1
|
Di Stefano J, Di Marco F, Cicalini I, FitzGerald U, Pieragostino D, Verhoye M, Ponsaerts P, Van Breedam E. Generation, interrogation, and future applications of microglia-containing brain organoids. Neural Regen Res 2025; 20:3448-3460. [PMID: 39665813 PMCID: PMC11974650 DOI: 10.4103/nrr.nrr-d-24-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Brain organoids encompass a large collection of in vitro stem cell-derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function. First, this review provides a brief introduction to the current state-of-the-art for neuro-ectoderm brain organoid development, emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models. However, despite their usefulness for developmental studies, a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin. As such, current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component. In this review, we will specifically focus on the development of immune-competent brain organoids. By summarizing the different approaches applied to incorporate microglia, it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation, but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brain-like environment. Therefore, our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids, with an outlook on how these findings could better understand neuronal network development or restoration, as well as the influence of physical stress on microglia-containing brain organoids. Finally, we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade, their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.
Collapse
Affiliation(s)
- Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Una FitzGerald
- CÚRAM, Center for Research in Medical Devices, Biomedical Engineering, University of Galway, Ireland
- Galway Neuroscience Center, University of Galway, Ireland
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Huang R, Gao F, Yu L, Chen H, Zhu R. Generation of Neural Organoids and Their Application in Disease Modeling and Regenerative Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e01198. [PMID: 40411400 DOI: 10.1002/advs.202501198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/17/2025] [Indexed: 05/26/2025]
Abstract
The complexity and precision of the human nervous system have posed significant challenges for researchers seeking suitable models to elucidate refractory neural disorders. Traditional approaches, including monolayer cell cultures and animal models, often fail to replicate the intricacies of human neural tissue. The advent of organoid technology derived from stem cells has addressed many of these limitations, providing highly representative platforms for studying the structure and function of the human embryonic brain and spinal cord. Researchers have induced neural organoids with regional characteristics by mimicking morphogen gradients in neural development. Recent advancements have demonstrated the utility of neural organoids in disease modeling, offering insights into the pathophysiology of various neural disorders, as well as in the field of neural regeneration. Developmental defects in neural organoids due to the lack of microglia or vascular systems are addressed. In addition to induction methods, microfluidics is used to simulate the dynamic physiological environment; bio-manufacturing technologies are employed to regulate physical signaling and shape the structure of complex organs. These technologies further expand the construction strategies and application scope of neural organoids. With the emergence of new material paradigms and advances in AI, new possibilities in the realm of neural organoids are witnessed.
Collapse
Affiliation(s)
- Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| | - Feng Gao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| | - Liqun Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| | - Haokun Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
3
|
Liu P, Ren D, Li G, Xu X, Presotto L, Liu W, Zhao N, Li D, Chen M, Wang J, Liu X, Zhao C, Lu L, Liu Q. Ectoparasites enhance survival by suppressing host exploration and limiting dispersal. Nat Commun 2025; 16:4318. [PMID: 40346081 PMCID: PMC12064801 DOI: 10.1038/s41467-025-59601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
Parasites enhance their fitness by manipulating host dispersal. However, the strategies used by ectoparasites to influence host movement and the underlying mechanisms remain poorly understood. Here, we show that ectoparasites alter metabolic activity in specific brain regions of mice, with evidence pointing to a potential role for microglial activation in the prefrontal cortex. This activation appears to contribute to synaptic changes and altered neuronal differentiation, particularly in GABAergic neurons. Consequently, exploratory behavior decreases-an effect likely mediated through the skin-brain axis. In both indoor and field experiments with striped hamsters, ectoparasites reduce host exploration and modify their dispersal patterns. This behavioral shift ultimately restricts the host's distribution, enabling parasites to avoid environmental pressures. Our findings reveal that ectoparasites limit host dispersal to improve their own fitness, offering key insights for parasite control strategies that promote health and preserve ecological stability within the One Health framework.
Collapse
Affiliation(s)
- Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongsheng Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guichang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Xu
- National Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Luca Presotto
- Department of physics G. Occhialini, University of Milano-Bicocca, Milano, MI, Italy
- Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Wei Liu
- National Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunchun Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
4
|
Raju V, Reddy R, Javan AC, Hajihossainlou B, Weissleder R, Guiseppi-Elie A, Kurabayashi K, Jones SA, Faghih RT. Tracking inflammation status for improving patient prognosis: A review of current methods, unmet clinical needs and opportunities. Biotechnol Adv 2025; 82:108592. [PMID: 40324661 DOI: 10.1016/j.biotechadv.2025.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/07/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Inflammation is the body's response to infection, trauma or injury and is activated in a coordinated fashion to ensure the restoration of tissue homeostasis and healthy physiology. This process requires communication between stromal cells resident to the tissue compartment and infiltrating immune cells which is dysregulated in disease. Clinical innovations in patient diagnosis and stratification include measures of inflammatory activation that support the assessment of patient prognosis and response to therapy. We propose that (i) the recent advances in fast, dynamic monitoring of inflammatory markers (e.g., cytokines) and (ii) data-dependent theoretical and computational modeling of inflammatory marker dynamics will enable the quantification of the inflammatory response, identification of optimal, disease-specific biomarkers and the design of personalized interventions to improve patient outcomes - multidisciplinary efforts in which biomedical engineers may potentially contribute. To illustrate these ideas, we describe the actions of cytokines, acute phase proteins and hormones in the inflammatory response and discuss their role in local wounds, COVID-19, cancer, autoimmune diseases, neurodegenerative diseases and aging, with a central focus on cardiac surgery. We also discuss the challenges and opportunities involved in tracking and modulating inflammation in clinical settings.
Collapse
Affiliation(s)
- Vidya Raju
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, 11201, NY, USA
| | - Revanth Reddy
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, 11201, NY, USA
| | | | - Behnam Hajihossainlou
- Department of Infectious Diseases, Harlem Medical Center, and Columbia University, New York, 10032, NY, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Department of Systems Biology, Harvard Medical School, and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, 02115, Massachusetts, USA
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B), and Department of Electrical and Computer Engineering, Texas A & M University, College Station, 77843, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, Houston, 77030, TX, USA; ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, 23219, Virginia, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University, New York 11201, NY, USA
| | - Simon A Jones
- Division of Infection and Immunity, and School of Medicine, Cardiff University, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Rose T Faghih
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, 11201, NY, USA.
| |
Collapse
|
5
|
Orhan F, Malwade S, Khanlarkhani N, Gkogka A, Langeder A, Jungholm O, Koskuvi M, Lehtonen Š, Schwieler L, Jardemark K, Tiihonen J, Koistinaho J, Erhardt S, Engberg G, Samudyata S, Sellgren CM. Kynurenic Acid and Promotion of Activity-Dependent Synapse Elimination in Schizophrenia. Am J Psychiatry 2025; 182:389-400. [PMID: 40165559 DOI: 10.1176/appi.ajp.20240048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
OBJECTIVE Schizophrenia is a neurodevelopmental disorder characterized by an excessive loss of synapses. Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan along the kynurenine pathway, can induce schizophrenia-related phenotypes in rodents, and clinical studies have revealed elevated KYNA levels in the CNS of individuals with schizophrenia. However, the factors that cause elevated KYNA levels in schizophrenia, and the mechanisms by which KYNA contributes to pathophysiology, remain largely elusive. The authors used patient-derived cellular modeling to test the hypothesis that KYNA can induce microglia-mediated synapse engulfment by reducing neuronal activity. METHODS Patient-derived induced pluripotent stem cells were used to generate 2D cultures of neurons and microglia-like cells, as well as forebrain organoids with innately developing microglia, to study how KYNA influences synaptic activity and microglial uptake of synaptic structures. To verify the experimental data in a clinical context, large-scale developmental postmortem brain tissue and genetic datasets were used to study coexpression networks for the KYNA-producing kynurenine aminotransferases (KATs) regarding enrichment for common schizophrenia genetic risk variants and functional annotations. RESULTS In these patient-derived experimental models, KYNA induced uptake of synaptic structures in microglia, and inhibition of the endogenous KYNA production led to a decrease in the internalization of synapses in microglia. The integrated large-scale transcriptomic and genetic datasets showed that KYNA-producing KATs enriched for genes governing synaptic activity and genetic risk variants for schizophrenia. CONCLUSIONS Together, these results link genetic risk variants for schizophrenia to elevated production of KYNA and excessive and activity-dependent internalization of synaptic material in microglia, while implicating pharmacological inhibition of KATs as a strategy to avoid synapse loss in schizophrenia.
Collapse
Affiliation(s)
- Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Neda Khanlarkhani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Asimenia Gkogka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Angelika Langeder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Oscar Jungholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Marja Koskuvi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Šárka Lehtonen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Jari Tiihonen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Jari Koistinaho
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Samudyata Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| |
Collapse
|
6
|
Fekete R, Simats A, Bíró E, Pósfai B, Cserép C, Schwarcz AD, Szabadits E, Környei Z, Tóth K, Fichó E, Szalma J, Vida S, Kellermayer A, Dávid C, Acsády L, Kontra L, Silvestre-Roig C, Moldvay J, Fillinger J, Csikász-Nagy A, Hortobágyi T, Liesz A, Benkő S, Dénes Á. Microglia dysfunction, neurovascular inflammation and focal neuropathologies are linked to IL-1- and IL-6-related systemic inflammation in COVID-19. Nat Neurosci 2025; 28:558-576. [PMID: 40050441 PMCID: PMC11893456 DOI: 10.1038/s41593-025-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/17/2024] [Indexed: 03/12/2025]
Abstract
COVID-19 is associated with diverse neurological abnormalities, but the underlying mechanisms are unclear. We hypothesized that microglia, the resident immune cells of the brain, are centrally involved in this process. To study this, we developed an autopsy platform allowing the integration of molecular anatomy, protein and mRNA datasets in postmortem mirror blocks of brain and peripheral organ samples from cases of COVID-19. We observed focal loss of microglial P2Y12R, CX3CR1-CX3CL1 axis deficits and metabolic failure at sites of virus-associated vascular inflammation in severely affected medullary autonomic nuclei and other brain areas. Microglial dysfunction is linked to mitochondrial injury at sites of excessive synapse and myelin phagocytosis and loss of glutamatergic terminals, in line with proteomic changes of synapse assembly, metabolism and neuronal injury. Furthermore, regionally heterogeneous microglial changes are associated with viral load and central and systemic inflammation related to interleukin (IL)-1 or IL-6 via virus-sensing pattern recognition receptors and inflammasomes. Thus, SARS-CoV-2-induced inflammation might lead to a primarily gliovascular failure in the brain, which could be a common contributor to diverse COVID-19-related neuropathologies.
Collapse
Affiliation(s)
- Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Alba Simats
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eduárd Bíró
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Anett D Schwarcz
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | | | - János Szalma
- Cytocast Hungary Kft, Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Sára Vida
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - László Acsády
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Levente Kontra
- Bioinformatics Unit, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Carlos Silvestre-Roig
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation, WWU Muenster, Muenster, Germany
| | - Judit Moldvay
- I. Department of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
- Pulmonology Clinic, Szeged University, Albert Szent-Gyorgyi Medical School, Szeged, Hungary
| | - János Fillinger
- Department of Pathology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Attila Csikász-Nagy
- Cytocast Hungary Kft, Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Neuropathology, Universitätsspital Zürich, Zurich, Switzerland
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
- Mercator Fellow, Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Cappelletti G, Brambilla L, Strizzi S, Limanaqi F, Melzi V, Rizzuti M, Nizzardo M, Saulle I, Trabattoni D, Corti S, Clerici M, Biasin M. iPSC-derived human cortical organoids display profound alterations of cellular homeostasis following SARS-CoV-2 infection and Spike protein exposure. FASEB J 2025; 39:e70396. [PMID: 39950320 PMCID: PMC11826378 DOI: 10.1096/fj.202401604rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025]
Abstract
COVID-19 commonly leads to respiratory issues, yet numerous patients also exhibit a diverse range of neurological conditions, suggesting a detrimental impact of SARS-CoV-2 or the viral Spike protein on the central nervous system. Nonetheless, the molecular pathway behind neurological pathology and the presumed neurotropism of SARS-CoV-2 remains largely unexplored. We generated human cortical organoids (HCOs) derived from human induced pluripotent stem cells (hiPSC) to assess: (1) the expression of SARS-CoV-2 main entry factors; (2) their vulnerability to SARS-CoV-2 infection; and (3) the impact of SARS-CoV-2 infection and exposure to the Spike protein on their transcriptome. Results proved that (1) HCOs express the main SARS-CoV-2 receptors and co-receptors; (2) HCOs may be productively infected by SARS-CoV-2; (3) the viral particles released by SARS-CoV-2-infected HCOs are able to re-infect another cellular line; and (4) the infection resulted in the activation of apoptotic and stress pathways, along with inflammatory processes. Notably, these effects were recapitulated when HCOs were exposed to the Spike protein alone. The data obtained demonstrate that SARS-CoV-2 likely infects HCOs probably through the binding of ACE2, CD147, and NRP1 entry factors. Furthermore, exposure to the Spike protein alone proved sufficient to disrupt their homeostasis and induce neurotoxic effects, potentially contributing to the onset of long-COVID symptoms.
Collapse
Affiliation(s)
- Gioia Cappelletti
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Lorenzo Brambilla
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Sergio Strizzi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Fiona Limanaqi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valentina Melzi
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mafalda Rizzuti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Monica Nizzardo
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Irma Saulle
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Daria Trabattoni
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Stefania Corti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience SectionUniversity of MilanMilanItaly
- Neuromuscular and Rare Diseases Unit, Department of NeuroscienceFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mario Clerici
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Don C. Gnocchi FoundationIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) FoundationMilanItaly
| | - Mara Biasin
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| |
Collapse
|
8
|
Zhao Y, Tang Y, Wang QY, Li J. Ocular neuroinflammatory response secondary to SARS-CoV-2 infection-a review. Front Immunol 2025; 16:1515768. [PMID: 39967658 PMCID: PMC11832381 DOI: 10.3389/fimmu.2025.1515768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
With the consistent occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the prevalence of various ocular complications has increased over time. SARS-CoV-2 infection has been shown to have neurotropism and therefore to lead to not only peripheral inflammatory responses but also neuroinflammation. Because the receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), can be found in many intraocular tissues, coronavirus disease 2019 (COVID-19) may also contribute to persistent intraocular neuroinflammation, microcirculation dysfunction and ocular symptoms. Increased awareness of neuroinflammation and future research on interventional strategies for SARS-CoV-2 infection are important for improving long-term outcomes, reducing disease burden, and improving quality of life. Therefore, the aim of this review is to focus on SARS-CoV-2 infection and intraocular neuroinflammation and to discuss current evidence and future perspectives, especially possible connections between conditions and potential treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Jia Li
- Department of Glaucoma, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Saxena A, Mautner J. A Disease Hidden in Plain Sight: Pathways and Mechanisms of Neurological Complications of Post-acute Sequelae of COVID-19 (NC-PASC). Mol Neurobiol 2025; 62:2530-2547. [PMID: 39133434 DOI: 10.1007/s12035-024-04421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The global impact of coronavirus disease 2019 (COVID-19) marked by numerous pandemic peaks is attributed to its high variability and infectious nature, transforming it into a persistent global public health concern. With hundreds of millions of cases reported globally, the illness is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite its initial classification as an acute respiratory illness, recent evidence indicates that lingering effects on various bodily systems, such as cardiovascular, pulmonary, nervous, gastrointestinal (GI), and musculoskeletal, may endure well beyond the acute phase. These persistent manifestations following COVID-19, commonly known as long COVID, have the potential to affect individuals across the entire range of illness severity, with a tendency to be more prevalent in mild to moderate cases. At present, there are no established criteria for diagnosing long COVID. Nonetheless, it is conceptualized as a multi-organ disorder encompassing a diverse array of clinical manifestations. The most common, persistent, and debilitating symptoms of long COVID may be neurological, known as neurological complications of post-acute sequelae of COVID-19 (NC-PASC). More than one-third of individuals with a prior SARS-CoV-2 infection show involvement of both the central nervous system (CNS) and peripheral nervous system (PNS), as evidenced by an approximately threefold higher incidence of neurological symptoms in observational studies. The persistent neurological symptoms of long COVID encompass fatigue, headache, cognitive decline, "brain fog", dysautonomia, neuropsychiatric issues, loss of smell (anosmia), loss of taste (ageusia), and peripheral nerve problems (peripheral neuropathy). Reported pathogenic mechanisms encompass viral persistence and neuro-invasion by SARS-CoV-2, neuroinflammation, autoimmunity, coagulopathy, and endotheliopathy. Raising awareness of potential complications is crucial for preventing and alleviating the long-term effects of long COVID and enhancing the prognosis for affected patients. This review explores the hypothetical pathophysiological mechanisms and pathways of NC-PASC with a sole aim to increase awareness about this crippling disease.
Collapse
Affiliation(s)
- Apoorva Saxena
- Department of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Josef Mautner
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
10
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2025; 25:108-124. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Tsilioni I, Kempuraj D, Theoharides TC. Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6, and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated Human Microglia. Int J Mol Sci 2025; 26:636. [PMID: 39859348 PMCID: PMC11766385 DOI: 10.3390/ijms26020636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Neuroinflammation is involved in various neurological and neurodegenerative disorders in which the activation of microglia is one of the key factors. In this study, we examined the anti-inflammatory effects of the flavonoids nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) and eriodictyol (3',4',5,7-tetraxydroxyflavanone) on human microglia cell line activation stimulated by either lipopolysaccharide (LPS), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) full-length Spike protein (FL-Spike), or the mycotoxin ochratoxin A (OTA). Human microglia were preincubated with the flavonoids (10, 50, and 100 µM) for 2 h, following which, they were stimulated for 24 h. The inflammatory mediators interleukin-1 beta (IL-1β), chemokine (C-X-C motif) ligand 8 (CXCL8), IL-6, and matrix metalloproteinase-9 (MMP-9) were quantified in the cell culture supernatant by enzyme-linked immunosorbent assay (ELISA). Both nobiletin and eriodictyol significantly inhibited the LPS, FL-Spike, and OTA-stimulated release of IL-1β, CXCL8, IL-6, and MMP-9 at 50 and 100 µM, while, in most cases, nobiletin was also effective at 10 µM, with the most pronounced reductions at 100 µM. These findings suggest that both nobiletin and eriodictyol are potent inhibitors of the pathogen-stimulated microglial release of inflammatory mediators, highlighting their potential for therapeutic application in neuroinflammatory diseases, such as long COVID.
Collapse
Affiliation(s)
- Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Center of Excellence for Neuroinflammation Research, Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Center of Excellence for Neuroinflammation Research, Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
12
|
Awogbindin I, ŠimonČiČová E, Vidal V, Ash C, Tremblay ME. Neuroglial responses to bacterial, viral, and fungal neuroinfections. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:213-238. [PMID: 40148046 DOI: 10.1016/b978-0-443-19102-2.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Evidence regarding the host's response to peripheral pathogens in humans abound, whereas studies on the pathogenesis of central nervous system-penetrating infections are relatively scarce. However, given the spate of epidemic and pandemic neuroinfections in the 21st century, the field has experienced a renewed interest lately. This chapter discusses a timely and exciting topic on the roles of glial cells, mainly microglia and astrocytes, in neuroinvasive infections. This chapter considered fungal, viral, and bacterial neuroinfections, X-raying their neuroinvasiveness, neurotropism, and neurovirulence before focusing on specific examples notable for each category, including Escherichia coli, Cryptococcus neoformans, and SARS-CoV-2. These infections are renowned worldwide for a high case-fatality rate, leaving many survivors with life-long morbidity and others with a bleak future neurologic prognosis. Importantly, the chapter discusses possible ways microglia and astrocytes are culpable in these infections and provides approaches by which they can be manipulated for therapeutic purposes, identifying viable research gaps in the process. Additionally, it offers a synopsis of ongoing works considering microglial selective targeting to attenuate the pathology, morbidity, and mortality associated with these neuroinfections. Considering that microglia and astrocytes are first responders in the central nervous system, targeting these glial cells could be the game changer in managing existing and emerging neuroinvasive infections.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| | - Eva ŠimonČiČová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Virginie Vidal
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Science and Technology Department, University of Bordeaux, Bordeaux, France
| | - Chantaille Ash
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
13
|
Luo EY, Chuen-Chung Chang R, Gilbert-Jaramillo J. SARS-CoV-2 infection in microglia and its sequelae: What do we know so far? Brain Behav Immun Health 2024; 42:100888. [PMID: 39881814 PMCID: PMC11776083 DOI: 10.1016/j.bbih.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 01/31/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic. After the success of therapeutics and worldwide vaccination, the long-term sequelae of SARS-CoV-2 infections are yet to be determined. Common symptoms of COVID-19 include the loss of taste and smell, suggesting SARS-CoV-2 infection has a potentially detrimental effect on neurons within the olfactory/taste pathways, with direct access to the central nervous system (CNS). This could explain the detection of SARS-CoV-2 antigens in the brains of COVID-19 patients. Different viruses display neurotropism that causes impaired neurodevelopment and/or neurodegeneration. Hence, it is plausible that COVID-19-associated neuropathologies are directly driven by SARS-CoV-2 infection in the CNS. Microglia, resident immune cells of the brain, are constantly under investigation as their surveillance role has been suggested to act as a friend or a foe impacting the progression of neurological disorders. Herein, we review the current literature suggesting microglia potentially been a susceptible target by SARS-CoV-2 virions and their role in viral dissemination within the CNS. Particular attention is given to the different experimental models and their translational potential.
Collapse
Affiliation(s)
- Echo Yongqi Luo
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
14
|
Guo J, Li W, Huang M, Qiao J, Wan P, Yao Y, Ye L, Ding Y, Wang J, Peng Q, Liu W, Xia Y, Shu X, Sun B. SARS-CoV-2 Nsp7 plays a role in cognitive dysfunction by impairing synaptic plasticity. Front Neurosci 2024; 18:1490099. [PMID: 39640294 PMCID: PMC11617585 DOI: 10.3389/fnins.2024.1490099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
It has been reported that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in long-term neurological symptoms such as cognitive dysfunction, however the specific mechanisms underlying this phenomenon remain unclear. Initially, we confirmed a reduction in the level of synaptic proteins in SH-SY5Y neurons following SARS-CoV-2 infection. SARS-CoV-2 Nsps are crucial for the efficient replication of the virus and play important roles in the interaction between virus and host cell. Nsps screening experiments implied that Nsp7 is able to reduce the level of synapsin-1. Furthermore, overexpression of Nsp7 in SH-SY5Y cells and mouse primary neurons demonstrated that Nsp7 could decrease the levels of synaptic proteins without affecting neuronal viability. Moreover, C57BL/6 mice receiving AAV-GFP-Nsp7 injections into the ventral hippocampus displayed impaired memory ability, along with reduced dendritic spine density and synaptic protein levels. Mechanistic investigations suggested that Nsp7-induced mitochondrial damage led to ROS production and ATP levels decreasing in neurons. Additional experiments employing the ROS inhibitor NAC demonstrated that Nsp7 suppressed the expression of synaptic proteins via ROS inducing, implicating mitochondrial dysfunction in synaptic plasticity impairment and subsequent cognitive dysfunction. Our findings underscore the crucial role of SARS-CoV-2 Nsp7 in cognitive dysfunction, which is potentially mediated through impaired synaptic plasticity via mitochondrial damage. This study enhances our understanding of the pathogenic mechanisms underlying central nervous system-related symptoms associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jiazheng Guo
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - WeiLing Li
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Mengbing Huang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jialu Qiao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Pin Wan
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yulin Yao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lirui Ye
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Ye Ding
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jianing Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
15
|
Pacnejer AM, Butuca A, Dobrea CM, Arseniu AM, Frum A, Gligor FG, Arseniu R, Vonica RC, Vonica-Tincu AL, Oancea C, Mogosan C, Popa Ilie IR, Morgovan C, Dehelean CA. Neuropsychiatric Burden of SARS-CoV-2: A Review of Its Physiopathology, Underlying Mechanisms, and Management Strategies. Viruses 2024; 16:1811. [PMID: 39772122 PMCID: PMC11680421 DOI: 10.3390/v16121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy. Lasting neuropsychological effects have also been recorded in individuals following SARS-CoV-2 infection. These include anxiety, depression, and cognitive dysfunction, suggesting a lasting impact on mental health. The neuroinvasive potential of the virus, inflammatory responses, and the role of angiotensin-converting enzyme 2 (ACE2) in neuroinflammation are critical factors in neuropsychiatric COVID-19 manifestations. In addition, the review highlights the importance of monitoring biomarkers to assess Central Nervous System (CNS) involvement. Management strategies for these neuropsychiatric conditions include supportive therapy, antiepileptic drugs, antithrombotic therapy, and psychotropic drugs, emphasizing the need for a multidisciplinary approach. Understanding the long-term neuropsychiatric implications of COVID-19 is essential for developing effective treatment protocols and improving patient outcomes.
Collapse
Affiliation(s)
- Aliteia-Maria Pacnejer
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (A.-M.P.); (C.A.D.)
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Rares Arseniu
- County Emergency Clinical Hospital “Pius Brînzeu”, 300723 Timișoara, Romania;
| | - Razvan Constantin Vonica
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Cristian Oancea
- Department of Pulmonology, Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400029 Cluj-Napoca, Romania;
| | - Ioana Rada Popa Ilie
- Department of Endocrinology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 3-5 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (A.-M.P.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| |
Collapse
|
16
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
17
|
Dunai C, Hetherington C, Boardman SA, Clark JJ, Sharma P, Subramaniam K, Tharmaratnam K, Needham EJ, Williams R, Huang Y, Wood GK, Collie C, Fower A, Fox H, Ellul MA, Held M, Egbe FN, Griffiths M, Solomon T, Breen G, Kipar A, Cavanagh J, Irani SR, Vincent A, Stewart JP, Taams LS, Menon DK, Michael BD. Pulmonary SARS-CoV-2 infection leads to para-infectious immune activation in the brain. Front Immunol 2024; 15:1440324. [PMID: 39474424 PMCID: PMC11519853 DOI: 10.3389/fimmu.2024.1440324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024] Open
Abstract
Neurological complications, including encephalopathy and stroke, occur in a significant proportion of COVID-19 cases but viral protein is seldom detected in the brain parenchyma. To model this situation, we developed a novel low-inoculum K18-hACE2 mouse model of SARS-CoV-2 infection during which active viral replication was consistently seen in mouse lungs but not in the brain. We found that several mediators previously associated with encephalopathy in clinical samples were upregulated in the lung, including CCL2, and IL-6. In addition, several inflammatory mediations, including CCL4, IFNγ, IL-17A, were upregulated in the brain, associated with microglial reactivity. Parallel in vitro experiments demonstrated that the filtered supernatant from SARS-CoV-2 virion exposed brain endothelial cells induced activation of uninfected microglia. This model successfully recreates SARS-CoV-2 virus-associated para-infectious brain inflammation which can be used to study the pathophysiology of the neurological complications and the identification of potential immune targets for treatment.
Collapse
Affiliation(s)
- Cordelia Dunai
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Claire Hetherington
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sarah A. Boardman
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jordan J. Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krishanthi Subramaniam
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kukatharmini Tharmaratnam
- Department of Health Data Science, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward J. Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Robyn Williams
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Yun Huang
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Greta K. Wood
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ceryce Collie
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Mark A. Ellul
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marie Held
- Centre for Cell Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Franklyn N. Egbe
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Griffiths
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Tom Solomon
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Gerome Breen
- Department of Social, Genetic & Developmental Psychiatry Centre, School of Mental Health & Psychological Sciences, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, King’s College London, London, United Kingdom
| | - Anja Kipar
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jonathan Cavanagh
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarosh R. Irani
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leonie S. Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Benedict D. Michael
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Clinical Infection Microbiology and Immunology, Institute of Infection Ecology and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
18
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
19
|
Di Stefano J, Garcia-Pupo L, Di Marco F, Motaln H, Govaerts J, Van Breedam E, Mateiu LM, Van Calster S, Ricciardi L, Quarta A, Verstraelen P, De Vos WH, Rogelj B, Cicalini I, De Laurenzi V, Del Boccio P, FitzGerald U, Vanden Berghe W, Verhoye M, Pieragostino D, Ponsaerts P. Transcriptomic and proteomic profiling of bi-partite and tri-partite murine iPSC-derived neurospheroids under steady-state and inflammatory condition. Brain Behav Immun 2024; 121:1-12. [PMID: 39002812 DOI: 10.1016/j.bbi.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Abstract
induced-pluripotent stem cell (iPSC)-derived neurospheroid (NSPH) models are an emerging in vitro toolkit to study the influence of inflammatory triggers on neurodegeneration and repair in a 3D neural environment. In contrast to their human counterpart, the absence of murine iPSC-derived NSPHs for profound characterisation and validation studies is a major experimental research gap, even though they offer the only possibility to truly compare or validate in vitro NSPH responses with in vivo brain responses. To contribute to these developments, we here describe the generation and characterisation of 5-week-old CX3CR1eGFP+/- CCR2RFP+/- murine (m)iPSC-derived bi-partite (neurons + astrocytes) and tri-partite (neurons + astrocytes + microglia) NSPH models that can be subjected to cellular activation following pro-inflammatory stimulation. First, cytokine analysis demonstrates that both bi-partite and tri-partite NSPHs can be triggered to release IL6 and CXCL10 following three days of stimulation with, respectively, TNFα + IL1β + IFNγ and LPS + IFNγ. Additionally, immunocytochemical analysis for G3BP1 and PABPC1 revealed the development of stress granules in both bi-partite and tri-partite NSPHs after 3 days of stimulation. To further investigate the observed signs of inflammatory response and cellular stress, we performed an untargeted transcriptomic and proteomic analysis of bi- and tri-partite NSPHs under steady-state and inflammatory conditions. Here, using the combined differential gene and protein expression profiles between unstimulated and stimulated NSPHs, Ingenuity Pathway Analysis (IPA) confirms the activation of canonical pathways associated with inflammation and cellular stress in both bi-partite and tri-partite NSPHs. Moreover, our multi-omics analysis suggests a higher level of downstream inflammatory responses, impairment of homeostatic and developmental processes, as well as activation of cell death processes in stimulated tri-partite NSPHs compared to bi-partite NSPHs. Concluding, these results emphasise the advantages of including microglia in NSPH research to study inflammation-induced neurodegeneration in a 3D neural environment.
Collapse
Affiliation(s)
- Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium
| | - Laura Garcia-Pupo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Cell Death Signaling, Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Jonas Govaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Ligia Monica Mateiu
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Siebe Van Calster
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Leonardo Ricciardi
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Peter Verstraelen
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; Laboratory of Cell Biology and Histology and Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Winnok H De Vos
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; Laboratory of Cell Biology and Histology and Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Una FitzGerald
- CÚRAM, Centre for Research in Medical Devices, Biomedical Engineering, University of Galway, Ireland; Galway Neuroscience Centre, University of Galway, Ireland
| | - Wim Vanden Berghe
- Cell Death Signaling, Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium.
| |
Collapse
|
20
|
Mondal A, Munan S, Saxena I, Mukherjee S, Upadhyay P, Gupta N, Dar W, Samanta A, Singh S, Pati S. G6PD deficiency mediated impairment of iNOS and lysosomal acidification affecting phagocytotic clearance in microglia in response to SARS-CoV-2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167444. [PMID: 39074627 DOI: 10.1016/j.bbadis.2024.167444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The glucose-6-phosphate dehydrogenase (G6PD) deficiency is X-linked and is the most common enzymatic deficiency disorder globally. It is a crucial enzyme for the pentose phosphate pathway and produces NADPH, which plays a vital role in regulating the oxidative stress of many cell types. The deficiency of G6PD primarily causes hemolytic anemia under oxidative stress triggered by food, drugs, or infection. G6PD-deficient patients infected with SARS-CoV-2 showed an increase in hemolysis and thrombosis. Patients also exhibited prolonged COVID-19 symptoms, ventilation support, neurological impacts, and high mortality. However, the mechanism of COVID-19 severity in G6PD deficient patients and its neurological manifestation is still ambiguous. Here, using a CRISPR-edited G6PD deficient human microglia cell culture model, we observed a significant reduction in NADPH level and an increase in basal reactive oxygen species (ROS) in microglia. Interestingly, the deficiency of the G6PD-NAPDH axis impairs induced nitric oxide synthase (iNOS) mediated nitric oxide (NO) production, which plays a fundamental role in inhibiting viral replication. Surprisingly, we also observed that the deficiency of the G6PD-NADPH axis reduced lysosomal acidification and free radical production, further abrogating the lysosomal clearance of viral particles. Thus, impairment of NO production, lysosomal functions, and redox dysregulation in G6PD deficient microglia altered innate immune response, promoting the severity of SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Abir Mondal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Subrata Munan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Isha Saxena
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Prince Upadhyay
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Waseem Dar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Animesh Samanta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Soumya Pati
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida UP-201301, India.
| |
Collapse
|
21
|
Wilson JD, Dworsky-Fried M, Ismail N. Neurodevelopmental implications of COVID-19-induced gut microbiome dysbiosis in pregnant women. J Reprod Immunol 2024; 165:104300. [PMID: 39004033 DOI: 10.1016/j.jri.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The global public health emergency of COVID-19 in January 2020 prompted a surge in research focusing on the pathogenesis and clinical manifestations of the virus. While numerous reports have been published on the acute effects of COVID-19 infection, the review explores the multifaceted long-term implications of COVID-19, with a particular focus on severe maternal COVID-19 infection, gut microbiome dysbiosis, and neurodevelopmental disorders in offspring. Severe COVID-19 infection has been associated with heightened immune system activation and gastrointestinal symptoms. Severe COVID-19 may also result in gut microbiome dysbiosis and a compromised intestinal mucosal barrier, often referred to as 'leaky gut'. Increased gut permeability facilitates the passage of inflammatory cytokines, originating from the inflamed intestinal mucosa and gut, into the bloodstream, thereby influencing fetal development during pregnancy and potentially elevating the risk of neurodevelopmental disorders such as autism and schizophrenia. The current review discusses the role of cytokine signaling molecules, microglia, and synaptic pruning, highlighting their potential involvement in the pathogenesis of neurodevelopmental disorders following maternal COVID-19 infection. Additionally, this review addresses the potential of probiotic interventions to mitigate gut dysbiosis and inflammatory responses associated with COVID-19, offering avenues for future research in optimizing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Jacob D Wilson
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Michaela Dworsky-Fried
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada; LIFE Research Institute, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
22
|
Pavlou A, Mulenge F, Gern OL, Busker LM, Greimel E, Waltl I, Kalinke U. Orchestration of antiviral responses within the infected central nervous system. Cell Mol Immunol 2024; 21:943-958. [PMID: 38997413 PMCID: PMC11364666 DOI: 10.1038/s41423-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/14/2024] Open
Abstract
Many newly emerging and re-emerging viruses have neuroinvasive potential, underscoring viral encephalitis as a global research priority. Upon entry of the virus into the CNS, severe neurological life-threatening conditions may manifest that are associated with high morbidity and mortality. The currently available therapeutic arsenal against viral encephalitis is rather limited, emphasizing the need to better understand the conditions of local antiviral immunity within the infected CNS. In this review, we discuss new insights into the pathophysiology of viral encephalitis, with a focus on myeloid cells and CD8+ T cells, which critically contribute to protection against viral CNS infection. By illuminating the prerequisites of myeloid and T cell activation, discussing new discoveries regarding their transcriptional signatures, and dissecting the mechanisms of their recruitment to sites of viral replication within the CNS, we aim to further delineate the complexity of antiviral responses within the infected CNS. Moreover, we summarize the current knowledge in the field of virus infection and neurodegeneration and discuss the potential links of some neurotropic viruses with certain pathological hallmarks observed in neurodegeneration.
Collapse
Affiliation(s)
- Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Elisabeth Greimel
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
23
|
Bellotti C, Samudyata S, Thams S, Sellgren CM, Rostami E. Organoids and chimeras: the hopeful fusion transforming traumatic brain injury research. Acta Neuropathol Commun 2024; 12:141. [PMID: 39215375 PMCID: PMC11363608 DOI: 10.1186/s40478-024-01845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Research in the field of traumatic brain injury has until now heavily relied on the use of animal models to identify potential therapeutic approaches. However, a long series of failed clinical trials has brought many scientists to question the translational reliability of pre-clinical results obtained in animals. The search for an alternative to conventional models that better replicate human pathology in traumatic brain injury is thus of the utmost importance for the field. Recently, orthotopic xenotransplantation of human brain organoids into living animal models has been achieved. This review summarizes the existing literature on this new method, focusing on its potential applications in preclinical research, both in the context of cell replacement therapy and disease modelling. Given the obvious advantages of this approach to study human pathologies in an in vivo context, we here critically review its current limitations while considering its possible applications in traumatic brain injury research.
Collapse
Affiliation(s)
- Cristina Bellotti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Samudyata Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Thams
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm Health Care Services, Karolinska Institutet, and Stockholm Health Care Services, Stockholm, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Mora VP, Kalergis AM, Bohmwald K. Neurological Impact of Respiratory Viruses: Insights into Glial Cell Responses in the Central Nervous System. Microorganisms 2024; 12:1713. [PMID: 39203555 PMCID: PMC11356956 DOI: 10.3390/microorganisms12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 09/03/2024] Open
Abstract
Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.
Collapse
Affiliation(s)
- Valentina P. Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
25
|
Pahlevan Kakhki M, Giordano A, Starvaggi Cucuzza C, Venkata S Badam T, Samudyata S, Lemée MV, Stridh P, Gkogka A, Shchetynsky K, Harroud A, Gyllenberg A, Liu Y, Boddul S, James T, Sorosina M, Filippi M, Esposito F, Wermeling F, Gustafsson M, Casaccia P, Hillert J, Olsson T, Kockum I, Sellgren CM, Golzio C, Kular L, Jagodic M. A genetic-epigenetic interplay at 1q21.1 locus underlies CHD1L-mediated vulnerability to primary progressive multiple sclerosis. Nat Commun 2024; 15:6419. [PMID: 39079955 PMCID: PMC11289459 DOI: 10.1038/s41467-024-50794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple Sclerosis (MS) is a heterogeneous inflammatory and neurodegenerative disease with an unpredictable course towards progressive disability. Treating progressive MS is challenging due to limited insights into the underlying mechanisms. We examined the molecular changes associated with primary progressive MS (PPMS) using a cross-tissue (blood and post-mortem brain) and multilayered data (genetic, epigenetic, transcriptomic) from independent cohorts. In PPMS, we found hypermethylation of the 1q21.1 locus, controlled by PPMS-specific genetic variations and influencing the expression of proximal genes (CHD1L, PRKAB2) in the brain. Evidence from reporter assay and CRISPR/dCas9 experiments supports a causal link between methylation and expression and correlation network analysis further implicates these genes in PPMS brain processes. Knock-down of CHD1L in human iPSC-derived neurons and knock-out of chd1l in zebrafish led to developmental and functional deficits of neurons. Thus, several lines of evidence suggest a distinct genetic-epigenetic-transcriptional interplay in the 1q21.1 locus potentially contributing to PPMS pathogenesis.
Collapse
Affiliation(s)
- Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antonino Giordano
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Neurology and Neurorehabilitation Units, IRCCS San Raffaele Hospital, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Starvaggi Cucuzza
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Tejaswi Venkata S Badam
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Bioinformatics, Institute for Physics chemistry and Biology (IFM), Linköping university, Linköping, Sweden
| | - Samudyata Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Victoria Lemée
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Asimenia Gkogka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Klementy Shchetynsky
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Adil Harroud
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Alexandra Gyllenberg
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Sanjaykumar Boddul
- Department of Medicine, Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tojo James
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Units, IRCCS San Raffaele Hospital, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Hospital, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Neurology and Neurorehabilitation Units, IRCCS San Raffaele Hospital, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fredrik Wermeling
- Department of Medicine, Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mika Gustafsson
- Department of Bioinformatics, Institute for Physics chemistry and Biology (IFM), Linköping university, Linköping, Sweden
| | - Patrizia Casaccia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Christelle Golzio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
26
|
Vashisht A, Vashisht V, Singh H, Ahluwalia P, Mondal AK, Williams C, Farmaha J, Woodall J, Kolhe R. Neurological Complications of COVID-19: Unraveling the Pathophysiological Underpinnings and Therapeutic Implications. Viruses 2024; 16:1183. [PMID: 39205157 PMCID: PMC11359204 DOI: 10.3390/v16081183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), induced a global pandemic with a diverse array of clinical manifestations. While the acute phase of the pandemic may be waning, the intricacies of COVID-19's impact on neurological health remain a crucial area of investigation. Early recognition of the spectrum of COVID-19 symptoms, ranging from mild fever and cough to life-threatening respiratory distress and multi-organ failure, underscored the significance of neurological complications, including anosmia, seizures, stroke, disorientation, encephalopathy, and paralysis. Notably, patients requiring intensive care unit (ICU) admission due to neurological challenges or due to them exhibiting neurological abnormalities in the ICU have shown increased mortality rates. COVID-19 can lead to a range of neurological complications such as anosmia, stroke, paralysis, cranial nerve deficits, encephalopathy, delirium, meningitis, seizures, etc., in affected patients. This review elucidates the burgeoning landscape of neurological sequelae associated with SARS-CoV-2 infection and explores the underlying neurobiological mechanisms driving these diverse manifestations. A meticulous examination of potential neuroinvasion routes by SARS-CoV-2 underscores the intricate interplay between the virus and the nervous system. Moreover, we dissect the diverse neurological manifestations emphasizing the necessity of a multifaceted approach to understanding the disease's neurological footprint. In addition to elucidating the pathophysiological underpinnings, this review surveys current therapeutic modalities and delineates prospective avenues for neuro-COVID research. By integrating epidemiological, clinical, and diagnostic parameters, we endeavor to foster a comprehensive analysis of the nexus between COVID-19 and neurological health, thereby laying the groundwork for targeted therapeutic interventions and long-term management strategies.
Collapse
Affiliation(s)
- Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Vishakha Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Colin Williams
- Lincoln Memorial DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37902, USA;
| | - Jaspreet Farmaha
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Jana Woodall
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.V.); (V.V.); (H.S.); (P.A.); (A.K.M.); (J.F.); (J.W.)
| |
Collapse
|
27
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Shen Q, Zhou YH, Zhou YQ. A prospects tool in virus research: Analyzing the applications of organoids in virus studies. Acta Trop 2024; 254:107182. [PMID: 38479469 DOI: 10.1016/j.actatropica.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024]
Abstract
Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China
| | - Yu-Han Zhou
- College of Public Health, Jilin University, Changchun 130021, China
| | - Yan-Qiu Zhou
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China.
| |
Collapse
|
30
|
Teo F, Kok CYL, Tan MJ, Je HS. Human pluripotent stem cell (hPSC)-derived microglia for the study of brain disorders. A comprehensive review of existing protocols. IBRO Neurosci Rep 2024; 16:497-508. [PMID: 38655500 PMCID: PMC11035045 DOI: 10.1016/j.ibneur.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Microglia, resident immune cells of the brain that originate from the yolk sac, play a critical role in maintaining brain homeostasis by monitoring and phagocytosing pathogens and cellular debris in the central nervous system (CNS). While they share characteristics with myeloid cells, they are distinct from macrophages. In response to injury, microglia release pro-inflammatory factors and contribute to brain homeostasis through activities such as synapse pruning and neurogenesis. To better understand their role in neurological disorders, the generation of in vitro models of human microglia has become essential. These models, derived from patient-specific induced pluripotent stem cells (iPSCs), provide a controlled environment to study the molecular and cellular mechanisms underlying microglia-mediated neuroinflammation and neurodegeneration. The incorporation or generation of microglia into three-dimensional (3D) organoid cultures provides a more physiologically relevant environment that offers further opportunities to study microglial dynamics and disease modeling. This review describes several protocols that have been recently developed for the generation of human-induced microglia. Importantly, it highlights the promise of these in vitro models in advancing our understanding of brain disorders and facilitating personalized drug screening.
Collapse
Affiliation(s)
- Fionicca Teo
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Catherine Yen Li Kok
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mao-Jia Tan
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - H. Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Advanced Bioimaging Centre, SingHealth, Academia, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
31
|
Song X, Song W, Cui L, Duong TQ, Pandy R, Liu H, Zhou Q, Sun J, Liu Y, Li T. A Comprehensive Review of the Global Epidemiology, Clinical Management, Socio-Economic Impacts, and National Responses to Long COVID with Future Research Directions. Diagnostics (Basel) 2024; 14:1168. [PMID: 38893693 PMCID: PMC11171614 DOI: 10.3390/diagnostics14111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Long COVID, characterized by a persistent symptom spectrum following SARS-CoV-2 infection, poses significant health, social, and economic challenges. This review aims to consolidate knowledge on its epidemiology, clinical features, and underlying mechanisms to guide global responses; Methods: We conducted a literature review, analyzing peer-reviewed articles and reports to gather comprehensive data on long COVID's epidemiology, symptomatology, and management approaches; Results: Our analysis revealed a wide array of long COVID symptoms and risk factors, with notable demographic variability. The current understanding of its pathophysiology suggests a multifactorial origin yet remains partially understood. Emerging diagnostic criteria and potential therapeutic strategies were identified, highlighting advancements in long COVID management; Conclusions: This review highlights the multifaceted nature of long COVID, revealing a broad spectrum of symptoms, diverse risk factors, and the complex interplay of physiological mechanisms underpinning the condition. Long COVID symptoms and disorders will continue to weigh on healthcare systems in years to come. Addressing long COVID requires a holistic management strategy that integrates clinical care, social support, and policy initiatives. The findings underscore the need for increased international cooperation in research and health planning to address the complex challenges of long COVID. There is a call for continued refinement of diagnostic and treatment modalities, emphasizing a multidisciplinary approach to manage the ongoing and evolving impacts of the condition.
Collapse
Affiliation(s)
- Xiufang Song
- National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Song
- Jiangsu Taizhou People’s Hospital, Taizhou 225306, China;
- School of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Tim Q. Duong
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Rajiv Pandy
- Indian Council of Forestry Research & Education, Dehradun 248006, India;
| | - Hongdou Liu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia;
| | - Qun Zhou
- Department of Library, China Agricultural University (East Campus), 17 Qinghua East Road, Haidian District, Beijing 100193, China; (Q.Z.); (J.S.)
| | - Jiayao Sun
- Department of Library, China Agricultural University (East Campus), 17 Qinghua East Road, Haidian District, Beijing 100193, China; (Q.Z.); (J.S.)
| | - Yanli Liu
- National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tong Li
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
32
|
Partiot E, Hirschler A, Colomb S, Lutz W, Claeys T, Delalande F, Deffieu MS, Bare Y, Roels JRE, Gorda B, Bons J, Callon D, Andreoletti L, Labrousse M, Jacobs FMJ, Rigau V, Charlot B, Martens L, Carapito C, Ganesh G, Gaudin R. Brain exposure to SARS-CoV-2 virions perturbs synaptic homeostasis. Nat Microbiol 2024; 9:1189-1206. [PMID: 38548923 DOI: 10.1038/s41564-024-01657-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with short- and long-term neurological complications. The variety of symptoms makes it difficult to unravel molecular mechanisms underlying neurological sequalae after coronavirus disease 2019 (COVID-19). Here we show that SARS-CoV-2 triggers the up-regulation of synaptic components and perturbs local electrical field potential. Using cerebral organoids, organotypic culture of human brain explants from individuals without COVID-19 and post-mortem brain samples from individuals with COVID-19, we find that neural cells are permissive to SARS-CoV-2 to a low extent. SARS-CoV-2 induces aberrant presynaptic morphology and increases expression of the synaptic components Bassoon, latrophilin-3 (LPHN3) and fibronectin leucine-rich transmembrane protein-3 (FLRT3). Furthermore, we find that LPHN3-agonist treatment with Stachel partially restored organoid electrical activity and reverted SARS-CoV-2-induced aberrant presynaptic morphology. Finally, we observe accumulation of relatively static virions at LPHN3-FLRT3 synapses, suggesting that local hindrance can contribute to synaptic perturbations. Together, our study provides molecular insights into SARS-CoV-2-brain interactions, which may contribute to COVID-19-related neurological disorders.
Collapse
Affiliation(s)
- Emma Partiot
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Univ Montpellier, Montpellier, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI─FR2048, Strasbourg, France
| | - Sophie Colomb
- EDPFM (Equipe de Droit Pénal et de Sciences Forensiques de Montpellier), Univ Montpellier, Montpellier, France
- Emergency Pole, Forensic Medicine Department, Montpellier University Hospital, Montpellier, France
| | - Willy Lutz
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Univ Montpellier, Montpellier, France
- UM-CNRS Laboratoire d'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), Montpellier, France
| | - Tine Claeys
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI─FR2048, Strasbourg, France
| | - Maika S Deffieu
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Univ Montpellier, Montpellier, France
| | - Yonis Bare
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Univ Montpellier, Montpellier, France
| | - Judith R E Roels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Gorda
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Univ Montpellier, Montpellier, France
| | - Joanna Bons
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI─FR2048, Strasbourg, France
| | - Domitille Callon
- University of Reims Champagne-Ardenne, Medicine Faculty, Laboratory of Virology, CardioVir UMR-S 1320, Reims, France
- Forensic, Virology and ENT Departments, University Hospital Centre (CHU), Reims, France
| | - Laurent Andreoletti
- University of Reims Champagne-Ardenne, Medicine Faculty, Laboratory of Virology, CardioVir UMR-S 1320, Reims, France
- Forensic, Virology and ENT Departments, University Hospital Centre (CHU), Reims, France
| | - Marc Labrousse
- Forensic, Virology and ENT Departments, University Hospital Centre (CHU), Reims, France
- Anatomy laboratory, UFR Médecine, Université de Reims Champagne-Ardenne, Reims, France
| | - Frank M J Jacobs
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Valérie Rigau
- Univ Montpellier, Montpellier, France
- Pathological Department and Biological Resources Center BRC, Montpellier University Hospital, 'Cerebral plasticity, Stem cells and Glial tumors' team. IGF- Institut de génomique fonctionnelle INSERM U 1191 - CNRS UMR 5203, Univ Montpellier, Montpellier, France
| | - Benoit Charlot
- Univ Montpellier, Montpellier, France
- Institut d'Electronique et des Systèmes (IES), CNRS, Montpellier, France
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI─FR2048, Strasbourg, France
| | - Gowrishankar Ganesh
- Univ Montpellier, Montpellier, France
- UM-CNRS Laboratoire d'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), Montpellier, France
| | - Raphael Gaudin
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
- Univ Montpellier, Montpellier, France.
| |
Collapse
|
33
|
Sun Z, Shi C, Jin L. Mechanisms by Which SARS-CoV-2 Invades and Damages the Central Nervous System: Apart from the Immune Response and Inflammatory Storm, What Else Do We Know? Viruses 2024; 16:663. [PMID: 38793545 PMCID: PMC11125732 DOI: 10.3390/v16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Initially reported as pneumonia of unknown origin, COVID-19 is increasingly being recognized for its impact on the nervous system, despite nervous system invasions being extremely rare. As a result, numerous studies have been conducted to elucidate the mechanisms of nervous system damage and propose appropriate coping strategies. This review summarizes the mechanisms by which SARS-CoV-2 invades and damages the central nervous system, with a specific focus on aspects apart from the immune response and inflammatory storm. The latest research findings on these mechanisms are presented, providing new insights for further in-depth research.
Collapse
Affiliation(s)
- Zihan Sun
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lixin Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
34
|
Zhao J, Xia F, Jiao X, Lyu X. Long COVID and its association with neurodegenerative diseases: pathogenesis, neuroimaging, and treatment. Front Neurol 2024; 15:1367974. [PMID: 38638307 PMCID: PMC11024438 DOI: 10.3389/fneur.2024.1367974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 04/20/2024] Open
Abstract
Corona Virus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has presented unprecedented challenges to the world. Changes after acute COVID-19 have had a significant impact on patients with neurodegenerative diseases. This study aims to explore the mechanism of neurodegenerative diseases by examining the main pathways of central nervous system infection of SARS-CoV-2. Research has indicated that chronic inflammation and abnormal immune response are the primary factors leading to neuronal damage and long-term consequences of COVID-19. In some COVID-19 patients, the concurrent inflammatory response leads to increased release of pro-inflammatory cytokines, which may significantly impact the prognosis. Molecular imaging can accurately assess the severity of neurodegenerative diseases in patients with COVID-19 after the acute phase. Furthermore, the use of FDG-PET is advocated to quantify the relationship between neuroinflammation and psychiatric and cognitive symptoms in patients who have recovered from COVID-19. Future development should focus on aggressive post-infection control of inflammation and the development of targeted therapies that target ACE2 receptors, ERK1/2, and Ca2+.
Collapse
Affiliation(s)
- Jinyang Zhao
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fan Xia
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xue Jiao
- Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaohong Lyu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
35
|
Partiot E, Gorda B, Lutz W, Lebrun S, Khalfi P, Mora S, Charlot B, Majzoub K, Desagher S, Ganesh G, Colomb S, Gaudin R. Organotypic culture of human brain explants as a preclinical model for AI-driven antiviral studies. EMBO Mol Med 2024; 16:1004-1026. [PMID: 38472366 PMCID: PMC11018746 DOI: 10.1038/s44321-024-00039-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Viral neuroinfections represent a major health burden for which the development of antivirals is needed. Antiviral compounds that target the consequences of a brain infection (symptomatic treatment) rather than the cause (direct-acting antivirals) constitute a promising mitigation strategy that requires to be investigated in relevant models. However, physiological surrogates mimicking an adult human cortex are lacking, limiting our understanding of the mechanisms associated with viro-induced neurological disorders. Here, we optimized the Organotypic culture of Post-mortem Adult human cortical Brain explants (OPAB) as a preclinical platform for Artificial Intelligence (AI)-driven antiviral studies. OPAB shows robust viability over weeks, well-preserved 3D cytoarchitecture, viral permissiveness, and spontaneous local field potential (LFP). Using LFP as a surrogate for neurohealth, we developed a machine learning framework to predict with high confidence the infection status of OPAB. As a proof-of-concept, we showed that antiviral-treated OPAB could partially restore LFP-based electrical activity of infected OPAB in a donor-dependent manner. Together, we propose OPAB as a physiologically relevant and versatile model to study neuroinfections and beyond, providing a platform for preclinical drug discovery.
Collapse
Affiliation(s)
- Emma Partiot
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
| | - Barbara Gorda
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
| | - Willy Lutz
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
| | - Solène Lebrun
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
| | - Pierre Khalfi
- Univ Montpellier, 34090, Montpellier, France
- CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), 34293, Montpellier, France
| | - Stéphan Mora
- Univ Montpellier, 34090, Montpellier, France
- CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), 34293, Montpellier, France
| | - Benoit Charlot
- Univ Montpellier, 34090, Montpellier, France
- Institut d'Electronique et des Systèmes IES, CNRS, 860 Rue de St - Priest Bâtiment 5, 34090, Montpellier, France
| | - Karim Majzoub
- Univ Montpellier, 34090, Montpellier, France
- CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), 34293, Montpellier, France
| | - Solange Desagher
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France
- Univ Montpellier, 34090, Montpellier, France
- CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), 34293, Montpellier, France
| | - Gowrishankar Ganesh
- Univ Montpellier, 34090, Montpellier, France
- UM-CNRS Laboratoire d'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), 161, Rue Ada, 34090, Montpellier, France
| | - Sophie Colomb
- Univ Montpellier, 34090, Montpellier, France
- Equipe de droit pénal et sciences forensiques de Montpellier (EDPFM), Univ. Montpellier, Département de médecine légale, Pôle Urgences, Centre Hospitalo-Universitaire de Montpellier, 371 Avenue du Doyen Gaston Giraud, 34285, Montpellier, France
| | - Raphael Gaudin
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 34293, Montpellier, France.
- Univ Montpellier, 34090, Montpellier, France.
| |
Collapse
|
36
|
Qiu Y, Mo C, Chen L, Ye W, Chen G, Zhu T. Alterations in microbiota of patients with COVID-19: implications for therapeutic interventions. MedComm (Beijing) 2024; 5:e513. [PMID: 38495122 PMCID: PMC10943180 DOI: 10.1002/mco2.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently caused a global pandemic, resulting in more than 702 million people being infected and over 6.9 million deaths. Patients with coronavirus disease (COVID-19) may suffer from diarrhea, sleep disorders, depression, and even cognitive impairment, which is associated with long COVID during recovery. However, there remains no consensus on effective treatment methods. Studies have found that patients with COVID-19 have alterations in microbiota and their metabolites, particularly in the gut, which may be involved in the regulation of immune responses. Consumption of probiotics may alleviate the discomfort caused by inflammation and oxidative stress. However, the pathophysiological process underlying the alleviation of COVID-19-related symptoms and complications by targeting the microbiota remains unclear. In the current study, we summarize the latest research and evidence on the COVID-19 pandemic, together with symptoms of SARS-CoV-2 and vaccine use, with a focus on the relationship between microbiota alterations and COVID-19-related symptoms and vaccine use. This work provides evidence that probiotic-based interventions may improve COVID-19 symptoms by regulating gut microbiota and systemic immunity. Probiotics may also be used as adjuvants to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yong Qiu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengduChina
| | - Lu Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Wanlin Ye
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Guo Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
37
|
Chagas LDS, Serfaty CA. The Influence of Microglia on Neuroplasticity and Long-Term Cognitive Sequelae in Long COVID: Impacts on Brain Development and Beyond. Int J Mol Sci 2024; 25:3819. [PMID: 38612629 PMCID: PMC11011312 DOI: 10.3390/ijms25073819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Microglial cells, the immune cells of the central nervous system, are key elements regulating brain development and brain health. These cells are fully responsive to stressors, microenvironmental alterations and are actively involved in the construction of neural circuits in children and the ability to undergo full experience-dependent plasticity in adults. Since neuroinflammation is a known key element in the pathogenesis of COVID-19, one might expect the dysregulation of microglial function to severely impact both functional and structural plasticity, leading to the cognitive sequelae that appear in the pathogenesis of Long COVID. Therefore, understanding this complex scenario is mandatory for establishing the possible molecular mechanisms related to these symptoms. In the present review, we will discuss Long COVID and its association with reduced levels of BDNF, altered crosstalk between circulating immune cells and microglia, increased levels of inflammasomes, cytokines and chemokines, as well as the alterations in signaling pathways that impact neural synaptic remodeling and plasticity, such as fractalkines, the complement system, the expression of SIRPα and CD47 molecules and altered matrix remodeling. Together, these complex mechanisms may help us understand consequences of Long COVID for brain development and its association with altered brain plasticity, impacting learning disabilities, neurodevelopmental disorders, as well as cognitive decline in adults.
Collapse
Affiliation(s)
- Luana da Silva Chagas
- Program of Neuroscience, Department of Neurobiology, Institute of Biology, Federal Fluminense University, Niterói 24210-201, Rio de Janeiro, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Program of Neuroscience, Department of Neurobiology, Institute of Biology, Federal Fluminense University, Niterói 24210-201, Rio de Janeiro, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Khodosevich K, Dragicevic K, Howes O. Drug targeting in psychiatric disorders - how to overcome the loss in translation? Nat Rev Drug Discov 2024; 23:218-231. [PMID: 38114612 DOI: 10.1038/s41573-023-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
In spite of major efforts and investment in development of psychiatric drugs, many clinical trials have failed in recent decades, and clinicians still prescribe drugs that were discovered many years ago. Although multiple reasons have been discussed for the drug development deadlock, we focus here on one of the major possible biological reasons: differences between the characteristics of drug targets in preclinical models and the corresponding targets in patients. Importantly, based on technological advances in single-cell analysis, we propose here a framework for the use of available and newly emerging knowledge from single-cell and spatial omics studies to evaluate and potentially improve the translational predictivity of preclinical models before commencing preclinical and, in particular, clinical studies. We believe that these recommendations will improve preclinical models and the ability to assess drugs in clinical trials, reducing failure rates in expensive late-stage trials and ultimately benefitting psychiatric drug discovery and development.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
| | - Katarina Dragicevic
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
39
|
You Y, Chen Z, Hu WW. The role of microglia heterogeneity in synaptic plasticity and brain disorders: Will sequencing shed light on the discovery of new therapeutic targets? Pharmacol Ther 2024; 255:108606. [PMID: 38346477 DOI: 10.1016/j.pharmthera.2024.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Microglia play a crucial role in interacting with neuronal synapses and modulating synaptic plasticity. This function is particularly significant during postnatal development, as microglia are responsible for removing excessive synapses to prevent neurodevelopmental deficits. Dysregulation of microglial synaptic function has been well-documented in various pathological conditions, notably Alzheimer's disease and multiple sclerosis. The recent application of RNA sequencing has provided a powerful and unbiased means to decipher spatial and temporal microglial heterogeneity. By identifying microglia with varying gene expression profiles, researchers have defined multiple subgroups of microglia associated with specific pathological states, including disease-associated microglia, interferon-responsive microglia, proliferating microglia, and inflamed microglia in multiple sclerosis, among others. However, the functional roles of these distinct subgroups remain inadequately characterized. This review aims to refine our current understanding of the potential roles of heterogeneous microglia in regulating synaptic plasticity and their implications for various brain disorders, drawing from recent sequencing research and functional studies. This knowledge may aid in the identification of pathogenetic biomarkers and potential factors contributing to pathogenesis, shedding new light on the discovery of novel drug targets. The field of sequencing-based data mining is evolving toward a multi-omics approach. With advances in viral tools for precise microglial regulation and the development of brain organoid models, we are poised to elucidate the functional roles of microglial subgroups detected through sequencing analysis, ultimately identifying valuable therapeutic targets.
Collapse
Affiliation(s)
- Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
40
|
Tavares-Júnior JWL, Ciurleo GCV, Feitosa EDAAF, Oriá RB, Braga-Neto P. The Clinical Aspects of COVID and Alzheimer's Disease: A Round-Up of Where Things Stand and Are Headed. J Alzheimers Dis 2024; 99:1159-1171. [PMID: 38848177 DOI: 10.3233/jad-231368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The link between long COVID-19 and brain/cognitive impairments is concerning and may foster a worrisome worldwide emergence of novel cases of neurodegenerative diseases with aging. This review aims to update the knowledge, crosstalk, and possible intersections between the Post-COVID Syndrome (PCS) and Alzheimer's disease (AD). References included in this review were obtained from PubMed searches conducted between October 2023 and November 2023. PCS is a very heterogenous and poorly understood disease with recent evidence of a possible association with chronic diseases such as AD. However, more scientific data is required to establish the link between PCS and AD.
Collapse
Affiliation(s)
| | - Gabriella Cunha Vieira Ciurleo
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Reinaldo B Oriá
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro Braga-Neto
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Center of Health Sciences, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
41
|
Jäntti H, Kistemaker L, Buonfiglioli A, De Witte LD, Malm T, Hol EM. Emerging Models to Study Human Microglia In vitro. ADVANCES IN NEUROBIOLOGY 2024; 37:545-568. [PMID: 39207712 DOI: 10.1007/978-3-031-55529-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alice Buonfiglioli
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lot D De Witte
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
42
|
Dey R, Bishayi B. Microglial Inflammatory Responses to SARS-CoV-2 Infection: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:2. [PMID: 38099973 PMCID: PMC11407175 DOI: 10.1007/s10571-023-01444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease causing a worldwide pandemic in the year of 2019. SARS-CoV-2 is an enveloped, positive-stranded RNA virus that could invade the host through spike protein and exhibits multi-organ effects. The Brain was considered to be a potential target for SARS-CoV-2 infection. Although neuropsychiatric symptoms and cognitive impairments were observed in COVID-19 patients even after recovery the mechanism of action is not well documented. In this review, the contribution of microglia in response to SARS-CoV-2 infection was discussed aiming to design a therapeutic regimen for the management of neuroinflammation and psycho-behavioral alterations. Priming of microglia facilitates the hyper-activation state when it interacts with SARS-CoV-2 known as the 'second hit'. Moreover, the microgliosis produces reactive free radicals and pro-inflammatory cytokines like IL-1β, IFN-γ, and IL-6 which ultimately contribute to a 'cytokine storm', thereby increasing the occurrence of cognitive and neurological dysfunction. It was reported that elevated CCL11 may be responsible for psychiatric disorders and ROS/RNS-induced oxidative stress could promote major depressive disorder (MDD) and phenotypic switching. Additionally, during SARS-CoV-2 infection microglia-CD8+ T cell interaction may have a significant role in neuronal cell death. This cytokine-mediated cellular cross-talking plays a crucial role in pro-inflammatory and anti-inflammatory balance within the COVID-19 patient's brain. Therefore, all these aspects will be taken into consideration for developing novel therapeutic strategies to combat SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal, 700121, India.
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| |
Collapse
|
43
|
Li M, Yuan Y, Zou T, Hou Z, Jin L, Wang B. Development trends of human organoid-based COVID-19 research based on bibliometric analysis. Cell Prolif 2023; 56:e13496. [PMID: 37218396 PMCID: PMC10693193 DOI: 10.1111/cpr.13496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a catastrophic threat to human health worldwide. Human stem cell-derived organoids serve as a promising platform for exploring SARS-CoV-2 infection. Several review articles have summarized the application of human organoids in COVID-19, but the research status and development trend of this field have seldom been systematically and comprehensively studied. In this review, we use bibliometric analysis method to identify the characteristics of organoid-based COVID-19 research. First, an annual trend of publications and citations, the most contributing countries or regions and organizations, co-citation analysis of references and sources and research hotspots are determined. Next, systematical summaries of organoid applications in investigating the pathology of SARS-CoV-2 infection, vaccine development and drug discovery, are provided. Lastly, the current challenges and future considerations of this field are discussed. The present study will provide an objective angle to identify the current trend and give novel insights for directing the future development of human organoid applications in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Ting Zou
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zongkun Hou
- School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine)Guizhou Medical UniversityGuiyangChina
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
44
|
Aguado J, Amarilla AA, Taherian Fard A, Albornoz EA, Tyshkovskiy A, Schwabenland M, Chaggar HK, Modhiran N, Gómez-Inclán C, Javed I, Baradar AA, Liang B, Peng L, Dharmaratne M, Pietrogrande G, Padmanabhan P, Freney ME, Parry R, Sng JDJ, Isaacs A, Khromykh AA, Valenzuela Nieto G, Rojas-Fernandez A, Davis TP, Prinz M, Bengsch B, Gladyshev VN, Woodruff TM, Mar JC, Watterson D, Wolvetang EJ. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. NATURE AGING 2023; 3:1561-1575. [PMID: 37957361 PMCID: PMC10724067 DOI: 10.1038/s43587-023-00519-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks. In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression. Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.
Collapse
Affiliation(s)
- Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Eduardo A Albornoz
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Marius Schwabenland
- Institute of Neuropathology and Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Harman K Chaggar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Naphak Modhiran
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Cecilia Gómez-Inclán
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
- Centre for Pharmaceutical Innovation, School of Pharmacy and Medical Sciences, UniSA Clinical and Health Sciences, The University of South Australia, Adelaide, South Australia, Australia
| | - Alireza A Baradar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Lianli Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Guillermo Valenzuela Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Rojas-Fernandez
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Berking Biotechnology, Valdivia, Chile
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Marco Prinz
- Institute of Neuropathology and Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
45
|
Michalski C, Wen Z. Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Front Psychiatry 2023; 14:1291115. [PMID: 38025464 PMCID: PMC10672983 DOI: 10.3389/fpsyt.2023.1291115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Communication between the immune and the nervous system is essential for human brain development and homeostasis. Disruption of this intricately regulated crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative disorders. While animal models have been essential in characterizing the role of neuroimmunity in development and disease, they come with inherent limitations due to species specific differences, particularly with regard to microglia, the major subset of brain resident immune cells. The advent of induced pluripotent stem cell (iPSC) technology now allows the development of clinically relevant models of the central nervous system that adequately reflect human genetic architecture. This article will review recent publications that have leveraged iPSC technology to assess neuro-immune interactions. First, we will discuss the role of environmental stressors such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial function. Next, we will review how iPSC models can be used to study genetic risk factors in neurological and psychiatric disorders. Lastly, we will evaluate current challenges and future potential for iPSC models in the field of neuroimmunity.
Collapse
Affiliation(s)
- Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
46
|
Basak I, Harfoot R, Palmer JE, Kumar A, Quiñones-Mateu ME, Schweitzer L, Hughes SM. Neuroproteomic Analysis after SARS-CoV-2 Infection Reveals Overrepresented Neurodegeneration Pathways and Disrupted Metabolic Pathways. Biomolecules 2023; 13:1597. [PMID: 38002279 PMCID: PMC10669333 DOI: 10.3390/biom13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Besides respiratory illness, SARS-CoV-2, the causative agent of COVID-19, leads to neurological symptoms. The molecular mechanisms leading to neuropathology after SARS-CoV-2 infection are sparsely explored. SARS-CoV-2 enters human cells via different receptors, including ACE-2, TMPRSS2, and TMEM106B. In this study, we used a human-induced pluripotent stem cell-derived neuronal model, which expresses ACE-2, TMPRSS2, TMEM106B, and other possible SARS-CoV-2 receptors, to evaluate its susceptibility to SARS-CoV-2 infection. The neurons were exposed to SARS-CoV-2, followed by RT-qPCR, immunocytochemistry, and proteomic analyses of the infected neurons. Our findings showed that SARS-CoV-2 infects neurons at a lower rate than other human cells; however, the virus could not replicate or produce infectious virions in this neuronal model. Despite the aborted SARS-CoV-2 replication, the infected neuronal nuclei showed irregular morphology compared to other human cells. Since cytokine storm is a significant effect of SARS-CoV-2 infection in COVID-19 patients, in addition to the direct neuronal infection, the neurons were treated with pre-conditioned media from SARS-CoV-2-infected lung cells, and the neuroproteomic changes were investigated. The limited SARS-CoV-2 infection in the neurons and the neurons treated with the pre-conditioned media showed changes in the neuroproteomic profile, particularly affecting mitochondrial proteins and apoptotic and metabolic pathways, which may lead to the development of neurological complications. The findings from our study uncover a possible mechanism behind SARS-CoV-2-mediated neuropathology that might contribute to the lingering effects of the virus on the human brain.
Collapse
Affiliation(s)
- Indranil Basak
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Jennifer E. Palmer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Abhishek Kumar
- Centre for Protein Research, University of Otago, Dunedin 9016, New Zealand
| | - Miguel E. Quiñones-Mateu
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Lucia Schweitzer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie M. Hughes
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
47
|
Kawama K, Shimazaki R, Sunami Y, Miyakoshi N, Tobisawa S, Shimizu T, Takahashi K. Case report: MRI-negative myelitis following COVID-19 with SEP abnormalities: a case series and literature review. Front Neurol 2023; 14:1275696. [PMID: 38020593 PMCID: PMC10643519 DOI: 10.3389/fneur.2023.1275696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is known to have various, neurological manifestations. We herein report three patients with MRI-negative myelitis following COVID-19 with abnormal somatosensory evoked potentials (SEPs). Decreased amplitude of the cortical potential and prolonged latency in the SEPs contributed to diagnosing myelitis in the present patients. The SEP findings improved as the neurological symptoms improved. Despite a delay in initiating immunosuppressive treatment after myelitis onset, all the patients improved clinically. In the light of recent progress in COVID-19 research, several hypotheses can be made to explain the pathophysiology underlying MRI-negative myelitis, including antibody-binding and microglial synapse elimination.
Collapse
Affiliation(s)
| | | | - Yoko Sunami
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Stöberl N, Maguire E, Salis E, Shaw B, Hall-Roberts H. Human iPSC-derived glia models for the study of neuroinflammation. J Neuroinflammation 2023; 20:231. [PMID: 37817184 PMCID: PMC10566197 DOI: 10.1186/s12974-023-02919-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Neuroinflammation is a complex biological process that plays a significant role in various brain disorders. Microglia and astrocytes are the key cell types involved in inflammatory responses in the central nervous system. Neuroinflammation results in increased levels of secreted inflammatory factors, such as cytokines, chemokines, and reactive oxygen species. To model neuroinflammation in vitro, various human induced pluripotent stem cell (iPSC)-based models have been utilized, including monocultures, transfer of conditioned media between cell types, co-culturing multiple cell types, neural organoids, and xenotransplantation of cells into the mouse brain. To induce neuroinflammatory responses in vitro, several stimuli have been established that can induce responses in either microglia, astrocytes, or both. Here, we describe and critically evaluate the different types of iPSC models that can be used to study neuroinflammation and highlight how neuroinflammation has been induced and measured in these cultures.
Collapse
Affiliation(s)
- Nina Stöberl
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Elisa Salis
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Bethany Shaw
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Hazel Hall-Roberts
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| |
Collapse
|
49
|
Chen LY, Truong RDT, Shanmugham S. Parainfectious Brown-Séquard syndrome associated with COVID-19. BMJ Case Rep 2023; 16:e254496. [PMID: 37802592 PMCID: PMC10565177 DOI: 10.1136/bcr-2022-254496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
Acute myelitis encompasses syndromes associated with inflammation of the spinal cord. In cases of inflammatory lesions that only involve a unilateral portion of the axial plane of the cord, Brown-Séquard syndrome may occur, resulting in potential ipsilateral corticospinal, dorsal spinocerebellar, or dorsal column dysfunction or contralateral spinothalamic dysfunction below the level of the lesion. We report a case of an adult male who presented with Brown-Séquard syndrome and with a positive SARS-CoV-2 nasopharyngeal swab PCR test. Neurological symptoms rapidly resolved after initiation of high-dose methylprednisolone. The findings reported not only contribute to documenting a new presentation of neurological complications associated with SARS-CoV-2 infection but also non-exclusively supports the body of literature suggesting the immune-mediated response to this infection as a mechanism of neuropathogenesis. In this case, COVID-19-related acute myelitis responded to treatment with a short regimen of high-dose glucocorticoids.
Collapse
Affiliation(s)
- Lily Ye Chen
- Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Rachel Diem-Trang Truong
- Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Sampathkumar Shanmugham
- Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
- Department of Internal Medicine, HCA Florida Lake Monroe Hospital, Sanford, Florida, USA
| |
Collapse
|
50
|
Saucier J, Comeau D, Robichaud GA, Chamard-Witkowski L. Reactive gliosis and neuroinflammation: prime suspects in the pathophysiology of post-acute neuroCOVID-19 syndrome. Front Neurol 2023; 14:1221266. [PMID: 37693763 PMCID: PMC10492094 DOI: 10.3389/fneur.2023.1221266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction As the repercussions from the COVID-19 pandemic continue to unfold, an ever-expanding body of evidence suggests that infection also elicits pathophysiological manifestations within the central nervous system (CNS), known as neurological symptoms of post-acute sequelae of COVID infection (NeuroPASC). Although the neurological impairments and repercussions associated with NeuroPASC have been well described in the literature, its etiology remains to be fully characterized. Objectives This mini-review explores the current literature that elucidates various mechanisms underlining NeuroPASC, its players, and regulators, leading to persistent neuroinflammation of affected individuals. Specifically, we provide some insights into the various roles played by microglial and astroglial cell reactivity in NeuroPASC and how these cell subsets potentially contribute to neurological impairment in response to the direct or indirect mechanisms of CNS injury. Discussion A better understanding of the mechanisms and biomarkers associated with this maladaptive neuroimmune response will thus provide better diagnostic strategies for NeuroPASC and reveal new potential mechanisms for therapeutic intervention. Altogether, the elucidation of NeuroPASC pathogenesis will improve patient outcomes and mitigate the socioeconomic burden of this syndrome.
Collapse
Affiliation(s)
- Jacob Saucier
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Comeau
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
| | - Gilles A. Robichaud
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Ludivine Chamard-Witkowski
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
- Department of Neurology, Dr. Georges-L.-Dumont University Hospital Centre, Vitality Health Network, Moncton, NB, Canada
| |
Collapse
|