in neurotransmitter systems and impaired pain processing pathways. The first-line therapeutic approaches for the treatment of chronic pain, depression, and insomnia are a combination of pharmacological and non-pharmacological therapies. In cases where patients do not respond adequately to these treatments, additional interventions such as deep brain stimulation (DBS) may be required. Despite advances in understanding and treatment, there are still gaps in knowledge that need to be addressed. To improve our understanding, future research should focus on conducting longitudinal studies to uncover temporal associations, identify biomarkers and genetic markers associated with PIDS, examine the influence of psychosocial factors on treatment responses, and develop innovative interventions that address the complex nature of PIDS. The aim of this study is to provide a comprehensive overview of these components and to discuss their underlying pathobiological relationships.
Collapse
Affiliation(s)
- Murtaza Haidary
- Medical Research and Technology Center, Khatam Al-Nabieen University, Kabul, Afghanistan.
| | - Shamim Arif
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Dawood Hossaini
- Department of Biology and Microbiology, Faculty of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Shekiba Madadi
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Elham Akbari
- Department of Biology and Microbiology, Faculty of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Hossain Rezayee
- Department of Chemistry and Biochemistry, Faculty of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan
| |
Collapse
|
12
|
Spreen A, Alkhoury D, Walter H, Müller S. Optogenetic behavioral studies in depression research: A systematic review. iScience 2024; 27:109776. [PMID: 38726370 PMCID: PMC11079475 DOI: 10.1016/j.isci.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Optogenetics has made substantial contributions to our understanding of the mechanistic underpinnings of depression. This systematic review employs quantitative analysis to investigate the impact of optogenetic stimulation in mice and rats on behavioral alterations in social interaction, sucrose consumption, and mobility. The review analyses optogenetic behavioral studies using standardized behavioral tests to detect behavioral changes induced via optogenetic stimulation in stressed or stress-naive mice and rats. Behavioral changes were evaluated as either positive, negative, or not effective. The analysis comprises the outcomes of 248 behavioral tests of 168 studies described in 37 articles, including negative and null results. Test outcomes were compared for each behavior, depending on the animal cohort, applied type of stimulation and the stimulated neuronal circuit and cell type. The presented synthesis contributes toward a comprehensive picture of optogenetic behavioral research in the context of depression.
Collapse
Affiliation(s)
- Anika Spreen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| | - Sabine Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| |
Collapse
|
13
|
Reid MJ, Dunn KE, Abraham L, Ellis J, Hunt C, Gamaldo CE, Coon WG, Mun CJ, Strain EC, Smith MT, Finan PH, Huhn AS. Suvorexant alters dynamics of the sleep-electroencephalography-power spectrum and depressive-symptom trajectories during inpatient opioid withdrawal. Sleep 2024; 47:zsae025. [PMID: 38287879 PMCID: PMC11009034 DOI: 10.1093/sleep/zsae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
STUDY OBJECTIVES Opioid withdrawal is an aversive experience that often exacerbates depressive symptoms and poor sleep. The aims of the present study were to examine the effects of suvorexant on oscillatory sleep-electroencephalography (EEG) band power during medically managed opioid withdrawal, and to examine their association with withdrawal severity and depressive symptoms. METHODS Participants with opioid use disorder (N = 38: age-range:21-63, 87% male, 45% white) underwent an 11-day buprenorphine taper, in which they were randomly assigned to suvorexant (20 mg [n = 14] or 40 mg [n = 12]), or placebo [n = 12], while ambulatory sleep-EEG data was collected. Linear mixed-effect models were used to explore: (1) main and interactive effects of drug group, and time on sleep-EEG band power, and (2) associations between sleep-EEG band power change, depressive symptoms, and withdrawal severity. RESULTS Oscillatory spectral power tended to be greater in the suvorexant groups. Over the course of the study, decreases in delta power were observed in all study groups (β = -189.082, d = -0.522, p = <0.005), increases in beta power (20 mg: β = 2.579, d = 0.413, p = 0.009 | 40 mg β = 5.265, d = 0.847, p < 0.001) alpha power (20 mg: β = 158.304, d = 0.397, p = 0.009 | 40 mg: β = 250.212, d = 0.601, p = 0.001) and sigma power (20 mg: β = 48.97, d = 0.410, p < 0.001 | 40 mg: β = 71.54, d = 0.568, p < 0.001) were observed in the two suvorexant groups. During the four-night taper, decreases in delta power were associated with decreases in depressive symptoms (20 mg: β = 190.90, d = 0.308, p = 0.99 | 40 mg: β = 433.33, d = 0.889 p = <0.001), and withdrawal severity (20 mg: β = 215.55, d = 0.034, p = 0.006 | 40 mg: β = 192.64, d = -0.854, p = <0.001), in both suvorexant groups and increases in sigma power were associated with decreases in withdrawal severity (20 mg: β = -357.84, d = -0.659, p = 0.004 | 40 mg: β = -906.35, d = -1.053, p = <0.001). Post-taper decreases in delta (20 mg: β = 740.58, d = 0.964 p = <0.001 | 40 mg: β = 662.23, d = 0.882, p = <0.001) and sigma power (20 mg only: β = 335.54, d = 0.560, p = 0.023) were associated with reduced depressive symptoms in the placebo group. CONCLUSIONS Results highlight a complex and nuanced relationship between sleep-EEG power and symptoms of depression and withdrawal. Changes in delta power may represent a mechanism influencing depressive symptoms and withdrawal.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liza Abraham
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Ellis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carly Hunt
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charlene E Gamaldo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Coon
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
- Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Chung Jung Mun
- Arizona State University, Edson College of Nursing and Health Innovation, Pheonix, AZ, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric C Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick H Finan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrew S Huhn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Wu P, Li W, Lv R, Cheng X, Lian F, Cai W, Hu Y, Zeng Y, Ke B, Chen Y, Ma Z, Ma M, Dai W, Xia P, Lin Y, Lin WJ, Ye X. Hyperactive lateral habenula mediates the comorbidity between rheumatoid arthritis and depression-like behaviors. Brain Behav Immun 2024; 117:412-427. [PMID: 38320683 DOI: 10.1016/j.bbi.2024.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) patients have a high prevalence for depression. On the other hand, comorbid with depression is associated with worse prognosis for RA. However, little is known about the underlying mechanisms for the comorbidity between RA and depression. It remains to be elucidated which brain region is critically involved in the development of depression in RA, and whether alterations in the brain may affect pathological development of RA symptoms. Here, by combining clinical and animal model studies, we show that in RA patients, the level of depression is significantly correlated with the severity of RA disease activity and affects patients' quality of life. The collagen antibody-induced arthritis (CAIA) mouse model of RA also develops depression-like behaviors, accompanied by hyperactivity and alterations in gene expression reflecting cerebrovascular disruption in the lateral habenula (LHb), a brain region critical for processing negative valence. Importantly, inhibition of the LHb not only alleviates depression-like behaviors, but also results in rapid remission of RA symptoms and amelioration of RA-related pathological changes. Together, our study highlights a critical but previously overlooked contribution of hyperactive LHb to the comorbidity between RA and depression, suggesting that targeting LHb in conjunction with RA treatments may be a promising strategy for RA patients comorbid with depression.
Collapse
Affiliation(s)
- Peihui Wu
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Wenchang Li
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Rongke Lv
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Physical Education, Huanghuai University, Zhumadian, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fan Lian
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Wenbao Cai
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yubo Hu
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Medical College, Jiaying University, Meizhou, China
| | - Yanni Zeng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bizhen Ke
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Chen
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zaohui Ma
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Meiqi Ma
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiping Dai
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei Xia
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, China; Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Chen PY, Chiu CC, Chang CK, Lu ML, Huang CY, Chen CH, Huang MC. Higher orexin-A levels are associated with treatment response to clozapine in patients with schizophrenia: A cross-sectional study. J Psychopharmacol 2024; 38:258-267. [PMID: 38279671 DOI: 10.1177/02698811231225610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Clozapine is the primary antipsychotic (APD) for treatment-resistant schizophrenia (TRS). However, only 40% of patients with TRS respond to clozapine, constituting a subgroup of clozapine-resistant patients. Recently, the neuropeptide orexin-A was shown to be involved in the pathophysiology of schizophrenia. This study evaluated the association of orexin-A levels with the clozapine response in patients with TRS. METHODS We recruited 199 patients with schizophrenia, including 37 APD-free and 162 clozapine-treated patients. Clozapine-treated patients were divided into clozapine-responsive (n = 100) and clozapine-resistant (n = 62) groups based on whether they had achieved psychotic remission defined by the 18-item Brief Psychiatric Rating Scale (BPRS-18). We compared blood orexin-A levels among the three groups and performed regression analysis to determine the association of orexin-A level with treatment response in clozapine-treated patients. We also explored the correlation between orexin-A levels and cognitive function, assessed using the CogState Schizophrenia Battery. RESULTS Clozapine-responsive patients had higher orexin-A levels than clozapine-resistant and APD-free patients. Orexin-A level was the only factor significantly associated with treatment response after adjustment. Orexin-A levels were negatively correlated with BPRS-18 full scale and positive, negative, and general symptoms subscale scores. We also observed a positive correlation between orexin-A levels and verbal memory, visual learning and memory, and working memory function. CONCLUSIONS This cross-sectional study showed that higher levels of orexin-A are associated with treatment response to clozapine in patients with TRS. Future prospective studies examining changes in orexin-A level following clozapine treatment and the potential benefit of augmenting orexin-A signaling are warranted.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Kuo Chang
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cho-Yin Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Ouaidat S, Amaral IM, Monteiro DG, Harati H, Hofer A, El Rawas R. Orexins/Hypocretins: Gatekeepers of Social Interaction and Motivation. Int J Mol Sci 2024; 25:2609. [PMID: 38473854 PMCID: PMC10931973 DOI: 10.3390/ijms25052609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Ever since the discovery of the brain's orexin/hypocretin system, most research was directed toward unveiling its contribution to the normal functioning of individuals. The investigation of reward-seeking behaviors then gained a lot of attention once the distribution of orexinergic neurons was revealed. Here, we discuss findings on the involvement of orexins in social interaction, a natural reward type. While some studies have succeeded in defining the relationship between orexin and social interaction, the controversy regarding its nature (direct or inverse relation) raises questions about what aspects have been overlooked until now. Upon examining the literature, we identified a research gap concerning conditions influencing the impact of orexins on social behavior expression. In this review, we introduce a number of factors (e.g., stress, orexin's source) that must be considered while studying the role of orexins in social interaction. Furthermore, we refer to published research to investigate the stage at which orexins affect social interaction and we highlight the nucleus accumbens (NAc) shell's role in social interaction and other rewarding behaviors. Finally, the underlying orexin molecular pathway influencing social motivation in particular illnesses is proposed. We conclude that orexin's impact on social interaction is multifactorial and depends on specific conditions available at a time.
Collapse
Affiliation(s)
- Sara Ouaidat
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Diogo G. Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Dong P, Dai W, Su M, Wang S, Ma Y, Zhao T, Zheng F, Sun P. The potential role of the orexin system in premenstrual syndrome. Front Endocrinol (Lausanne) 2024; 14:1266806. [PMID: 38292774 PMCID: PMC10824941 DOI: 10.3389/fendo.2023.1266806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Premenstrual syndrome (PMS) occurs recurrently during the luteal phase of a woman's menstrual cycle and disappears after menstruation ends. It is characterized by abnormal changes in both the body and mood, and in certain cases, severe disruptions in daily life and even suicidal tendencies. Current drugs for treating PMS, such as selective serotonin reuptake inhibitors, do not yield satisfactory results. Orexin, a neuropeptide produced in the lateral hypothalamus, is garnering attention in the treatment of neurological disorders and is believed to modulate the symptoms of PMS. This paper reviews the advancements in research on sleep disturbances, mood changes, and cognitive impairment caused by PMS, and suggests potential pathways for orexin to address these symptoms. Furthermore, it delves into the role of orexin in the molecular mechanisms underlying PMS. Orexin regulates steroid hormones, and the cyclic fluctuations of estrogen and progesterone play a crucial role in the pathogenesis of PMS. Additionally, orexin also modulates the gamma-aminobutyric acid (GABA) system and the inflammatory response involved in coordinating the mechanism of PMS. Unraveling the role of orexin in the pathogenesis of PMS will not only aid in understanding the etiology of PMS but also hold implications for orexin as a novel target for treating PMS.
Collapse
Affiliation(s)
- Ping Dong
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhong Shan, China
| | - Mengyue Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shukun Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhao
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Farajzadeh-Dehkordi M, Mafakher L, Harifi A, Haghdoost-Yazdi H, Piri H, Rahmani B. Unraveling the function and structure impact of deleterious missense SNPs in the human OX1R receptor by computational analysis. Sci Rep 2024; 14:833. [PMID: 38191899 PMCID: PMC10774445 DOI: 10.1038/s41598-023-49809-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
The orexin/hypocretin receptor type 1 (OX1R) plays a crucial role in regulating various physiological functions, especially feeding behavior, addiction, and reward. Genetic variations in the OX1R have been associated with several neurological disorders. In this study, we utilized a combination of sequence and structure-based computational tools to identify the most deleterious missense single nucleotide polymorphisms (SNPs) in the OX1R gene. Our findings revealed four highly conserved and structurally destabilizing missense SNPs, namely R144C, I148N, S172W, and A297D, located in the GTP-binding domain. Molecular dynamics simulations analysis demonstrated that all four most detrimental mutant proteins altered the overall structural flexibility and dynamics of OX1R protein, resulting in significant changes in the structural organization and motion of the protein. These findings provide valuable insights into the impact of missense SNPs on OX1R function loss and their potential contribution to the development of neurological disorders, thereby guiding future research in this field.
Collapse
Affiliation(s)
- Mahvash Farajzadeh-Dehkordi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Harifi
- Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Hormozgan, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Rahmani
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
20
|
Lengvenyte A, Belzeaux R, Olié E, Hamzeh-Cognasse H, Sénèque M, Strumila R, Cognasse F, Courtet P. Associations of potential plasma biomarkers with suicide attempt history, current suicidal ideation and subsequent suicidal events in patients with depression: A discovery study. Brain Behav Immun 2023; 114:242-254. [PMID: 37648005 DOI: 10.1016/j.bbi.2023.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
A growing body of evidences suggests that suicidal ideation (SI) and suicidal behaviors have biological bases. However, no biological marker is currently available to evaluate the suicide risk in individuals with SI or suicide attempt (SA). Moreover, the current risk assessment techniques poorly predict future suicidal events. The aim of this study was to examine the association of 39 new and already described peripheral cells and proteins (implicated in the immune system, oxidative stress and plasticity) with lifetime SA, past month SA, current SI, and future suicidal events (visit to the Emergency Department for SI or SA) in 266 treatment-seeking individuals with mood disorders. Equal parts of patients with and without past history of SA were recruited. All individuals at inclusion gave blood, were evaluated for SA recency, current SI, and were followed for two years afterwards. The 39 peripheral blood cellular and protein markers were entered separately for each outcome in Elastic Net models with 10-fold cross-validation, followed by single-analyte covariate-adjusted regression analyses for pre-selected analytes. Past month SA was associated with increased plasma levels of thrombospondin-2 and C-reactive protein, whereas current SI was associated with lower plasma serotonin levels. These associations were robust to adjustments for key covariates and corrections for multiple testing. The Cox proportional hazards regression showed that higher levels of thrombospondin-1 and of platelet-derived growth factor-AB predicted a future suicidal event. These two associations remained after adjustment for sex, age, and SA history, and outperformed the predictive value of past SA. Thrombospondins and platelet-derived growth factors have never been investigated in the context of suicide. Altogether, our results highlight the involvement in the suicidal process of platelet biological response and plasticity modifiers and also of inflammatory factors. They also suggest that SI and SA may have different biological correlates and that biomarkers associated with past SA or current SI do not automatically also predict future events.
Collapse
Affiliation(s)
- Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania.
| | - Raoul Belzeaux
- INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France; University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France; Fondation Fondamental
| | - Emilie Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Fondation Fondamental
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Maude Sénèque
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Fabrice Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France; Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Fondation Fondamental
| |
Collapse
|
21
|
Wang L, Wang R, Song M, Lu W, Li N, Gao Y, Huang F, Liu B, Chen H, An C, Wang X. Association between peripheral orexin A/B levels and depression with childhood trauma. J Affect Disord 2023; 340:592-597. [PMID: 37385389 DOI: 10.1016/j.jad.2023.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Orexin dysfunction has previously been demonstrated to be associated with depression. However, no studies reported the different effects of orexin A/B on depression with and without childhood trauma (CT). In this study,we assessed the correlation between expression of orexin A/B and depression severity in major depressive disorder (MDD) patients and healthy controls. METHODS A total of 97 MDD patients and 51 healthy controls were recruited in this study. According to the total scores of childhood trauma questionnaire (CTQ), the MDD patients were further divided into two subgroups, MDD with CT and MDD without CT. The 17-item Hamilton Depression Scale (HAMD-17), and plasma orexin A and orexin B concentrations were measured in all participants using enzyme-linked immunosorbent assay. RESULTS Orexin B plasma levels were significantly higher in MDD patients with CT and without CT than that in the healthy control group (P < 0.05), whereas there was no statistical difference between the two depression groups. After adjusting age and BMI for covariates, the LASSO regression revealed significant association between the plasma orexin B levels and the total scores of HAMD (β = 3.348), CTQ (β = 2.005). There was no difference in plasma orexin A levels among three groups (P > 0.05). CONCLUSIONS Although peripheral orexin B levels are associated with the depression, rather than orexin A, CT appear to play a role in the association between orexin B levels and depression. China Clinical Trial Registration Center (Registration No.: ChiCTR2000039692).
Collapse
Affiliation(s)
- Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Ran Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Mei Song
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Wenting Lu
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Na Li
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Yuanyuan Gao
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Fanfan Huang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Bufan Liu
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Huan Chen
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Cuixia An
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China.
| | - Xueyi Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China.
| |
Collapse
|
22
|
Liu Q, Meng Q, Ding Y, Jiang J, Kang C, Yuan L, Guo W, Zhao Z, Yuan Y, Wei X, Hao W. The unfixed light pattern contributes to depressive-like behaviors in male mice. CHEMOSPHERE 2023; 339:139680. [PMID: 37524266 DOI: 10.1016/j.chemosphere.2023.139680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Light pollution is now associated with an increased incidence of mental disorders in humans, and the unfixed light pattern (ULP) is a common light pollution that occurs in such as rotating shift work. However, how much contribution the ULP has to depression and its potential mechanism are yet unknown. Our study aimed to investigate the effect of the ULP on depressive-like behaviors in mice and to explore the links to the circadian-orexinergic system. Male C57BL/6 J mice were exposed to the ULP by subjecting them to an alternating light pattern every 6 days for 54 days. The tail suspension test (TST) and forced swimming test (FST) were conducted to assess depressive-like behaviors. The rhythm of locomotor activity and the circadian expression of cFOS in the suprachiasmatic nucleus (SCN), clock genes in the liver, and corticosterone (CORT) in serum were detected to observe changes in the circadian system. The circadian expression of orexin-A (OX-A) in the lateral hypothalamus area (LHA) and dorsal raphe nucleus (DRN) and serotonin (5-HT) in the DRN were measured to determine alterations in the orexinergic system. The results showed that mice exposed to the ULP exhibited increased immobility time in the TST and FST. The ULP significantly disrupted the circadian rhythm of locomotor activity, clock genes in the liver, and CORT in the serum. Importantly, when exposed to the ULP, cFOS expression in the SCN showed decreased amplitude. Its projection area, the LHA, had a lower mesor of OX-A expression. OX-A projection to the DRN and 5-HT expression in the DRN were reduced in mesor. Our research suggests that the ULP contributes to depressive-like behaviors in mice, which might be related to the reduced amplitude of circadian oscillation in the SCN and hypoactivity of the orexinergic system. These findings may provide novel insights into rotating shift work-related depression.
Collapse
Affiliation(s)
- Qianyi Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| | - Yuecheng Ding
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhe Zhao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yue Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
23
|
Luo YJ, Ge J, Chen ZK, Liu ZL, Lazarus M, Qu WM, Huang ZL, Li YD. Ventral pallidal glutamatergic neurons regulate wakefulness and emotion through separated projections. iScience 2023; 26:107385. [PMID: 37609631 PMCID: PMC10440712 DOI: 10.1016/j.isci.2023.107385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Insomnia is often comorbid with depression, but the underlying neuronal circuit mechanism remains elusive. Recently, we reported that GABAergic ventral pallidum (VP) neurons control wakefulness associated with motivation. However, whether and how other subtypes of VP neurons regulate arousal and emotion are largely unknown. Here, we report glutamatergic VP (VPVglut2) neurons control wakefulness and depressive-like behaviors. Physiologically, the calcium activity of VPVglut2 neurons was increased during both NREM sleep-to-wake transitions and depressive/anxiety-like behaviors in mice. Functionally, activation of VPVglut2 neurons was sufficient to increase wakefulness and induce anxiety/depressive-like behaviors, whereas inhibition attenuated both. Dissection of the circuit revealed that separated projections of VPVglut2 neurons to the lateral hypothalamus and lateral habenula promote arousal and depressive-like behaviors, respectively. Our results demonstrate a subtype of VP neurons is responsible for wakefulness and emotion through separated projections, and may provide new lines for the intervention of insomnia and depression in patients.
Collapse
Affiliation(s)
- Yan-Jia Luo
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jing Ge
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zi-Long Liu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ya-Dong Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201699, China
| |
Collapse
|
24
|
Uğurlu M. Orexin Receptor Antagonists as Adjunct Drugs for the Treatment of Depression: A Mini Meta-Analysis. Noro Psikiyatr Ars 2023; 61:77-84. [PMID: 38496221 PMCID: PMC10943935 DOI: 10.29399/npa.28383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/25/2023] [Indexed: 03/19/2024] Open
Abstract
Introduction There is growing interest in the efficacy of orexin receptor antagonists (ORA), one of the new psychopharmacological agents used in the treatment of insomnia, in other psychiatric disorders such as depression. Methods This meta-analysis was conducted in accordance with PRISMA requirements. Literature searches were conducted using PubMed, Scopus and EBSCO (Medline) databases. Search words were (depression OR mood disorder OR affective disorder) AND (orexin OR orx OR hypocretin OR orx1 OR orx2 OR orexin receptor antagonist OR almorexant OR suvorexant OR lemborexant OR daridorexant OR seltorexant OR vornorexant OR filorexant). No date restrictions were used. The random effects model was used for analyses with I2 values above 50% and fixed effects model was used for analyses with I2 values below 50%. Results In the acute phase, ORAs had no significant effect on core, sleep-adjusted and total symptoms of depression respectively; Standardized Mean Difference (SMD) for random effect -0.422, 95% CI [-0.90; 0.06], p=0.089, I2=62.4%; SMD for random effect -0.375, 95% CI [-1.24; 0.49], p=0.400; I2=66.6% and SMD for random effect -0.477, 95% CI [-0.97; 0.01], p=0.059; I2=83.1%). However, they had a significant effect on core and total symptoms of depression in the early period respectively; SMD for fixed effect=-0.228, 95% CI [-0.44; -0.01], p=0.036, I2=9.1%; and SMD for fixed effect=-0.186, 95% CI [-0.37; -0.001], p=0.048, I2=0.0%, respectively). Conclusion The results of this meta-analysis suggest that ORAs may provide direct antidepressant efficacy when added to existing antidepressant treatment and may also have indirect antidepressant effects through improvement in sleep symptoms. Considering the physiological effects of orexin on behaviors, ORAs may be promising new treatment modalities in the treatment of many psychiatric disorders other than insomnia. However, these results are preliminary and further studies with different ORAs at different doses and with different samples are needed.
Collapse
Affiliation(s)
- Mustafa Uğurlu
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Psychiatry Department, Ankara, Turkey
| |
Collapse
|
25
|
Wang J, Zhou T, Liu F, Huang Y, Xiao Z, Qian Y, Zhou W. Influence of gut microbiota on resilience and its possible mechanisms. Int J Biol Sci 2023; 19:2588-2598. [PMID: 37215996 PMCID: PMC10197883 DOI: 10.7150/ijbs.82362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Excessive stress leads to disruptions of the central nervous system. Individuals' responses to stress and trauma differ from person to person. Some may develop various neuropsychiatric disorders, such as post-traumatic stress disorder, major depression, and anxiety disorders, while others may successfully adapt to the same stressful events. These two neural phenotypes are called susceptibility and resilience. Previous studies have suggested resilience/susceptibility as a complex, non-specific systemic response involving central and peripheral systems. Emerging research of mechanisms underlying resilience is mostly focussing on the physiological adaptation of specific brain circuits, neurovascular impairment of the blood-brain barrier, the role of innate and adaptive factors of the immune system, and the dysbiosis of gut microbiota. In accordance with the microbiota-gut-brain axis hypothesis, the gut microbiome directly influences the interface between the brain and the periphery to affect neuronal function. This review explored several up-to-date studies on the role of gut microbiota implicated in stressful events-related resilience/susceptibility. We mainly focus on the changes in behavior and neuroimaging characteristics, involved brain regions and circuits, the blood-brain barrier, the immune system, and epigenetic modifications, which contribute to stress-induced resilience and susceptibility. The perspective of the gut-brain axis could help to understand the mechanisms underlying resilience and the discovery of biomarkers may lead to new research directions and therapeutic interventions for stress-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Ting Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yan Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| |
Collapse
|
26
|
Ji YW, Shen ZL, Zhang X, Zhang K, Jia T, Xu X, Geng H, Han Y, Yin C, Yang JJ, Cao JL, Zhou C, Xiao C. Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice. Nat Commun 2023; 14:2182. [PMID: 37069246 PMCID: PMC10110548 DOI: 10.1038/s41467-023-37968-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Nucleus- and cell-specific interrogation of individual basal forebrain (BF) cholinergic circuits is crucial for refining targets to treat comorbid chronic pain-like and depression-like behaviour. As the ventral pallidum (VP) in the BF regulates pain perception and emotions, we aim to address the role of VP-derived cholinergic circuits in hyperalgesia and depression-like behaviour in chronic pain mouse model. In male mice, VP cholinergic neurons innervate local non-cholinergic neurons and modulate downstream basolateral amygdala (BLA) neurons through nicotinic acetylcholine receptors. These cholinergic circuits are mobilized by pain-like stimuli and become hyperactive during persistent pain. Acute stimulation of VP cholinergic neurons and the VP-BLA cholinergic projection reduces pain threshold in naïve mice whereas inhibition of the circuits elevated pain threshold in pain-like states. Multi-day repetitive modulation of the VP-BLA cholinergic pathway regulates depression-like behaviour in persistent pain. Therefore, VP-derived cholinergic circuits are implicated in comorbid hyperalgesia and depression-like behaviour in chronic pain mouse model.
Collapse
Affiliation(s)
- Ya-Wei Ji
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Zi-Lin Shen
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Kairan Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Tao Jia
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiangying Xu
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Huizhen Geng
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Yu Han
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Cui Yin
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Li Cao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Chunyi Zhou
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Cheng Xiao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| |
Collapse
|
27
|
D’Alterio A, Menchetti M, Zenesini C, Rossetti A, Vignatelli L, Franceschini C, Varallo G, Pizza F, Plazzi G, Ingravallo F. Resilience and its correlates in patients with narcolepsy type 1. J Clin Sleep Med 2023; 19:719-726. [PMID: 36689313 PMCID: PMC10071382 DOI: 10.5664/jcsm.10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 01/24/2023]
Abstract
STUDY OBJECTIVES This study aimed to explore resilience and its possible association with sociodemographic and clinical features in patients with narcolepsy type 1 (NT1). METHODS This was a cross-sectional study involving patients with NT1 and age-/sex-matched controls (comparison group). Sociodemographic and clinical data were collected through semistructured interviews and validated questionnaires, including the Epworth Sleepiness Scale (ESS), State-Trait Anxiety Inventory (STAI)-State Anxiety, Beck Depression Inventory (BDI), 36-item Short Form Survey (SF-36), and the Resilience Scale (RS). Different statistical approaches were used to investigate the relationship between resilience and NT1 and associations with sociodemographic and clinical features. RESULTS The participants comprised 137 patients (mean age, 38.0 years; 52.6% female) and 149 controls (39.6 years; 55.7% female). Compared with controls, patients had a significantly lower (122.6 vs 135.5) mean RS score and a 2-fold risk of having low/mild-range resilience (adjusted odds ratio = 1.99, 95% confidence interval 1.13-3.52). Patients with high resilience had sociodemographic and narcolepsy characteristics similar to patients with low resilience, but they reported anxiety and depressive symptomatology less frequently (4.2% vs 55.8% and 58.3%, respectively), and their SF-36 scores were comparable to those of the comparison group. In patients, RS score was strongly associated with STAI-State Anxiety and BDI (rho = -0.57 and -0.56, respectively) and weakly with ESS (rho = -20) scores. CONCLUSIONS The results of this study suggest that resilience may play a key role in patients' adaptation to NT1. Furthermore, this study supports interventions aimed at increasing patients' resilience and provides a base for further studies, preferably longitudinal and including objective measures, directed toward understanding the relationship between resilience, depression, and quality of life in patients with narcolepsy. CITATION D'Alterio A, Menchetti M, Zenesini C, et al. Resilience and its correlates in patients with narcolepsy type 1. J Clin Sleep Med. 2023;19(4):719-726.
Collapse
Affiliation(s)
- Alessandra D’Alterio
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marco Menchetti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Andrea Rossetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | | | - Giorgia Varallo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Ingravallo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Chen B, Xu J, Chen S, Mou T, Wang Y, Wang H, Zhang Z, Ren F, Wang Z, Jin K, Lu J. Dysregulation of striatal dopamine D2/D3 receptor-mediated by hypocretin induces depressive behaviors in rats. J Affect Disord 2023; 325:256-263. [PMID: 36638964 DOI: 10.1016/j.jad.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND The dysregulation of the dopamine system contributes to depressive-like behaviors in rats, and the neurological functions regulated by hypocretin are severely affected in depression. However, whether suvorexant plays a role in alleviating depression by affecting the dopamine system is unclear. METHODS To preliminarily explore the mechanism of suvorexant (10 mg/kg) in the treatment of depression, the mRNA and protein expression of TH, Drd2, Drd3, GluN2A, DAT, and GluN2B in the striatum of rats was quantified by qPCR and western blotting. The plasma hypocretin-1 and dopamine levels and the striatal dopamine levels were determined by ELISA. RESULTS i) Compared to those of the control group, chronic unpredictable mild stress (CUMS) rats showed depressive-like behaviors, which were subsequently reversed by treatment with suvorexant. ii) The mRNA and protein expressions of TH, Drd2, Drd3, GluN2A, and GluN2B in the striatum of CUMS were significantly increased compared with those in the controls, but decreased after suvorexant treatment. iii) Compared with those in the control group, the plasma and striatal dopamine levels of CUMS decreased while plasma hypocretin-1 levels increased, which was reversed after suvorexant treatment. LIMITATIONS i) The suvorexant is a dual hypocretin receptor antagonist; however, the responsible receptor is unclear. ii) We only focused on related factors in the striatum but did not explore other brain regions, nor did we directly explore the relationship among these factors. CONCLUSION Depressive-like behaviors induced by CUMS can be reversed by suvorexant, and the therapeutic effects of suvorexant may be mediated by affecting the dopamine system.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jiangang Xu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999007, Hong Kong
| | - Simiao Chen
- School of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haojun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihan Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Feifan Ren
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Zheng Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
29
|
Lu J, Jin K, Jiao J, Liu R, Mou T, Chen B, Zhang Z, Jiang C, Zhao H, Wang Z, Zhou R, Huang M. YY1 (Yin-Yang 1), a transcription factor regulating systemic inflammation, is involved in cognitive impairment of depression. Psychiatry Clin Neurosci 2023; 77:149-159. [PMID: 36436207 DOI: 10.1111/pcn.13510] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
AIM Clinical and preclinical studies suggest that alterations in the peripheral and brain immune system are associated with the pathophysiology of depression, also leading to changes in local glucose metabolism in the brain. Here, the authors identified Yin-Yang 1 (YY1), a transcription factor closely associated with central and peripheral inflammation. METHODS Plasma levels of YY1, interleukin (IL) 6, and IL-1β in major depressive disorder (MDD) were collected before and after treatment with vortioxetine, and correlation with clinical and cognitive scores was studied. Chronic unpredictable mild stress was treated with vortioxetine. Micropositron emission tomography (microPET) was used to analyze glucose metabolism and mRNA, and the protein level of the YY1-nuclear factor κB (NF-κB)-IL-1β inflammatory pathway were measured in related brain regions. RESULTS Plasma levels of YY1 and IL-1β were significantly increased in MDD and decreased after treatment with vortioxetine. Meanwhile, the level of YY1 in plasma was negatively correlated with cognitive functions in patients with MDD and positively correlated with the level of IL-1β in plasma. Compared with the control group, in chronic unpredictable mild stress rats, (microPET) analysis showed that the decrease of glucose metabolism in the hippocampus, entorhinal cortex, amygdala, striatum, and medial prefrontal cortex was reversed after treatment. mRNA and protein level of related molecular in YY1-NF-κB-IL-1β inflammatory pathway decreased in the hippocampus and was reversed by vortioxetine. CONCLUSION The current study suggests that the YY1-NF-κB-IL-1β inflammatory pathway may play an essential role in both mood changes and cognitive impairment in depression, and may be associated with changes in glucose metabolism in emotion regulation and cognition. These findings provide new evidence for the inflammatory mechanisms of depression.
Collapse
Affiliation(s)
- Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jianping Jiao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Longquan City People's Hospital, Lishui, 323799, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Zhihan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| |
Collapse
|
30
|
Okdeh N, Mahfouz G, Harb J, Sabatier JM, Roufayel R, Gazo Hanna E, Kovacic H, Fajloun Z. Protective Role and Functional Engineering of Neuropeptides in Depression and Anxiety: An Overview. Bioengineering (Basel) 2023; 10:258. [PMID: 36829752 PMCID: PMC9952193 DOI: 10.3390/bioengineering10020258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Behavioral disorders, such as anxiety and depression, are prevalent globally and touch children and adults on a regular basis. Therefore, it is critical to comprehend how these disorders are affected. It has been demonstrated that neuropeptides can influence behavior, emotional reactions, and behavioral disorders. This review highlights the majority of the findings demonstrating neuropeptides' behavioral role and functional engineering in depression and anxiety. Gut-brain peptides, hypothalamic releasing hormone peptides, opioid peptides, and pituitary hormone peptides are the four major groups of neuropeptides discussed. Some neuropeptides appear to promote depression and anxiety-like symptoms, whereas others seem to reduce it, all depending on the receptors they are acting on and on the brain region they are localized in. The data supplied here are an excellent starting point for future therapy interventions aimed at treating anxiety and depression.
Collapse
Affiliation(s)
- Nathalie Okdeh
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Georges Mahfouz
- Department of Psychology, Faculty of Arts and Sciences, Beirut Campus, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Julien Harb
- Faculty of Medicine and Medical Sciences, Dekouene Campus, University of Balamand, Sin El Fil 55251, Lebanon
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Hervé Kovacic
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| |
Collapse
|
31
|
He X, Ji P, Guo R, Ming X, Zhang H, Yu L, Chen Z, Gao S, Guo F. Regulation of the central amygdala on intestinal motility and behavior via the lateral hypothalamus in irritable bowel syndrome model mice. Neurogastroenterol Motil 2023; 35:e14498. [PMID: 36408759 DOI: 10.1111/nmo.14498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Impaired bidirectional communication between the gastrointestinal tract and the central nervous system (CNS) is closely related to the development of irritable bowel syndrome (IBS). Studies in patients with IBS have also shown significant activation of the hypothalamus and amygdala. However, how neural circuits of the CNS participate in and process the emotional and intestinal disorders of IBS remains unclear. METHODS The GABAergic neural pathway projecting from the central amygdala (CeA) to the lateral hypothalamus (LHA) in mice was investigated by retrograde tracking combined with fluorescence immunohistochemistry. Anxiety, depression-like behavior, and intestinal motility were observed in the water-immersion restraint stress group and the control group. Furthermore, the effects of the chemogenetic activation of the GABAergic neural pathway of CeA-LHA on behavior and intestinal motility, as well as the co-expression of orexin-A and c-Fos in the LHA, were explored. KEY RESULTS In our study, Fluoro-Gold retrograde tracking combined with fluorescence immunohistochemistry showed that GABAergic neurons in the CeA were projected to the LHA. The microinjection of the gamma-aminobutyric acid (GABA) receptor antagonist into the LHA relieved anxiety, depression-like behavior, and intestinal motility disorder in the IBS mice. The chemogenetic activation of GABAergic neurons in the CeA-LHA pathway led to anxiety, depression-like behavior, and intestinal motility disorder. In addition, GABAergic neurons in the CeA-LHA pathway inhibited the expression of orexin-A in the LHA, and orexin-A was co-expressed with GABAA receptors. CONCLUSIONS & INFERENCES The CeA-LHA GABAergic pathway might participate in the occurrence and development of IBS by regulating orexin-A neurons.
Collapse
Affiliation(s)
- Xiaoman He
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lizheng Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ziyi Chen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Morais-Silva G, Campbell RR, Nam H, Basu M, Pagliusi M, Fox ME, Chan CS, Iñiguez SD, Ament S, Cramer N, Marin MT, Lobo MK. Molecular, Circuit, and Stress Response Characterization of Ventral Pallidum Npas1-Neurons. J Neurosci 2023; 43:405-418. [PMID: 36443000 PMCID: PMC9864552 DOI: 10.1523/jneurosci.0971-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Altered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for motivational behavior. While Npas1+ neurons have been characterized in the globus pallidus external, there is limited information on these neurons in the VP. To address this limitation, we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-sequencing on ribosome-associated mRNA from VP Npas1+ neurons to determine their molecular identity. Finally, we used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We used a similar approach in females using the chronic witness defeat stress (CWDS). We identified VP Npas1+ projections to the nucleus accumbens, ventral tegmental area, medial and lateral habenula, lateral hypothalamus, thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct translatome representing distinct biological processes. Chemogenetic activation of hM3D(Gq) receptors in VP Npas1+ neurons increased susceptibility to a subthreshold SDS and anxiety-like behavior in the elevated plus maze and open field while the activation of hM4D(Gi) receptors in VP Npas1+ neurons enhanced resilience to chronic SDS and CWDS. Thus, the activity of VP Npas1+ neurons modulates susceptibility to social stressors and anxiety-like behavior. Our studies provide new information on VP Npas1+ neuron circuitry, molecular identity, and their role in stress response.SIGNIFICANCE STATEMENT The ventral pallidum (VP) is a structure connected to both reward-related and aversive brain centers. It is a key brain area that signals the hedonic value of natural rewards. Disruption in the VP underlies altered motivation in stress and substance use disorder. However, VP is a very heterogeneous area with multiple neuron subtypes. This study characterized the projection pattern and molecular signatures of VP Neuronal PAS 1-positive (Npas1+) neurons. We further used tools to alter receptor signaling in VP Npas1+ neurons in stress to demonstrate a role for these neurons in stress behavioral outcomes. Our studies have implications for understanding brain cell type identities and their role in brain disorders, such as depression, a serious disorder that is precipitated by stressful events.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Rianne R Campbell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marco Pagliusi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Structural and Functional Biology, State University of Campinas, SP-13083-872, Campinas, Brazil
| | - Megan E Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, Texas 79902
| | - Seth Ament
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marcelo Tadeu Marin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
33
|
Orexin Receptor Antagonists in the Treatment of Depression: A Leading Article Summarising Pre-clinical and Clinical Studies. CNS Drugs 2023; 37:1-12. [PMID: 36436175 DOI: 10.1007/s40263-022-00974-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/28/2022]
Abstract
The orexin (hypocretin) system comprises two neuropeptides (orexin-A and orexin-B) and two G-protein coupled receptors (the orexin type 1 and the orexin type 2 receptor). The system regulates several biological functions including appetite, the sleep-wake cycle, the stress response, and motivation and reward processing. Dysfunction of the orexin system has been implicated in the pathophysiology of depression in human and animal studies, although the exact nature of this dysfunction remains unclear. Orexin receptor antagonists (ORAs) are a class of compounds developed for the treatment of insomnia and have demonstrated efficacy in this area. Three dual orexin receptor antagonists (DORAs) have received licences for treatment of primary insomnia and some ORAs have since been investigated as potential treatments for major depressive disorder (MDD). In this leading article, we summarise the existing literature on use of ORAs in depression, in pre-clinical and clinical studies. In rodent models of depression, investigated ORAs have included the DORA almorexant and TCS1102, the selective orexin 1 receptor antagonists SB334867 and SB674042 and the selective orexin 2 receptor antagonists LSN2424100, MK-1064 and TCS-OX2-29. These pre-clinical studies suggest a possible antidepressant effect of systemic DORA treatment, however the evidence from selective ORAs is conflicting. To date, four published RCTs (one with the DORA filorexant and three with the selective orexin 2 receptor antagonist seltorexant), have compared an ORA with placebo in the treatment of MDD. Only one of these demonstrated a statistically significant difference relative to placebo.
Collapse
|
34
|
T-type Ca 2+ channels and inward rectifier K + channels contribute to the orexin-induced facilitation of GABAergic transmission onto pyramidal neurons in the prefrontal cortex of juvenile mice. Exp Neurol 2023; 359:114250. [PMID: 36240882 DOI: 10.1016/j.expneurol.2022.114250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
Orexin is a neuropeptide restrictedly synthesized in the hypothalamus, but extensively modulates the whole brain region activity including prefrontal cortex (PFC), and involved in the pathophysiology of psychiatric disorders. GABAergic interneurons in the mPFC are a promising pharmacological target for developing antidepressant therapies. Here, we examined the effects of the orexin on GABAergic transmission onto pyramidal neurons in the deep layers of the mPFC. We found that bath application of orexin dose-dependently increased the amplitude of evoked IPSCs (eIPSCs). Orexin increased the frequency but not the amplitude of miniature IPSCs (mIPSCs). Ca2+ influx through T-type voltage-gated Ca2+ channels is required for orexin-induced increases in GABA release. We also found orexin increases GABA release probability and the number of releasable vesicles. Orexin depolarizes somatostatin (Sst) interneurons without effects on the firing rate of action potentials (APs) of Sst interneurons. Orexin-induced depolarization of Sst interneurons is independent of extracellular Na+, Ca2+ and T-type Ca2+ channels, but requires inward rectifier K+ channels (Kirs). The present study suggests that orexin enhances GABAergic transmission onto mPFC pyramidal neurons through inhibiting Kirs on Sst interneurons, which further depolarizes interneurons leading to increase in Ca2+ influx via T-type Ca2+ channels. Our results may provide a cellular and molecular mechanism that helps explain the physiological functions of orexin in the brain.
Collapse
|
35
|
Justinussen JL, Egebjerg C, Kornum BR. How hypocretin agonists may improve the quality of wake in narcolepsy. Trends Mol Med 2023; 29:61-69. [PMID: 36400667 DOI: 10.1016/j.molmed.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Excessive daytime sleepiness (EDS) is a complex symptom characterized by a strong urge to sleep during daytime accompanied by problems such as attention deficits, anxiety, and lower cognitive performance. The efficacy of treatments for EDS is determined by their ability to decrease sleepiness, and less attention has been given to the effects these compounds have on the quality of the wake itself. Hypocretin (HCRT; orexin) signalling is implicated in narcolepsy, and hypocretin receptor 2 (HCRTR2) agonists are in clinical trials for treating EDS in narcolepsy. Here, we review preclinical research to determine how HCRTR2 agonists may affect attention and anxiety compared with other EDS treatment strategies. We conclude that such compounds may improve not only the quantity but also the quality of wake, and we hope that they will create opportunities for more nuanced treatment strategies in narcolepsy.
Collapse
Affiliation(s)
| | - Christine Egebjerg
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Zubkov E, Abramova O, Zorkina Y, Ochneva A, Ushakova V, Morozova A, Gurina O, Majouga A, Chekhonin V. Intranasal neuropeptide Y is most effective in some aspects of acute stress compared to melatonin, oxytocin and orexin. Front Pharmacol 2022; 13:1033186. [DOI: 10.3389/fphar.2022.1033186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives: In the current study, we compared the effects of a single intranasal administration of clomipramine with effects of four neuropeptides, melatonin, oxytocin, orexin, and neuropeptide Y, to compare them in an acute stress model.Methods: The anti-stress effect was evaluated in the sucrose preference and forced swimming tests. Serum corticosterone level in rats was measured to evaluate the stress response.Results: Neuropeptide Y reduced immobilization time in the Porsolt test and decreased corticosterone levels, but increased the anhedonia. Orexin had no positive effect on animal behavior, but decreased corticosterone levels. Oxytocin decreased immobilization time, maintained anhedonia at the level of control, but did not affect corticosterone levels. Melatonin demonstrated no positive effects in any of the tests.Conclusion: The intranasal administered neuropeptide Y could be a promising compound for the treatment of stress disorders.
Collapse
|
37
|
Ji MJ, Gao ZQ, Yang J, Cai JH, Li KX, Wang J, Zhang H, Zhou CH, Cao JL, Liu C. Dynorphin promotes stress-induced depressive behaviors by inhibiting ventral pallidal neurons in rats. Acta Physiol (Oxf) 2022; 236:e13882. [PMID: 36039689 DOI: 10.1111/apha.13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/29/2023]
Abstract
AIM Endogenous dynorphin signaling via kappa opioid receptors (KORs) plays a key role in producing the depressive and aversive consequences of stress. We investigated the behavioral effects of the dynorphin/KOR system in the ventral pallidum (VP) and studied the underlying mechanisms. METHODS To investigate the effects of dynorphin on the VP, we conducted behavioral experiments after microinjection of drugs or shRNA and brain-slice electrophysiological recordings. Histological tracing and molecular biological experiments were used to identify the distribution of KORs and the possible sources of dynorphin projections to the VP. RESULTS An elevated dynorphin concentration and increased KOR activity were observed in the VP after acute stress. Infusion of dynorphin-A into the VP produced depressive-like phenotypes including anhedonia and despair and anxiety behaviors, but did not alter locomotor behavior. Mechanistically, dynorphin had an inhibitory effect on VP neurons-reducing their firing rate and inhibiting excitatory transmission-through direct activation of KORs and modulation of downstream G-protein-gated inwardly rectifying potassium (GIRK) channels and high-voltage gated calcium channels (VGCCs). Tracing revealed direct innervation of VP neurons by dynorphin-positive projections; potential sources of these dynorphinergic projections include the nucleus accumbens, amygdala, and hypothalamus. Blockade of dynorphin/KOR signaling in the VP by drugs or viral knock-down of KORs significantly reduced despair behavior in rats. CONCLUSIONS Endogenous dynorphinergic modulation of the VP plays a critical role in mediating depressive reactions to stress.
Collapse
Affiliation(s)
- Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Qiang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ji-Heng Cai
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
38
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
39
|
Saadati N, Bananej M, Khakpai F, Zarrindast MR, Alibeik H. Synergistic antidepressant effects of citalopram and SB-334867 in the REM sleep-deprived mice: Possible role of BDNF. Pharmacol Biochem Behav 2022; 219:173449. [PMID: 35973584 DOI: 10.1016/j.pbb.2022.173449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
This study was done to evaluate the effect of co-treatment of orexin agents along with citalopram on the modulation of depression-like behavior and the expression of BDNF in the prefrontal cortex (PFC) of sleep-deprived male mice. A sleep deprivation model was performed in which rapid eye movement (REM) sleep was completely prohibited, and non-REM sleep was intensely reduced for 24 h. For drug microinjection, the guide cannula was surgically fixed in the left lateral ventricle of mice. Furthermore, we used the open-field test (OFT), forced swim test (FST), tail suspension test (TST), and splash test for recording depression-like behavior as well as Real-Time PCR amplification for assessing the expression of BDNF in the PFC of REM sleep-deprived mice. Our results revealed that REM sleep deprivation did not change locomotor activity while increased depressive-like behavior in FST, TST, and splash tests. However, the expression of BDNF was decreased in the PFC. Intraperitoneally (i.p.) administration of citalopram induced antidepressant effect in the normal and REM sleep-deprived mice. Moreover, intracerebroventricular (i.c.v.) microinjection of a non-effective dose of SB-334867, an orexin antagonist, potentiated the antidepressant-like effect of citalopram. On the other hand, a non-significant dosage of orexin-1 reversed the antidepressant effect of citalopram in the normal and REM sleep-deprived animals. Furthermore, our results showed that injection of citalopram alone or with SB-334867 increased the mRNA expression level of BDNF in the PFC of REM sleep-deprived mice. These data suggest that REM sleep deprivation interferes with the neural systems underlying the depression-like process and supports a likely interaction of the orexin system with citalopram on the modulation of depression-like behavior in REM sleep-deprived mice.
Collapse
Affiliation(s)
- Naghmeh Saadati
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Bananej
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Hengameh Alibeik
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
40
|
Keks NA, Hope J. Lemborexant, an orexin receptor antagonist sedative-hypnotic: Is it useful for insomnia in psychiatric disorders? Australas Psychiatry 2022; 30:530-532. [PMID: 35491942 DOI: 10.1177/10398562221092310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lemborexant, an orexin receptor antagonist similar to suvorexant, has been approved for the treatment of sleep onset and/or maintenance insomnia. Lemborexant is reviewed and compare to suvorexant from a psychiatric perspective. CONCLUSION Rapidly absorbed (peak 1-3 h), lemborexant has a half-life of 17-19 h (suvorexant half-life 12 h). It is metabolized by CYP3A4/5, with no significant effects of age, sex or weight. Trials for insomnia indicate sustained efficacy beyond 6 months. Lemborexant has not been trialled in major psychiatric disorders. Commenced at 5 mg, lemborexant can then be increased to 10 mg, taken at least 7 h before planned awakening. Adverse effects are higher at 10 mg: somnolence occurs in about 10% while headache and nightmares affect 2-5%, approximately similar to 40 mg suvorexant (recommended suvorexant dose 20 mg). Sleep paralysis, hypnagogic/hypnopompic hallucinations, and cataplexy-like symptoms, complex sleep behaviours and emergence of depression/suicidal ideation can occur. Neither tolerance to sedation nor withdrawal effects on discontinuation have been observed. Whether the differences between lemborexant and suvorexant are clinically relevant is unclear. Like suvorexant, lemborexant appears to be effective in longer-term use for insomnia, but until efficacy and safety are adequately investigated in major mental disorders, clinicians need to monitor patient experience closely.
Collapse
Affiliation(s)
- Nicholas A Keks
- 95903Monash University, Monash Medical Centre and Centre of Mental Health Education and Research at Delmont Private Hospital, Melbourne, VIC, Australia
| | - Judy Hope
- 2541Monash University, Eastern Health and Centre of Mental Health Education and Research at Delmont Private Hospital, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Wang ZJ, Shwani T, Liu J, Zhong P, Yang F, Schatz K, Zhang F, Pralle A, Yan Z. Molecular and cellular mechanisms for differential effects of chronic social isolation stress in males and females. Mol Psychiatry 2022; 27:3056-3068. [PMID: 35449296 PMCID: PMC9615910 DOI: 10.1038/s41380-022-01574-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022]
Abstract
Chronic social isolation stress during adolescence induces susceptibility for neuropsychiatric disorders. Here we show that 5-week post-weaning isolation stress induces sex-specific behavioral abnormalities and neuronal activity changes in the prefrontal cortex (PFC), basal lateral amygdala (BLA), and ventral tegmental area (VTA). Chemogenetic manipulation, optogenetic recording, and in vivo calcium imaging identify that the PFC to BLA pathway is causally linked to heightened aggression in stressed males, and the PFC to VTA pathway is causally linked to social withdrawal in stressed females. Isolation stress induces genome-wide transcriptional alterations in a region-specific manner. Particularly, the upregulated genes in BLA of stressed males are under the control of activated transcription factor CREB, and CREB inhibition in BLA normalizes gene expression and reverses aggressive behaviors. On the other hand, neuropeptide Hcrt (Hypocretin/Orexin) is among the top-ranking downregulated genes in VTA of stressed females, and Orexin-A treatment rescues social withdrawal. These results have revealed molecular mechanisms and potential therapeutic targets for stress-related mental illness.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Treefa Shwani
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Junting Liu
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fengwei Yang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kelcie Schatz
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Freddy Zhang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Arnd Pralle
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
42
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
43
|
Fulenwider HD, Caruso MA, Ryabinin AE. Manifestations of domination: Assessments of social dominance in rodents. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12731. [PMID: 33769667 PMCID: PMC8464621 DOI: 10.1111/gbb.12731] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Social hierarchies are ubiquitous features of virtually all animal groups. The varying social ranks of members within these groups have profound effects on both physical and emotional health, with lower-ranked individuals typically being the most adversely affected by their respective ranks. Thus, reliable measures of social dominance in preclinical rodent models are necessary to better understand the effects of an individual's social rank on other behaviors and physiological processes. In this review, we outline the primary methodologies used to assess social dominance in various rodent species: those that are based on analyses of agonistic behaviors, and those that are based on resource competition. In synthesizing this review, we conclude that assays based on resource competition may be better suited to characterize social dominance in a wider variety of rodent species and strains, and in both males and females. Lastly, albeit expectedly, we demonstrate that similarly to many other areas of preclinical research, studies incorporating female subjects are lacking in comparison to those using males. These findings emphasize the need for an increased number of studies assessing social dominance in females to form a more comprehensive understanding of this behavioral phenomenon.
Collapse
Affiliation(s)
- Hannah D. Fulenwider
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Maya A. Caruso
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Andrey E. Ryabinin
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
44
|
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:86-103. [PMID: 34893785 DOI: 10.1038/s41583-021-00540-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
45
|
Insulin-like growth factor I mitigates post-traumatic stress by inhibiting AMP-kinase in orexin neurons. Mol Psychiatry 2022; 27:2182-2196. [PMID: 35115701 PMCID: PMC9126821 DOI: 10.1038/s41380-022-01442-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Maladaptive coping behaviors are probably involved in post-traumatic stress disorders (PTSD), but underlying mechanisms are incompletely understood. We now report that mice lacking functional insulin-like growth factor I (IGF-I) receptors in orexin neurons of the lateral hypothalamus (Firoc mice) are unresponsive to the anxiolytic actions of IGF-I and develop PTSD-like behavior that is ameliorated by inhibition of orexin neurons. Conversely, systemic IGF-I treatment ameliorated PTSD-like behavior in a wild-type mouse model of PTSD (PTSD mice). Further, systemic IGF-I modified the GABA/Glutamate synaptic structure in orexin neurons of naïve wild-type mice by increasing the dephosphorylation of GABA(B) receptor subunit through inhibition of AMP-kinase (AMPK). Significantly, pharmacological inhibition of AMPK mimicked IGF-I, normalizing fear behavior in PTSD mice. Thus, we suggest that IGF-I enables coping behaviors by balancing E/I input onto orexin neurons in a context-dependent manner. These observations provide a novel therapeutic approach to PTSD through modulation of AMPK.
Collapse
|
46
|
|
47
|
Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021; 133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
In this review study, we aimed to introduce the orexinergic system as an important signaling pathway involved in a variety of cognitive functions such as memory, motivation, and reward-related behaviors. This study focused on the role of orexinergic system in modulating reward-related behavior, with or without the presence of stressors. Cross-talk between the reward system and orexinergic signaling was also investigated, especially orexinergic signaling in the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the hippocampus. Furthermore, we discussed the role of the orexinergic system in modulating mood states and mental illnesses such as depression, anxiety, panic, and posttraumatic stress disorder (PTSD). Here, we narrowed down our focus on the orexinergic signaling in three brain regions: the VTA, NAc, and the hippocampus (CA1 region and dentate gyrus) for their prominent role in reward-related behaviors and memory. It was concluded that the orexinergic system is critically involved in reward-related behavior and significantly alters stress responses and stress-related psychiatric and mood disorders.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
48
|
Hsu CW, Wang S. Changes in the Orexin System in Rats Exhibiting Learned Helplessness Behaviors. Brain Sci 2021; 11:brainsci11121634. [PMID: 34942932 PMCID: PMC8699801 DOI: 10.3390/brainsci11121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Orexin-A (OX-A) and orexin-B (OX-B) are neuropeptides produced in the hypothalamus. Preclinical and clinical studies suggest that depression and anxiety are associated with the orexin system. In the current study, we used the learned helplessness (LH) animal model of depression to identify rats displaying LH behaviors (LH rats) and those that did not (No-LH rats). We compared the number of orexin-containing neurons in the hypothalamus of LH, No-LH, and control rats. Orexin peptides, orexin receptor 1 (OXR1) and 2 (OXR2) in brain areas involved in major depression and serum OX-A and corticosterone (CORT) concentrations were quantified and compared between rat groups. We found that LH and No-LH rats displayed higher serum OX-A concentrations compared with control rats. Comparison between LH and No-LH rats revealed that No-LH rats had significantly higher OX-A levels in the brain, more OX-A neurons, and more OX-A neuron activation. LH rats had more OX-B neurons and more OX-B neuron activation. Orexin peptides and receptors in the brain areas involved in major depression exhibited different patterns in LH and NoLH rats. Our findings revealed that activation of OX-A neurons could promote resilient behaviors under stressful situations and OX-A and OX-B neuropeptides exhibit dissimilar functions in LH behaviors.
Collapse
|
49
|
Song Y, Li J, Li H, Cai M, Miao D. The role of ventral tegmental area orexinergic afferents in depressive-like behavior in a chronic unpredictable mild stress (CUMS) mouse model. Biochem Biophys Res Commun 2021; 579:22-28. [PMID: 34583191 DOI: 10.1016/j.bbrc.2021.09.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Orexin has been implicated in comorbid diseases of depression, making it a promising target for anti-depression treatment. Although orexin neurons exhibit abnormal activity in depression, the neurocircuit mechanism of orexin remains unclear. As one of the important downstream factors of orexin neurons, the ventral tegmental area (VTA) is considered crucial to the mechanism of depression. However, the role of VTA orexinergic afferents in depression remains unclear. In this study, we applied a combination of opto/chemogenetic and neuropharmacology methods to investigate whether the VTA orexinergic afferents participate in the pathogenesis of depression in a chronic unpredictable mild stress (CUMS) mouse model. We found that c-Fos expression in these VTA-projecting orexin neurons specifically decreased in CUMS-treated mice. Optogenetic and chemogenetic activation of orexin terminals in the VTA significantly reversed depressive behavior. Microinjection of orexin-A, but not orexin-B, into the VTA significantly improved depressive-like behavior. Our study provided direct evidence that the VTA orexinergic afferents participate in the mechanism of depression, and the orexin-1 receptor plays a major role.
Collapse
Affiliation(s)
- Yunyun Song
- Department of Medical Psychology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Danmin Miao
- Department of Medical Psychology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
50
|
Bhatnagar S. Rethinking stress resilience. Trends Neurosci 2021; 44:936-945. [PMID: 34711401 DOI: 10.1016/j.tins.2021.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Resilience to stressful life events has received considerable attention in both clinical and preclinical studies. A number of neural substrates have been identified as putatively mediating resilience to stress. However, there remains considerable diversity in how resilience is defined and studied. This article aims to examine how resilience is defined and conceptualized in social psychology, public health, and related fields, to better inform the understanding of stress resilience in the neurobiological context, and to differentiate resilience from other patterns of response to stressful experiences. An understanding of resilience through the lens of clinical and applied sciences is likely to lead to the identification of more robust and reproducible neural substrates, though many challenges remain.
Collapse
Affiliation(s)
- Seema Bhatnagar
- Stress Neurobiology Center, Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, The Perelman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|