1
|
Pirim D, Bağcı FA. Dissecting the shared molecular mechanisms underlying polycystic ovary syndrome and schizophrenia etiology: a translational integrative approach. Syst Biol Reprod Med 2025; 71:1-12. [PMID: 40387450 DOI: 10.1080/19396368.2025.2499475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
Recent evidence suggests that individuals with polycystic ovary syndrome (PCOS) have an increased risk of developing mental health disorders and comorbidities linked to nervous system dysfunction. Interestingly, patients with schizophrenia (SCZ) often exhibit PCOS symptoms, indicating a possible connection between the two conditions. However, the underlying molecular links between these diseases remain poorly understood. We employed a comprehensive in-silico approach, utilizing publicly available datasets to investigate shared biomarkers candidates and key regulators involved in the development of PCOS and SCZ. We retrieved the datasets from the NCBI GEO database and differentially expressed genes (DEGs) were identified for each dataset. Common DEGs (cDEGs) were determined, and transcription factors (TFs) and miRNA targeting cDEGs were examined using the mirDIP portal and TRRUST database, respectively. We also assessed the TF-miRNA interactions by TransmiR database and constructed a regulatory network including TFs-microRNAs-cDEGs. Our analysis identified a total of 15 cDEGs that are regulated by 15 TFs and 8 mRNAs. Among our findings, we prioritized RELA as a potential TF regulator for both diseases, demonstrating synergistic interaction with four cDEGs (EGR1, CXCL8, IL1RN, IL1B) and seven microRNAs (hsa-miR-580, hsa-miR-5695, hsa-miR-936, hsa-miR-3675, hsa-miR-634, hsa-miR-603, hsa-miR-222) that target these genes. Our data highlights potential common biomarkers for PCOS and SCZ, presenting a novel regulatory network that elucidates the molecular mechanisms underlying both conditions. This emphasizes the importance of further research to explore new translational approaches, which may ultimately lead to improved diagnostic and therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Dilek Pirim
- Institute of Natural and Applied Sciences, Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Türkiye
- Institute of Health Sciences, Department of Translational Medicine, Bursa Uludag University, Bursa, Türkiye
- Faculty of Arts and Science, Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Türkiye
| | - Fatih Atilla Bağcı
- Institute of Natural and Applied Sciences, Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Türkiye
| |
Collapse
|
2
|
Kim S, Woo Y, Um D, Chun I, Noh SJ, Ji HA, Jung N, Goo BS, Yoo JY, Mun DJ, Nghi TD, Nhung TTM, Han SH, Lee SB, Lee W, Yun J, So KH, Kim DK, Jang H, Suh Y, Rah JC, Baek ST, Yoon KJ, Kim MS, Kim TK, Park SK. Perturbed cell fate decision by schizophrenia-associated AS3MT d2d3 isoform during corticogenesis. SCIENCE ADVANCES 2025; 11:eadp8271. [PMID: 40153497 PMCID: PMC11952104 DOI: 10.1126/sciadv.adp8271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
The neurodevelopmental theory of schizophrenia emphasizes early brain development in its etiology. Genome-wide association studies have linked schizophrenia to genetic variations of AS3MT (arsenite methyltransferase) gene, particularly the increased expression of AS3MTd2d3 isoform. To investigate the biological basis of this association with schizophrenia pathophysiology, we established a transgenic mouse model (AS3MTd2d3-Tg) ectopically expressing AS3MTd2d3 at the cortical neural stem cells. AS3MTd2d3-Tg mice exhibited enlarged ventricles and deficits in sensorimotor gating and sociability. Single-cell and single-nucleus RNA sequencing analyses of AS3MTd2d3-Tg brains revealed cell fate imbalances and altered excitatory neuron composition. AS3MTd2d3 localized to centrosome, disrupting mitotic spindle orientation and differentiation in developing neocortex and organoids, in part through NPM1 (Nucleophosmin 1). The structural analysis identified that hydrophobic residues exposed in AS3MTd2d3 are critical for its pathogenic function. Therefore, our findings may help to explain the early pathological features of schizophrenia.
Collapse
Affiliation(s)
- Seunghyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Inseop Chun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Su-Jin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeon Ah Ji
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Namyoung Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin Yeong Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Hyeon Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Wonhyeok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jonghyeok Yun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ki Hurn So
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dae-Kyum Kim
- Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1A4, Canada
- Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| |
Collapse
|
3
|
Yu K, Chen W, Chen Y, Shen L, Wu B, Zhang Y, Zhou X. De novo and inherited micro-CNV at 16p13.11 in 21 Chinese patients with defective cardiac left-right patterning. Front Genet 2024; 15:1458953. [PMID: 39315310 PMCID: PMC11416941 DOI: 10.3389/fgene.2024.1458953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Copy number changes at Chromosomal 16p13.11 have been implicated in a variety of human diseases including congenital cardiac abnormalities. The clinical correlation of copy number variants (CNVs) in this region with developmental abnormalities remains controversial as most of the patients inherit the duplication from an unaffected parent. Methods We performed CNV analysis on 164 patients with defective left-right (LR) patterning based on whole genome-exome sequencing (WG-ES) followed by multiplex ligation-dependent probe amplification (MLPA) validation. Most cases were accompanied with complex congenital heart disease (CHD). Results CNVs at 16p13.11 were identified in a total of 21 cases, accounting for 12.80% (21/164) evaluated cases. We observed a marked overrepresentation of chromosome 16p13.11 duplications in cases when compared with healthy controls according to literature reports (15/164, 9.14% versus 0.09% in controls). Notably, in two independent family trios, de novo 16p13.11 micro-duplications were identified in two patients with laterality defects and CHD. Moreover, 16p13.11 micro-duplication was segregated with the disease in a family trio containing 2 affected individuals. Notably, five coding genes, NOMO1, PKD1P3, NPIPA1, PDXDC1, and NTAN1, were potentially affected by micro-CNV at 16p13.11 in these patients. Conclusion Our study provides new family-trio based evidences to support 16p13.11 micro-duplications predispose individuals to defective cardiac left-right patterning and laterality disorder.
Collapse
Affiliation(s)
- Kun Yu
- The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Soochow, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yan Chen
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Libing Shen
- International Human Phenome Institutes (IHPI), Shanghai, China
| | - Boxuan Wu
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
4
|
Phalnikar K, Srividya M, Mythri SV, Vasavi NS, Ganguly A, Kumar A, S P, Kalia K, Mishra SS, Dhanya SK, Paul P, Holla B, Ganesh S, Reddy PC, Sud R, Viswanath B, Muralidharan B. Altered neuroepithelial morphogenesis and migration defects in iPSC-derived cerebral organoids and 2D neural stem cells in familial bipolar disorder. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae007. [PMID: 38638145 PMCID: PMC11024480 DOI: 10.1093/oons/kvae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Bipolar disorder (BD) is a severe mental illness that can result from neurodevelopmental aberrations, particularly in familial BD, which may include causative genetic variants. In the present study, we derived cortical organoids from BD patients and healthy (control) individuals from a clinically dense family in the Indian population. Our data reveal that the patient organoids show neurodevelopmental anomalies, including organisational, proliferation and migration defects. The BD organoids show a reduction in both the number of neuroepithelial buds/cortical rosettes and the ventricular zone size. Additionally, patient organoids show a lower number of SOX2-positive and EdU-positive cycling progenitors, suggesting a progenitor proliferation defect. Further, the patient neurons show abnormal positioning in the ventricular/intermediate zone of the neuroepithelial bud. Transcriptomic analysis of control and patient organoids supports our cellular topology data and reveals dysregulation of genes crucial for progenitor proliferation and neuronal migration. Lastly, time-lapse imaging of neural stem cells in 2D in vitro cultures reveals abnormal cellular migration in BD samples. Overall, our study pinpoints a cellular and molecular deficit in BD patient-derived organoids and neural stem cell cultures.
Collapse
Affiliation(s)
- Kruttika Phalnikar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - M Srividya
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - S V Mythri
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - N S Vasavi
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Archisha Ganguly
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Aparajita Kumar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Padmaja S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Srishti S Mishra
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Pradip Paul
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bharath Holla
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Suhas Ganesh
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India-201314
| | - Reeteka Sud
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Biju Viswanath
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| |
Collapse
|
5
|
Sud R, Banerjee A, Viswanath B, Purushottam M, Jain S. Non-synaptic mechanisms of antipsychotics may be key to their actions. Schizophr Res 2023; 261:128-129. [PMID: 37717511 DOI: 10.1016/j.schres.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Affiliation(s)
- R Sud
- Molecular Genetics Lab, Department of Psychiatry, NIMHANS, Bangalore, India
| | - A Banerjee
- Molecular Genetics Lab, Department of Psychiatry, NIMHANS, Bangalore, India
| | - B Viswanath
- Molecular Genetics Lab, Department of Psychiatry, NIMHANS, Bangalore, India.
| | - M Purushottam
- Molecular Genetics Lab, Department of Psychiatry, NIMHANS, Bangalore, India
| | - S Jain
- Molecular Genetics Lab, Department of Psychiatry, NIMHANS, Bangalore, India.
| |
Collapse
|
6
|
Schembs L, Willems A, Hasenpusch-Theil K, Cooper JD, Whiting K, Burr K, Bøstrand SMK, Selvaraj BT, Chandran S, Theil T. The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic hedgehog signaling. Cell Rep 2022; 39:110811. [PMID: 35584663 PMCID: PMC9620745 DOI: 10.1016/j.celrep.2022.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/07/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Defects in primary cilia, cellular antennas that control multiple intracellular signaling pathways, underlie several neurodevelopmental disorders, but it remains unknown how cilia control essential steps in human brain formation. Here, we show that cilia are present on the apical surface of radial glial cells in human fetal forebrain. Interfering with cilia signaling in human organoids by mutating the INPP5E gene leads to the formation of ventral telencephalic cell types instead of cortical progenitors and neurons. INPP5E mutant organoids also show increased Sonic hedgehog (SHH) signaling, and cyclopamine treatment partially rescues this ventralization. In addition, ciliary expression of SMO, GLI2, GPR161, and several intraflagellar transport (IFT) proteins is increased. Overall, these findings establish the importance of primary cilia for dorsal and ventral patterning in human corticogenesis, indicate a tissue-specific role of INPP5E as a negative regulator of SHH signaling, and have implications for the emerging roles of cilia in the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Leah Schembs
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ariane Willems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - James D Cooper
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Katie Whiting
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Karen Burr
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sunniva M K Bøstrand
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Thomas Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| |
Collapse
|
7
|
Yang Q, Hong Y, Zhao T, Song H, Ming GL. What Makes Organoids Good Models of Human Neurogenesis? Front Neurosci 2022; 16:872794. [PMID: 35495031 PMCID: PMC9048596 DOI: 10.3389/fnins.2022.872794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Human neurogenesis occurs mainly in embryonic, fetal, and neonatal stages and generates tremendously diverse neural cell types that constitute the human nervous system. Studies on human neurogenesis have been limited due to a lack of access to human embryonic and fetal tissues. Brain organoids derived from human pluripotent stem cells not only recapitulate major developmental processes during neurogenesis, but also exhibit human-specific features, thus providing an unprecedented opportunity to study human neurodevelopment. First, three-dimensional brain organoids resemble early human neurogenesis with diverse stem cell pools, including the presence of primate-enriched outer radial glia cells. Second, brain organoids recapitulate human neurogenesis at the cellular level, generating diverse neuronal cell types and forming stratified cortical layers. Third, brain organoids also capture gliogenesis with the presence of human-specific astrocytes. Fourth, combined with genome-editing technologies, brain organoids are promising models for investigating functions of human-specific genes at different stages of human neurogenesis. Finally, human organoids derived from patient iPSCs can recapitulate specific disease phenotypes, providing unique models for studying developmental brain disorders of genetic and environmental causes, and for mechanistic studies and drug screening. The aim of this review is to illustrate why brain organoids are good models to study various steps of human neurogenesis, with a focus on corticogenesis. We also discuss limitations of current brain organoid models and future improvements.
Collapse
Affiliation(s)
- Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States,The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Guo-li Ming,
| |
Collapse
|
8
|
Susaimanickam PJ, Kiral FR, Park IH. Region Specific Brain Organoids to Study Neurodevelopmental Disorders. Int J Stem Cells 2022; 15:26-40. [PMID: 35220290 PMCID: PMC8889336 DOI: 10.15283/ijsc22006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Region specific brain organoids are brain organoids derived by patterning protocols using extrinsic signals as opposed to cerebral organoids obtained by self-patterning. The main focus of this review is to discuss various region-specific brain organoids developed so far and their application in modeling neurodevelopmental disease. We first discuss the principles of neural axis formation by series of growth factors, such as SHH, WNT, BMP signalings, that are critical to generate various region-specific brain organoids. Then we discuss various neurodevelopmental disorders modeled so far with these region-specific brain organoids, and findings made on mechanism and treatment options for neurodevelopmental disorders (NDD).
Collapse
Affiliation(s)
- Praveen Joseph Susaimanickam
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Buttermore ED, Anderson NC, Chen PF, Makhortova NR, Kim KH, Wafa SMA, Dwyer S, Micozzi JM, Winden KD, Zhang B, Han MJ, Kleiman RJ, Brownstein CA, Sahin M, Gonzalez-Heydrich J. 16p13.11 deletion variants associated with neuropsychiatric disorders cause morphological and synaptic changes in induced pluripotent stem cell-derived neurons. Front Psychiatry 2022; 13:924956. [PMID: 36405918 PMCID: PMC9669751 DOI: 10.3389/fpsyt.2022.924956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
16p13.11 copy number variants (CNVs) have been associated with autism, schizophrenia, psychosis, intellectual disability, and epilepsy. The majority of 16p13.11 deletions or duplications occur within three well-defined intervals, and despite growing knowledge of the functions of individual genes within these intervals, the molecular mechanisms that underlie commonly observed clinical phenotypes remain largely unknown. Patient-derived, induced pluripotent stem cells (iPSCs) provide a platform for investigating the morphological, electrophysiological, and gene-expression changes that result from 16p13.11 CNVs in human-derived neurons. Patient derived iPSCs with varying sizes of 16p13.11 deletions and familial controls were differentiated into cortical neurons for phenotypic analysis. High-content imaging and morphological analysis of patient-derived neurons demonstrated an increase in neurite branching in patients compared with controls. Whole-transcriptome sequencing revealed expression level changes in neuron development and synaptic-related gene families, suggesting a defect in synapse formation. Subsequent quantification of synapse number demonstrated increased numbers of synapses on neurons derived from early-onset patients compared to controls. The identification of common phenotypes among neurons derived from patients with overlapping 16p13.11 deletions will further assist in ascertaining common pathways and targets that could be utilized for screening drug candidates. These studies can help to improve future treatment options and clinical outcomes for 16p13.11 deletion patients.
Collapse
Affiliation(s)
- Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Nickesha C Anderson
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Pin-Fang Chen
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Nina R Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Kristina H Kim
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Syed M A Wafa
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Sean Dwyer
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - John M Micozzi
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Min-Joon Han
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Robin J Kleiman
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Catherine A Brownstein
- The Manton Center of Orphan Disease Research, Boston Children's Hospital, Boston, MA, United States
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Bhattacharya A, Choi WWY, Muffat J, Li Y. Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids - Progress and Perspective. J Mol Biol 2021; 434:167386. [PMID: 34883115 DOI: 10.1016/j.jmb.2021.167386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Developmental brain diseases encompass a group of conditions resulting from genetic or environmental perturbations during early development. Despite the increased research attention in recent years following recognition of the prevalence of these diseases, there is still a significant lack of knowledge of their etiology and treatment options. The genetic and clinical heterogeneity of these diseases, in addition to the limitations of experimental animal models, contribute to this difficulty. In this regard, the advent of brain organoid technology has provided a new means to study the cause and progression of developmental brain diseases in vitro. Derived from human pluripotent stem cells, brain organoids have been shown to recapitulate key developmental milestones of the early human brain. Combined with technological advancements in genome editing, tissue engineering, electrophysiology, and multi-omics analysis, brain organoids have expanded the frontiers of human neurobiology, providing valuable insight into the cellular and molecular mechanisms of normal and pathological brain development. This review will summarize the current progress of applying brain organoids to model human developmental brain diseases and discuss the challenges that need to be overcome to further advance their utility.
Collapse
Affiliation(s)
- Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Julien Muffat
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Nakazawa T. Modeling schizophrenia with iPS cell technology and disease mouse models. Neurosci Res 2021; 175:46-52. [PMID: 34411680 DOI: 10.1016/j.neures.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology, which enables the direct analysis of neuronal cells with the same genetic background as patients, has recently garnered significant attention in schizophrenia research. This technology is important because it enables a comprehensive interpretation using mice and human clinical research and cross-species verification. Here I review recent advances in modeling schizophrenia using iPSC technology, alongside the utility of disease mouse models.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| |
Collapse
|
12
|
Abashkin DA, Kurishev AO, Karpov DS, Golimbet VE. Cellular Models in Schizophrenia Research. Int J Mol Sci 2021; 22:ijms22168518. [PMID: 34445221 PMCID: PMC8395162 DOI: 10.3390/ijms22168518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a prevalent functional psychosis characterized by clinical behavioural symptoms and underlying abnormalities in brain function. Genome-wide association studies (GWAS) of schizophrenia have revealed many loci that do not directly identify processes disturbed in the disease. For this reason, the development of cellular models containing SZ-associated variations has become a focus in the post-GWAS research era. The application of revolutionary clustered regularly interspaced palindromic repeats CRISPR/Cas9 gene-editing tools, along with recently developed technologies for cultivating brain organoids in vitro, have opened new perspectives for the construction of these models. In general, cellular models are intended to unravel particular biological phenomena. They can provide the missing link between schizophrenia-related phenotypic features (such as transcriptional dysregulation, oxidative stress and synaptic dysregulation) and data from pathomorphological, electrophysiological and behavioural studies. The objectives of this review are the systematization and classification of cellular models of schizophrenia, based on their complexity and validity for understanding schizophrenia-related phenotypes.
Collapse
Affiliation(s)
- Dmitrii A. Abashkin
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Artemii O. Kurishev
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Dmitry S. Karpov
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Correspondence:
| |
Collapse
|
13
|
Trakadis Y, Accogli A, Qi B, Bloom D, Joober R, Levy E, Tabbane K. Next-generation gene panel testing in adolescents and adults in a medical neuropsychiatric genetics clinic. Neurogenetics 2021; 22:313-322. [PMID: 34363551 DOI: 10.1007/s10048-021-00664-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023]
Abstract
Intellectual disability (ID) encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders that may present with psychiatric illness in up to 40% of cases. Despite the evidence for clinical utility of genetic panels in pediatrics, there are no published studies in adolescents/adults with ID or autism spectrum disorder (ASD). This study was approved by our institutional research ethics board. We retrospectively reviewed the medical charts of all patients evaluated between January 2017 and December 2019 in our adult neuropsychiatric genetics clinic at the McGill University Health Centre (MUHC), who had undergone a comprehensive ID/ASD gene panel. Thirty-four patients aged > 16 years, affected by ID/ASD and/or other neuropsychiatric/behavioral disorders, were identified. Pathogenic or likely pathogenic variants were identified in one-third of our cohort (32%): 8 single-nucleotide variants in 8 genes (CASK, SHANK3, IQSEC2, CHD2, ZBTB20, TREX1, SON, and TUBB2A) and 3 copy number variants (17p13.3, 16p13.12p13.11, and 9p24.3p24.1). The presence of psychiatric/behavioral disorders, regardless of the co-occurrence of ID, and, at a borderline level, the presence of ID alone were associated with positive genetic findings (p = 0.024 and p = 0.054, respectively). Moreover, seizures were associated with positive genetic results (p = 0.024). One-third of individuals presenting with psychiatric illness who met our red flags for Mendelian diseases have pathogenic or likely pathogenic variants which can be identified using a comprehensive ID/ASD gene panel (~ 2500 genes) performed on an exome backbone.
Collapse
Affiliation(s)
- Y Trakadis
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Room A04.3140, 1001 Boul. Décarie, Montreal, QC, H4A 3J1, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada. .,Douglas Mental Health Institute/Hospital, Montreal, Canada. .,Department of Psychiatry, McGill University, Montreal, Canada.
| | - A Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Room A04.3140, 1001 Boul. Décarie, Montreal, QC, H4A 3J1, Canada
| | - B Qi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - D Bloom
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - R Joober
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - E Levy
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - K Tabbane
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Jalink P, Caiazzo M. Brain Organoids: Filling the Need for a Human Model of Neurological Disorder. BIOLOGY 2021; 10:740. [PMID: 34439972 PMCID: PMC8389592 DOI: 10.3390/biology10080740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Neurological disorders are among the leading causes of death worldwide, accounting for almost all onsets of dementia in the elderly, and are known to negatively affect motor ability, mental and cognitive performance, as well as overall wellbeing and happiness. Currently, most neurological disorders go untreated due to a lack of viable treatment options. The reason for this lack of options is s poor understanding of the disorders, primarily due to research models that do not translate well into the human in vivo system. Current models for researching neurological disorders, neurodevelopment, and drug interactions in the central nervous system include in vitro monolayer cell cultures, and in vivo animal models. These models have shortcomings when it comes to translating research about disorder pathology, development, and treatment to humans. Brain organoids are three-dimensional (3D) cultures of stem cell-derived neural cells that mimic the development of the in vivo human brain with high degrees of accuracy. Researchers have started developing these miniature brains to model neurodevelopment, and neuropathology. Brain organoids have been used to model a wide range of neurological disorders, including the complex and poorly understood neurodevelopmental and neurodegenerative disorders. In this review, we discuss the brain organoid technology, placing special focus on the different brain organoid models that have been developed, discussing their strengths, weaknesses, and uses in neurological disease modeling.
Collapse
Affiliation(s)
- Philip Jalink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, CG 3584 Utrecht, The Netherlands;
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, CG 3584 Utrecht, The Netherlands;
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
15
|
Tomaskovic-Crook E, Guerrieri-Cortesi K, Crook JM. Induced pluripotent stem cells for 2D and 3D modelling the biological basis of schizophrenia and screening possible therapeutics. Brain Res Bull 2021; 175:48-62. [PMID: 34273422 DOI: 10.1016/j.brainresbull.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are providing unprecedented insight into complex neuropsychiatric disorders such as schizophrenia (SZ). Here we review the use of iPSCs for investigating the etiopathology and treatment of SZ, beginning with conventional in vitro two-dimensional (2D; monolayer) cell modelling, through to more advanced 3D tissue studies. With the advent of 3D modelling, utilising advanced differentiation paradigms and additive manufacturing technologies, inclusive of patient-specific cerebral/neural organoids and bioprinted neural tissues, such live disease-relevant tissue systems better recapitulate "within-body" tissue function and pathobiology. We posit that by enabling better understanding of biological causality, these evolving strategies will yield novel therapeutic targets and accordingly, drug candidates.
Collapse
Affiliation(s)
- Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2500, Wollongong, Australia.
| | - Kyle Guerrieri-Cortesi
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2500, Wollongong, Australia; Chris O'Brien Lifehouse Hospital, Camperdown, NSW, 2050, Australia; Department of Surgery, St Vincent's Hospital, The University of Melbourne, 3065, Fitzroy, Australia.
| |
Collapse
|
16
|
Tang XY, Xu L, Wang J, Hong Y, Wang Y, Zhu Q, Wang D, Zhang XY, Liu CY, Fang KH, Han X, Wang S, Wang X, Xu M, Bhattacharyya A, Guo X, Lin M, Liu Y. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J Clin Invest 2021; 131:135763. [PMID: 33945512 DOI: 10.1172/jci135763] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, occurs in 1 of every 800 live births. Early defects in cortical development likely account for the cognitive impairments in DS, although the underlying molecular mechanism remains elusive. Here, we performed histological assays and unbiased single-cell RNA-Seq (scRNA-Seq) analysis on cerebral organoids derived from 4 euploid cell lines and from induced pluripotent stem cells (iPSCs) from 3 individuals with trisomy 21 to explore cell-type-specific abnormalities associated with DS during early brain development. We found that neurogenesis was significantly affected, given the diminished proliferation and decreased expression of layer II and IV markers in cortical neurons in the subcortical regions; this may have been responsible for the reduced size of the organoids. Furthermore, suppression of the DSCAM/PAK1 pathway, which showed enhanced activity in DS, using CRISPR/Cas9, CRISPR interference (CRISPRi), or small-molecule inhibitor treatment reversed abnormal neurogenesis, thereby increasing the size of organoids derived from DS iPSCs. Our study demonstrates that 3D cortical organoids developed in vitro are a valuable model of DS and provide a direct link between dysregulation of the DSCAM/PAK1 pathway and developmental brain defects in DS.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Lei Xu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Jingshen Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Hong
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Zhu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Da Wang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Xin-Yue Zhang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Chun-Yue Liu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai-Heng Fang
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Xiao Han
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Shihua Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Min Xu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| | - Anita Bhattacharyya
- Waisman Center and.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Liu
- Department of Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, and
| |
Collapse
|
17
|
Overexpression of CD47 is associated with brain overgrowth and 16p11.2 deletion syndrome. Proc Natl Acad Sci U S A 2021; 118:2005483118. [PMID: 33833053 DOI: 10.1073/pnas.2005483118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Copy number variation (CNV) at the 16p11.2 locus is associated with neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. CNVs of the 16p gene can manifest in opposing head sizes. Carriers of 16p11.2 deletion tend to have macrocephaly (or brain enlargement), while those with 16p11.2 duplication frequently have microcephaly. Increases in both gray and white matter volume have been observed in brain imaging studies in 16p11.2 deletion carriers with macrocephaly. Here, we use human induced pluripotent stem cells (hiPSCs) derived from controls and subjects with 16p11.2 deletion and 16p11.2 duplication to understand the underlying mechanisms regulating brain overgrowth. To model both gray and white matter, we differentiated patient-derived iPSCs into neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). In both NPCs and OPCs, we show that CD47 (a "don't eat me" signal) is overexpressed in the 16p11.2 deletion carriers contributing to reduced phagocytosis both in vitro and in vivo. Furthermore, 16p11.2 deletion NPCs and OPCs up-regulate cell surface expression of calreticulin (a prophagocytic "eat me" signal) and its binding sites, indicating that these cells should be phagocytosed but fail to be eliminated due to elevations in CD47. Treatment of 16p11.2 deletion NPCs and OPCs with an anti-CD47 antibody to block CD47 restores phagocytosis to control levels. While the CD47 pathway is commonly implicated in cancer progression, we document a role for CD47 in psychiatric disorders associated with brain overgrowth.
Collapse
|
18
|
Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021; 142:477-530. [PMID: 33706925 PMCID: PMC8363060 DOI: 10.1016/bs.ctdb.2020.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human brain development is an intricate process that involves precisely timed coordination of cell proliferation, fate specification, neuronal differentiation, migration, and integration of diverse cell types. Understanding of these fundamental processes, however, has been largely constrained by limited access to fetal brain tissue and the inability to prospectively study neurodevelopment in humans at the molecular, cellular and system levels. Although non-human model organisms have provided important insights into mechanisms underlying brain development, these systems do not fully recapitulate many human-specific features that often relate to disease. To address these challenges, human brain organoids, self-assembled three-dimensional neural aggregates, have been engineered from human pluripotent stem cells to model the architecture and cellular diversity of the developing human brain. Recent advancements in neural induction and regional patterning using small molecules and growth factors have yielded protocols for generating brain organoids that recapitulate the structure and neuronal composition of distinct brain regions. Here, we first provide an overview of early mammalian brain development with an emphasis on molecular cues that guide region specification. We then focus on recent efforts in generating human brain organoids that model the development of specific brain regions and highlight endeavors to enhance the cellular complexity to better mimic the in vivo developing human brain. We also provide examples of how organoid models have enhanced our understanding of human neurological diseases and conclude by discussing limitations of brain organoids with our perspectives on future advancements to maximize their potential.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan G Schnoll
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
19
|
Hasenpusch-Theil K, Theil T. The Multifaceted Roles of Primary Cilia in the Development of the Cerebral Cortex. Front Cell Dev Biol 2021; 9:630161. [PMID: 33604340 PMCID: PMC7884624 DOI: 10.3389/fcell.2021.630161] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The primary cilium, a microtubule based organelle protruding from the cell surface and acting as an antenna in multiple signaling pathways, takes center stage in the formation of the cerebral cortex, the part of the brain that performs highly complex neural tasks and confers humans with their unique cognitive capabilities. These activities require dozens of different types of neurons that are interconnected in complex ways. Due to this complexity, corticogenesis has been regarded as one of the most complex developmental processes and cortical malformations underlie a number of neurodevelopmental disorders such as intellectual disability, autism spectrum disorders, and epilepsy. Cortical development involves several steps controlled by cell–cell signaling. In fact, recent findings have implicated cilia in diverse processes such as neurogenesis, neuronal migration, axon pathfinding, and circuit formation in the developing cortex. Here, we will review recent advances on the multiple roles of cilia during cortex formation and will discuss the implications for a better understanding of the disease mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021; 12:2041731420985299. [PMID: 33738089 PMCID: PMC7934045 DOI: 10.1177/2041731420985299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has aggravated a preexisting epidemic: the opioid crisis. Much literature has shown that the circumstances imposed by COVID-19, such as social distancing regulations, medical and financial instability, and increased mental health issues, have been detrimental to those with opioid use disorder (OUD). In addition, unexpected neurological sequelae in COVID-19 patients suggest that COVID-19 compromises neuroimmunity, induces hypoxia, and causes respiratory depression, provoking similar effects as those caused by opioid exposure. Combined conditions of COVID-19 and OUD could lead to exacerbated complications. With limited human in vivo options to study these complications, we suggest that iPSC-derived brain organoid models may serve as a useful platform to investigate the physiological connection between COVID-19 and OUD. This mini-review highlights the advances of brain organoids in other neuropsychiatric and infectious diseases and suggests their potential utility for investigating OUD and COVID-19, respectively.
Collapse
Affiliation(s)
- Moshe J Willner
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Xuejing Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Physics, Tsinghua University, Beijing, China
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
21
|
Naujock M, Speidel A, Fischer S, Kizner V, Dorner-Ciossek C, Gillardon F. Neuronal Differentiation of Induced Pluripotent Stem Cells from Schizophrenia Patients in Two-Dimensional and in Three-Dimensional Cultures Reveals Increased Expression of the Kv4.2 Subunit DPP6 That Contributes to Decreased Neuronal Activity. Stem Cells Dev 2020; 29:1577-1587. [PMID: 33143549 DOI: 10.1089/scd.2020.0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although the molecular underpinnings of schizophrenia (SZ) are still incompletely understood, deficits in synaptic activity and neuronal connectivity have been identified as core pathomechanisms of SZ and other neuropsychiatric disorders. In this study, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts from healthy donors and patients diagnosed with idiopathic SZ. We differentiated the human iPSC into cortical neurons both as adherent monolayers and as three-dimensional spheroids. RNA sequencing revealed little overlap in differentially expressed genes between 2D and 3D neuron cultures from SZ iPSC compared with controls. Notably, mRNA transcripts encoding dipeptidyl peptidase-like protein 6 (DPP6), an accessory subunit of Kv4.2 voltage-gated potassium channels, were massively increased in cortical neurons from SZ iPSC in the 2D and 3D model. Consistently, multielectrode array recordings and calcium imaging showed significantly decreased neuronal activity both in 2D and in 3D cultures from SZ neurons. To show a causal relationship, we treated iPSC-derived neurons in 2D cultures with lentiviral DPP6 shRNA vectors and the Kv4.2 channel blocker AmmTx3, respectively. Both treatments successfully reversed neuronal hypoexcitability and hypoactivity in cortical neurons from SZ iPSC. Our data highlight a contribution of DPP6 and Kv4.2 to the deficit in neurotransmission in an iPSC model for SZ, which may be of therapeutic relevance for a subset of SZ patients.
Collapse
Affiliation(s)
- Maximilian Naujock
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Anna Speidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Sandra Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Valeria Kizner
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| |
Collapse
|
22
|
Hanger B, Couch A, Rajendran L, Srivastava DP, Vernon AC. Emerging Developments in Human Induced Pluripotent Stem Cell-Derived Microglia: Implications for Modelling Psychiatric Disorders With a Neurodevelopmental Origin. Front Psychiatry 2020; 11:789. [PMID: 32848951 PMCID: PMC7433763 DOI: 10.3389/fpsyt.2020.00789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Microglia, the resident tissue macrophages of the brain, are increasingly implicated in the pathophysiology of psychiatric disorders with a neurodevelopmental origin, including schizophrenia. To date, however, our understanding of the potential role for these cells in schizophrenia has been informed by studies of aged post-mortem samples, low resolution in vivo neuroimaging and rodent models. Whilst these have provided important insights, including signs of the heterogeneous nature of microglia, we currently lack a validated human in vitro system to characterize microglia in the context of brain health and disease during neurodevelopment. Primarily, this reflects a lack of access to human primary tissue during developmental stages. In this review, we first describe microglia, including their ontogeny and heterogeneity and consider their role in brain development. We then provide an evaluation of the potential for differentiating microglia from human induced pluripotent stem cells (hiPSCs) as a robust in vitro human model system to study these cells. We find the majority of protocols for hiPSC-derived microglia generate cells characteristically similar to foetal stage microglia when exposed to neuronal environment-like cues. This may represent a robust and relevant model for the study of cellular and molecular mechanisms in schizophrenia. Each protocol however, provides unique benefits as well as shortcomings, highlighting the need for context-dependent protocol choice and cross-lab collaboration and communication to identify the most robust and translatable microglia model.
Collapse
Affiliation(s)
- Bjørn Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Amalie Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Lawrence Rajendran
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Krefft O, Koch P, Ladewig J. Cerebral organoids to unravel the mechanisms underlying malformations of human cortical development. Semin Cell Dev Biol 2020; 111:15-22. [PMID: 32741653 DOI: 10.1016/j.semcdb.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Genetic studies identified multiple mutations associated with malformations of cortical development (MCD) in humans. When analyzing the underlying mechanisms in non-human experimental models it became increasingly evident, that these mutations accumulate in genes, which functions evolutionary progressed from rodents to humans resulting in an incomplete reflection of the molecular and cellular alterations in these models. Human brain organoids derived from human pluripotent stem cells resemble early aspects of human brain development to a remarkable extent making them an attractive model to investigate MCD. Here we review how human brain organoids enable the generation of fundamental new insight about the underlying pathomechanisms of MCD. We show how phenotypic features of these diseases are reflected in human brain organoids and discuss challenges and future considerations but also limitations for the use of human brain organoids to model human brain development and associated disorders.
Collapse
Affiliation(s)
- Olivia Krefft
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Koch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Julia Ladewig
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
24
|
Zhang DY, Song H, Ming GL. Modeling neurological disorders using brain organoids. Semin Cell Dev Biol 2020; 111:4-14. [PMID: 32561297 DOI: 10.1016/j.semcdb.2020.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Neurological disorders are challenging to study given the complexity and species-specific features of the organ system. Brain organoids are three dimensional structured aggregates of neural tissue that are generated by self-organization and differentiation from pluripotent stem cells under optimized culture conditions. These brain organoids exhibit similar features of structural organization and cell type diversity as the developing human brain, creating opportunities to recapitulate disease phenotypes that are not otherwise accessible. Here we review the initial attempt in the field to apply brain organoid models for the study of many different types of human neurological disorders across a wide range of etiologies and pathophysiologies. Forthcoming advancements in both brain organoid technology as well as analytical methods have significant potentials to advance the understanding of neurological disorders and to uncover opportunities for meaningful therapeutic intervention.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Abstract
Each of the components of the biopsychosocial model of mental illness is important for understanding mental illness. Biological and genetic abnormalities have been demonstrated in major mental illnesses. These are leading to changes in our understanding of these conditions, as well as our understanding of the link between life events and mental illness.
Collapse
|
26
|
Drakulic D, Djurovic S, Syed YA, Trattaro S, Caporale N, Falk A, Ofir R, Heine VM, Chawner SJRA, Rodriguez-Moreno A, van den Bree MBM, Testa G, Petrakis S, Harwood AJ. Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD. Mol Autism 2020; 11:42. [PMID: 32487215 PMCID: PMC7268297 DOI: 10.1186/s13229-020-00343-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs).Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets.
Collapse
Affiliation(s)
- Danijela Drakulic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, 152, Serbia
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, 5007, Bergen, Norway
| | - Yasir Ahmed Syed
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Nicolò Caporale
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Rivka Ofir
- BGU-iPSC Core Facility, The Regenerative Medicine & Stem Cell (RMSC) Research Center, Ben Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081, Amsterdam, The Netherlands
| | - Samuel J R A Chawner
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Antonio Rodriguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra. de Utrera, Km 1, 41013, Seville, Spain
| | - Marianne B M van den Bree
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, Via Cristina Belgioioso 171, 20157, Milan, Italy
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece.
| | - Adrian J Harwood
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
27
|
Murtaza N, Uy J, Singh KK. Emerging proteomic approaches to identify the underlying pathophysiology of neurodevelopmental and neurodegenerative disorders. Mol Autism 2020; 11:27. [PMID: 32317014 PMCID: PMC7171839 DOI: 10.1186/s13229-020-00334-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Proteomics is the large-scale study of the total protein content and their overall function within a cell through multiple facets of research. Advancements in proteomic methods have moved past the simple quantification of proteins to the identification of post-translational modifications (PTMs) and the ability to probe interactions between these proteins, spatially and temporally. Increased sensitivity and resolution of mass spectrometers and sample preparation protocols have drastically reduced the large amount of cells required and the experimental variability that had previously hindered its use in studying human neurological disorders. Proteomics offers a new perspective to study the altered molecular pathways and networks that are associated with autism spectrum disorders (ASD). The differences between the transcriptome and proteome, combined with the various types of post-translation modifications that regulate protein function and localization, highlight a novel level of research that has not been appropriately investigated. In this review, we will discuss strategies using proteomics to study ASD and other neurological disorders, with a focus on how these approaches can be combined with induced pluripotent stem cell (iPSC) studies. Proteomic analysis of iPSC-derived neurons have already been used to measure changes in the proteome caused by patient mutations, analyze changes in PTMs that resulted in altered biological pathways, and identify potential biomarkers. Further advancements in both proteomic techniques and human iPSC differentiation protocols will continue to push the field towards better understanding ASD disease pathophysiology. Proteomics using iPSC-derived neurons from individuals with ASD offers a window for observing the altered proteome, which is necessary in the future development of therapeutics against specific targets.
Collapse
Affiliation(s)
- Nadeem Murtaza
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Jarryll Uy
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Karun K Singh
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
28
|
Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol Psychiatry 2020; 25:254-274. [PMID: 31444473 DOI: 10.1038/s41380-019-0500-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
The prevalence of dementia and other neurodegenerative diseases is rapidly increasing in aging nations. These relentless and progressive diseases remain largely without disease-modifying treatments despite decades of research and investments. It is becoming clear that traditional two-dimensional culture and animal model systems, while providing valuable insights on the major pathophysiological pathways associated with these diseases, have not translated well to patients' bedside. Fortunately, the advent of induced-pluripotent stem cells and three-dimensional cell culture now provide tools that are revolutionizing the study of human diseases by permitting analysis of patient-derived human tissue with non-invasive procedures. Specifically, brain organoids, self-organizing neural structures that can mimic human fetal brain development, have now been harnessed to develop alternative models of Alzheimer's disease, Parkinson's disease, motor neuron disease, and Frontotemporal dementia by recapitulating important neuropathological hallmarks found in these disorders. Despite these early breakthroughs, several limitations need to be vetted in brain organoid models in order to more faithfully match human tissue qualities, including relative tissue immaturity, lack of vascularization and incomplete cellular diversity found in this culture system. Here, we review current brain organoid protocols, the pathophysiology of neurodegenerative disorders, and early studies with brain organoid neurodegeneration models. We then discuss the multiple engineering and conceptual challenges surrounding their use and provide possible solutions and exciting avenues to be pursued. Altogether, we believe that brain organoids models, improved with classical and emerging molecular and analytic tools, have the potential to unravel the opaque pathophysiological mechanisms of neurodegeneration and devise novel treatments for an array of neurodegenerative disorders.
Collapse
Affiliation(s)
- Karl Grenier
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jennifer Kao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Laboratory Medicine Program, Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Phedias Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Laboratory Medicine Program, Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada. .,Princess Margaret Cancer Centre, MacFeeters Hamilton Centre for Neuro-Oncology Research, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
29
|
Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:237-257. [PMID: 32578150 DOI: 10.1007/978-3-030-45493-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders are among the most challenging human diseases to understand at a mechanistic level due to the heterogeneity of symptoms within established diagnostic categories, the general absence of focal pathology, and the genetic complexity inherent in these mostly polygenic disorders. Each of these features presents unique challenges to disease modeling for biological discovery, drug development, or improved diagnostics. In addition, live human neural tissue has been largely inaccessible to experimentation, leaving gaps in our knowledge derived from animal models that cannot fully recapitulate the features of the disease, indirect measures of brain function in human patients, and from analyses of postmortem tissue that can be confounded by comorbid conditions and medication history.
Collapse
|
30
|
Lindoso RS, Kasai-Brunswick TH, Monnerat Cahli G, Collino F, Bastos Carvalho A, Campos de Carvalho AC, Vieyra A. Proteomics in the World of Induced Pluripotent Stem Cells. Cells 2019; 8:703. [PMID: 31336746 PMCID: PMC6678893 DOI: 10.3390/cells8070703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/05/2023] Open
Abstract
Omics approaches have significantly impacted knowledge about molecular signaling pathways driving cell function. Induced pluripotent stem cells (iPSC) have revolutionized the field of biological sciences and proteomics and, in particular, has been instrumental in identifying key elements operating during the maintenance of the pluripotent state and the differentiation process to the diverse cell types that form organisms. This review covers the evolution of conceptual and methodological strategies in proteomics; briefly describes the generation of iPSC from a historical perspective, the state-of-the-art of iPSC-based proteomics; and compares data on the proteome and transcriptome of iPSC to that of embryonic stem cells (ESC). Finally, proteomics of healthy and diseased cells and organoids differentiated from iPSC are analyzed.
Collapse
Affiliation(s)
- Rafael Soares Lindoso
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
| | - Tais H Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
| | - Gustavo Monnerat Cahli
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Federica Collino
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Adriana Bastos Carvalho
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
| | - Antonio Carlos Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil.
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil.
- Graduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias 25071-202, Brazil.
| |
Collapse
|
31
|
Pal R, Bhattacharya A. Modelling Protein Synthesis as A Biomarker in Fragile X Syndrome Patient-Derived Cells. Brain Sci 2019; 9:E59. [PMID: 30862080 PMCID: PMC6468675 DOI: 10.3390/brainsci9030059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
The most conserved molecular phenotype of Fragile X Syndrome (FXS) is aberrant protein synthesis. This has been validated in a variety of experimental model systems from zebrafish to rats, patient-derived lymphoblasts and fibroblasts. With the advent of personalized medicine paradigms, patient-derived cells and their derivatives are gaining more translational importance, not only to model disease in a dish, but also for biomarker discovery. Here we review past and current practices of measuring protein synthesis in FXS, studies in patient derived cells and the inherent challenges in measuring protein synthesis in them to offer usable avenues of modeling this important metabolic metric for further biomarker development.
Collapse
Affiliation(s)
- Rakhi Pal
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.
| | - Aditi Bhattacharya
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.
| |
Collapse
|
32
|
Lawrie SM, Fletcher-Watson S, Whalley HC, McIntosh AM. Predicting major mental illness: ethical and practical considerations. BJPsych Open 2019; 5:e30. [PMID: 31068241 PMCID: PMC6469234 DOI: 10.1192/bjo.2019.11] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
SummaryAn increasing body of genetic and imaging research shows that it is becoming possible to forecast the onset of major psychiatric disorders such as depression and schizophrenia before people become ill with ever improving accuracy. Practical issues such as the optimal combination of clinical and biological variables are being addressed, but the application of predictive algorithms to individuals or in routine clinical settings have yet to be tested. The development of predictive methods in mental health comes with substantial ethical questions, including whether people wish to know their level of risk, as well as individual and societal attitudes to the potential adverse effects of data sharing, early diagnosis and treatment, which so far have been largely ignored. Preliminary data suggests that at least some people think predictive research is valuable and would take part in such studies, and some would welcome knowing the results. Future initiatives should systematically assess opinions and attitudes in conjunction with scientific and technical advances.Declaration of interestIn the past 3 years, S.M.L. has received personal fees from Otsuaka, Sunovion and Janssen, and research grant support from Janssen and Lundbeck. A.M.M. has received research support from the Sackler Trust, Eli Lilly and Janssen. S.M.L. is part of the PSYSCAN consortium.
Collapse
Affiliation(s)
- Stephen M. Lawrie
- Head of Psychiatry, Division of Psychiatry and Patrick Wild Centre, University of Edinburgh, Scotland, UK
| | - Sue Fletcher-Watson
- Senior Lecturer, Division of Psychiatry and Patrick Wild Centre, University of Edinburgh, Scotland, UK
| | - Heather C. Whalley
- Senior Research Fellow, Division of Psychiatry, University of Edinburgh, Scotland, UK
| | - Andrew M. McIntosh
- Professor of Biological Psychiatry, Division of Psychiatry and Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, UK
| |
Collapse
|