1
|
Mörkl S, Narrath M, Schlotmann D, Sallmutter MT, Putz J, Lang J, Brandstätter A, Pilz R, Karl Lackner H, Goswami N, Steuber B, Tatzer J, Lackner S, Holasek S, Painold A, Jauk E, Wenninger J, Horvath A, Spicher N, Barth A, Butler MI, Wagner-Skacel J. Multi-species probiotic supplement enhances vagal nerve function - results of a randomized controlled trial in patients with depression and healthy controls. Gut Microbes 2025; 17:2492377. [PMID: 40298641 PMCID: PMC12045568 DOI: 10.1080/19490976.2025.2492377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Major depression (MD) significantly impacts individual well-being and society. The vagus nerve plays a pivotal role in the gut-brain axis, facilitating bidirectional communication between these systems. Recent meta-analyses suggest potential antidepressant effects of probiotics, although their mechanisms remain unclear. This study aimed to assess the impact of a multi-species probiotic (OMNi-BiOTiC® STRESS Repair) on vagus nerve function in 43 MD patients and 43 healthy controls (HC). Participants received either probiotics or placebo twice daily. Serum and stool samples were collected at baseline, 7 days, 28 days, and 3 months. Vagus nerve (VN) function was evaluated using 24-hour electrocardiography (ECG) for heart rate variability (HRV), alongside stool microbiome analysis via 16S rRNA sequencing. After 3 months, MD patients receiving probiotics demonstrated significantly improved morning VN function compared to HC. MD participants who were in the probiotic group showed a significant increase in Christensellales, particularly Akkermansia muciniphila along with improved sleep parameters (use of sleep medication, sleep latency) as measured by the Pittsburgh Sleep Quality Inventory (PSI). This study highlights potential physiological benefits of probiotics in MD, potentially mediated through VN stimulation. Understanding these mechanisms could lead to novel therapeutic approaches for MD management.
Collapse
Affiliation(s)
- Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martin Narrath
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Daria Schlotmann
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marie-Therese Sallmutter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Putz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lang
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Brandstätter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Rene Pilz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Helmut Karl Lackner
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Nandu Goswami
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Center for Space and Aviation Health, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bianca Steuber
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Jasmin Tatzer
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sonja Lackner
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Annamaria Painold
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Emanuel Jauk
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julian Wenninger
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Nicolai Spicher
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Asmus Barth
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Mary I Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Jolana Wagner-Skacel
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Wang H, Wu J, Wang P, Wang W, Gao L, Liu D, Ding X, Su T. The relationship between "microbiota-gut-brain" axis and depression: Chronic stress-induced inflammation. Physiol Behav 2025; 294:114881. [PMID: 40090436 DOI: 10.1016/j.physbeh.2025.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
This study aims to investigate the pathogenesis of depression in mice using the chronic unpredictable mild stress (CUMS) model, with a particular focus on the changes in inflammatory gene networks and inflammatory factor levels under the condition of gut microbiota dysbiosis. The results indicate that CUMS-induced mice exhibited significant depressive-like behaviors. Specifically, they displayed reduced sucrose intake in the sucrose preference test, decreased central area distance and time in the open field test, and reduced percentage of entries and time spent in the open arm in the elevated plus maze test. Molecular biological analysis indicated that CUMS treatment significantly upregulated the levels of inflammatory factors TNF-α, IL-1β, IL-6, and IFN-γ in the serum and hippocampus of mice. Through high-throughput sequencing and Pearson correlation analysis, it was found that the levels of inflammatory factors were significantly positively correlated with the expression of multiple inflammatory pathway genes, as well as the abundance of beneficial and harmful bacteria. Furthermore, the persistent changes in inflammatory factors ultimately led to neuronal cell death. This study provides strong evidence for the role of disrupted "microbiota-gut-brain" axis homeostasis in the pathogenesis of CUMS-induced depression in mice. This finding offers a new perspective for understanding the pathological mechanisms of depression and provides strategies for future depression treatment.
Collapse
Affiliation(s)
- Haohao Wang
- College of biological and pharmaceutical engineering, West Anhui University, Lu'an, 237012, China; Anhui Traditional Chinese Medicine Ecological Agricultural Engineering Research Center, Lu'an, 237012, China
| | - Jinxiang Wu
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Pan Wang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, China
| | - Wei Wang
- College of biological and pharmaceutical engineering, West Anhui University, Lu'an, 237012, China; Anhui Traditional Chinese Medicine Ecological Agricultural Engineering Research Center, Lu'an, 237012, China
| | - Leilei Gao
- College of biological and pharmaceutical engineering, West Anhui University, Lu'an, 237012, China; Anhui Traditional Chinese Medicine Ecological Agricultural Engineering Research Center, Lu'an, 237012, China
| | - Dong Liu
- College of biological and pharmaceutical engineering, West Anhui University, Lu'an, 237012, China; Anhui Traditional Chinese Medicine Ecological Agricultural Engineering Research Center, Lu'an, 237012, China; Anhui Modern Traditional Chinese Medicine Industry Commonality Technology Research Center, Lu'an, 237012, China.
| | - Xiaoyuan Ding
- College of biological and pharmaceutical engineering, West Anhui University, Lu'an, 237012, China.
| | - Ting Su
- College of biological and pharmaceutical engineering, West Anhui University, Lu'an, 237012, China; Anhui Traditional Chinese Medicine Ecological Agricultural Engineering Research Center, Lu'an, 237012, China
| |
Collapse
|
3
|
Min HK, Lee JY. Biomarkers for successful tapering of a tumor necrosis factor inhibitor in patients with radiographic axial spondyloarthritis: A pilot study. SAGE Open Med 2025; 13:20503121251330812. [PMID: 40291149 PMCID: PMC12033542 DOI: 10.1177/20503121251330812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Tumor necrosis factor inhibitors are the most widely used biological disease-modifying antirheumatic drugs for radiographic axial spondyloarthritis. After achieving remission with tumor necrosis factor inhibitor treatment, experts recommend tapering tumor necrosis factor inhibitor. However, biomarkers for successful tumor necrosis factor inhibitor tapering in radiographic axial spondyloarthritis have not been identified. Objectives To identify biomarkers associated with successful tumor necrosis factor inhibitor tapering in patients with radiographic axial spondyloarthritis. Design We prospectively collected blood samples from radiographic axial spondyloarthritis patients at single tertiary hospital. Methods Patients with radiographic axial spondyloarthritis who achieved remission (axial spondyloarthritis disease activity score < 1.3) after treatment with tumor necrosis factor inhibitor were enrolled. Baseline demographics, medication history, and laboratory data were collected when the tumor necrosis factor inhibitor dose was tapered. The percentage of helper T cell subtypes (Th1/Th2/Th17/Th22) in peripheral blood, and serum levels of tumor necrosis factor-α, interleukin-12, IL-17A, IL-22, IL-23, interferon (IFN)-γ, soluble CD14, and zonulin, were measured. Patients were assigned to tumor necrosis factor inhibitor tapering success (axial spondyloarthritis disease activity score < 2.1) or failure (axial spondyloarthritis disease activity score ⩾ 2.1) groups according to disease activity (assessed at 12 weeks posttumor necrosis factor inhibitor tapering). Results Twenty radiographic axial spondyloarthritis patients were enrolled (median age, 31.0 years; 65% males). Most (80%) were positive for human leukocyte antigen-B27. The change of axial spondyloarthritis disease activity score in the tumor necrosis factor inhibitor-tapering failure group was 1.36, while that in the tumor necrosis factor inhibitor-tapering success group was 0.07. The percentage of Th1 and Th17 cells was significantly lower, and that of Th2 cells higher, in the tumor necrosis factor inhibitor-tapering success group. In addition, serum levels of IL-12, IL-17A, IL-22, IFN-γ, tumor necrosis factor-α, zonulin, and soluble CD14 were significantly lower in the tumor necrosis factor inhibitor-tapering success group. Conclusion Patients with radiographic axial spondyloarthritis who achieve successful tumor necrosis factor inhibitor tapering had lower percentages of Th1 and Th17 cells, a higher percentage of Th2 cells, and lower serum levels of IL-12, IL-17A, IL-22, IFN-γ, tumor necrosis factor-α, zonulin, and soluble CD14 at the time of tumor necrosis factor inhibitor tapering. These findings may help to identify patients with radiographic axial spondyloarthritis for whom tumor necrosis factor inhibitor tapering is appropriate.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Todhunter-Brown A, Campbell P, Broderick C, Cowie J, Davis B, Fenton C, Markham S, Sellers C, Thomson K. Recent research in myalgic encephalomyelitis/chronic fatigue syndrome: an evidence map. Health Technol Assess 2025:1-78. [PMID: 40162526 PMCID: PMC11973615 DOI: 10.3310/btbd8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome is a chronic condition, classified by the World Health Organization as a nervous system disease, impacting around 17 million people worldwide. Presentation involves persistent fatigue and postexertional malaise (a worsening of symptoms after minimal exertion) and a wide range of other symptoms. Case definitions have historically varied; postexertional malaise is a core diagnostic criterion in current definitions. In 2022, a James Lind Alliance Priority Setting Partnership established research priorities relating to myalgic encephalomyelitis/chronic fatigue syndrome. Objective(s) We created a map of myalgic encephalomyelitis/chronic fatigue syndrome evidence (2018-23), showing the volume and key characteristics of recent research in this field. We considered diagnostic criteria and how current research maps against the James Lind Alliance Priority Setting Partnership research priorities. Methods Using a predefined protocol, we conducted a comprehensive search of Cochrane, MEDLINE, EMBASE and Cumulative Index to Nursing and Allied Health Literature. We included all English-language research studies published between January 2018 and May 2023. Two reviewers independently applied inclusion criteria with consensus involving additional reviewers. Studies including people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome using any criteria (including self-report), of any age and in any setting were eligible. Studies with < 10 myalgic encephalomyelitis/chronic fatigue syndrome participants were excluded. Data extraction, coding of topics (involving stakeholder consultation) and methodological quality assessment of systematic reviews (using A MeaSurement Tool to Assess systematic Reviews 2) was conducted independently by two reviewers, with disagreements resolved by a third reviewer. Studies were presented in an evidence map. Results Of the 11,278 identified studies, 742 met the selection criteria, but only 639 provided sufficient data for inclusion in the evidence map. These reported data from approximately 610,000 people with myalgic encephalomyelitis/chronic fatigue syndrome. There were 81 systematic reviews, 72 experimental studies, 423 observational studies and 63 studies with other designs. Most studies (94%) were from high-income countries. Reporting of participant details was poor; 16% did not report gender, 74% did not report ethnicity and 81% did not report the severity of myalgic encephalomyelitis/chronic fatigue syndrome. Forty-four per cent of studies used multiple diagnostic criteria, 16% did not specify criteria, 24% used a single criterion not requiring postexertional malaise and 10% used a single criterion requiring postexertional malaise. Most (89%) systematic reviews had a low methodological quality. Five main topics (37 subtopics) were included in the evidence map. Of the 639 studies; 53% addressed the topic 'what is the cause?'; 38% 'what is the problem?'; 26% 'what can we do about it?'; 15% 'diagnosis and assessment'; and 13% other topics, including 'living with myalgic encephalomyelitis/chronic fatigue syndrome'. Discussion Studies have been presented in an interactive evidence map according to topic, study design, diagnostic criteria and age. This evidence map should inform decisions about future myalgic encephalomyelitis/chronic fatigue syndrome research. Limitations An evidence map does not summarise what the evidence says. Our evidence map only includes studies published in 2018 or later and in English language. Inconsistent reporting and use of diagnostic criteria limit the interpretation of evidence. We assessed the methodological quality of systematic reviews, but not of primary studies. Conclusions We have produced an interactive evidence map, summarising myalgic encephalomyelitis/chronic fatigue syndrome research from 2018 to 2023. This evidence map can inform strategic plans for future research. We found some, often limited, evidence addressing every James Lind Alliance Priority Setting Partnership priority; high-quality systematic reviews should inform future studies. Funding This article presents independent research funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme as award number NIHR159926.
Collapse
Affiliation(s)
| | | | | | - Julie Cowie
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | | - Candida Fenton
- NESSIE, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah Markham
- NESSIE Patient and public involvement member, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Ceri Sellers
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | |
Collapse
|
5
|
Li Y, Feng J, Ding G, Deng L, He Y, Zhang Q, Wang J, Chen X. The possible effects of chili peppers on ADHD in relation to the gut microbiota. Front Nutr 2025; 12:1551650. [PMID: 39968396 PMCID: PMC11832391 DOI: 10.3389/fnut.2025.1551650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, which is characterized by inattention, impulsivity and hyperactivity. Although the etiology and pathogenesis of ADHD are not fully understood, existing studies have shown that it may be related to genetic factors, environmental factors, abnormal brain development, and psychosocial factors. In recent years, with the concept of microbioa-gut-brain axis (MGBA), more and more studies have begun to pay attention to the effect of gut microbiota on ADHD. Dietary structure can significantly change the diversity and abundance of gut microbiota. Therefore, dietary supplements or food additives to regulate gut microbiota have become one of the potential ways to treat ADHD. Peppers, as an important dietary component, have potential value in regulating gut microbiota. Among them, capsaicin (8-methyl N-vanillyl-6-noneamide, CAP), as a key active component of peppers, has been shown to have potential therapeutic effects on central nervous system (CNS) diseases such as Parkinson's disease, epilepsy, and depression. In addition, much attention has been paid to the beneficial effects of CAP on gut microbiota. Chili peppers contain not only CAP, but also rich in vitamin C and fatty acids, all of which may ameliorate ADHD by modulating the gut microbiota. This finding not only provides a potential treatment for ADHD, but also provides a new perspective to expand the research and clinical treatment of ADHD pathogenesis. Although current research on the potential therapeutic effects of chili peppers on ADHD is still at an early stage and requires further verification through larger-scale and more rigorous controlled studies, its potential clinical value cannot be ignored.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Chen
- Department of Pediatrics, Child and Adolescent Psychiatric Center of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (Army 958th Hospital), Chongqing, China
| |
Collapse
|
6
|
Gawlik-Kotelnicka O, Czarnecka-Chrebelska K, Margulska A, Pikus E, Wasiak J, Skowrońska A, Brzeziańska-Lasota E, Strzelecki D. Associations between intestinal fatty-acid binding protein and clinical and metabolic characteristics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111170. [PMID: 39393435 DOI: 10.1016/j.pnpbp.2024.111170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION The topic of increased intestinal permeability is associated with disruption of the intestinal barrier, leading to the "leaky gut" syndrome. Depressive disorders often coexist with abdominal obesity, metabolic syndrome, or its components and complications. Intestinal permeability has been proven to relate to all of the above. METHODS In this cross-sectional study, we aimed to assess the "leaky gut" blood biomarker - intestinal fatty acid-binding protein (I-FABP) - in 114 adult patients diagnosed with depressive disorders depending on abdominal obesity comorbidity, depression, anxiety, and stress level, or antidepressant use. The corrected p-value was set at 0.02. We analyzed patients' mental state, diet, anthropometric parameters, metabolic laboratory markers and I-FABP. RESULTS There was no difference in circulating I-FABP levels between obese and non-obese patients with depressive disorders (p = 0.648). Similarly, I-FABP levels were not different in patients with different emotional symptoms severity (p = 0.829 for self-assessed depression, p = 0.164 for anxiety, and p = 0.543 for stress). But, I-FABP levels differed significantly between patients treated and not treated with antidepressants (p = 0.011). In general linear model analysis treatment with antidepressants, anxiety severity level, their interaction, along with smoking status, drinks intake, and using dietary supplements were shown to significantly explain I-FABP variance (p < 0.001, R2adj = 0.261). CONCLUSIONS Comorbid obesity did not increase intestinal permeability circulating marker, I-FABP, in the population of patients with depressive disorders. Treatment with antidepressants may be connected to higher I-FABP levels. Using dietary supplements, drinks intake, smoking status, or anxiety level may serve as explanatory factors.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| | | | - Aleksandra Margulska
- Department of Child and Adolescent Psychiatry, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| | - Ewa Pikus
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Jakub Wasiak
- Faculty of Medicine, Medical University of Lodz, Kościuszki 4, 90-419 Lodz, Poland.
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| |
Collapse
|
7
|
Gajewska A, Wysokiński A, Strzelecki D, Gawlik-Kotelnicka O. Limited Changes in Red Blood Cell Parameters After Probiotic Supplementation in Depressive Individuals: Insights from a Secondary Analysis of the PRO-DEMET Randomized Controlled Trial. J Clin Med 2025; 14:265. [PMID: 39797347 PMCID: PMC11721667 DOI: 10.3390/jcm14010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Background: Depression often coexists with anemia, potentially sharing common pathways, highlighting the need for treatments addressing both conditions simultaneously. This study evaluated the effect of probiotics on red blood cell (RBC) parameters in adults with depressive disorder. We hypothesized that probiotics would positively influence RBC parameters, potentially modulated by baseline inflammation or dietary intake, with improved RBC function correlating with better antidepressant outcomes. Methods: This secondary analysis of a two-arm, randomized, double-blind, controlled trial involved 116 adults with depressive disorder. Participants received a probiotic formulation containing Lactobacillus helveticus Rosell®-52 and Bifidobacterium longum Rosell®-175 or a placebo for 60 days. Data from 97 subjects were analyzed for RBC parameters, including hemoglobin (HGB), RBC count, hematocrit (HCT), mean corpuscular volume (MCV), mean hemoglobin concentration (MCH), mean corpuscular hemoglobin concentration (MCHC), and RBC distribution width (RDW). Results: Probiotic supplementation did not result in significant changes in RBC parameters compared to the placebo. However, probiotics may help stabilize HGB, HCT, MCH, and MCHC levels, potentially preventing fluctuations observed in the placebo group. Conclusions: While probiotics showed potential benefits for depressive symptoms, significant changes in RBC parameters were not observed. Larger studies are needed to clarify the mechanisms and clinical implications.
Collapse
Affiliation(s)
| | - Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
8
|
Mona R, Göldi A, Schneider T, Panne I, Egger A, Niess JH, Hrúz P. Fatigue Is Strongly Associated with Depressive Symptoms in Patients with Inflammatory Bowel Disease. Inflamm Intest Dis 2025; 10:90-103. [PMID: 40337726 PMCID: PMC12058115 DOI: 10.1159/000545572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/21/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction Fatigue is an extraintestinal manifestation in patients with inflammatory bowel disease (IBD), such as Crohn's disease (CD) and ulcerative colitis (UC), with limited information on the underlying factors. This study aimed to determine the prevalence of fatigue and associated factors in IBD patients. Methods This prospective observational study assessed 216 IBD patients treated with intravenous infliximab or vedolizumab. Clinically meaningful fatigue was defined using a visual analog scale with a score ≥4 (VAS-F, range 0-10). Further assessments included the patient health questionnaire (PHQ-8) for depressive symptoms, the IBD-control-8 questionnaire to evaluate subjective disease control and the fatigue impact scale (FIS) for patients' quality of life (QoL). Demographic, clinical and laboratory data of the study population were collected and compared to identify fatigue-associated factors. Results Overall, 53.2% (n = 115) of the IBD patients reported clinically meaningful fatigue with a higher prevalence in UC (63.0%) versus CD (47.4%). Among patients with CD, disease activity was significantly associated with fatigue symptoms (p < 0.001), whereas no such correlation was observed in UC patients (p = 0.85). Clinically meaningful fatigue symptoms were reported in 90.9% of patients with depressive symptoms (PHQ-8 ≥10). Furthermore, patients with fatigue were younger (40 vs. 42 years, p = 0.04), reported more frequent use of concomitant psychoactive and/or sedative medication (p = 0.03) and had lower IBD-control-8 scores (median 12 vs. 16 points, p < 0.001). Only minor differences were observed when comparing serum and fecal laboratory values of patients with fatigue symptoms to those without. Conclusion Fatigue is highly prevalent among IBD patients treated with vedolizumab or infliximab and has a substantial impact on patients' QoL. Fatigue and depressive symptoms were strongly associated, suggesting closer monitoring for depression and the use of psychoactive medication in patients with IBD.
Collapse
Affiliation(s)
- Robin Mona
- Department of Gastroenterology and Hepatology, University Digestive Health Care Center, Clarunis, Basel, Switzerland
| | - Andreas Göldi
- Department of Gastroenterology and Hepatology, University Digestive Health Care Center, Clarunis, Basel, Switzerland
| | - Tobias Schneider
- Department of Gastroenterology and Hepatology, University Digestive Health Care Center, Clarunis, Basel, Switzerland
| | - Isabelle Panne
- Department of Gastroenterology and Hepatology, University Digestive Health Care Center, Clarunis, Basel, Switzerland
| | - Andrea Egger
- Division of Endocrinology, Department of Internal Medicine, St. Claraspital, Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Gastroenterology and Hepatology, University Digestive Health Care Center, Clarunis, Basel, Switzerland
- Gastroenterology Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petr Hrúz
- Department of Gastroenterology and Hepatology, University Digestive Health Care Center, Clarunis, Basel, Switzerland
| |
Collapse
|
9
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
10
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
11
|
Wu S, Jiang Q, Wang J, Wu D, Ren Y. Immune-related gene characterization and biological mechanisms in major depressive disorder revealed based on transcriptomics and network pharmacology. Front Psychiatry 2024; 15:1485957. [PMID: 39713769 PMCID: PMC11659238 DOI: 10.3389/fpsyt.2024.1485957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024] Open
Abstract
Background Major depressive disorder (MDD) is a severe psychiatric disorder characterized by complex etiology, with genetic determinants that are not fully understood. The objective of this study was to investigate the pathogenesis of MDD and to explore its association with the immune system by identifying hub biomarkers using bioinformatics analyses and examining immune infiltrates in human autopsy samples. Methods Gene microarray data were obtained from the Gene Expression Omnibus (GEO) datasets GSE32280, GSE76826, GSE98793, and GSE39653. Our approach included differential expression analysis, weighted gene co-expression network analysis (WGCNA), and protein-protein interaction (PPI) network analysis to identify hub genes associated with MDD. Subsequently, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cytoscape plugin CluGO, and Gene Set Enrichment Analysis (GSEA) were utilized to identify immune-related genes. The final selection of immune-related hub genes was determined through the least absolute shrinkage and selection operator (Lasso) regression analysis and PPI analysis. Immune cell infiltration in MDD patients was analyzed using CIBERSORT, and correlation analysis was performed between key immune cells and genes. The diagnostic accuracy of the identified hub genes was evaluated using receiver operating characteristic (ROC) curve analysis. Furthermore, we conducted a study involving 10 MDD patients and 10 healthy controls (HCs) meeting specific criteria to assess the expression levels of these hub genes in their peripheral blood mononuclear cells (PBMCs). The Herbal Ingredient Target Database (HIT) was employed to screen for herbal components that target these genes, potentially identifying novel therapeutic agents. Results A total of 159 down-regulated and 51 up-regulated genes were identified for further analysis. WGCNA revealed 12 co-expression modules, with modules "darked", "darkurquoise" and "light yellow" showing significant positive associations with MDD. Functional enrichment pathway analysis indicated that these differential genes were associated with immune functions. Integration of differential and immune-related gene analysis identified 21 common genes. The Lasso algorithm confirmed 4 hub genes as potential biomarkers for MDD. GSEA analysis suggested that these genes may be involved in biological processes such as protein export, RNA degradation, and fc gamma r mediated cytotoxis. Pathway enrichment analysis identified three highly enriched immune-related pathways associated with the 4 hub genes. ROC curve analysis indicated that these hub genes possess good diagnostic value. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) demonstrated significant expression differences of these hub genes in PBMCs between MDD patients and HCs. Immune infiltration analysis revealed significant correlations between immune cells, including Mast cells resting, T cells CD8, NK cells resting, and Neutrophils, which were significantly correlated with the hub genes expression. HIT identified one herb target related to IL7R and 14 targets related to TLR2. Conclusions The study identified four immune-related hub genes (TLR2, RETN, HP, and IL7R) in MDD that may impact the diagnosis and treatment of the disorder. By leveraging the GEO database, our findings contribute to the understanding of the relationship between MDD and immunity, presenting potential therapeutic targets.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Jiang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinhui Wang
- Department of Pharmacy, Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Daming Wu
- Department of Psychiatry, Xiaoyi City Central Hospital, Xiaoyi, China
| | - Yan Ren
- Department of Psychiatry, The Fifth Hospital of Shanxi Medical University, The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
12
|
Sun D, Luo J, Ye W, Wang C, Deng Q, Fang Z, Sun L, Gooneratne R. Ziziphus Jujube Polysaccharides inhibit over-abundance of fecal butyric acid in mildly stressed growing mice to ameliorate depression-like behavior. FOOD BIOSCI 2024; 62:104875. [DOI: 10.1016/j.fbio.2024.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
McDonnell SC, Graham-Engeland JE, Sliwinski MJ, Engeland CG, Knight EL. Cognotoxemia: endotoxemia and gender predict changes in working memory performance in healthy adults. Front Neurosci 2024; 18:1453325. [PMID: 39568668 PMCID: PMC11577790 DOI: 10.3389/fnins.2024.1453325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Examining the contribution of peripheral systems to cognitive function under healthy circumstances may improve our understanding of the systems that confer risk or resilience in diseased states. Endotoxemia-a pro-inflammatory response to the translocation of bacteria that reside in the gut on other sources (e.g., respiratory tract; infection) into the blood-was hypothesized to relate to worsened cognitive functioning. Gender was explored as a moderator. Methods A sample of 162 healthy adults (25-65 years old) provided plasma, from which a measure of endotoxemia was determined [i.e., the ratio of lipopolysaccharide binding protein (LBP) to soluble cluster of differentiation 14 receptors (sCD14)]. Participants performed an array of laboratory and ambulatory cognitive tasks at three timepoints, each separated by 9 months. Two sets of multilevel models were used: Prospective models, linking endotoxemia at baseline with changes in cognition across time, and coupling models, which examine correlations of endotoxemia with cognition across time. Results A prospective model indicated lower levels of endotoxemia at baseline predicted improvements in working memory across the three timepoints; higher levels were associated with no change in cognitive performance. Gender was not found to modulate this finding. Interestingly, a coupling analysis of endotoxemia and gender across time showed that in men, those with higher endotoxemia performed better at the working memory task overall; in women, working memory performance was similar regardless of endotoxemia level. Conclusion This work provides initial evidence that endotoxemia may be associated with a dampening of improvement in working memory, improvement consistent with practice effects, which should be expected in a sample of healthy, relatively young adults. The findings also provide preliminary evidence that, at least for men, higher degrees of endotoxemia are not inherently negative, and may link with short term positive outcomes for working memory.
Collapse
Affiliation(s)
- Sally C McDonnell
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Jennifer E Graham-Engeland
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
| | - Martin J Sliwinski
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, PA, United States
| | - Christopher G Engeland
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
- Ross and Carol Nese College of Nursing, Pennsylvania State University, University Park, PA, United States
| | - Erik L Knight
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
14
|
Kamath S, Hunter A, Collins K, Wignall A, Joyce P. The atypical antipsychotics lurasidone and olanzapine exert contrasting effects on the gut microbiome and metabolic function of rats. Br J Pharmacol 2024; 181:4531-4545. [PMID: 39075330 DOI: 10.1111/bph.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Antipsychotics such as olanzapine are associated with significant metabolic dysfunction, attributed to gut microbiome dysbiosis. A recent notion that most psychotropics are detrimental to the gut microbiome has arisen from consistent findings of metabolic adverse effects. However, unlike olanzapine, the metabolic effects of lurasidone are conflicting. Thus, this study investigates the contrasting effects of olanzapine and lurasidone on the gut microbiome to explore the hypothesis of 'gut neutrality' for lurasidone exposure. EXPERIMENTAL APPROACH Using Sprague-Dawley rats, the effects of olanzapine and lurasidone on the gut microbiome were explored. Faecal and blood samples were collected weekly over a 21-day period to analyse changes to the gut microbiome and related metabolic markers. KEY RESULTS Lurasidone triggered no significant weight gain or metabolic alterations, instead positively modulating the gut microbiome through increases in mean operational taxonomical units (OTUs) and alpha diversity. This novel finding suggests an underlying mechanism for lurasidone's metabolic inertia. In contrast, olanzapine triggered a statistically significant decrease in mean OTUs, substantial compositional variation and a depletion in short-chain fatty acid abundance. Microbiome depletion correlated with metabolic dysfunction, producing a 30% increase in weight gain, increased pro-inflammatory cytokine expression, and increased blood glycaemic and triglyceride levels. CONCLUSION AND IMPLICATIONS Our results challenge the notion that all antipsychotics disrupt the gut microbiome similarly and highlights the potential benefits of gut-neutral antipsychotics, such as lurasidone, in managing metabolic side effects. Further research is warranted to validate these findings in humans to guide personalised pharmacological treatment regimens for schizophrenia.
Collapse
Affiliation(s)
- Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander Hunter
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kate Collins
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Bogielski B, Michalczyk K, Głodek P, Tempka B, Gębski W, Stygar D. Association between small intestine bacterial overgrowth and psychiatric disorders. Front Endocrinol (Lausanne) 2024; 15:1438066. [PMID: 39497810 PMCID: PMC11532184 DOI: 10.3389/fendo.2024.1438066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a gastrointestinal condition characterized by abnormal colonization of bacteria in the small intestine, leading to overgrowth and alteration, which is linked to gastrointestinal issues, potentially affecting neurological and mental health. Despite existing research, we still do not understand how SIBO affects tryptophan metabolism and psychiatric diseases. We investigated the literature for connections between SIBO, tryptophan metabolism disruptions, and psychiatric disorders like autism, schizophrenia, Alzheimer's, and Parkinson's diseases. We also explored the interaction between thyroid disorders and their influence on SIBO and psychiatric illnesses. PubMed and Google Scholar databases were searched using keywords and phrases, individual and in combinations, like "SIBO," "gut microbiota," "neurologic disorders," "mental disorders," "tryptophan," "dopamine," and "thyroid disease." We focused on original research and review papers that presented empirical studies conducted on animal models and human subjects published in English between February 1992 to February 2023. The initial 2 634 534 records were preliminary screened based on title and abstract and then subjected to full-text review to exclude publications with insufficient data on SIBO, lack of a psychiatric disorder component, or methodological limitations compromising the integrity of the findings. The analysis highlights the significance of the association between psychiatric disorders and SIBO, emphasizing the role of gut-microbial diversity in mental health. We advocate for more detailed studies, including longitudinal research, to clarify the causal relationships between SIBO, gut dysbiosis, and psychiatric disorders and for an integrated approach while treating complex psychiatric conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
16
|
Barkus A, Baltrūnienė V, Baušienė J, Baltrūnas T, Barkienė L, Kazlauskaitė P, Baušys A. The Gut-Brain Axis in Opioid Use Disorder: Exploring the Bidirectional Influence of Opioids and the Gut Microbiome-A Comprehensive Review. Life (Basel) 2024; 14:1227. [PMID: 39459527 PMCID: PMC11508959 DOI: 10.3390/life14101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid Use Disorder is a chronic condition characterized by compulsive opioid use despite negative consequences, resulting in severe health risks such as overdose and contraction of infectious diseases. High dropout rates in opioid agonist therapy highlight the need for more effective relapse prevention strategies. Animal and clinical studies indicate that opioids influence gut microbiota, which in turn plays a critical role in addiction development and alters behavioral responses to opioids. This study provides a comprehensive review of the literature on the effects of opioids on the gut microbiome and explores the potential of microbiome manipulation as a therapeutic target in opioid addiction.
Collapse
Affiliation(s)
- Artūras Barkus
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Vaida Baltrūnienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Justė Baušienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Tomas Baltrūnas
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Lina Barkienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Paulina Kazlauskaitė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Augustinas Baušys
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
17
|
Truyens M, Lernout H, De Vos M, Laukens D, Lobaton T. Unraveling the fatigue puzzle: insights into the pathogenesis and management of IBD-related fatigue including the role of the gut-brain axis. Front Med (Lausanne) 2024; 11:1424926. [PMID: 39021817 PMCID: PMC11252009 DOI: 10.3389/fmed.2024.1424926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
A significant percentage of patients with an inflammatory bowel disease (IBD) encounter fatigue which can profoundly diminish patients' quality of life, particularly during periods of disease remission when gastrointestinal symptoms have receded. Various contributing risk factors have been identified including active inflammation, anemia, psychological, lifestyle and drug-related factors. While addressing these risk factors has been suggested as the initial approach to managing fatigue, a considerable number of patients still experience persisting symptoms, the primary causes of which remain incompletely understood. Recent insights suggest that dysfunction of the gut-brain axis may play a pathogenic role. This review provides an overview of established risk factors for fatigue, alongside emerging perspectives on the role of the gut-brain axis, and potential treatment strategies.
Collapse
Affiliation(s)
- Marie Truyens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - Hannah Lernout
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium
| | - Martine De Vos
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium
- Ghent Gut Inflammation Group (GGIG), Ghent University, Ghent, Belgium
| | - Triana Lobaton
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
18
|
Huang Q, Wei M, Feng X, Luo Y, Liu Y, Xia J. Hemorrhagic transformation in patients with large-artery atherosclerotic stroke is associated with the gut microbiota and lipopolysaccharide. Neural Regen Res 2024; 19:1532-1540. [PMID: 38051896 PMCID: PMC10883505 DOI: 10.4103/1673-5374.385846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/23/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00032/figure1/v/2023-11-20T171125Z/r/image-tiff
Hemorrhagic transformation is a major complication of large-artery atherosclerotic stroke (a major ischemic stroke subtype) that worsens outcomes and increases mortality. Disruption of the gut microbiota is an important feature of stroke, and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis. We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in large-artery atherosclerotic stroke. An observational retrospective study was conducted. From May 2020 to September 2021, blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy, as well as 16 healthy controls. Patients with stroke who developed hemorrhagic transformation (n = 15) were compared to those who did not develop hemorrhagic transformation (n = 17) and with healthy controls. The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing. We also examined key components of the lipopolysaccharide pathway: lipopolysaccharide, lipopolysaccharide-binding protein, and soluble CD14. We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transformation group compared with the healthy controls. The patients with ischemic stroke who developed hemorrhagic transformation exhibited altered gut microbiota composition, in particular an increase in the relative abundance and diversity of members belonging to the Enterobacteriaceae family. Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transformation group. lipopolysaccharide, lipopolysaccharide-binding protein, and soluble CD14 concentrations were associated with increased abundance of Enterobacteriaceae. Next, the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model. In this model, transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide, lipopolysaccharide-binding protein, and soluble CD14. Taken together, our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation. This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transformation after stroke.
Collapse
Affiliation(s)
- Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yunhai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
19
|
Deyang T, Baig MAI, Dolkar P, Hediyal TA, Rathipriya AG, Bhaskaran M, PandiPerumal SR, Monaghan TM, Mahalakshmi AM, Chidambaram SB. Sleep apnoea, gut dysbiosis and cognitive dysfunction. FEBS J 2024; 291:2519-2544. [PMID: 37712936 DOI: 10.1111/febs.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Sleep disorders are becoming increasingly common, and their distinct effects on physical and mental health require elaborate investigation. Gut dysbiosis (GD) has been reported in sleep-related disorders, but sleep apnoea is of particular significance because of its higher prevalence and chronicity. Cumulative evidence has suggested a link between sleep apnoea and GD. This review highlights the gut-brain communication axis that is mediated via commensal microbes and various microbiota-derived metabolites (e.g. short-chain fatty acids, lipopolysaccharide and trimethyl amine N-oxide), neurotransmitters (e.g. γ-aminobutyric acid, serotonin, glutamate and dopamine), immune cells and inflammatory mediators, as well as the vagus nerve and hypothalamic-pituitary-adrenal axis. This review also discusses the pathological role underpinning GD and altered gut bacterial populations in sleep apnoea and its related comorbid conditions, particularly cognitive dysfunction. In addition, the review examines the preclinical and clinical evidence, which suggests that prebiotics and probiotics may potentially be beneficial in sleep apnoea and its comorbidities through restoration of eubiosis or gut microbial homeostasis that regulates neural, metabolic and immune responses, as well as physiological barrier integrity via the gut-brain axis.
Collapse
Affiliation(s)
- Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Md Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Center, University of Toledo Health Science Campus, OH, USA
| | - Seithikuruppu R PandiPerumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, UK
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| |
Collapse
|
20
|
Tota M, Karska J, Kowalski S, Piątek N, Pszczołowska M, Mazur K, Piotrowski P. Environmental pollution and extreme weather conditions: insights into the effect on mental health. Front Psychiatry 2024; 15:1389051. [PMID: 38863619 PMCID: PMC11165707 DOI: 10.3389/fpsyt.2024.1389051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Environmental pollution exposures, including air, soil, water, light, and noise pollution, are critical issues that may implicate adverse mental health outcomes. Extreme weather conditions, such as hurricanes, floods, wildfires, and droughts, may also cause long-term severe concerns. However, the knowledge about possible psychiatric disorders associated with these exposures is currently not well disseminated. In this review, we aim to summarize the current knowledge on the impact of environmental pollution and extreme weather conditions on mental health, focusing on anxiety spectrum disorders, autism spectrum disorders, schizophrenia, and depression. In air pollution studies, increased concentrations of PM2.5, NO2, and SO2 were the most strongly associated with the exacerbation of anxiety, schizophrenia, and depression symptoms. We provide an overview of the suggested underlying pathomechanisms involved. We highlight that the pathogenesis of environmental pollution-related diseases is multifactorial, including increased oxidative stress, systematic inflammation, disruption of the blood-brain barrier, and epigenetic dysregulation. Light pollution and noise pollution were correlated with an increased risk of neurodegenerative disorders, particularly Alzheimer's disease. Moreover, the impact of soil and water pollution is discussed. Such compounds as crude oil, heavy metals, natural gas, agro-chemicals (pesticides, herbicides, and fertilizers), polycyclic or polynuclear aromatic hydrocarbons (PAH), solvents, lead (Pb), and asbestos were associated with detrimental impact on mental health. Extreme weather conditions were linked to depression and anxiety spectrum disorders, namely PTSD. Several policy recommendations and awareness campaigns should be implemented, advocating for the advancement of high-quality urbanization, the mitigation of environmental pollution, and, consequently, the enhancement of residents' mental health.
Collapse
Affiliation(s)
- Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Piątek
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Katarzyna Mazur
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
21
|
Minichino A, Preston T, Fanshawe JB, Fusar-Poli P, McGuire P, Burnet PWJ, Lennox BR. Psycho-Pharmacomicrobiomics: A Systematic Review and Meta-Analysis. Biol Psychiatry 2024; 95:611-628. [PMID: 37567335 DOI: 10.1016/j.biopsych.2023.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Understanding the interactions between the gut microbiome and psychotropic medications (psycho-pharmacomicrobiomics) could improve treatment stratification strategies in psychiatry. In this systematic review and meta-analysis, we first explored whether psychotropics modify the gut microbiome; second, we investigated whether the gut microbiome affects the efficacy and tolerability of psychotropics. METHODS Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we searched (November 2022) for longitudinal and cross-sectional studies that investigated the effect of psychotropics on the gut microbiome. The primary outcome was the difference in diversity metrics (alpha and beta) before and after treatment with psychotropics (longitudinal studies) and in medicated compared with unmedicated individuals (cross-sectional studies). Secondary outcomes included the association between gut microbiome and efficacy and tolerability outcomes. Random effect meta-analyses were conducted on alpha diversity metrics, while beta diversity metrics were pooled using distance data extracted from graphs. Summary statistics included standardized mean difference and Higgins I2 for alpha diversity metrics and F and R values for beta diversity metrics. RESULTS Nineteen studies were included in our synthesis; 12 investigated antipsychotics and 7 investigated antidepressants. Results showed significant changes in alpha (4 studies; standard mean difference: 0.12; 95% CI: 0.01-0.23; p = .04; I2: 14%) and beta (F = 15.59; R2 = 0.05; p < .001) diversity metrics following treatment with antipsychotics and antidepressants, respectively. Altered gut microbiome composition at baseline was associated with tolerability and efficacy outcomes across studies, including response to antidepressants (2 studies; alpha diversity; standard mean difference: 2.45; 95% CI: 0.50-4.40; p < .001, I2: 0%). CONCLUSIONS Treatment with psychotropic medications is associated with altered gut microbiome composition, and the gut microbiome may in turn influence the efficacy and tolerability of these medications.
Collapse
Affiliation(s)
- Amedeo Minichino
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| | - Tabitha Preston
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Jack B Fanshawe
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; National Institute for Health Research, Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Belinda R Lennox
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Osuna E, Baumgartner J, Wunderlin O, Emery S, Albermann M, Baumgartner N, Schmeck K, Walitza S, Strumberger M, Hersberger M, Zimmermann MB, Häberling I, Berger G, Herter-Aeberli I. Iron status in Swiss adolescents with paediatric major depressive disorder and healthy controls: a matched case-control study. Eur J Nutr 2024; 63:951-963. [PMID: 38265750 PMCID: PMC10948461 DOI: 10.1007/s00394-023-03313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Depression is associated with low-grade systemic inflammation and impaired intestinal function, both of which may reduce dietary iron absorption. Low iron status has been associated with depression in adults and adolescents. In Swiss adolescents, we determined the associations between paediatric major depressive disorder (pMDD), inflammation, intestinal permeability and iron status. METHODS This is a matched case-control study in 95 adolescents with diagnosed pMDD and 95 healthy controls aged 13-17 years. We assessed depression severity using the Children's Depression Rating Scale-Revised. We measured iron status (serum ferritin (SF) and soluble transferrin receptor (sTfR)), inflammation (C-reactive protein (CRP) and alpha-1-acid-glycoprotein (AGP)), and intestinal permeability (intestinal fatty acid binding protein (I-FABP)). We assessed history of ID diagnosis and treatment with a self-reported questionnaire. RESULTS SF concentrations did not differ between adolescents with pMDD (median (IQR) SF: 31.2 (20.2, 57.0) μg/L) and controls (32.5 (22.6, 48.3) μg/L, p = 0.4). sTfR was lower among cases than controls (4.50 (4.00, 5.50) mg/L vs 5.20 (4.75, 6.10) mg/L, p < 0.001). CRP, AGP and I-FABP were higher among cases than controls (CRP: 0.16 (0.03, 0.43) mg/L vs 0.04 (0.02, 0.30) mg/L, p = 0.003; AGP: 0.57 (0.44, 0.70) g/L vs 0.52 (0.41, 0.67) g/L, p = 0.024); I-FABP: 307 (17, 515) pg/mL vs 232 (163, 357) pg/mL, p = 0.047). Of cases, 44% reported having a history of ID diagnosis compared to 26% among controls (p = 0.020). Finally, 28% of cases had iron treatment at/close to study inclusion compared to 14% among controls. CONCLUSION Cases had significantly higher systemic inflammation and intestinal permeability than controls but did not have lower iron status. Whether this is related to the higher rate of ID diagnosis and iron treatment in adolescents with depression is uncertain.
Collapse
Affiliation(s)
- Ester Osuna
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Jeannine Baumgartner
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
- Department of Nutritional Sciences, King's College London, London, UK
| | - Olivia Wunderlin
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Sophie Emery
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Mona Albermann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Noemi Baumgartner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Psychiatry St. Gallen, Wil SG, Switzerland
| | - Klaus Schmeck
- Department of Clinical Research, Medical Faculty, University of Basel, Basel, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Michael Strumberger
- Research Department of Child and Adolescent Psychiatry, Psychiatric University Hospitals Basel, University of Basel, Basel, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Isabelle Häberling
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland.
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Misiak B, Pawlak E, Rembacz K, Kotas M, Żebrowska-Różańska P, Kujawa D, Łaczmański Ł, Piotrowski P, Bielawski T, Samochowiec J, Samochowiec A, Karpiński P. Associations of gut microbiota alterations with clinical, metabolic, and immune-inflammatory characteristics of chronic schizophrenia. J Psychiatr Res 2024; 171:152-160. [PMID: 38281465 DOI: 10.1016/j.jpsychires.2024.01.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The present study had the following aims: 1) to compare gut microbiota composition in patients with schizophrenia and controls and 2) to investigate the association of differentially abundant bacterial taxa with markers of inflammation, intestinal permeability, lipid metabolism, and glucose homeostasis as well as clinical manifestation. A total of 115 patients with schizophrenia during remission of positive and disorganization symptoms, and 119 controls were enrolled. Altogether, 32 peripheral blood markers were assessed. A higher abundance of Eisenbergiella, Family XIII AD3011 group, Eggerthella, Hungatella, Lactobacillus, Olsenella, Coprobacillus, Methanobrevibacter, Ligilactobacillus, Eubacterium fissicatena group, and Clostridium innocuum group in patients with schizophrenia was found. The abundance of Paraprevotella and Bacteroides was decreased in patients with schizophrenia. Differentially abundant genera were associated with altered levels of immune-inflammatory markers, zonulin, lipid profile components, and insulin resistance. Moreover, several correlations of differentially abundant genera with cognitive impairment, higher severity of negative symptoms, and worse social functioning were observed. The association of Methanobrevibacter abundance with the level of negative symptoms, cognition, and social functioning appeared to be mediated by the levels of interleukin-6 and RANTES. In turn, the association of Hungatella with the performance of attention was mediated by the levels of zonulin. The findings indicate that compositional alterations of gut microbiota observed in patients with schizophrenia correspond with clinical manifestation, intestinal permeability, subclinical inflammation, lipid profile alterations, and impaired glucose homeostasis. Subclinical inflammation and impaired gut permeability might mediate the association of gut microbiota alterations with psychopathological symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland.
| | - Edyta Pawlak
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krzysztof Rembacz
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marek Kotas
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Samochowiec
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Poland
| | - Paweł Karpiński
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
24
|
Madison AA, Bailey MT. Stressed to the Core: Inflammation and Intestinal Permeability Link Stress-Related Gut Microbiota Shifts to Mental Health Outcomes. Biol Psychiatry 2024; 95:339-347. [PMID: 38353184 PMCID: PMC10867428 DOI: 10.1016/j.biopsych.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 02/16/2024]
Abstract
Stress levels are surging, alongside the incidence of stress-related psychiatric disorders. Perhaps a related phenomenon, especially in urban areas, the human gut contains fewer bacterial species than ever before. Although the functional implications of this absence are unclear, one consequence may be reduced stress resilience. Preclinical and clinical evidence has shown how stress exposure can alter the gut microbiota and their metabolites, affecting host physiology. Also, stress-related shifts in the gut microbiota jeopardize tight junctions of the gut barrier. In this context, bacteria and bacterial products can translocate from the gut to the bloodstream, lymph nodes, and other organs, thereby modifying systemic inflammatory responses. Heightened circulating inflammation can be an etiological factor in stress-related psychiatric disorders, including some cases of depression. In this review, we detail preclinical and clinical evidence that traces these brain-to-gut-to-brain pathways that underlie stress-related psychiatric disorders and potentially affect their responsivity to conventional psychiatric medications. We also review evidence for interventions that modulate the gut microbiota (e.g., antibiotics, probiotics, prebiotics) to reduce stress responses and psychiatric symptoms. Lastly, we discuss challenges to translation and opportunities for innovations that could impact future psychiatric clinical practice.
Collapse
Affiliation(s)
- Annelise A Madison
- Institute for Behavioral Medicine Research, Ohio State University College of Medicine, Columbus, Ohio; Department of Psychology, Ohio State University, Columbus, Ohio.
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio; Center for Microbial Pathogenesis and the Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
25
|
Thisayakorn P, Thipakorn Y, Tantavisut S, Sirivichayakul S, Vojdani A, Maes M. Increased IgA-mediated responses to the gut paracellular pathway and blood-brain barrier proteins predict delirium due to hip fracture in older adults. Front Neurol 2024; 15:1294689. [PMID: 38379706 PMCID: PMC10876854 DOI: 10.3389/fneur.2024.1294689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Delirium is accompanied by immune response system activation, which may, in theory, cause a breakdown of the gut barrier and blood-brain barrier (BBB). Some results suggest that the BBB is compromised in delirium, but there is no data regarding the gut barrier. This study investigates whether delirium is associated with impaired BBB and gut barriers in elderly adults undergoing hip fracture surgery. Methods We recruited 59 older adults and measured peak Delirium Rating Scale (DRS) scores 2-3 days after surgery, and assessed plasma IgG/IgA levels (using ELISA techniques) for zonulin, occludin, claudin-6, β-catenin, actin (indicating damage to the gut paracellular pathway), claudin-5 and S100B (reflecting BBB damage), bacterial cytolethal distending toxin (CDT), LPS-binding protein (LBP), lipopolysaccharides (LPS), Porphyromonas gingivalis, and Helicobacter pylori. Results Results from univariate analyses showed that delirium is linked to increased IgA responses to all the self-epitopes and antigens listed above, except for LPS. Part of the variance (between 45-48.3%) in the peak DRS score measured 2-3 days post-surgery was explained by independent effects of IgA directed to LPS and LBP (or bacterial CDT), baseline DRS scores, and previous mild stroke. Increased IgA reactivity to the paracellular pathway and BBB proteins and bacterial antigens is significantly associated with the activation of M1 macrophage, T helper-1, and 17 cytokine profiles. Conclusion Heightened bacterial translocation, disruption of the tight and adherens junctions of the gut and BBB barriers, elevated CDT and LPS load in the bloodstream, and aberrations in cell-cell interactions may be risk factors for delirium.
Collapse
Affiliation(s)
- Paul Thisayakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saran Tantavisut
- Department of Orthopedics, Hip Fracture Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aristo Vojdani
- Immunosciences Lab Inc., Los Angeles, CA, United States
- Cyrex Labs LLC, Phoenix, AZ, United States
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Republic of Korea
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Silva AS, Casarotti SN, Penna ALB. Trends and challenges for the application of probiotic lactic acid bacteria in functional foods. CIÊNCIA RURAL 2024; 54. [DOI: 10.1590/0103-8478cr20230014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
ABSTRACT: It is increasingly challenging for the food industries to develop products which meet the consumers’ demands. They seek foods that are innovative and present health benefits. In this review, the main objectives are to show the tendencies and innovations in the dairy food market and to indicate the challenges to apply probiotic bacteria to non-dairy products. Moreover, the safety of probiotic lactic acid bacteria (LAB) to be applied to food products and the beneficial effect of probiotic bacteria on the intestinal microbiota and overall human health were also discussed. We considered that the development of probiotic fermented products added with fruits and fruit by-products, cereals or other vegetables aligns with the market tendencies and the consumers’ demands.
Collapse
Affiliation(s)
- Aline Sousa Silva
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil
| | | | | |
Collapse
|
27
|
Cavanaugh G, Bai J, Tartar JL, Lin J, Nunn T, Sangwan N, Patel D, Stanis S, Patel RK, Rrukiqi D, Murphy H. Enteric Dysbiosis in Children With Autism Spectrum Disorder and Associated Response to Stress. Cureus 2024; 16:e53305. [PMID: 38435887 PMCID: PMC10905207 DOI: 10.7759/cureus.53305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Background Microbiome studies in humans, though limited, have facilitated the evaluation of the potential connection between the microbiome and brain function. Children with autism spectrum disorder (ASD) have several behavioral challenges and avoidant/restrictive food intake disorder, which may contribute to gut microbiome dysbiosis. Aim The aim of this study is to examine the extent to which the gut microbiome of children with ASD differs in comparison to children with neurotypical development (CWND) and to assess whether a probiotic intervention has the potential to influence the gut microbiome in mediating positive behavior change and stress regulation. Methods This pilot study collected data from three children with ASD and four CWND before and after a four-week probiotic intervention. Data collection included microbiome diversity screening from stool samples as well as the following biophysiological measures: salivary alpha-amylase (sAA) levels, response to simulated stressor and calming stimulus (behavior), including pulse rate, galvanic skin response, and pupil diameter (PD). In addition, telomere length was assessed. All measures, except for telomere length, were repeated after the four-week intervention on the ASD and CWND groups for pre-/post-comparison. Data analysis consisted of multivariate analyses, including ANOVA. Results While greater heterogeneity in the ASD group was evident in all measures, the gut microbiome of participants who received probiotic intervention differed from pretreatment results within and across the groups investigated. Further, the biophysiological parameter sAA displayed a significant increase between baseline and exposure to stress in both groups, whereas PD increased in both groups from baseline, F(11, 26615) = 123.43, p = 0.00. Conclusion Though gut microbiome diversity is diminished in children with ASD compared to CWND, the gap is narrowed following a brief probiotic intervention. The results suggest that probiotic interventions have the potential to rescue microbiome diversity and abundance, potentially supporting stress regulation in pediatric populations.
Collapse
Affiliation(s)
- Gesulla Cavanaugh
- Department of Nursing Research, Ron and Kathy Assaf College of Nursing, Nova Southeastern University, Davie, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, USA
| | - Jaime L Tartar
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA
| | - Tina Nunn
- Lerner Research Institute, Case Western Reserve University, Cleveland, USA
| | - Naseer Sangwan
- Lerner Research Institute, Case Western Reserve University, Cleveland, USA
| | - Diti Patel
- Department of Allopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Stachyse Stanis
- Department of Allopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Raina K Patel
- Department of Allopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Djellza Rrukiqi
- Department of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Hannah Murphy
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, USA
| |
Collapse
|
28
|
Cullen AE, Labad J, Oliver D, Al-Diwani A, Minichino A, Fusar-Poli P. The Translational Future of Stress Neurobiology and Psychosis Vulnerability: A Review of the Evidence. Curr Neuropharmacol 2024; 22:350-377. [PMID: 36946486 PMCID: PMC10845079 DOI: 10.2174/1570159x21666230322145049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 03/23/2023] Open
Abstract
Psychosocial stress is a well-established risk factor for psychosis, yet the neurobiological mechanisms underlying this relationship have yet to be fully elucidated. Much of the research in this field has investigated hypothalamic-pituitary-adrenal (HPA) axis function and immuno-inflammatory processes among individuals with established psychotic disorders. However, as such studies are limited in their ability to provide knowledge that can be used to develop preventative interventions, it is important to shift the focus to individuals with increased vulnerability for psychosis (i.e., high-risk groups). In the present article, we provide an overview of the current methods for identifying individuals at high-risk for psychosis and review the psychosocial stressors that have been most consistently associated with psychosis risk. We then describe a network of interacting physiological systems that are hypothesised to mediate the relationship between psychosocial stress and the manifestation of psychotic illness and critically review evidence that abnormalities within these systems characterise highrisk populations. We found that studies of high-risk groups have yielded highly variable findings, likely due to (i) the heterogeneity both within and across high-risk samples, (ii) the diversity of psychosocial stressors implicated in psychosis, and (iii) that most studies examine single markers of isolated neurobiological systems. We propose that to move the field forward, we require well-designed, largescale translational studies that integrate multi-domain, putative stress-related biomarkers to determine their prognostic value in high-risk samples. We advocate that such investigations are highly warranted, given that psychosocial stress is undoubtedly a relevant risk factor for psychotic disorders.
Collapse
Affiliation(s)
- Alexis E. Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Solna, Sweden
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Javier Labad
- CIBERSAM, Sabadell, Barcelona, Spain
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Adam Al-Diwani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Amedeo Minichino
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Swarte JC, Knobbe TJ, Björk JR, Gacesa R, Nieuwenhuis LM, Zhang S, Vila AV, Kremer D, Douwes RM, Post A, Quint EE, Pol RA, Jansen BH, de Borst MH, de Meijer VE, Blokzijl H, Berger SP, Festen EAM, Zhernakova A, Fu J, Harmsen HJM, Bakker SJL, Weersma RK. Health-related quality of life is linked to the gut microbiome in kidney transplant recipients. Nat Commun 2023; 14:7968. [PMID: 38042820 PMCID: PMC10693618 DOI: 10.1038/s41467-023-43431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023] Open
Abstract
Kidney transplant recipients (KTR) have impaired health-related quality of life (HRQoL) and suffer from intestinal dysbiosis. Increasing evidence shows that gut health and HRQoL are tightly related in the general population. Here, we investigate the association between the gut microbiome and HRQoL in KTR, using metagenomic sequencing data from fecal samples collected from 507 KTR. Multiple bacterial species are associated with lower HRQoL, many of which have previously been associated with adverse health conditions. Gut microbiome distance to the general population is highest among KTR with an impaired physical HRQoL (R = -0.20, P = 2.3 × 10-65) and mental HRQoL (R = -0.14, P = 1.3 × 10-3). Physical and mental HRQoL explain a significant part of variance in the gut microbiome (R2 = 0.58%, FDR = 5.43 × 10-4 and R2 = 0.37%, FDR = 1.38 × 10-3, respectively). Additionally, multiple metabolic and neuroactive pathways (gut brain modules) are associated with lower HRQoL. While the observational design of our study does not allow us to analyze causality, we provide a comprehensive overview of the associations between the gut microbiome and HRQoL while controlling for confounders.
Collapse
Affiliation(s)
- J Casper Swarte
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tim J Knobbe
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lianne M Nieuwenhuis
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shuyan Zhang
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rianne M Douwes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adrian Post
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Evelien E Quint
- Department of Surgery, division of Transplantation Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert A Pol
- Department of Surgery, division of Transplantation Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Department of Surgery, section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stefan P Berger
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
30
|
Ma KL, Kei N, Yang F, Lauw S, Chan PL, Chen L, Cheung PCK. In Vitro Fermentation Characteristics of Fungal Polysaccharides Derived from Wolfiporia cocos and Their Effect on Human Fecal Microbiota. Foods 2023; 12:4014. [PMID: 37959133 PMCID: PMC10648267 DOI: 10.3390/foods12214014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Gut microbiota has been described as a new 'organ' that interferes with host physiology by its metabolites produced from the utilization and biotransformation of undigested food components. Fu Ling (FL), the sclerotia of fungi Wolfiporia cocos, contains β-glucan, which is a known natural polysaccharide with strong medicinal efficacy. This study endeavors to evaluate the fermentability of FL and polysaccharides extracted from its sclerotia. An in vitro fermentation of structurally characterized FL and its β-glucan by human fecal microbiota was conducted. Total bacterial count, pH change, short-chain fatty acid profile and microbiota profile were assessed post-fermentation. FL containing over 70% of β-(1 → 3) and (1 → 6)-glucans with a low degree of branching of 0.24 could enhance acetic acid (a major microbial metabolite) production. Both FL and its extracted β-glucan had similar modulation on microbial composition. They enriched Phascolarctobacterium faecium, Bacteroides dorei and Parabacteroides distasonis, all of which are shown to possess anti-inflammatory effects. FL polysaccharide can be utilized as a natural whole food for its potential health benefits to human gut bacteria.
Collapse
Affiliation(s)
- Ka Lee Ma
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| | - Nelson Kei
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| | - Fan Yang
- Biochemistry Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Susana Lauw
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| | - Po Lam Chan
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| |
Collapse
|
31
|
Chen J, Jiang X, Gao X, Wu W, Gu Z, Yin G, Sun R, Li J, Wang R, Zhang H, Du B, Bi X. Ferroptosis-related genes as diagnostic markers for major depressive disorder and their correlations with immune infiltration. Front Med (Lausanne) 2023; 10:1215180. [PMID: 37942417 PMCID: PMC10627962 DOI: 10.3389/fmed.2023.1215180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Background Major depression disorder (MDD) is a devastating neuropsychiatric disease, and one of the leading causes of suicide. Ferroptosis, an iron-dependent form of regulated cell death, plays a pivotal role in numerous diseases. The study aimed to construct and validate a gene signature for diagnosing MDD based on ferroptosis-related genes (FRGs) and further explore the biological functions of these genes in MDD. Methods The datasets were downloaded from the Gene Expression Omnibus (GEO) database and FRGs were obtained from the FerrDb database and other literatures. Least absolute shrinkage and selection operator (LASSO) regression and stepwise logistic regression were performed to develop a gene signature. Receiver operating characteristic (ROC) curves were utilized to assess the diagnostic power of the signature. Gene ontology (GO) enrichment analysis was used to explore the biological roles of these diagnostic genes, and single sample gene set enrichment analysis (ssGSEA) algorithm was used to evaluate immune infiltration in MDD. Animal model of depression was constructed to validate the expression of the key genes. Results Eleven differentially expressed FRGs were identified in MDD patients compared with healthy controls. A signature of three FRGs (ALOX15B, RPLP0, and HP) was constructed for diagnosis of MDD. Afterwards, ROC analysis confirmed the signature's discriminative capacity (AUC = 0.783, 95% CI = 0.719-0.848). GO enrichment analysis revealed that the differentially expressed genes (DEGs) related to these three FRGs were mainly involved in immune response. Furthermore, spearman correlation analysis demonstrated that these three FRGs were associated with infiltrating immune cells. ALOX15B and HP were significantly upregulated and RPLP0 was significantly downregulated in peripheral blood of the lipopolysaccharide (LPS)-induced depressive model. Conclusion Our results suggest that the novel FRG signature had a good diagnostic performance for MDD, and these three FRGs correlated with immune infiltration in MDD.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaolong Jiang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Xin Gao
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen Wu
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhengsheng Gu
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ge Yin
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Rui Sun
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiasi Li
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ruoru Wang
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bingying Du
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaoying Bi
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
32
|
Murray N, Al Khalaf S, Bastiaanssen TFS, Kaulmann D, Lonergan E, Cryan JF, Clarke G, Khashan AS, O’Connor K. Compositional and Functional Alterations in Intestinal Microbiota in Patients with Psychosis or Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 2023; 49:1239-1255. [PMID: 37210594 PMCID: PMC10483467 DOI: 10.1093/schbul/sbad049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND HYPOTHESIS Intestinal microbiota is intrinsically linked to human health. Evidence suggests that the composition and function of the microbiome differs in those with schizophrenia compared with controls. It is not clear how these alterations functionally impact people with schizophrenia. We performed a systematic review and meta-analysis to combine and evaluate data on compositional and functional alterations in microbiota in patients with psychosis or schizophrenia. STUDY DESIGN Original studies involving humans and animals were included. The electronic databases PsycINFO, EMBASE, Web of Science, PubMed/MEDLINE, and Cochrane were systematically searched and quantitative analysis performed. STUDY RESULTS Sixteen original studies met inclusion criteria (1376 participants: 748 cases and 628 controls). Ten were included in the meta-analysis. Although observed species and Chao 1 show a decrease in diversity in people with schizophrenia compared with controls (SMD = -0.14 and -0.66 respectively), that did not reach statistical significance. We did not find evidence for variations in richness or evenness of microbiota between patients and controls overall. Differences in beta diversity and consistent patterns in microbial taxa were noted across studies. We found increases in Bifidobacterium, Lactobacillus, and Megasphaera in schizophrenia groups. Variations in brain structure, metabolic pathways, and symptom severity may be associated with compositional alterations in the microbiome. The heterogeneous design of studies complicates a similar evaluation of functional readouts. CONCLUSIONS The microbiome may play a role in the etiology and symptomatology of schizophrenia. Understanding how the implications of alterations in microbial genes for symptomatic expression and clinical outcomes may contribute to the development of microbiome targeted interventions for psychosis.
Collapse
Affiliation(s)
- Nuala Murray
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Sukainah Al Khalaf
- School of Public Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Kaulmann
- School of Public Health, University College Cork, Cork, Ireland
| | - Edgar Lonergan
- RISE, Early Intervention in Psychosis Service, South Lee Mental Health Services, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Karen O’Connor
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- RISE, Early Intervention in Psychosis Service, South Lee Mental Health Services, Cork, Ireland
| |
Collapse
|
33
|
Martín F, Blanco-Suárez M, Zambrano P, Cáceres O, Almirall M, Alegre-Martín J, Lobo B, González-Castro AM, Santos J, Domingo JC, Jurek J, Castro-Marrero J. Increased gut permeability and bacterial translocation are associated with fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome: implications for disease-related biomarker discovery. Front Immunol 2023; 14:1253121. [PMID: 37744357 PMCID: PMC10512706 DOI: 10.3389/fimmu.2023.1253121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background There is growing evidence of the significance of gastrointestinal complaints in the impairment of the intestinal mucosal barrier function and inflammation in fibromyalgia (FM) and in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, data on intestinal permeability and gut barrier dysfunction in FM and ME/CFS are still limited with conflicting results. This study aimed to assess circulating biomarkers potentially related to intestinal barrier dysfunction and bacterial translocation and their association with self-reported symptoms in these conditions. Methods A pilot multicenter, cross-sectional cohort study with consecutive enrolment of 22 patients with FM, 30 with ME/CFS and 26 matched healthy controls. Plasma levels of anti-beta-lactoglobulin antibodies (IgG anti-β-LGB), zonulin-1 (ZO-1), lipopolysaccharides (LPS), soluble CD14 (sCD14) and interleukin-1-beta (IL-1β) were assayed using ELISA. Demographic and clinical characteristics of the participants were recorded using validated self-reported outcome measures. The diagnostic accuracy of each biomarker was assessed using the receiver operating characteristic (ROC) curve analysis. Results FM patients had significantly higher levels of anti-β-LGB, ZO-1, LPS, and sCD14 than healthy controls (all P < 0.0001). In ME/CFS patients, levels of anti-β-LGB, ZO-1, LPS, and sCD14 were significantly higher than controls, but lower than in FM (all P < 0.01), while there was no significant difference in IL-1β level. In the FM and ME/CFS cohorts, both anti-β-LGB and ZO-1 correlated significantly with LPS and sCD14 (P < 0.001 for both). In the FM group, both anti-β-LGB and ZO-1 were correlated significantly with physical and mental health components on the SF-36 scale (P < 0.05); whereas IL-1β negatively correlated with the COMPASS-31 score (P < 0.05). In the ME/CFS cohort, ZO-1 was positively correlated with the COMPASS-31 score (P < 0.05). The ROC curve analysis indicated a strong ability of anti-β-LGB, ZO-1, LPS and sCD14 to predictively distinguish between FM and ME/CFS from healthy controls (P < 0.0001). Conclusion Biomarkers of intestinal barrier function and inflammation were associated with autonomic dysfunction assessed by COMPASS-31 scores in FM and ME/CFS respectively. Anti-β-LGB antibodies, ZO-1, LPS, and sCD14 may be putative predictors of intestinal barrier dysfunction in these cohorts. Further studies are needed to assess whether these findings are causal and can therefore be applied in clinical practice.
Collapse
Affiliation(s)
- Franz Martín
- Andalusian Centre of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Blanco-Suárez
- Central Sensitivity Unit (SHC Medical), Hospital Viamed Santa Ángela de la Cruz, Seville, Spain
| | - Paola Zambrano
- Central Sensitivity Unit (SHC Medical), Hospital Viamed Santa Ángela de la Cruz, Seville, Spain
| | - Oscar Cáceres
- Central Sensitivity Unit (SHC Medical), Hospital Viamed Santa Ángela de la Cruz, Seville, Spain
| | - Miriam Almirall
- Division of Rheumatology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Alegre-Martín
- Division of Rheumatology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d’Hebron Research Institute, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Maria González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d’Hebron Research Institute, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d’Hebron Research Institute, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joanna Jurek
- Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Castro-Marrero
- Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Zhang K, He C, Qiu Y, Li X, Hu J, Fu B. ASSOCIATION OF ORAL MICROBIOTA AND PERIODONTAL DISEASE WITH LUNG CANCER: A SYSTEMATIC REVIEW AND META-ANALYSIS. J Evid Based Dent Pract 2023; 23:101897. [PMID: 37689446 DOI: 10.1016/j.jebdp.2023.101897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVES Evidence of oral microbiota perturbations has been accumulated for lung cancers. This review focused on the oral microbiota alterations in population suffering from lung cancer. In addition, we also discussed conflicting data about the association between oral microbiota dysbiosis and risk of lung cancer. METHODS A systematic search was conducted in Medline, Embase, PubMed, and Cochrane Library databases. The studies evaluated diversity and abundance of oral microbes in healthy and lung cancer individuals as well as association of periodontal disease and pathogens with lung cancer. Of 3559 studies, 28 included studies were performed in qualitative analysis, and 25 studies were used in meta-analyses for quantitative assessment. Heterogeneity was analyzed by using I² and chi-squared Q test statistics. Statistical analyses were performed by using the RevMan 5.4 software. RESULTS Compared with the control, lung cancer patients had lower alpha diversity (Shannon: SMD = -0.54; 95% CI, -0.90 to -0.19; P < .01, I2 = 71%). In nested case-control studies, individuals with decreased alpha diversity tended to have an increased risk of lung cancer (observed species: HR = 0.90; 95% CI, 0.85-0.96; P < .01, I2 = 0%; Shannon: HR = 0.89; 95% CI, 0.83-0.95; P < .01, I2 = 0%). Overall, no strong evidence of association of relative abundance with specific oral microbes with lung cancers was found because of inconsistent data. No associations were found between periodontal pathogens and lung cancer risk (red complex: HR = 1.12, 95% CI: 0.42-3.02, P = .82, I2 = 62%; orange complex: HR =1.77, 95% CI: 0.78-3.98, P = .17, I2 = 36%), expect for Fusobacterium nucleatum (HR = 2.27, 95% CI: 1.13-4.58, P = .02, I2 = 0%). The positive association of periodontal disease with lung cancer risk was found (HR = 1.58, 95% CI: 1.25-2.00, P < .001, I2= 0%) with increase of periodontal diseases severity (HR = 2.39, 95% CI: 1.57-3.66, P < .001, I2 = 0%). However, such association was not found in never-smoker participants (HR = 1.00, 95% CI: 0.76-1.31, P = .37, I2= 7%). CONCLUSIONS Lower alpha diversity of oral microbiome may be associated with a greater risk of lung cancer and might serve as a predictive signal of lung cancer risk. There was no strong evidence of relative abundance of oral microbial taxa and periodontal pathogens in lung cancer patients. Fusobacterium nucleatum might be a potential microbial candidate of biomarkers in lung cancer. Periodontal disease may be positively associated with lung cancer risk by confounding of smoking, but not an independent risk factor.
Collapse
Affiliation(s)
- Kai Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiuyang Li
- Department of Epidemiology & Biostatistics, and Center for Clinical Big Data and Statistics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Li P, Shuai P, Shen S, Zheng H, Sun P, Zhang R, Lan S, Lan Z, Jayawardana T, Yang Y, Zhao J, Liu Y, Chen X, El-Omar EM, Wan Z. Perturbations in gut microbiota composition in patients with polycystic ovary syndrome: a systematic review and meta-analysis. BMC Med 2023; 21:302. [PMID: 37559119 PMCID: PMC10413517 DOI: 10.1186/s12916-023-02975-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The results of human observational studies on the correlation between gut microbiota perturbations and polycystic ovary syndrome (PCOS) have been contradictory. This study aimed to perform the first systematic review and meta-analysis to evaluate the specificity of the gut microbiota in PCOS patients compared to healthy women. METHODS Literature through May 22, 2023, was searched on PubMed, Web of Science, Medline, Embase, Cochrane Library, and Wiley Online Library databases. Unreported data in diversity indices were filled by downloading and processing raw sequencing data. Systematic review inclusion: original studies were eligible if they applied an observational case-control design, performed gut microbiota analysis and reported diversity or abundance measures, sampled general pre-menopausal women with PCOS, and are longitudinal studies with baseline comparison between PCOS patients and healthy females. Systematic review exclusion: studies that conducted interventional or longitudinal comparisons in the absence of a control group. Two researchers made abstract, full-text, and data extraction decisions, independently. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodologic quality. Hedge's g standardized mean difference (SMD), confidence intervals (CIs), and heterogeneity (I2) for alpha diversity were calculated. Qualitative syntheses of beta-diversity and microbe alterations were performed. RESULTS Twenty-eight studies (n = 1022 patients, n = 928 control) that investigated gut microbiota by collecting stool samples were included, with 26 and 27 studies having provided alpha-diversity and beta-diversity results respectively. A significant decrease in microbial evenness and phylogenetic diversity was observed in PCOS patients when compared with control participants (Shannon index: SMD = - 0.27; 95% CI, - 0.37 to - 0.16; phylogenetic diversity: SMD = - 0.39; 95% CI, -- 0.74 to - 0.03). We also found that reported beta-diversity was inconsistent between studies. Despite heterogeneity in bacterial relative abundance, we observed depletion of Lachnospira and Prevotella and enrichment of Bacteroides, Parabacteroides, Lactobacillus, Fusobacterium, and Escherichia/Shigella in PCOS. Gut dysbiosis in PCOS, which might be characterized by the reduction of short-chain fatty acid (SCFA)-producing and bile-acid-metabolizing bacteria, suggests a shift in balance to favor pro-inflammatory rather than anti-inflammatory bacteria. CONCLUSIONS Gut dysbiosis in PCOS is associated with decreased diversity and alterations in bacteria involved in microbiota-host crosstalk. TRIAL REGISTRATION PROSPERO registration: CRD42021285206, May 22, 2023.
Collapse
Affiliation(s)
- Pan Li
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, No.81 Lingnan Avenue North, Chancheng District, Foshan, Guangdong Province, China
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Clinical Sciences (WR Pitney) Building, Short St, Kogarah, NSW, 2217, Australia
| | - Ping Shuai
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32 West Second Section, First Ring Rd., Qing yang Dist, Chengdu, China
| | - Sj Shen
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Clinical Sciences (WR Pitney) Building, Short St, Kogarah, NSW, 2217, Australia
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, No.81 Lingnan Avenue North, Chancheng District, Foshan, Guangdong Province, China
| | - Ping Sun
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32 West Second Section, First Ring Rd., Qing yang Dist, Chengdu, China
| | - Renfang Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, No.81 Lingnan Avenue North, Chancheng District, Foshan, Guangdong Province, China
| | - Shanwei Lan
- The Second Clinical Medical College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zixin Lan
- The Second Clinical Medical College, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Thisun Jayawardana
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Clinical Sciences (WR Pitney) Building, Short St, Kogarah, NSW, 2217, Australia
| | - Yumei Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuping Liu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32 West Second Section, First Ring Rd., Qing yang Dist, Chengdu, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, No.81 Lingnan Avenue North, Chancheng District, Foshan, Guangdong Province, China.
| | - Emad M El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Clinical Sciences (WR Pitney) Building, Short St, Kogarah, NSW, 2217, Australia.
| | - Zhengwei Wan
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32 West Second Section, First Ring Rd., Qing yang Dist, Chengdu, China.
| |
Collapse
|
36
|
Lombardi L, Le Clerc S, Wu CL, Bouassida J, Boukouaci W, Sugusabesan S, Richard JR, Lajnef M, Tison M, Le Corvoisier P, Barau C, Banaschewski T, Holt R, Durston S, Persico AM, Oakley B, Loth E, Buitelaar J, Murphy D, Leboyer M, Zagury JF, Tamouza R. A human leukocyte antigen imputation study uncovers possible genetic interplay between gut inflammatory processes and autism spectrum disorders. Transl Psychiatry 2023; 13:244. [PMID: 37407551 DOI: 10.1038/s41398-023-02550-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions that are for subsets of individuals, underpinned by dysregulated immune processes, including inflammation, autoimmunity, and dysbiosis. Consequently, the major histocompatibility complex (MHC)-hosted human leukocyte antigen (HLA) has been implicated in ASD risk, although seldom investigated. By utilizing a GWAS performed by the EU-AIMS consortium (LEAP cohort), we compared HLA and MHC genetic variants, single nucleotide polymorphisms (SNP), and haplotypes in ASD individuals, versus typically developing controls. We uncovered six SNPs, namely rs9268528, rs9268542, rs9268556, rs14004, rs9268557, and rs8084 that crossed the Bonferroni threshold, which form the underpinnings of 3 independent genetic pathways/blocks that differentially associate with ASD. Block 1 (rs9268528-G, rs9268542-G, rs9268556-C, and rs14004-A) afforded protection against ASD development, whilst the two remaining blocks, namely rs9268557-T, and rs8084-A, associated with heightened risk. rs8084 and rs14004 mapped to the HLA-DRA gene, whilst the four other SNPs located in the BTNL2 locus. Different combinations amongst BTNL2 SNPs and HLA amino acid variants or classical alleles were found either to afford protection from or contribute to ASD risk, indicating a genetic interplay between BTNL2 and HLA. Interestingly, the detected variants had transcriptional and/or quantitative traits loci implications. As BTNL2 modulates gastrointestinal homeostasis and the identified HLA alleles regulate the gastrointestinal tract in celiac disease, it is proposed that the data on ASD risk may be linked to genetically regulated gut inflammatory processes. These findings might have implications for the prevention and treatment of ASD, via the targeting of gut-related processes.
Collapse
Affiliation(s)
- Laura Lombardi
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Ching-Lien Wu
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Jihène Bouassida
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Wahid Boukouaci
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Sobika Sugusabesan
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Jean-Romain Richard
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Mohamed Lajnef
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Maxime Tison
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Philippe Le Corvoisier
- Université Paris Est Créteil, Inserm, Centre Investigation Clinique, CIC 1430, Henri Mondor, Créteil, F94010, France
| | - Caroline Barau
- Plateforme de Ressources Biologiques, HU Henri Mondor, Créteil, F94010, France
| | - Tobias Banaschewski
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sarah Durston
- Education Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Program at Modena University Hospital, & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Bethany Oakley
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT) and Fondation FondaMental, Créteil, F-94010, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT) and Fondation FondaMental, Créteil, F-94010, France.
| |
Collapse
|
37
|
Madabushi JS, Khurana P, Gupta N, Gupta M. Gut Biome and Mental Health: Do Probiotics Work? Cureus 2023; 15:e40293. [PMID: 37448433 PMCID: PMC10337499 DOI: 10.7759/cureus.40293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Mental health conditions have been linked closely to an imbalance of microbiota in the gut, leading to disruption of the microbiome (dysbiosis). Several neurotransmitters, such as GABA (gamma-aminobutyric acid), serotonin, and glutamate, are produced in the gut, which are associated with anxiety and depressive symptoms. Mental health and the gut have been linked closely, and many mental illnesses have been associated with gut dysbiosis. Probiotics are marketed to improve gut health, act as mood enhancers, and be effective in reducing stress as unregulated over-the-counter supplements. Given healthcare disparities and patient-doctor gaps across the globe, this review aims to appraise the literature on probiotics for the prevention and treatment of mental disorders. PubMed and Google Scholar databases were searched till March 2023 using the MeSH words "prebiotics," "probiotics," "synbiotics," and "psychobiotics." Out of 207 studies, 26 studies met the inclusion criteria and were included in the review. Studies suggest probiotics could be an effective and economical adjunct therapy; however, due to weak study design and low power, the results are inconclusive. Their use is not without risks, and healthcare providers need close supervision until more robust longitudinal studies are conducted to appraise their efficacy and safety profiles.
Collapse
Affiliation(s)
| | | | - Nihit Gupta
- Psychiatry, Dayton Children's Hospital, Dayton, USA
| | - Mayank Gupta
- Psychiatry and Behavioral Sciences, Southwood Psychiatric Hospital, Pittsburgh, USA
| |
Collapse
|
38
|
Cremone IM, Nardi B, Amatori G, Palego L, Baroni D, Casagrande D, Massimetti E, Betti L, Giannaccini G, Dell'Osso L, Carpita B. Unlocking the Secrets: Exploring the Biochemical Correlates of Suicidal Thoughts and Behaviors in Adults with Autism Spectrum Conditions. Biomedicines 2023; 11:1600. [PMID: 37371695 DOI: 10.3390/biomedicines11061600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Involving 1 million people a year, suicide represents one of the major topics of psychiatric research. Despite the focus in recent years on neurobiological underpinnings, understanding and predicting suicide remains a challenge. Many sociodemographical risk factors and prognostic markers have been proposed but they have poor predictive accuracy. Biomarkers can provide essential information acting as predictive indicators, providing proof of treatment response and proposing potential targets while offering more assurance than psychological measures. In this framework, the aim of this study is to open the way in this field and evaluate the correlation between blood levels of serotonin, brain derived neurotrophic factor, tryptophan and its metabolites, IL-6 and homocysteine levels and suicidality. Blood samples were taken from 24 adults with autism, their first-degree relatives, and 24 controls. Biochemical parameters were measured with enzyme-linked immunosorbent assays. Suicidality was measured through selected items of the MOODS-SR. Here we confirm the link between suicidality and autism and provide more evidence regarding the association of suicidality with increased homocysteine (0.278) and IL-6 (0.487) levels and decreased tryptophan (-0.132) and kynurenic acid (-0.253) ones. Our results suggest a possible transnosographic association between these biochemical parameters and increased suicide risk.
Collapse
Affiliation(s)
- Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Giulia Amatori
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Lionella Palego
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Dario Baroni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Danila Casagrande
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Enrico Massimetti
- ASST Bergamo Ovest, SSD Psychiatric Diagnosis and Treatment Service, 24047 Treviglio, Italy
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
39
|
Chbeir S, Carrión V. Resilience by design: How nature, nurture, environment, and microbiome mitigate stress and allostatic load. World J Psychiatry 2023; 13:144-159. [PMID: 37303926 PMCID: PMC10251360 DOI: 10.5498/wjp.v13.i5.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Resilience to psychological stress is defined as adaption to challenging life experiences and not the absence of adverse life events. Determinants of resilience include personality traits, genetic/epigenetic modifications of genes involved in the stress response, cognitive and behavioral flexibility, secure attachment with a caregiver, social and community support systems, nutrition and exercise, and alignment of circadian rhythm to the natural light/dark cycle. Therefore, resilience is a dynamic and flexible process that continually evolves by the intersection of different domains in human’s life; biological, social, and psychological. The objective of this minireview is to summarize the existing knowledge about the multitude factors and molecular alterations that result from resilience to stress response. Given the multiple contributing factors in building resilience, we set out a goal to identify which factors were most supportive of a causal role by the current literature. We focused on resilience-related molecular alterations resulting from mind-body homeostasis in connection with psychosocial and environmental factors. We conclude that there is no one causal factor that differentiates a resilient person from a vulnerable one. Instead, building resilience requires an intricate network of positive experiences and a healthy lifestyle that contribute to a balanced mind-body connection. Therefore, a holistic approach must be adopted in future research on stress response to address the multiple elements that promote resilience and prevent illnesses and psychopathology related to stress allostatic load.
Collapse
Affiliation(s)
- Souhad Chbeir
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Victor Carrión
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
40
|
Jensen SB, Sheikh MA, Akkouh IA, Szabo A, O’Connell KS, Lekva T, Engh JA, Agartz I, Elvsåshagen T, Ormerod MBEG, Weibell MA, Johnsen E, Kroken RA, Melle I, Drange OK, Nærland T, Vaaler AE, Westlye LT, Aukrust P, Djurovic S, Eiel Steen N, Andreassen OA, Ueland T. Elevated Systemic Levels of Markers Reflecting Intestinal Barrier Dysfunction and Inflammasome Activation Are Correlated in Severe Mental Illness. Schizophr Bull 2023; 49:635-645. [PMID: 36462169 PMCID: PMC10154716 DOI: 10.1093/schbul/sbac191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND AND HYPOTHESIS Gut microbiota alterations have been reported in severe mental illness (SMI) but fewer studies have probed for signs of gut barrier disruption and inflammation. We hypothesized that gut leakage of microbial products due to intestinal inflammation could contribute to systemic inflammasome activation in SMI. STUDY DESIGN We measured plasma levels of the chemokine CCL25 and soluble mucosal vascular addressin cell adhesion molecule-1 (sMAdCAM-1) as markers of T cell homing, adhesion and inflammation in the gut, lipopolysaccharide binding protein (LBP) and intestinal fatty acid binding protein (I-FABP) as markers of bacterial translocation and gut barrier dysfunction, in a large SMI cohort (n = 567) including schizophrenia (SCZ, n = 389) and affective disorder (AFF, n = 178), relative to healthy controls (HC, n = 418). We assessed associations with plasma IL-18 and IL-18BPa and leukocyte mRNA expression of NLRP3 and NLRC4 as markers of inflammasome activation. STUDY RESULTS Our main findings were: (1) higher levels of sMAdCAM-1 (P = .002), I-FABP (P = 7.6E-11), CCL25 (P = 9.6E-05) and LBP (P = 2.6E-04) in SMI compared to HC in age, sex, BMI, CRP and freezer storage time adjusted analysis; (2) the highest levels of sMAdCAM-1 and CCL25 (both P = 2.6E-04) were observed in SCZ and I-FABP (P = 2.5E-10) and LBP (3) in AFF; and (3), I-FABP correlated with IL-18BPa levels and LBP correlated with NLRC4. CONCLUSIONS Our findings support that intestinal barrier inflammation and dysfunction in SMI could contribute to systemic inflammation through inflammasome activation.
Collapse
Affiliation(s)
- Søren B Jensen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - John A Engh
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Division of Mental health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ingrid Agartz
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Monica B E G Ormerod
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Melissa A Weibell
- Division of Psychiatry, Network for Clinical Psychosis Research, Stavanger University Hospital, Stavanger, Norway
- Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- NORMENT Center of Excellence, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- NORMENT Center of Excellence, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole K Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
- Department of Psychiatry, Sørlandet Hospital, Kristiansand, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Rare Disorders, Division of Child and Adolescent medicine, Oslo University Hospital, Oslo, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
| | - Lars T Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
41
|
Maes M, Vasupanrajit A, Jirakran K, Klomkliew P, Chanchaem P, Tunvirachaisakul C, Payungporn S. Exploration of the Gut Microbiome in Thai Patients with Major Depressive Disorder Shows a Specific Bacterial Profile with Depletion of the Ruminococcus Genus as a Putative Biomarker. Cells 2023; 12:cells12091240. [PMID: 37174640 PMCID: PMC10177051 DOI: 10.3390/cells12091240] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Maes et al. (2008) published the first paper demonstrating that major depressive disorder (MDD) is accompanied by abnormalities in the microbiota-gut-brain axis, as evidenced by elevated serum IgM/IgA to lipopolysaccharides (LPS) of Gram-negative bacteria, such as Morganella morganii and Klebsiella Pneumoniae. The latter aberrations, which point to increased gut permeability (leaky gut), are linked to activated neuro-immune and oxidative pathways in MDD. To delineate the profile and composition of the gut microbiome in Thai patients with MDD, we examined fecal samples of 32 MDD patients and 37 controls using 16S rDNA sequencing, analyzed α- (Chao1 and Shannon indices) and β-diversity (Bray-Curtis dissimilarity), and conducted linear discriminant analysis (LDA) effect size (LEfSe) analysis. Neither α- nor β-diversity differed significantly between MDD and controls. Rhodospirillaceae, Hungatella, Clostridium bolteae, Hungatella hathewayi, and Clostridium propionicum were significantly enriched in MDD, while Gracillibacteraceae family, Lutispora, and Ruminococcus genus, Ruminococcus callidus, Desulfovibrio piger, Coprococcus comes, and Gemmiger were enriched in controls. Contradictory results have been reported for all these taxa, with the exception of Ruminococcus, which is depleted in six different MDD studies (one study showed increased abundance), many medical disorders that show comorbidities with MDD, and animal MDD models. Our results may suggest a specific profile of compositional gut dysbiosis in Thai MDD patients, with increases in some pathobionts and depletion of some beneficial microbiota. The results suggest that depletion of Ruminococcus may be a more universal biomarker of MDD that may contribute to increased enteral LPS load, LPS translocation, and gut-brain axis abnormalities.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
- Maximizing Thai Children's Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
42
|
Mulin E, Augustin A, Gruet M. [Toward a better understanding of fatigue in schizophrenia]. L'ENCEPHALE 2023; 49:205-208. [PMID: 36253179 DOI: 10.1016/j.encep.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/07/2022]
Abstract
Despite being one of the most common complaints of people with schizophrenia, fatigue remains largely unexplored in this population. The lack of knowledge regarding this complex symptom makes it often underdiagnosed and undertreated in schizophrenia. The aim of this brief perspective review is to outline the potential origins (distinguishing primary and secondary fatigue) and consequences of fatigue and to explore some potential treatments in this population. The current literature in schizophrenia has mainly investigated fatigue as a trait, using a self-administered questionnaire. Beyond this observational approach, which does not allow to capture the symptom in real life situations where high levels of fatigue can emerge rapidly, we propose to consider the state level of fatigue, for instance occurring after a prolonged period of cognitive activity (i.e. mental fatigue). We elaborate on the potential relationships between mental fatigue and negative symptoms of schizophrenia and propose some research avenues to test the effects of acute fatigue on effort intentions and behaviours. The consideration of the multidimensional aspects of fatigue will allow to move beyond the sole pharmacological approach to treat fatigue in schizophrenia. Targeting the cognitive as well as the performance components of fatigue through interventions such as concomitant aerobic exercise - mental training offers attractive prospects to reduce fatigue in this population and minimize its functional negative impact.
Collapse
Affiliation(s)
- E Mulin
- Clinique Korian-le-Val-du-Fenouillet, rue du Cinsault, 83260 La-Crau, France; Laboratoire IAPS, Université de Toulon, Toulon, France.
| | - A Augustin
- Laboratoire IAPS, Université de Toulon, Toulon, France
| | - M Gruet
- Laboratoire IAPS, Université de Toulon, Toulon, France
| |
Collapse
|
43
|
Li Y, Li J, Cheng R, Liu H, Zhao Y, Liu Y, Chen Y, Sun Z, Zhai Z, Wu M, Yan Y, Sun Y, Zhang Z. Alteration of the gut microbiome and correlated metabolism in a rat model of long-term depression. Front Cell Infect Microbiol 2023; 13:1116277. [PMID: 37051300 PMCID: PMC10084793 DOI: 10.3389/fcimb.2023.1116277] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
ObjectiveThis study aims to investigate the composition and function of the gut microbiome in long-term depression using an 8-week chronic unpredictable mild stress (CUMS) rat model.Materials and methodsAnimals were sacrificed after either 4 weeks or 8 weeks under CUMS to mimic long-term depression in humans. The gut microbiome was analyzed to identify potential depression-related gut microbes, and the fecal metabolome was analyzed to detect their functional metabolites. The correlations between altered gut microbes and metabolites in the long-term depression rats were explored. The crucial metabolic pathways related to long-term depression were uncovered through enrichment analysis based on these gut microbes and metabolites.ResultsThe microbial composition of long-term depression (8-week CUMS) showed decreased species richness indices and different profiles compared with the control group and the 4-week CUMS group, characterized by disturbance of Alistipes indistinctus, Bacteroides ovatus, and Alistipes senegalensis at the species level. Additionally, long-term depression was associated with disturbances in fecal metabolomics. D-pinitol was the only increased metabolite in the 8-week CUMS group among the top 10 differential metabolites, while the top 3 decreased metabolites in the long-term depression rats included indoxyl sulfate, trimethylaminen-oxide, and 3 alpha,7 alpha-dihydroxy-12-oxocholanoic acid. The disordered fecal metabolomics in the long-term depression rats mainly involved the biosynthesis of pantothenate, CoA, valine, leucine and isoleucine.ConclusionOur findings suggest that the gut microbiome may participate in the long-term development of depression, and the mechanism may be related to the regulation of gut metabolism.
Collapse
Affiliation(s)
- Yubo Li
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yubo Li, ; Yuxiu Sun, ; Zhiguo Zhang,
| | - Junling Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ran Cheng
- Department of Gynaecology and Obstetrics, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixia Liu
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjun Liu
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Sun
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiguang Zhai
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Wu
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yupeng Yan
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxiu Sun
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yubo Li, ; Yuxiu Sun, ; Zhiguo Zhang,
| | - Zhiguo Zhang
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yubo Li, ; Yuxiu Sun, ; Zhiguo Zhang,
| |
Collapse
|
44
|
Satti S, Palepu MSK, Singh AA, Jaiswal Y, Dash SP, Gajula SNR, Chaganti S, Samanthula G, Sonti R, Dandekar MP. Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 mediate via reshaping of microbiome gut-brain axis in rats. Neurochem Int 2023; 163:105483. [PMID: 36641109 DOI: 10.1016/j.neuint.2023.105483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Due to the rising cases of treatment-refractory affective disorders, the discovery of newer therapeutic approaches is needed. In recent times, probiotics have garnered notable attention in managing stress-related disorders. Herein, we examined the effect of Bacillus coagulans Unique IS-2® probiotic on anxiety- and depression-like phenotypes employing maternal separation (MS) and chronic-unpredictable mild stress (CUMS) model in rats. METHODS Both male and female Sprague-Dawley rats were subjected to MS + CUMS. Probiotic treatment was provided for 6 weeks via drinking water. Anxiety- and depression-like phenotypes were assessed using sucrose-preference test (SPT), forced-swimming test (FST), elevated-plus maze test (EPM), and open-field test (OFT). Blood, brain, intestine, and fecal samples were obtained for biochemical and molecular studies. RESULTS Stress-exposed rats drank less sucrose solution, showed increased passivity, and explored less in open-arms in SPT, FST, and EPM, respectively. These stress-generated neurobehavioral aberrations were alleviated by 6-week of Bacillus coagulans Unique IS-2 treatment. The overall locomotor activity in OFT remained unchanged. The decreased levels of BDNF and serotonin and increased levels of C-reactive protein, TNF-α, IL-1β, and dopamine, in the hippocampus and/or frontal cortex of stress-exposed rats were reversed following probiotic treatment. Administration of probiotic also restored the systemic levels of L-tryptophan, L-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid, villi/crypt ratio, goblet-cell count, Firmicutes to Bacteroides ratio, and levels of acetate, propionate, and butyrate in fecal samples. These results indicate remodeling of the microbiome gut-brain axis in Bacillus coagulans Unique IS-2 recipient rats. However, protein levels of doublecortin, GFAP, and zona occludens in the hippocampus and occludin-immunoreactivity in the intestine remained unchanged. No prominent sex-specific changes were noted. CONCLUSION Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 in MS + CUMS rat model may be mediated via reshaping the microbiome gut-brain axis.
Collapse
Affiliation(s)
- Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India.
| |
Collapse
|
45
|
Shin C, Kim YK. Microbiota-Gut-Brain Axis: Pathophysiological Mechanism in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:17-37. [PMID: 36949304 DOI: 10.1007/978-981-19-7376-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Gut microbiota influence human behavior. The immunological, metabolic, and endocrine systems are involved in bidirectional communication between the gut and the brain, which is regulated by microbes through the microbiota-derived neurochemicals and metabolites. Gut microbiota have certain effects on neurodevelopment and maturation of immunity. However, gut dysbiosis can lead to neuropsychiatric disorders. Animal research and clinical case-control studies have demonstrated that gut dysbiosis has an adverse effect on human behavior through a variety of mechanisms. Recent meta-analysis on clinical studies confirmed gut dysbiosis in several major neuropsychiatric disorders. Microbiota-targeted intervention has recently been in the spotlight and meta-analyses have confirmed its effectiveness. In this chapter, we summarize the evidence for the interactions between microbiota and brain-gut network, as well as the potential pathophysiological mechanisms involved.
Collapse
Affiliation(s)
- Cheolmin Shin
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
46
|
Association between Fecal Microbiota, SCFA, Gut Integrity Markers and Depressive Symptoms in Patients Treated in the Past with Bariatric Surgery-The Cross-Sectional Study. Nutrients 2022; 14:nu14245372. [PMID: 36558532 PMCID: PMC9781380 DOI: 10.3390/nu14245372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Depressive symptoms often appear after surgical treatment. (2) Methods: We involved 41 adults who underwent bariatric surgery a minimum of 6 months before the study and had the Beck scale ≥12. We analysed patients' mental state, gut barrier markers, faecal short chain fatty acids, and microbiota. (3) Results: Gut microbiota composition differed significantly among patients undergoing two different types of surgery (F = 1.64, p = 0.00002). Additionally, we discovered an association between short chain fatty acids and the Beck scale (F = 1.22, p = 0.058). The rearrangement of bacterial metabolites may be due to the patients' use of increased dietary protein, with insufficient intake of products containing vegetable fiber (Diet Quality Index (DQI-I )adequacy 22.55 (±3.46) points). (4) Conclusions: Bariatric surgery affects the gut microbiota, which may play an important role in the development of depressive and gastrointestinal symptoms in patients after bariatric surgery. Low fiber consumption and increased levels of faecal isobutyric acid may lead to intestinal inflammation. There is a need for further research on this topic including a larger sample size.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Diet is an essential modulator of the microbiota - gut - brain communication in health and disease. Consequently, diet-induced microbiome states can impact brain health and behaviour. The integration of microbiome into clinical nutrition perspectives of brain health is sparse. This review will thus focus on emerging evidence of microbiome-targeted dietary approaches with the potential to improve brain disorders. RECENT FINDINGS Research in this field is evolving toward randomized controlled trials using dietary interventions with the potential to modulate pathways of the microbiota - gut - brain-axis. Although most studies included small cohorts, the beneficial effects of Mediterranean-like diets on symptoms of depression or fermented foods on the immune function of healthy individuals shed light on how this research line can grow. With a clinical nutrition lens, we highlight several methodological limitations and knowledge gaps, including the quality of dietary intake information, the design of dietary interventions, and missing behavioural outcomes. SUMMARY Findings in diet - microbiome - brain studies can have groundbreaking implications in clinical nutrition practice and research. Modulating brain processes through diet via the gut microbiota raises numerous possibilities. Novel dietary interventions targeting the microbiota - gut - brain-axis can offer various options to prevent and treat health problems such as mental disorders. Furthermore, knowledge in this field will improve current nutritional guidelines for disease prevention.
Collapse
Affiliation(s)
| | - Aimone Ferri
- APC Microbiome Ireland, University College Cork, Cork
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork
- Department of Psychiatry and Neurobehavioural Science
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Saliva microbiome, dietary, and genetic markers are associated with suicidal ideation in university students. Sci Rep 2022; 12:14306. [PMID: 35995968 PMCID: PMC9395396 DOI: 10.1038/s41598-022-18020-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Here, salivary microbiota and major histocompatibility complex (MHC) human leukocyte antigen (HLA) alleles were compared between 47 (12.6%) young adults with recent suicidal ideation (SI) and 325 (87.4%) controls without recent SI. Several bacterial taxa were correlated with SI after controlling for sleep issues, diet, and genetics. Four MHC class II alleles were protective for SI including DRB1*04, which was absent in every subject with SI while present in 21.7% of controls. Increased incidence of SI was observed with four other MHC class II alleles and two MHC class I alleles. Associations between these HLA alleles and salivary bacteria were also identified. Furthermore, rs10437629, previously associated with attempted suicide, was correlated here with SI and the absence of Alloprevotella rava, a producer of an organic acid known to promote brain energy homeostasis. Hence, microbial-genetic associations may be important players in the diathesis-stress model for suicidal behaviors.
Collapse
|
49
|
Pain and Opioid-Induced Gut Microbial Dysbiosis. Biomedicines 2022; 10:biomedicines10081815. [PMID: 36009361 PMCID: PMC9404803 DOI: 10.3390/biomedicines10081815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Opioid-induced dysbiosis (OID) is a specific condition describing the consequences of opioid use on the bacterial composition of the gut. Opioids have been shown to affect the epithelial barrier in the gut and modulate inflammatory pathways, possibly mediating opioid tolerance or opioid-induced hyperalgesia; in combination, these allow the invasion and proliferation of non-native bacterial colonies. There is also evidence that the gut-brain axis is linked to the emotional and cognitive aspects of the brain with intestinal function, which can be a factor that affects mental health. For example, Mycobacterium, Escherichia coli and Clostridium difficile are linked to Irritable Bowel Disease; Lactobacillaceae and Enterococcacae have associations with Parkinson’s disease, and Alistipes has increased prevalence in depression. However, changes to the gut microbiome can be therapeutically influenced with treatments such as faecal microbiota transplantation, targeted antibiotic therapy and probiotics. There is also evidence of emerging therapies to combat OID. This review has collated evidence that shows that there are correlations between OID and depression, Parkinson’s Disease, infection, and more. Specifically, in pain management, targeting OID deserves specific investigations.
Collapse
|
50
|
Carnac T. Schizophrenia Hypothesis: Autonomic Nervous System Dysregulation of Fetal and Adult Immune Tolerance. Front Syst Neurosci 2022; 16:844383. [PMID: 35844244 PMCID: PMC9283579 DOI: 10.3389/fnsys.2022.844383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system can control immune cell activation via both sympathetic adrenergic and parasympathetic cholinergic nerve release of norepinephrine and acetylcholine. The hypothesis put forward in this paper suggests that autonomic nervous system dysfunction leads to dysregulation of immune tolerance mechanisms in brain-resident and peripheral immune cells leading to excessive production of pro-inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α). Inactivation of Glycogen Synthase Kinase-3β (GSK3β) is a process that takes place in macrophages and microglia when a toll-like receptor 4 (TLR4) ligand binds to the TLR4 receptor. When Damage-Associated Molecular Patterns (DAMPS) and Pathogen-Associated Molecular Patterns (PAMPS) bind to TLR4s, the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway should be activated, leading to inactivation of GSK3β. This switches the macrophage from producing pro-inflammatory cytokines to anti-inflammatory cytokines. Acetylcholine activation of the α7 subunit of the nicotinic acetylcholine receptor (α7 nAChR) on the cell surface of immune cells leads to PI3K/Akt pathway activation and can control immune cell polarization. Dysregulation of this pathway due to dysfunction of the prenatal autonomic nervous system could lead to impaired fetal immune tolerance mechanisms and a greater vulnerability to Maternal Immune Activation (MIA) resulting in neurodevelopmental abnormalities. It could also lead to the adult schizophrenia patient’s immune system being more vulnerable to chronic stress-induced DAMP release. If a schizophrenia patient experiences chronic stress, an increased production of pro-inflammatory cytokines such as TNF-α could cause significant damage. TNF-α could increase the permeability of the intestinal and blood brain barrier, resulting in lipopolysaccharide (LPS) and TNF-α translocation to the brain and consequent increases in glutamate release. MIA has been found to reduce Glutamic Acid Decarboxylase mRNA expression, resulting in reduced Gamma-aminobutyric acid (GABA) synthesis, which combined with an increase of glutamate release could result in an imbalance of glutamate and GABA neurotransmitters. Schizophrenia could be a “two-hit” illness comprised of a genetic “hit” of autonomic nervous system dysfunction and an environmental hit of MIA. This combination of factors could lead to neurotransmitter imbalance and the development of psychotic symptoms.
Collapse
|