1
|
Saitoh Y, Motofuji S, Kamijo A, Suzuki T, Yoshizawa T, Sakamoto T, Kametani K, Terada N. Involvement of membrane palmitoylated protein 6 (MPP6) in synapses of mouse cerebrum. Histochem Cell Biol 2025; 163:50. [PMID: 40360818 PMCID: PMC12075274 DOI: 10.1007/s00418-025-02378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 05/15/2025]
Abstract
Membrane palmitoylated protein 6 (MPP6), a membrane skeletal protein, is expressed not only in the peripheral nervous system (PNS) but also in the central nervous system (CNS). In this study, we investigated the localization of MPP6 and its associated protein complexes in the mouse cerebrum, as well as its effects on behavior using MPP6 protein-deficient (Mpp6 -/-) mice. MPP6 was detected in mouse cerebral lysates and synaptic membrane fractions, where it formed protein complexes with other MPP family members, including MPP1, MPP2, and calcium/calmodulin-dependent serine protein kinase (CASK). However, the amounts of these complexes did not differ between Mpp6 -/- and wild-type (Mpp6 +/+) mice. Immunohistochemistry revealed that MPP6 was localized at synapses throughout the cerebrum, particularly in the postsynaptic regions. Ultrastructural analysis showed that synaptic cleft distances and postsynaptic density thickness were slightly reduced in Mpp6 -/- mice compared with Mpp6 +/+ mice. In the elevated plus-maze test, a Mpp6 -/- mouse exhibited unusual behavior not observed in Mpp6 +/+ mice, although there was no statistically significant difference in the time spent in the open and closed arms between the two groups. Locomotor activity measurements revealed that MPP6 -/- mice were more active at midnight and less active from morning to noon than Mpp6 +/+ mice, implying alterations in sleep-wake regulation. These findings suggest that MPP6 plays a role in synaptic function by forming protein complexes with other MPP family members and signaling proteins.
Collapse
Affiliation(s)
- Yurika Saitoh
- Center for Medical Education, Teikyo University of Science, 2-2-1 Senjusakuragi, Adachi-Ku, Tokyo, 120-0045, Japan.
- Division of Biosciences, Teikyo University of Science Graduate School of Science & Engineering, Adachi-ku, Tokyo, Japan.
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
| | - Sayaka Motofuji
- Division of Biosciences, Teikyo University of Science Graduate School of Science & Engineering, Adachi-ku, Tokyo, Japan
| | - Akio Kamijo
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano, Japan
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan
| | - Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto City, Nagano, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka, Japan
| | - Kiyokazu Kametani
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
| |
Collapse
|
2
|
Patel PA, LaConte LEW, Liang C, Cecere T, Rajan D, Srivastava S, Mukherjee K. Genetic evidence for splicing-dependent structural and functional plasticity in CASK protein. J Med Genet 2024; 61:759-768. [PMID: 38670634 PMCID: PMC11290809 DOI: 10.1136/jmg-2023-109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Pontocerebellar hypoplasia (PCH) may present with supratentorial phenotypes and is often accompanied by microcephaly. Damaging mutations in the X-linked gene CASK produce self-limiting microcephaly with PCH in females but are often lethal in males. CASK deficiency leads to early degeneration of cerebellar granule cells but its role in other regions of the brain remains uncertain. METHOD We generated a conditional Cask knockout mice and deleted Cask ubiquitously after birth at different times. We examined the clinical features in several subjects with damaging mutations clustered in the central part of the CASK protein. We have performed phylogenetic analysis and RT-PCR to assess the splicing pattern within the same protein region and performed in silico structural analysis to examine the effect of splicing on the CASK's structure. RESULT We demonstrate that deletion of murine Cask after adulthood does not affect survival but leads to cerebellar degeneration and ataxia over time. Intriguingly, damaging hemizygous CASK mutations in boys who display microcephaly and cerebral dysfunction but without PCH are known. These mutations are present in two vertebrate-specific CASK exons. These exons are subject to alternative splicing both in forebrain and hindbrain. Inclusion of these exons differentially affects the molecular structure and hence possibly the function/s of the CASK C-terminus. CONCLUSION Loss of CASK function disproportionately affects the cerebellum. Clinical data, however, suggest that CASK may have additional vertebrate-specific function/s that play a role in the mammalian forebrain. Thus, CASK has an ancient function shared between invertebrates and vertebrates as well as novel vertebrate-specific function/s.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Leslie E W LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Chen Liang
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Thomas Cecere
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Deepa Rajan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Zhou M, Qiu W, Ohashi N, Sun L, Wronski ML, Kouyama-Suzuki E, Shirai Y, Yanagawa T, Mori T, Tabuchi K. Deep-Learning-Based Analysis Reveals a Social Behavior Deficit in Mice Exposed Prenatally to Nicotine. Cells 2024; 13:275. [PMID: 38334667 PMCID: PMC10855062 DOI: 10.3390/cells13030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Cigarette smoking during pregnancy is known to be associated with the incidence of attention-deficit/hyperactive disorder (ADHD). Recent developments in deep learning algorithms enable us to assess the behavioral phenotypes of animal models without cognitive bias during manual analysis. In this study, we established prenatal nicotine exposure (PNE) mice and evaluated their behavioral phenotypes using DeepLabCut and SimBA. We optimized the training parameters of DeepLabCut for pose estimation and succeeded in labeling a single-mouse or two-mouse model with high fidelity during free-moving behavior. We applied the trained network to analyze the behavior of the mice and found that PNE mice exhibited impulsivity and a lessened working memory, which are characteristics of ADHD. PNE mice also showed elevated anxiety and deficits in social interaction, reminiscent of autism spectrum disorder (ASD). We further examined PNE mice by evaluating adult neurogenesis in the hippocampus, which is a pathological hallmark of ASD, and demonstrated that newborn neurons were decreased, specifically in the ventral part of the hippocampus, which is reported to be related to emotional and social behaviors. These results support the hypothesis that PNE is a risk factor for comorbidity with ADHD and ASD in mice.
Collapse
Affiliation(s)
- Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Wen Qiu
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Nobuhiko Ohashi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Lihao Sun
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Marie-Louis Wronski
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
4
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
5
|
Mori T, Zhou M, Tabuchi K. Diverse Clinical Phenotypes of CASK-Related Disorders and Multiple Functional Domains of CASK Protein. Genes (Basel) 2023; 14:1656. [PMID: 37628707 PMCID: PMC10454856 DOI: 10.3390/genes14081656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CASK-related disorders are a form of rare X-linked neurological diseases and most of the patients are females. They are characterized by several symptoms, including microcephaly with pontine and cerebellar hypoplasia (MICPCH), epilepsy, congenital nystagmus, and neurodevelopmental disorders. Whole-genome sequencing has identified various mutations, including nonsense and missense mutations, from patients with CASK-related disorders, revealing correlations between specific mutations and clinical phenotypes. Notably, missense mutations associated with epilepsy and intellectual disability were found throughout the whole region of the CASK protein, while missense mutations related to microcephaly and MICPCH were restricted in certain domains. To investigate the pathophysiology of CASK-related disorders, research groups have employed diverse methods, including the generation of CASK knockout mice and the supplementation of CASK to rescue the phenotypes. These approaches have yielded valuable insights into the identification of functional domains of the CASK protein associated with a specific phenotype. Additionally, recent advancements in the AI-based prediction of protein structure, such as AlphaFold2, and the application of genome-editing techniques to generate CASK mutant mice carrying missense mutations from patients with CASK-related disorders, allow us to understand the pathophysiology of CASK-related disorders in more depth and to develop novel therapeutic methods for the fundamental treatment of CASK-related disorders.
Collapse
Affiliation(s)
- Takuma Mori
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan;
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Katsuhiko Tabuchi
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan;
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| |
Collapse
|
6
|
Guo Q, Kouyama-Suzuki E, Shirai Y, Cao X, Yanagawa T, Mori T, Tabuchi K. Structural Analysis Implicates CASK-Liprin-α2 Interaction in Cerebellar Granular Cell Death in MICPCH Syndrome. Cells 2023; 12:cells12081177. [PMID: 37190086 DOI: 10.3390/cells12081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Microcephaly with pontine and cerebellar hypoplasia (MICPCH) syndrome is a neurodevelopmental disorder caused by the deficiency of the X-chromosomal gene CASK. However, the molecular mechanisms by which CASK deficiency causes cerebellar hypoplasia in this syndrome remain elusive. In this study, we used CASK knockout (KO) mice as models for MICPCH syndrome and investigated the effect of CASK mutants. Female CASK heterozygote KO mice replicate the progressive cerebellar hypoplasia observed in MICPCH syndrome. CASK KO cultured cerebellar granule (CG) cells show progressive cell death that can be rescued by co-infection with lentivirus expressing wild-type CASK. Rescue experiments with CASK deletion mutants identify that the CaMK, PDZ, and SH3, but not L27 and guanylate kinase domains of CASK are required for the survival of CG cells. We identify missense mutations in the CaMK domain of CASK derived from human patients that fail to rescue the cell death of cultured CASK KO CG cells. Machine learning-based structural analysis using AlphaFold 2.2 predicts that these mutations disrupt the structure of the binding interface with Liprin-α2. These results suggest that the interaction with Liprin-α2 via the CaMK domain of CASK may be involved in the pathophysiology of cerebellar hypoplasia in MICPCH syndrome.
Collapse
Affiliation(s)
- Qi Guo
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, China
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
7
|
Gharbi T, Liu C, Khan H, Zhang Z, Yang GY, Tang Y. Hypoxic Preconditioned Neural Stem Cell-Derived Extracellular Vesicles Contain Distinct Protein Cargo from Their Normal Counterparts. Curr Issues Mol Biol 2023; 45:1982-1997. [PMID: 36975497 PMCID: PMC10047917 DOI: 10.3390/cimb45030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Hypoxic preconditioning has been demonstrated to increase the resistance of neural stem cells (NSCs) to hypoxic conditions, as well as to improve their capacity for differentiation and neurogenesis. Extracellular vesicles (EVs) have recently emerged as critical mediators of cell–cell communication, but their role in this hypoxic conditioning is presently unknown. Here, we demonstrated that three hours of hypoxic preconditioning triggers significant neural stem cell EV release. Proteomic profiling of EVs from normal and hypoxic preconditioned neural stem cells identified 20 proteins that were upregulated and 22 proteins that were downregulated after hypoxic preconditioning. We also found an upregulation of some of these proteins by qPCR, thus indicating differences also at the transcript level within the EVs. Among the upregulated proteins are CNP, Cyfip1, CASK, and TUBB5, which are well known to exhibit significant beneficial effects on neural stem cells. Thus, our results not only show a significant difference of protein cargo in EVs consequent to hypoxic exposure, but identify several candidate proteins that might play a pivotal role in the cell-to-cell mediated communication underlying neuronal differentiation, protection, maturation, and survival following exposure to hypoxic conditions.
Collapse
|
8
|
McSweeney D, Gabriel R, Jin K, Pang ZP, Aronow B, Pak C. CASK loss of function differentially regulates neuronal maturation and synaptic function in human induced cortical excitatory neurons. iScience 2022; 25:105187. [PMID: 36262316 PMCID: PMC9574418 DOI: 10.1016/j.isci.2022.105187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022] Open
Abstract
Loss-of-function (LOF) mutations in CASK cause severe developmental phenotypes, including microcephaly with pontine and cerebellar hypoplasia, X-linked intellectual disability, and autism. Unraveling the pathological mechanisms of CASK-related disorders has been challenging owing to limited human cellular models to study the dynamic roles of this molecule during neuronal maturation and synapse development. Here, we investigate cell-autonomous functions of CASK in cortical excitatory induced neurons (iNs) generated from CASK knockout (KO) isogenic human embryonic stem cells (hESCs) using gene expression, morphometrics, and electrophysiology. While immature CASK KO iNs show robust neuronal outgrowth, mature CASK KO iNs display severe defects in synaptic transmission and synchronized network activity without compromising neuronal morphology and synapse numbers. In the developing human cortical excitatory neurons, CASK functions to promote both structural integrity and establishment of cortical excitatory neuronal networks. These results lay the foundation for future studies identifying suppressors of such phenotypes relevant to human patients.
Collapse
Affiliation(s)
- Danny McSweeney
- Graduate Program in Molecular and Cellular Biology, UMass Amherst, Amherst, MA 01003, USA,Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Rafael Gabriel
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhiping P. Pang
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bruce Aronow
- Departments of Biomedical Informatics, Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA,Corresponding author
| |
Collapse
|
9
|
An Epilepsy-Associated Mutation of Salt-Inducible Kinase 1 Increases the Susceptibility to Epileptic Seizures and Interferes with Adrenocorticotropic Hormone Therapy for Infantile Spasms in Mice. Int J Mol Sci 2022; 23:ijms23147927. [PMID: 35887274 PMCID: PMC9319016 DOI: 10.3390/ijms23147927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Six mutations in the salt-inducible kinase 1 (SIK1) have been identified in developmental and epileptic encephalopathy (DEE-30) patients, and two of the mutations are nonsense mutations that truncate the C-terminal region of SIK1. In a previous study, we generated SIK1 mutant (SIK1-MT) mice recapitulating the C-terminal truncated mutations using CRISPR/Cas9-mediated genome editing and found an increase in excitatory synaptic transmission and enhancement of neural excitability in neocortical neurons in SIK1-MT mice. NMDA was injected into SIK1-MT males to induce epileptic seizures in the mice. The severity of the NMDA-induced seizures was estimated by the latency and the number of tail flickering and hyperflexion. Activated brain regions were evaluated by immunohistochemistry against c-fos, Iba1, and GFAP. As another epilepsy model, pentylenetetrazol was injected into the adult SIK1 mutant mice. Seizure susceptibility induced by both NMDA and PTZ was enhanced in SIK1-MT mice. Brain regions including the thalamus and hypothalamus were strongly activated in NMDA-induced seizures. The epilepsy-associated mutation of SIK1 canceled the pharmacological effects of the ACTH treatment on NMDA-induced seizures. These results suggest that SIK1 may be involved in the neuropathological mechanisms of NMDA-induced spasms and the pharmacological mechanism of ACTH treatment.
Collapse
|
10
|
Wolfe CIC, Hwang EK, Ijomor EC, Zapata A, Hoffman AF, Lupica CR. Muscarinic Acetylcholine M 2 Receptors Regulate Lateral Habenula Neuron Activity and Control Cocaine Seeking Behavior. J Neurosci 2022; 42:5552-5563. [PMID: 35764382 PMCID: PMC9295832 DOI: 10.1523/jneurosci.0645-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 01/16/2023] Open
Abstract
The lateral habenula (LHb) balances reward and aversion by opposing activation of brain reward nuclei and is involved in the inhibition of responding for cocaine in a model of impulsive behavior. Previously, we reported that the suppression of cocaine seeking was prevented by LHb inactivation or nonselective antagonism of LHb mAChRs. Here, we investigate mAChR subtypes mediating the effects of endogenous acetylcholine in this model of impulsive drug seeking and define cellular mechanisms in which mAChRs alter LHb neuron activity. Using in vitro electrophysiology, we find that LHb neurons are depolarized or hyperpolarized by the cholinergic agonists oxotremorine-M (Oxo-M) and carbachol (CCh), and that mAChRs inhibit synaptic GABA and glutamatergic inputs to these cells similarly in male and female rats. Synaptic effects of CCh were blocked by the M2-mAChR (M2R) antagonist AFDX-116 and not by pirenzepine, an M1-mAChR (M1R) antagonist. Oxo-M-mediated depolarizing currents were also blocked by AFDX-116. Although M2R activation inhibited excitatory and inhibitory inputs to LHb neurons, the effect on excitation was greater, suggesting a shift in excitatory-inhibitory balance toward net inhibition. Activation of VTA inhibitory inputs to LHb neurons, via channelrhodopsin-2 expression, evoked IPSCs that were inhibited by M2Rs. Finally, we measured LHb-dependent operant response inhibition for cocaine and found it impaired by antagonism of M2Rs, and not M1Rs. In summary, we show that a cholinergic signal to LHb and activation of M2Rs are critical to enable inhibition of responding for cocaine, and we define cellular mechanisms through which this may occur.SIGNIFICANCE STATEMENT The lateral habenula (LHb) is a brain region receiving information from brain areas involved in decision-making, and its output influences motivation, reward, and movement. This interface between thoughts, emotions, and actions is how the LHb permits adaptive behavior, and LHb dysfunction is implicated in psychiatric and drug use disorders. Silencing the LHb impairs control over cocaine seeking in rats, and mAChRs are also implicated. Here, we measured cocaine seeking while blocking different mAChRs and examined mechanisms of mAChR effects on LHb neurons. M2-mAChRs were necessary for control of cocaine seeking, and these receptors altered LHb neuron activity in several ways. Our study reveals that LHb M2-mAChRs represent a potential target for treating substance use disorders.
Collapse
Affiliation(s)
- Clara I C Wolfe
- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program Computational and Systems Neuroscience Branch, Electrophysiology Research Section, Baltimore, MD 21224
| | - Eun-Kyung Hwang
- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program Computational and Systems Neuroscience Branch, Electrophysiology Research Section, Baltimore, MD 21224
| | - Elfrieda C Ijomor
- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program Computational and Systems Neuroscience Branch, Electrophysiology Research Section, Baltimore, MD 21224
| | - Agustin Zapata
- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program Computational and Systems Neuroscience Branch, Electrophysiology Research Section, Baltimore, MD 21224
| | - Alexander F Hoffman
- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program Computational and Systems Neuroscience Branch, Electrophysiology Research Section, Baltimore, MD 21224
| | - Carl R Lupica
- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program Computational and Systems Neuroscience Branch, Electrophysiology Research Section, Baltimore, MD 21224
| |
Collapse
|
11
|
Mukherjee K, LaConte LEW, Srivastava S. The Non-Linear Path from Gene Dysfunction to Genetic Disease: Lessons from the MICPCH Mouse Model. Cells 2022; 11:1131. [PMID: 35406695 PMCID: PMC8997851 DOI: 10.3390/cells11071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most human disease manifests as a result of tissue pathology, due to an underlying disease process (pathogenesis), rather than the acute loss of specific molecular function(s). Successful therapeutic strategies thus may either target the correction of a specific molecular function or halt the disease process. For the vast majority of brain diseases, clear etiologic and pathogenic mechanisms are still elusive, impeding the discovery or design of effective disease-modifying drugs. The development of valid animal models and their proper characterization is thus critical for uncovering the molecular basis of the underlying pathobiological processes of brain disorders. MICPCH (microcephaly and pontocerebellar hypoplasia) is a monogenic condition that results from variants of an X-linked gene, CASK (calcium/calmodulin-dependent serine protein kinase). CASK variants are associated with a wide range of clinical presentations, from lethality and epileptic encephalopathies to intellectual disabilities, microcephaly, and autistic traits. We have examined CASK loss-of-function mutations in model organisms to simultaneously understand the pathogenesis of MICPCH and the molecular function/s of CASK. Our studies point to a highly complex relationship between the potential molecular function/s of CASK and the phenotypes observed in model organisms and humans. Here we discuss the implications of our observations from the pathogenesis of MICPCH as a cautionary narrative against oversimplifying molecular interpretations of data obtained from genetically modified animal models of human diseases.
Collapse
Affiliation(s)
- Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Leslie E. W. LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
12
|
Patel PA, Hegert JV, Cristian I, Kerr A, LaConte LEW, Fox MA, Srivastava S, Mukherjee K. Complete loss of the X-linked gene CASK causes severe cerebellar degeneration. J Med Genet 2022; 59:1044-1057. [PMID: 35149592 DOI: 10.1136/jmedgenet-2021-108115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/13/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heterozygous loss of X-linked genes like CASK and MeCP2 (Rett syndrome) causes developmental delay in girls, while in boys, loss of the only allele of these genes leads to epileptic encephalopathy. The mechanism for these disorders remains unknown. CASK-linked cerebellar hypoplasia is presumed to result from defects in Tbr1-reelin-mediated neuronal migration. METHOD Here we report clinical and histopathological analyses of a deceased 2-month-old boy with a CASK-null mutation. We next generated a mouse line where CASK is completely deleted (hemizygous and homozygous) from postmigratory neurons in the cerebellum. RESULT The CASK-null human brain was smaller in size but exhibited normal lamination without defective neuronal differentiation, migration or axonal guidance. The hypoplastic cerebellum instead displayed astrogliosis and microgliosis, which are markers for neuronal loss. We therefore hypothesise that CASK loss-induced cerebellar hypoplasia is the result of early neurodegeneration. Data from the murine model confirmed that in CASK loss, a small cerebellum results from postdevelopmental degeneration of cerebellar granule neurons. Furthermore, at least in the cerebellum, functional loss from CASK deletion is secondary to degeneration of granule cells and not due to an acute molecular functional loss of CASK. Intriguingly, female mice with heterozygous deletion of CASK in the cerebellum do not display neurodegeneration. CONCLUSION We suggest that X-linked neurodevelopmental disorders like CASK mutation and Rett syndrome are pathologically neurodegenerative; random X-chromosome inactivation in heterozygous mutant girls, however, results in 50% of cells expressing the functional gene, resulting in a non-progressive pathology, whereas complete loss of the only allele in boys leads to unconstrained degeneration and encephalopathy.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Julia V Hegert
- Department of Pathology, Orlando Health, Orlando, Florida, USA
| | | | - Alicia Kerr
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | | | - Michael A Fox
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,School of Neuroscience, Blacksburg, Virginia, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA .,Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|
13
|
Interaction Between Glucocorticoid Receptors and FKBP5 in Regulating Neurotransmission of the Hippocampus. Neuroscience 2021; 483:95-103. [PMID: 34923037 DOI: 10.1016/j.neuroscience.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
Abstract
FK501 binding protein 51 (FKBP5) is a stress response prolyl isomerase that inhibits the translocation of the glucocorticoid receptor (GR) heterocomplex to the nucleus. Previous studies have shown that the expression levels of FKBP5 are positively correlated with psychiatric disorders, including depression and post-traumatic stress disorder. In rodents, FKBP5 deletion in the brain leads to be resilient to stress-induced depression. The hippocampus is known to be one of the primary locations mediating stress responses in the brain by providing negative feedback signals to the hypothalamus-pituitaryadrenal gland axis. Therefore, we aimed to investigate the role of FKBP5 and its interaction with GRs in the hippocampus. We observed that FKBP5 deletion in the hippocampus resulted in a minimal change in synaptic transmission. In the hippocampus, GR activation alters the release probability in inhibitory synapses as well as the postsynaptic contribution of glutamate receptors in excitatory synapses; however, no such alterations were induced in the absence of FKBP5. FKBP5 deficiency causes insensitivity to activated GRs in the hippocampus suggesting that FKBP5 mediates synaptic changes caused by GR activation. Our study provides electrophysiological evidence of stress resilience observed in FKBP5-deficient mice.
Collapse
|
14
|
Mehta A, Shirai Y, Kouyama-Suzuki E, Zhou M, Yoshizawa T, Yanagawa T, Mori T, Tabuchi K. IQSEC2 Deficiency Results in Abnormal Social Behaviors Relevant to Autism by Affecting Functions of Neural Circuits in the Medial Prefrontal Cortex. Cells 2021; 10:2724. [PMID: 34685703 PMCID: PMC8534507 DOI: 10.3390/cells10102724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022] Open
Abstract
IQSEC2 is a guanine nucleotide exchange factor (GEF) for ADP-ribosylation factor 6 (Arf6), of which protein is exclusively localized to the postsynaptic density of the excitatory synapse. Human genome studies have revealed that the IQSEC2 gene is associated with X-linked neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism. In this study, we examined the behavior and synapse function in IQSEC2 knockout (KO) mice that we generated using CRIPSR/Cas9-mediated genome editing to solve the relevance between IQSEC2 deficiency and the pathophysiology of neurodevelopmental disorders. IQSEC2 KO mice exhibited autistic behaviors, such as overgrooming and social deficits. We identified that up-regulation of c-Fos expression in the medial prefrontal cortex (mPFC) induced by social stimulation was significantly attenuated in IQSEC2 KO mice. Whole cell electrophysiological recording identified that synaptic transmissions mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), N-methyl-D-aspartate receptor (NMDAR), and γ-aminobutyric acid receptor (GABAR) were significantly decreased in pyramidal neurons in layer 5 of the mPFC in IQSEC2 KO mice. Reexpression of IQSEC2 isoform 1 in the mPFC of IQSEC2 KO mice using adeno-associated virus (AAV) rescued both synaptic and social deficits, suggesting that impaired synaptic function in the mPFC is responsible for social deficits in IQSEC2 KO mice.
Collapse
Affiliation(s)
- Anuradha Mehta
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Takahiro Yoshizawa
- Research Center for Advanced Science and Technology, Shinshu University, Matsumoto 390-8621, Japan;
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
15
|
Zhang Q, Zhang J, Ye J, Li X, Liu H, Ma X, Wang C, He K, Zhang W, Yuan J, Zhao Y, Xu H, Liu Q. Nuclear speckle specific hnRNP D-like prevents age- and AD-related cognitive decline by modulating RNA splicing. Mol Neurodegener 2021; 16:66. [PMID: 34551807 PMCID: PMC8456587 DOI: 10.1186/s13024-021-00485-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aberrant alternative splicing plays critical role in aging and age-related diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) reportedly regulate RNA splicing process. Whether and how hnRNPs contribute to age-related neurodegenerative diseases, especially Alzheimer's disease (AD), remain elusive. METHODS Immunoblotting and immunostaining were performed to determine expression patterns and cellular/subcellular localization of the long isoform of hnRNP D-like (L-DL), which is a hnRNP family member, in mouse hippocampus. Downregulation of L-DL in WT mice was achieved by AAV-mediated shRNA delivery, followed by memory-related behavioural tests. L-DL interactome was analysed by affinity-precipitation and mass spectrometry. Alternative RNA splicing was measured by RNA-seq and analyzed by bioinformatics-based approaches. Downregulation and upregulation of L-DL in APP/PS1 mice were performed using AAV-mediated transduction. RESULTS We show that L-DL is specifically localized to nuclear speckles. L-DL levels are decreased in the hippocampus of aged mouse brains and downregulation of L-DL impairs cognition in mice. L-DL serves as a structural component to recruit other speckle proteins, and regulates cytoskeleton- and synapse-related gene expression by altering RNA splicing. Mechanistically, these splicing changes are modulated via L-DL-mediated interaction of SF3B3, a core component of U2 snRNP, and U2AF65, a U2 spliceosome protein that guides U2 snRNP's binding to RNA. In addition, L-DL levels are decreased in APP/PS1 mouse brains. While downregulation of L-DL deteriorates memory deficits and overexpression of L-DL improves cognitive function in AD mice, by regulating the alternative splicing and expression of synaptic gene CAMKV. CONCLUSIONS Our findings define a molecular mechanism by which hnRNP L-DL regulates alternative RNA splicing, and establish a direct role for L-DL in AD-related synaptic dysfunction and memory decline.
Collapse
Affiliation(s)
- Qingyang Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Ye
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohui Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China
| | - Hongda Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolin Ma
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ji Yuan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yingjun Zhao
- The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiamen University, Xiamen, 361000, China
| | - Huaxi Xu
- The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiamen University, Xiamen, 361000, China.
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
16
|
Badawi M, Mori T, Kurihara T, Yoshizawa T, Nohara K, Kouyama-Suzuki E, Yanagawa T, Shirai Y, Tabuchi K. Risperidone Mitigates Enhanced Excitatory Neuronal Function and Repetitive Behavior Caused by an ASD-Associated Mutation of SIK1. Front Mol Neurosci 2021; 14:706494. [PMID: 34295222 PMCID: PMC8289890 DOI: 10.3389/fnmol.2021.706494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Six mutations in the salt-inducible kinase 1 (SIK1)-coding gene have been identified in patients with early infantile epileptic encephalopathy (EIEE-30) accompanied by autistic symptoms. Two of the mutations are non-sense mutations that truncate the C-terminal region of SIK1. It has been shown that the C-terminal-truncated form of SIK1 protein affects the subcellular distribution of SIK1 protein, tempting to speculate the relevance to the pathophysiology of the disorders. We generated SIK1-mutant (SIK1-MT) mice recapitulating the C-terminal-truncated mutations using CRISPR/Cas9-mediated genome editing. SIK1-MT protein was distributed in the nucleus and cytoplasm, whereas the distribution of wild-type SIK1 was restricted to the nucleus. We found the disruption of excitatory and inhibitory (E/I) synaptic balance due to an increase in excitatory synaptic transmission and enhancement of neural excitability in the pyramidal neurons in layer 5 of the medial prefrontal cortex in SIK1-MT mice. We also found the increased repetitive behavior and social behavioral deficits in SIK1-MT mice. The risperidone administration attenuated the neural excitability and excitatory synaptic transmission, but the disrupted E/I synaptic balance was unchanged, because it also reduced the inhibitory synaptic transmission. Risperidone also eliminated the repetitive behavior but not social behavioral deficits. These results indicate that risperidone has a role in decreasing neuronal excitability and excitatory synapses, ameliorating repetitive behavior in the SIK1-truncated mice.
Collapse
Affiliation(s)
- Moataz Badawi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Taiga Kurihara
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takahiro Yoshizawa
- Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Japan
| | - Katsuhiro Nohara
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
17
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
18
|
Wang TY, Liu XJ, Xie JY, Yuan QZ, Wang Y. Cask methylation involved in the injury of insulin secretion function caused by interleukin1-β. J Cell Mol Med 2020; 24:14247-14256. [PMID: 33188567 PMCID: PMC7753871 DOI: 10.1111/jcmm.16041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Islet inflammation severely impairs pancreatic β‐cell function, but the specific mechanisms are still unclear. Interleukin1‐β (IL‐1β), an essential inflammatory factor, exerts a vital role in multiple physio‐pathologic processes, including diabetes. Calcium/calmodulin‐dependent serine protein kinase (CASK) is an important regulator especially in insulin secretion process. This study aims to unveil the function of CASK in IL‐1β–induced insulin secretion dysfunction and the possible mechanism thereof. Islets of Sprague‐Dawley (SD) rats and INS‐1 cells stimulated with IL‐1β were utilized as models of chronic inflammation. Insulin secretion function associated with Cask and DNA methyltransferases (DNMT) expression were assessed. The possible mechanisms of IL‐1β‐induced pancreatic β‐cell dysfunction were also explored. In this study, CASK overexpression effectively improved IL‐1β‐induced islet β‐cells dysfunction, increased insulin secretion. DNA methyltransferases and the level of methylation in the promoter region of Cask were elevated after IL‐1β administration. Methyltransferase inhibitor 5‐Aza‐2’‐deoxycytidine (5‐Aza‐dC) and si‐DNMTs partially up‐regulated CASK expression and reversed potassium stimulated insulin secretion (KSIS) and glucose‐stimulated insulin secretion (GSIS) function under IL‐1β treatment in INS‐1 and rat islets. These results reveal a previously unknown effect of IL‐1β on insulin secretion dysfunction and demonstrate a novel pathway for Cask silencing based on activation of DNA methyltransferases via inducible nitric oxide synthase (iNOS) and modification of gene promoter methylation.
Collapse
Affiliation(s)
- Tian-Yuan Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Xing-Jing Liu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Jin-Yang Xie
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Qing-Zhao Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Yao Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Andrew DR, Moe ME, Chen D, Tello JA, Doser RL, Conner WE, Ghuman JK, Restifo LL. Spontaneous motor-behavior abnormalities in two Drosophila models of neurodevelopmental disorders. J Neurogenet 2020; 35:1-22. [PMID: 33164597 DOI: 10.1080/01677063.2020.1833005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mutations in hundreds of genes cause neurodevelopmental disorders with abnormal motor behavior alongside cognitive deficits. Boys with fragile X syndrome (FXS), a leading monogenic cause of intellectual disability, often display repetitive behaviors, a core feature of autism. By direct observation and manual analysis, we characterized spontaneous-motor-behavior phenotypes of Drosophila dfmr1 mutants, an established model for FXS. We recorded individual 1-day-old adult flies, with mature nervous systems and prior to the onset of aging, in small arenas. We scored behavior using open-source video-annotation software to generate continuous activity timelines, which were represented graphically and quantitatively. Young dfmr1 mutants spent excessive time grooming, with increased bout number and duration; both were rescued by transgenic wild-type dfmr1+. By two grooming-pattern measures, dfmr1-mutant flies showed elevated repetitions consistent with perseveration, which is common in FXS. In addition, the mutant flies display a preference for grooming posterior body structures, and an increased rate of grooming transitions from one site to another. We raise the possibility that courtship and circadian rhythm defects, previously reported for dfmr1 mutants, are complicated by excessive grooming. We also observed significantly increased grooming in CASK mutants, despite their dramatically decreased walking phenotype. The mutant flies, a model for human CASK-related neurodevelopmental disorders, displayed consistently elevated grooming indices throughout the assay, but transient locomotory activation immediately after placement in the arena. Based on published data identifying FMRP-target transcripts and functional analyses of mutations causing human genetic neurodevelopmental disorders, we propose the following proteins as candidate mediators of excessive repetitive behaviors in FXS: CaMKIIα, NMDA receptor subunits 2A and 2B, NLGN3, and SHANK3. Together, these fly-mutant phenotypes and mechanistic insights provide starting points for drug discovery to identify compounds that reduce dysfunctional repetitive behaviors.
Collapse
Affiliation(s)
- David R Andrew
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Insect Science, University of Arizona, Tucson, AZ, USA.,Department of Biological Sciences, Lycoming College, Williamsport, PA, USA
| | - Mariah E Moe
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dailu Chen
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Judith A Tello
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Rachel L Doser
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - William E Conner
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Jaswinder K Ghuman
- Department of Psychiatry, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Linda L Restifo
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Insect Science, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA.,BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Pan YE, Tibbe D, Harms FL, Reißner C, Becker K, Dingmann B, Mirzaa G, Kattentidt-Mouravieva AA, Shoukier M, Aggarwal S, Missler M, Kutsche K, Kreienkamp HJ. Missense mutations in CASK, coding for the calcium-/calmodulin-dependent serine protein kinase, interfere with neurexin binding and neurexin-induced oligomerization. J Neurochem 2020; 157:1331-1350. [PMID: 33090494 DOI: 10.1111/jnc.15215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Mutations in the X-linked gene coding for the calcium-/calmodulin-dependent serine protein kinase (CASK) are associated with severe neurological disorders ranging from intellectual disability (in males) to mental retardation and microcephaly with pontine and cerebellar hypoplasia. CASK is involved in transcription control, in the regulation of trafficking of the post-synaptic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and acts as a presynaptic scaffolding protein. For CASK missense mutations, it is mostly unclear which of CASK's molecular interactions and cellular functions are altered and contribute to patient phenotypes. We identified five CASK missense mutations in male patients affected by neurodevelopmental disorders. These and five previously reported mutations were systematically analysed with respect to interaction with CASK interaction partners by co-expression and co-immunoprecipitation. We show that one mutation in the L27 domain interferes with binding to synapse-associated protein of 97 kDa. Two mutations in the guanylate kinase (GK) domain affect binding of CASK to the nuclear factors CASK-interacting nucleosome assembly protein (CINAP) and T-box, brain, 1 (Tbr1). A total of five mutations in GK as well as PSD-95/discs large/ZO-1 (PDZ) domains affect binding of CASK to the pre-synaptic cell adhesion molecule Neurexin. Upon expression in neurons, we observe that binding to Neurexin is not required for pre-synaptic localization of CASK. We show by bimolecular fluorescence complementation assay that Neurexin induces oligomerization of CASK, and that mutations in GK and PDZ domains interfere with the Neurexin-induced oligomerization of CASK. Our data are supported by molecular modelling, where we observe that the cooperative activity of PDZ, SH3 and GK domains is required for Neurexin binding and oligomerization of CASK.
Collapse
Affiliation(s)
- Yingzhou Edward Pan
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Leonie Harms
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Reißner
- Institut für Anatomie und Molekulare Neurobiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Bri Dingmann
- Medical Genetics Department, Seattle Children's Hospital, Seattle, Washington, DC, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, DC, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, DC, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Moneef Shoukier
- Pränatal-Medizin München, Frauenärzte und Humangenetiker MVZ, München, Germany
| | - Shagun Aggarwal
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Markus Missler
- Institut für Anatomie und Molekulare Neurobiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kerstin Kutsche
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Inhibition of DNA ligase IV enhances the CRISPR/Cas9-mediated knock-in efficiency in mouse brain neurons. Biochem Biophys Res Commun 2020; 533:449-457. [PMID: 32972746 DOI: 10.1016/j.bbrc.2020.09.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/13/2020] [Indexed: 11/21/2022]
Abstract
CRISPR/Cas9-mediated gene knock-in in in vivo neurons using in utero electroporation is a powerful technique, but the knock-in efficiency is generally low. We previously demonstrated that co-transfection with RAD51, a key molecule of the initial step of homology-directed repair (HDR), expression vector increased EGFP knock-in efficiency in the β-actin site up to 2.5-fold in the pyramidal neurons in layer 2/3 of the somatosensory cortex of mouse brain. To further improve the efficiency, we examined the effect of inhibition of DNA ligase IV (LIG4) that is an essential molecule for non-homologous end joining (NHEJ). Co-transfection with small hairpin RNA for LIG4 (shlig4) expression vector increased the EGFP knock-in efficiency in the β-actin site up to 3.6-fold compared to the condition without shlig4. RAD51 and shlig4 expression vector co-transfection further increased the knock-in efficiency up to 4.7-fold of the control condition. These results suggest that the inhibition of LIG4 is more effective than RAD51 overexpression, and it enhances the effect of RAD51 overexpression on HDR-mediated gene knock-in in vivo neurons.
Collapse
|
22
|
Presynaptic dysfunction in CASK-related neurodevelopmental disorders. Transl Psychiatry 2020; 10:312. [PMID: 32929080 PMCID: PMC7490425 DOI: 10.1038/s41398-020-00994-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
CASK-related disorders are genetically defined neurodevelopmental syndromes. There is limited information about the effects of CASK mutations in human neurons. Therefore, we sought to delineate CASK-mutation consequences and neuronal effects using induced pluripotent stem cell-derived neurons from two mutation carriers. One male case with autism spectrum disorder carried a novel splice-site mutation and a female case with intellectual disability carried an intragenic tandem duplication. We show reduction of CASK protein in maturing neurons from the mutation carriers, which leads to significant downregulation of genes involved in presynaptic development and of CASK protein interactors. Furthermore, CASK-deficient neurons showed decreased inhibitory presynapse size as indicated by VGAT staining, which may alter the excitatory-inhibitory (E/I) balance in developing neural circuitries. Using in vivo magnetic resonance spectroscopy quantification of GABA in the male mutation carrier, we further highlight the possibility to validate in vitro cellular data in the brain. Our data show that future pharmacological and clinical studies on targeting presynapses and E/I imbalance could lead to specific treatments for CASK-related disorders.
Collapse
|
23
|
Kurihara T, Kouyama-Suzuki E, Satoga M, Li X, Badawi M, Thiha, Baig DN, Yanagawa T, Uemura T, Mori T, Tabuchi K. DNA repair protein RAD51 enhances the CRISPR/Cas9-mediated knock-in efficiency in brain neurons. Biochem Biophys Res Commun 2020; 524:621-628. [PMID: 32029273 DOI: 10.1016/j.bbrc.2020.01.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Gene knock-in using the CRISPR/Cas9 system can be achieved in a specific population of neurons in the mouse brain, by using in utero electroporation to introduce DNA fragments into neural progenitor cells. Using this strategy, we previously knocked-in the EGFP coding sequence into the N-terminal region of the β-actin gene specifically in the pyramidal neurons in layer 2/3 of the somatosensory cortex. However, the knock-in efficiency was less than 2% of the transfected neurons. In this study, we sought to improve the knock-in efficiency using this system. First, we varied the length of the homology arms of the β-actin donor template DNA, and found that the knock-in efficiency was increased to ∼14% by extending the length of the 5' and 3' homology arms to 1.6 kb and 2.0 kb, respectively. We then tested the effect of the DNA repair protein RAD51 and the knock-in efficiency was increased up to 2.5-fold when co-transfecting with two different β-actin and a camk2a targeting EGFP knock-in modules. The RAD51 overexpression did not alter the migration of developing neurons, density or morphology of the dendritic spines compared to those in neurons not transfected with RAD51. RAD51 expression will be useful for increasing the knock-in efficiency in neurons in vivo by CRISPR/Cas9-mediated homology directed repair (HDR).
Collapse
Affiliation(s)
- Taiga Kurihara
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Michiru Satoga
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Xue Li
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Moataz Badawi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Thiha
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Deeba Noreen Baig
- School of Life Sciences Forman Christian College (A Chartared University), Lahore, 54600, Pakistan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan.
| |
Collapse
|