1
|
Lin S, Xu Z, Liu Y, Yang G, Qi X, Huang Y, Zhou M, Jiang X. Engineered Macrophage Membrane-Camouflaged Nanodecoys Reshape the Infectious Microenvironment for Efficient Periodontitis Treatment. ACS NANO 2025; 19:15345-15362. [PMID: 40228155 DOI: 10.1021/acsnano.4c14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
A vicious cycle between microbiota dysbiosis and hyperactivated inflammation, hardly disrupted by conventional therapies, remains a significant clinical challenge for periodontitis treatment. Herein, by cloaking a cascade catalysis system in an engineered macrophage membrane, a nanodecoy-based strategy, with targeted bacteria-killing and immunomodulatory abilities, is proposed for reshaping the hostile periodontitis microenvironment. Specifically, recombinant human antimicrobial peptide, LL-37, is anchored to a Toll-like receptor-enriched macrophage membrane via genetic engineering, which facilitates the specific bacteria elimination and efficient tissue retention of the nanodecoys. Moreover, the cascade catalysis system integrates L-amino acid oxidase (LAAO) with hollowed manganese dioxide (hMnO2) by reciprocal elevation of the catalytic efficiency of hMnO2 and LAAO, leading to accelerated O2 generation under a hypoxic microenvironment and disrupted metabolism of periodontopathogenic bacteria. Notably, the nanodecoys trigger the nuclear translocation of NF-E2-related factor-2 (NRF2) to reduce oxidative stress response and rewire the polarization of macrophages, thereby boosting the osteogenic differentiation of osteoblasts. Furthermore, the alveolar bone regeneration therapeutically benefits from the nanodecoys in vivo. Altogether, these results highlight the attractive functions of engineered macrophage membrane-cloaked nanodecoys for effective periodontitis treatment.
Collapse
Affiliation(s)
- Sihan Lin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Zeqian Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Yulan Liu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Xuanyu Qi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Yijia Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
- National Center for Stomatology, Shanghai 200011, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, People's Republic of China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China
- Shanghai Stomatological Hospital, Fudan University, Shanghai 201102, People's Republic of China
| |
Collapse
|
2
|
Beresford-Jones BS, Suyama S, Clare S, Soderholm A, Xia W, Sardar P, Lee J, Harcourt K, Lawley TD, Pedicord VA. Enterocloster clostridioformis protects against Salmonella pathogenesis and modulates epithelial and mucosal immune function. MICROBIOME 2025; 13:61. [PMID: 40022210 PMCID: PMC11869688 DOI: 10.1186/s40168-025-02050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Promoting resistance to enteric pathogen infection is a core function of the gut microbiota; however, many of the specific host-commensal interactions that mediate this protection remain uncharacterised. To address this knowledge gap, we monocolonised germ-free mice with mouse-derived commensal microbes to screen for microbiota-induced resistance to Salmonella Typhimurium infection. RESULTS We identified Enterocloster clostridioformis as a protective species against S. Typhimurium infection. E. clostridioformis selectively upregulates resistin-like molecule β and cell cycle pathway expression at the level of caecal epithelial cells and increases T-regulatory cells in the underlying mucosal immune system, potentially contributing to reduced infection-induced pathology. CONCLUSIONS We highlight novel mechanisms of host-microbe interactions that can mediate microbiota-induced resistance to acute salmonellosis. In the backdrop of increasing antibiotic resistance, this study identifies novel potential avenues for further research into protective host responses against enteric infections and could lead to new therapeutic approaches. Video Abstract.
Collapse
Affiliation(s)
- Benjamin S Beresford-Jones
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Satoshi Suyama
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Simon Clare
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Amelia Soderholm
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Wangmingyu Xia
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Puspendu Sardar
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Junhee Lee
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Harcourt
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Trevor D Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Virginia A Pedicord
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
3
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
4
|
Chen HY, Hsieh WC, Liu YC, Li HY, Liu PY, Hsu YT, Hsu SC, Luo AC, Kuo WC, Huang YJ, Liou GG, Lin MY, Ko CJ, Tsai HC, Chang SJ. Mitochondrial injury induced by a Salmonella genotoxin triggers the proinflammatory senescence-associated secretory phenotype. Nat Commun 2024; 15:2778. [PMID: 38555361 PMCID: PMC10981749 DOI: 10.1038/s41467-024-47190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Bacterial genotoxins damage host cells by targeting their chromosomal DNA. In the present study, we demonstrate that a genotoxin of Salmonella Typhi, typhoid toxin, triggers the senescence-associated secretory phenotype (SASP) by damaging mitochondrial DNA. The actions of typhoid toxin disrupt mitochondrial DNA integrity, leading to mitochondrial dysfunction and disturbance of redox homeostasis. Consequently, it facilitates the release of damaged mitochondrial DNA into the cytosol, activating type I interferon via the cGAS-STING pathway. We also reveal that the GCN2-mediated integrated stress response plays a role in the upregulation of inflammatory components depending on the STING signaling axis. These SASP factors can propagate the senescence effect on T cells, leading to senescence in these cells. These findings provide insights into how a bacterial genotoxin targets mitochondria to trigger a proinflammatory SASP, highlighting a potential therapeutic target for an anti-toxin intervention.
Collapse
Affiliation(s)
- Han-Yi Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chieh Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yo Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Hsu
- Imaging Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - An-Chi Luo
- Imaging Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Kuo
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jhen Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gan-Guang Liou
- Cryo-EM Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Yun Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Ko
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsing-Chen Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Jung Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
de Sousa Palmeira PH, Peixoto RF, Csordas BG, de Medeiros IA, de Azevedo FDLAA, Veras RC, Janebro DI, Amaral IP, Keesen TSL. Differential regulatory T cell signature after recovery from mild COVID-19. Front Immunol 2023; 14:1078922. [PMID: 36969257 PMCID: PMC10030602 DOI: 10.3389/fimmu.2023.1078922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a range of symptoms in which host immune response have been associated with disease progression. However, the putative role of regulatory T cells (Tregs) in determining COVID-19 outcomes has not been thoroughly investigated. Here, we compared peripheral Tregs between volunteers not previously infected with SARS-CoV-2 (healthy control [HC]) and volunteers who recovered from mild (Mild Recovered) and severe (Severe Recovered) COVID-19. Peripheral blood mononuclear cells (PBMC) were stimulated with SARS-CoV-2 synthetic peptides (Pool Spike CoV-2 and Pool CoV-2) or staphylococcal enterotoxin B (SEB). Results of a multicolor flow cytometric assay showed higher Treg frequency and expression of IL-10, IL-17, perforin, granzyme B, PD-1, and CD39/CD73 co-expression in Treg among the PBMC from the Mild Recovered group than in the Severe Recovered or HC groups for certain SARS-CoV-2 related stimulus. Moreover, Mild Recovered unstimulated samples presented a higher Tregs frequency and expression of IL-10 and granzyme B than did that of HC. Compared with Pool CoV-2 stimuli, Pool Spike CoV-2 reduced IL-10 expression and improved PD-1 expression in Tregs from volunteers in the Mild Recovered group. Interestingly, Pool Spike CoV-2 elicited a decrease in Treg IL-17+ frequency in the Severe Recovered group. In HC, the expression of latency-associated peptide (LAP) and cytotoxic granule co-expression by Tregs was higher in Pool CoV-2 stimulated samples. While Pool Spike CoV-2 stimulation reduced the frequency of IL-10+ and CTLA-4+ Tregs in PBMC from volunteers in the Mild Recovered group who had not experienced certain symptoms, higher levels of perforin and perforin+granzyme B+ co-expression by Tregs were found in the Mild Recovered group in volunteers who had experienced dyspnea. Finally, we found differential expression of CD39 and CD73 among volunteers in the Mild Recovered group between those who had and had not experienced musculoskeletal pain. Collectively, our study suggests that changes in the immunosuppressive repertoire of Tregs can influence the development of a distinct COVID-19 clinical profile, revealing that a possible modulation of Tregs exists among volunteers of the Mild Recovered group between those who did and did not develop certain symptoms, leading to mild disease.
Collapse
Affiliation(s)
- Pedro Henrique de Sousa Palmeira
- Postgraduate program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Rephany Fonseca Peixoto
- Postgraduate program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Bárbara Guimarães Csordas
- Postgraduate program in Natural and Synthetic Bioactive Products, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Isac Almeida de Medeiros
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | - Robson Cavalcante Veras
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Daniele Idalino Janebro
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Ian P.G. Amaral
- Biotechnology Graduation Program, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
6
|
Cook L, Zaunders J, Seddiki N, van Bockel D, Kelleher AD, Munier CML. Parallel analysis of multiple human memory CD4 + T-cell subsets within antigen-specific responses using cell proliferation dyes. Immunol Cell Biol 2023; 101:171-178. [PMID: 36346178 PMCID: PMC10952787 DOI: 10.1111/imcb.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Activation induced marker (AIM) assays are being used increasingly to measure antigen-specific T-cell responses, but this activation can alter cell lineage defining phenotypic markers. We aimed to extend the utility of AIM assays to enable pre-activation defined cell populations to be tracked and quantified within T-cell memory responses. We sorted three ex vivo CD4+ T-cell populations prior to any activation using well defined ex vivo lineage surface marker combinations. These populations were memory non-Tregs, CD39+ Tregs and CD39neg Tregs, although any three memory CD4+ T-cell populations able to be isolated by cell surface markers could potentially be tracked. These cells were labeled with three distinct fluorescent cell proliferation dyes (CFSE, CellTrace Violet and Cell Proliferation Dye eF670) and then all autologous PBMCs were reconstituted maintaining ex vivo cell ratios and CD25/OX40 AIM assays performed with CMV and HSV antigens. This approach enabled tracking of pre-defined cell populations within antigen stimulated responses using both activation marker and cell proliferation readouts. We confirmed that although CD39+ Tregs comprise a substantial proportion of AIM assay responses, they do not make substantial contributions to the proliferative response. This extends the utility of AIM assays to enable parallel analysis of the relative contribution of several CD4+ memory T-cell subsets to recall responses.
Collapse
Affiliation(s)
- Laura Cook
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
- St Vincent's Centre for Applied Medical Research, St Vincent's HospitalSydneyNSWAustralia
- Present address:
Department of Microbiology and ImmunologyUniversity of Melbourne, at The Peter Doherty Institute for Infection and ImmunityParkvilleVIC3000Australia
| | - John Zaunders
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
- St Vincent's Centre for Applied Medical Research, St Vincent's HospitalSydneyNSWAustralia
| | - Nabila Seddiki
- St Vincent's Centre for Applied Medical Research, St Vincent's HospitalSydneyNSWAustralia
- Present address:
IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEAUniversité Paris SudParisFrance
| | - David van Bockel
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
- St Vincent's Centre for Applied Medical Research, St Vincent's HospitalSydneyNSWAustralia
| | - C. Mee Ling Munier
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
| |
Collapse
|
7
|
Ji HJ, Jang AY, Song JY, Ahn KB, Han SH, Bang SJ, Jung HK, Hur J, Seo HS. Development of Live Attenuated Salmonella Typhimurium Vaccine Strain Using Radiation Mutation Enhancement Technology (R-MET). Front Immunol 2022; 13:931052. [PMID: 35898510 PMCID: PMC9310569 DOI: 10.3389/fimmu.2022.931052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a leading cause of food-borne diseases in humans worldwide, resulting in severe morbidity and mortality. They are carried asymptomatically in the intestine or gallbladder of livestock, and are transmitted predominantly from animals to humans via the fecal-oral route. Thus, the best preventive strategy is to preemptively prevent transmission to humans by vaccinating livestock. Live attenuated vaccines have been mostly favored because they elicit both cellular and humoral immunity and provide long-term protective immunity. However, developing these vaccines is a laborious and time-consuming process. Therefore, most live attenuated vaccines have been mainly used for phenotypic screening using the auxotrophic replica plate method, and new types of vaccines have not been sufficiently explored. In this study, we used Radiation-Mutation Enhancement Technology (R-MET) to introduce a wide variety of mutations and attenuate the virulence of Salmonella spp. to develop live vaccine strains. The Salmonella Typhimurium, ST454 strain (ST WT) was irradiated with Cobalt60 gamma-irradiator at 1.5 kGy for 1 h to maximize the mutation rate, and attenuated daughter colonies were screened using in vitro macrophage replication capacity and in vivo mouse infection assays. Among 30 candidates, ATOMSal-L6, with 9,961-fold lower virulence than the parent strain (ST454) in the mouse LD50 model, was chosen. This vaccine candidate was mutated at 71 sites, and in particular, lost one bacteriophage. As a vaccine, ATOMSal-L6 induced a Salmonella-specific IgG response to provide effective protective immunity upon intramuscular vaccination of mice. Furthermore, when mice and sows were orally immunized with ATOMSal-L6, we found a strong protective immune response, including multifunctional cellular immunity. These results indicate that ATOMSal-L6 is the first live vaccine candidate to be developed using R-MET, to the best of our knowledge. R-MET can be used as a fast and effective live vaccine development technology that can be used to develop vaccine strains against emerging or serotype-shifting pathogens.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - A-Yeung Jang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - Seok Jin Bang
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| |
Collapse
|
8
|
Ju YJ, Lee KM, Kim G, Kye YC, Kim HW, Chu H, Park BC, Cho JH, Chang PS, Han SH, Yun CH. Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice. Immune Netw 2022; 22:e16. [PMID: 35573152 PMCID: PMC9066004 DOI: 10.4110/in.2022.22.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 12/01/2022] Open
Abstract
The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b− DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b− DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b− DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103− may induce the increase of IFN-γ–producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.
Collapse
Affiliation(s)
- Young-Jun Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyung-Min Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Girak Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Han Wool Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Byung-Chul Park
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Korea
- Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Barros L, Ferreira C, Veldhoen M. The fellowship of regulatory and tissue-resident memory cells. Mucosal Immunol 2022; 15:64-73. [PMID: 34608235 PMCID: PMC8488068 DOI: 10.1038/s41385-021-00456-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023]
Abstract
T cells located in non-lymphoid tissues have come to prominence in recent years. CD8+ tissue-resident memory (Trm) cells are important for tissue immune surveillance, provide an important line of defence against invading pathogens and show promise in cancer therapies. These cells differ in phenotype from other memory populations, are adapted to the tissue they home to where they found their cognate antigen and have different metabolic requirements for survival and activation. CD4+ Foxp3+ regulatory T (Treg) cells also consist of specialised populations, found in non-lymphoid tissues, with distinct transcriptional programmes. These cells have equally adapted to function in the tissue they made their home. Both Trm and Treg cells have functions beyond immune defence, involving tissue homeostasis, repair and turnover. They are part of a multicellular communication network. Intriguingly, occupying the same niche, Treg cells are important in the establishment of Trm cells, which may have implications to harness the immune surveillance and tissue homeostasis properties of Trm cells for future therapies.
Collapse
Affiliation(s)
- Leandro Barros
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal.
| |
Collapse
|
10
|
Shanmugasundaram R, Acevedo K, Mortada M, Akerele G, Applegate TJ, Kogut MH, Selvaraj RK. Effects of Salmonella enterica ser. Enteritidis and Heidelberg on host CD4+CD25+ regulatory T cell suppressive immune responses in chickens. PLoS One 2021; 16:e0260280. [PMID: 34843525 PMCID: PMC8629318 DOI: 10.1371/journal.pone.0260280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 μg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- USDA-ARS, Toxicology and Mycotoxins Research Unit, Athens, GA, United States of America
- * E-mail:
| | - Keila Acevedo
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Mohamad Mortada
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Gabriel Akerele
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Todd J. Applegate
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Michael H. Kogut
- U.S. Department of Agriculture-ARS, Plains Area, College Station, TX, United States of America
| | - Ramesh K. Selvaraj
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| |
Collapse
|
11
|
Smyth DJ, Ren B, White MPJ, McManus C, Webster H, Shek V, Evans C, Pandhal J, Fields F, Maizels RM, Mayfield S. Oral delivery of a functional algal-expressed TGF-β mimic halts colitis in a murine DSS model. J Biotechnol 2021; 340:1-12. [PMID: 34390759 PMCID: PMC8516079 DOI: 10.1016/j.jbiotec.2021.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a set of immunological disorders which can generate chronic pain and fatigue associated with the inflammatory symptoms. The treatment of IBD remains a significant hurdle with current therapies being only partially effective or having significant side effects, suggesting that new therapies that elicit different modes of action and delivery strategies are required. TGM1 is a TGF-β mimic that was discovered from the intestinal helminth parasite Heligmosomoides polygyrus and is thought to be produced by the parasite to suppress the intestinal inflammation response to help evade host immunity, making it an ideal candidate to be developed as a novel anti-inflammatory bio-therapeutic. Here we utilized the expression system of the edible green algae Chlamydomonas reinhardtii in order to recombinantly produce active TGM1 in a form that could be ingested. C. reinhardtii robustly expressed TGM1, and the resultant recombinant protein is biologically active as measured by regulatory T cell induction. When delivered orally to mice, the algal expressed TGM1 is able to ameliorate weight loss, lymphadenopathy, and disease symptoms in a mouse model of DSS-induced colitis, demonstrating the potential of this biologic as a novel treatment of IBD.
Collapse
Affiliation(s)
- Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Bijie Ren
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Caitlin McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Holly Webster
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Vivien Shek
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Caroline Evans
- Bioanalytical Facility, Dept Chemical and Biological Engineering, University of Sheffield, UK
| | - Jagroop Pandhal
- Bioanalytical Facility, Dept Chemical and Biological Engineering, University of Sheffield, UK
| | - Francis Fields
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| | - Stephen Mayfield
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA.
| |
Collapse
|
12
|
Lam AJ, Uday P, Gillies JK, Levings MK. Helios is a marker, not a driver, of human Treg stability. Eur J Immunol 2021; 52:75-84. [PMID: 34561855 DOI: 10.1002/eji.202149318] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Treg therapy holds promise as a potentially curative approach to establish immune tolerance in transplantation and autoimmune disease. An outstanding question is whether therapeutic Tregs have the potential to transdifferentiate into effector T-cells and, thus, exacerbate rather than suppress immune responses. In mice, the transcription factor Helios is thought to promote Treg lineage stability in a range of inflammatory contexts. In humans, the role of Helios in Tregs is less clear, in part, due to the inability to enrich and study subsets of Helios-positive versus Helios-negative Tregs. Using an in vitro expansion system, we found that loss of high Helios expression and emergence of an intermediate Helios (Heliosmid )-expressing population correlated with Treg destabilization. We used CRISPR/Cas9 to genetically ablate Helios expression in human naive or memory Tregs and found that Helios-KO and unedited Tregs were equivalent in their suppressive function and stability in inflammation. Thus, high Helios expression is a marker, but not a driver, of human Treg stability in vitro. These data highlight the importance of monitoring Helios expression in therapeutic Treg manufacturing and provide new insight into the biological function of this transcription factor in human T-cells.
Collapse
Affiliation(s)
- Avery J Lam
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Prakruti Uday
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jana K Gillies
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Ji HJ, Byun EB, Chen F, Ahn KB, Jung HK, Han SH, Lim JH, Won Y, Moon JY, Hur J, Seo HS. Radiation-Inactivated S. gallinarum Vaccine Provides a High Protective Immune Response by Activating Both Humoral and Cellular Immunity. Front Immunol 2021; 12:717556. [PMID: 34484221 PMCID: PMC8415480 DOI: 10.3389/fimmu.2021.717556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) is a common pathogen in chickens, and causes an acute systemic disease that leads to high mortality. The live attenuated vaccine 9R is able to successfully protect chickens older than six weeks by activating a robust cell-mediated immune response, but its safety and efficacy in young chickens remains controversial. An inactivated SG vaccine is being used as an alternative, but because of its low cellular immune response, it cannot be used as a replacement for live attenuated 9R vaccine. In this study, we employed gamma irradiation instead of formalin as an inactivation method to increase the efficacy of the inactivated SG vaccine. Humoral, cellular, and protective immune responses were compared in both mouse and chicken models. The radiation-inactivated SG vaccine (r-SG) induced production of significantly higher levels of IgG2b and IgG3 antibodies than the formalin-inactivated vaccine (f-SG), and provided a homogeneous functional antibody response against group D, but not group B Salmonella. Moreover, we found that r-SG vaccination could provide a higher protective immune response than f-SG by inducing higher Th17 activation. These results indicate that r-SG can provide a protective immune response similar to the live attenuated 9R vaccine by activating a higher humoral immunity and a lower, but still protective, cellular immune response. Therefore, we expect that the radiation inactivation method might substitute for the 9R vaccine with little or no side effects in chickens younger than six weeks.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Eui-Baek Byun
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea.,Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul, South Korea
| | - Yongkwan Won
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ja Young Moon
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
14
|
Wang D, Wei X, Kalvakolanu DV, Guo B, Zhang L. Perspectives on Oncolytic Salmonella in Cancer Immunotherapy-A Promising Strategy. Front Immunol 2021; 12:615930. [PMID: 33717106 PMCID: PMC7949470 DOI: 10.3389/fimmu.2021.615930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Since the first reported spontaneous regression of tumors in patients with streptococcus infection, cancer biological therapy was born and it evolved into today's immunotherapy over the last century. Although the original strategy was unable to impart maximal therapeutic benefit at the beginning, it laid the foundations for the development of immune checkpoint blockade and CAR-T which are currently used for cancer treatment in the clinics. However, clinical applications have shown that current cancer immunotherapy can cause a series of adverse reactions and are captious for patients with preexisting autoimmune disorders. Salmonellae was first reported to exert antitumor effect in 1935. Until now, numerous studies have proved its potency as an antitumor agent in the near future. In this review, we summarize the currently available data on the antitumor effects of Salmonella, and discussed a possibility of integrating Salmonella into cancer immunotherapy to overcome current obstacles.
Collapse
Affiliation(s)
- Ding Wang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaodong Wei
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V. Kalvakolanu
- Department of Microbiology and Immunology and Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
16
|
Perez-Toledo M, Beristain-Covarrubias N, Channell WM, Hitchcock JR, Cook CN, Coughlan RE, Bobat S, Jones ND, Nakamura K, Ross EA, Rossiter AE, Rooke J, Garcia-Gimenez A, Jossi S, Persaud RR, Marcial-Juarez E, Flores-Langarica A, Henderson IR, Withers DR, Watson SP, Cunningham AF. Mice Deficient in T-bet Form Inducible NO Synthase-Positive Granulomas That Fail to Constrain Salmonella. THE JOURNAL OF IMMUNOLOGY 2020; 205:708-719. [PMID: 32591391 PMCID: PMC7372318 DOI: 10.4049/jimmunol.2000089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ-/- and T-bet-/- mice. In IFN-γ-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-γ reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-γ. T-bet-/- mice induce significant levels of IFN-γ- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-γ-dependent iNOS+ granulomas and prevent dissemination.
Collapse
Affiliation(s)
- Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Nonantzin Beristain-Covarrubias
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William M Channell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica R Hitchcock
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Charlotte N Cook
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruth E Coughlan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Saeeda Bobat
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nicholas D Jones
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kyoko Nakamura
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ewan A Ross
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica Rooke
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alicia Garcia-Gimenez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sian Jossi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruby R Persaud
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Edith Marcial-Juarez
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Adriana Flores-Langarica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia; and
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|