1
|
Pinkston RI, Schexnayder M, Perveen Z, Langohr IM, Jelesijevic T, Penn AL, Noël A. MMP12 deficiency attenuates menthol e-cigarette plus house dust-mite effects on pulmonary iron homeostasis and oxidative stress. Respir Res 2025; 26:135. [PMID: 40217328 PMCID: PMC11992833 DOI: 10.1186/s12931-025-03213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Little is known regarding the pulmonary effects induced by the inhalation of menthol-flavored e-cigarette aerosols on asthma exacerbation, despite the popularity of these devices and flavors among youth and young adults. In the lungs, matrix metalloproteinase 12 (MMP12) expressed and secreted by both alveolar macrophages and bronchial epithelial cells plays an essential role in airway remodeling, a key feature of severe asthma. In this study, we investigated the role of MMP12 in menthol-flavored e-cigarette aerosol exposures plus house-dust mite (HDM)-induced asthmatic responses. METHODS We exposed wild-type (WT) and MMP12 knockout (KO) juvenile female mice to well-characterized menthol-flavored e-cigarette aerosols followed by either PBS or HDM treatment, and evaluated pulmonary outcomes in terms of iron metabolism, oxidative stress responses and pulmonary inflammation. RESULTS We found high levels of iron in the menthol-flavored e-cigarette aerosol. This correlated with e-cigarette + HDM WT mice exhibiting disruption of pulmonary iron metabolism, suggesting a defense mechanism against iron-mediated toxicity. This was evidenced by altered lung protein concentrations of ferroportin, ferritin, lactoferrin, and transferrin, activation of the antioxidant response element (ARE) pathway and up-regulated expression of NQO1 in e-cigarette + HDM WT mice. Further, despite decreased neutrophilic inflammation, MUC5AC, an oxidative stress inducible mucin, was increased in the e-cigarette + HDM WT mice. In contrast, MMP12 KO mice were protected against iron-induced oxidative stress responses, highlighting a crucial role of MMP12 in this model. CONCLUSION These findings revealed in vivo evidence supporting a crucial role for iron metabolism in nicotine salt iron-rich ENDS aerosol toxicity.
Collapse
Affiliation(s)
- Rakeysha I Pinkston
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA, USA
| | | | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
- Global Discovery Pathology and Multimodal Imaging, Sanofi, Cambridge, MA, 02141, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
2
|
Xuan D, Feng D, Qiang F, Xia Y. DUOX1 inhibits the progression of rheumatoid arthritis by regulating the NF-κB pathway in vitro. Allergol Immunopathol (Madr) 2025; 53:160-168. [PMID: 40088033 DOI: 10.15586/aei.v53i2.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND This study investigates the role of dual oxidase 2 (DUOX1) in fibroblast-like synoviocytes associated with rheumatoid arthritis (RA) and to elucidate its potential mechanism of action. METHOD The anti-inflammatory effects of DUOX1 were assessed using IL-1β (interleukin-1 beta)-stimulated synovial fibroblasts (MH7A). Cell viability and migration were evaluated using the Cell Counting Kit-8 and Transwell assays, respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to measure cellular inflammatory factor levels, and immunofluorescence and specific kits were used to assess reactive oxygen species (ROS) production and redox indicators. Western blotting was performed to confirm the antiarthritic mechanism of DUOX1. RESULT The findings revealed that the stimulation if IL-1β downregulates DUOX1 expression in MH7A cells, leading to increased proliferation, migration, inflammatory responses, and oxidative stress. Conversely, DUOX1 overexpression increased the production of IL-1β inducing excessive proliferation, migration, inflammation, and oxidative stress in MH7A cells, and inhibited the activation of the nuclear factor kappa B (NF-κB) inflammatory pathway. CONCLUSION DUOX1 significantly suppresses the proliferation, migration, inflammation, and oxidative stress of RA synovial cells through the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Dan Xuan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu,Anhui, 241000, China
| | - Dandan Feng
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu,Anhui, 241000, China
| | - Fuyong Qiang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Wuhu,Anhui, 241000, China
| | - Yonghui Xia
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu,Anhui,241000, China;
| |
Collapse
|
3
|
Kotrba J, Müller I, Pausder A, Hoffmann A, Camp B, Boehme JD, Müller AJ, Schreiber J, Bruder D, Kahlfuss S, Dudeck A, Stegemann-Koniszewski S. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Am J Physiol Cell Physiol 2024; 327:C1373-C1383. [PMID: 39401422 DOI: 10.1152/ajpcell.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 11/12/2024]
Abstract
Asthma is one of the most common chronic respiratory diseases and is characterized by airway inflammation, increased mucus production, and structural changes in the airways. Recently, there is increasing evidence that the disease is much more heterogeneous than expected, with several distinct asthma endotypes. Based on the specificity of T cells as the best-known driving force in airway inflammation, bronchial asthma is categorized into T helper cell 2 (Th2) and non-Th2 asthma. The most studied effector cells in Th2 asthma include T cells and eosinophils. In contrast to Th2 asthma, much less is known about the pathophysiology of non-Th2 asthma, which is often associated with treatment resistance. Besides T cells, the interaction of myeloid cells such as monocytes/macrophages and mast cells with the airway epithelium significantly contributes to the pathogenesis of asthma. However, the underlying molecular regulation and particularly the specific relevance of this cellular network in certain asthma endotypes remain to be understood. In this review, we summarize recent findings on the regulation of and complex interplay between epithelial cells and the "nonclassical" innate effector cells mast cells and monocytes/macrophages in Th2 and non-Th2 asthma with the ultimate goal of providing the rationale for future research into targeted therapy regimens.
Collapse
Affiliation(s)
- Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ilka Müller
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Aaron Hoffmann
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Belinda Camp
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas J Müller
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sascha Kahlfuss
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Tang L, Zhang X, Xu Y, Liu L, Sun X, Wang B, Yu K, Zhang H, Zhao X, Wang X. BMAL1 regulates MUC1 overexpression in ovalbumin-induced asthma. Mol Immunol 2023; 156:77-84. [PMID: 36906987 DOI: 10.1016/j.molimm.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Asthma often presents with a daily rhythm; however, the underlying mechanisms remain unclear. Circadian rhythm genes have been proposed to regulate inflammation and mucin expression. Here, ovalbumin (OVA)-induced mice and serum shock human bronchial epidermal cells (16HBE) were used in in vivo and in vitro models, respectively. We constructed a brain and muscle ARNT-like 1 (BMAL1) knockdown 16HBE cell line to analyze the effects of rhythmic fluctuations on mucin expression. Serum immunoglobulin E (IgE) and circadian rhythm genes in asthmatic mice showed rhythmic fluctuation amplitude. Mucin (MUC) 1 and MUC5AC expression was increased in the lung tissue of the asthmatic mice. MUC1 expression was negatively correlated with that of the circadian rhythm genes, particularly BMAL1 (r = -0.546, P = 0.006). There was also a negative correlation between BMAL1 and MUC1 expression (r = -0.507, P = 0.002) in the serum shock 16HBE cells. BMAL1 knockdown negated the rhythmic fluctuation amplitude of MUC1 expression and upregulated MUC1 expression in the 16HBE cells. These results indicate that the key circadian rhythm gene, BMAL1, causes periodic changes in airway MUC1 expression in OVA-induced asthmatic mice. Targeting BMAL1 to regulate periodic changes in MUC1 expression may, therefore, improve asthma treatments.
Collapse
Affiliation(s)
- Lingling Tang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Xiaona Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Yanqiu Xu
- Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 211100, China
| | - Li Liu
- Department of Central Lab, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xianhong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Bohan Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Keyao Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Hui Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
5
|
Gupta T, Sarr D, Fantone K, Ashtiwi NM, Sakamoto K, Quinn FD, Rada B. Dual oxidase 1 is dispensable during Mycobacterium tuberculosis infection in mice. Front Immunol 2023; 14:1044703. [PMID: 36936954 PMCID: PMC10020924 DOI: 10.3389/fimmu.2023.1044703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb) is the primary cause of human tuberculosis (TB) and is currently the second most common cause of death due to a singleinfectious agent. The first line of defense against airborne pathogens, including Mtb, is the respiratory epithelium. One of the innate defenses used by respiratory epithelial cells to prevent microbial infection is an oxidative antimicrobial system consisting of the proteins, lactoperoxidase (LPO) and Dual oxidase 1 (Duox1), the thiocyanate anion (SCN-) and hydrogen peroxide (H2O2), which together lead to the generation of antimicrobial hypothiocyanite (OSCN-) in the airway lumen. OSCN- kills bacteria and viruses in vitro, but the role of this Duox1-based system in bacterial infections in vivo remains largely unknown. The goal of this study was to assess whether Duox1 contributes to the immune response against the unique respiratory pathogen, Mtb. Methods Duox1-deficient (Duox1 KO) and wild-type (WT) mice were infected with Mtb aerosols and bacterial titers, lung pathology, cytokines and immune cell recruitment were assessed. Results and discussion Mtb titers in the lung, spleen and liver were not different 30 days after infection between WT and Duox1 KO mice. Duox1 did not affect lung histology assessed at days 0, 30, and 90 post-Mtb infection. Mtb-infected Duox1 KO animals exhibited enhanced production of certain cytokines and chemokines in the airway; however, this response was not associated with significantly higher numbers of macrophages or neutrophils in the lung. B cell numbers were lower, while apoptosis was higher in the pulmonary lesions of Mtb-infected Duox1 KO mice compared to infected WT animals. Taken together, these data demonstrate that while Duox1 might influence leukocyte recruitment to inflammatory cell aggregates, Duox1 is dispensable for the overall clinical course of Mtb lung infection in a mouse model.
Collapse
Affiliation(s)
- Tuhina Gupta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Frederick D. Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Habibovic A, Hristova M, Morris CR, Lin MCJ, Cruz LC, Ather JL, Geiszt M, Anathy V, Janssen-Heininger YMW, Poynter ME, Dixon AE, van der Vliet A. Diet-induced obesity worsens allergen-induced type 2/type 17 inflammation in airways by enhancing DUOX1 activation. Am J Physiol Lung Cell Mol Physiol 2023; 324:L228-L242. [PMID: 36625485 PMCID: PMC9942905 DOI: 10.1152/ajplung.00331.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
More than 50% of people with asthma in the United States are obese, and obesity often worsens symptoms of allergic asthma and impairs response to treatment. Based on previously established roles of the epithelial NADPH oxidase DUOX1 in allergic airway inflammation, we addressed the potential involvement of DUOX1 in altered allergic inflammation in the context of obesity. Intranasal house dust mite (HDM) allergen challenge of subjects with allergic asthma induced rapid secretion of IL-33, then IL-13, into the nasal lumen, responses that were significantly enhanced in obese asthmatic subjects (BMI >30). Induction of diet-induced obesity (DIO) in mice by high-fat diet (HFD) feeding similarly enhanced acute airway responses to intranasal HDM challenge, particularly with respect to secretion of IL-33 and type 2/type 3 cytokines, and this was associated with enhanced epithelial DUOX1 expression and was avoided in DUOX1-deficient mice. DIO also enhanced DUOX1-dependent features of chronic HDM-induced allergic inflammation. Although DUOX1 did not affect overall weight gain by HFD feeding, it contributed to glucose intolerance, suggesting a role in glucose metabolism. However, glucose intolerance induced by short-term HFD feeding, in the absence of adiposity, was not sufficient to alter HDM-induced acute airway responses. DIO was associated with enhanced presence of the adipokine leptin in the airways, and leptin enhanced DUOX1-dependent IL-13 and mucin production in airway epithelial cells. In conclusion, augmented inflammatory airway responses to HDM in obesity are associated with increases in airway epithelial DUOX1, and by increased airway epithelial leptin signaling.
Collapse
Affiliation(s)
- Aida Habibovic
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Carolyn R Morris
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Miao-Chong Joy Lin
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Litiele C Cruz
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer L Ather
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Miklós Geiszt
- Department of Physiology and "Lendület" Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary
| | - Vikas Anathy
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
7
|
Hsu AP, Korzeniowska A, Aguilar CC, Gu J, Karlins E, Oler AJ, Chen G, Reynoso GV, Davis J, Chaput A, Peng T, Sun L, Lack JB, Bays DJ, Stewart ER, Waldman SE, Powell DA, Donovan FM, Desai JV, Pouladi N, Long Priel DA, Yamanaka D, Rosenzweig SD, Niemela JE, Stoddard J, Freeman AF, Zerbe CS, Kuhns DB, Lussier YA, Olivier KN, Boucher RC, Hickman HD, Frelinger J, Fierer J, Shubitz LF, Leto TL, Thompson GR, Galgiani JN, Lionakis MS, Holland SM. Immunogenetics associated with severe coccidioidomycosis. JCI Insight 2022; 7:e159491. [PMID: 36166305 PMCID: PMC9746810 DOI: 10.1172/jci.insight.159491] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Disseminated coccidioidomycosis (DCM) is caused by Coccidioides, pathogenic fungi endemic to the southwestern United States and Mexico. Illness occurs in approximately 30% of those infected, less than 1% of whom develop disseminated disease. To address why some individuals allow dissemination, we enrolled patients with DCM and performed whole-exome sequencing. In an exploratory set of 67 patients with DCM, 2 had haploinsufficient STAT3 mutations, and defects in β-glucan sensing and response were seen in 34 of 67 cases. Damaging CLEC7A and PLCG2 variants were associated with impaired production of β-glucan-stimulated TNF-α from PBMCs compared with healthy controls. Using ancestry-matched controls, damaging CLEC7A and PLCG2 variants were overrepresented in DCM, including CLEC7A Y238* and PLCG2 R268W. A validation cohort of 111 patients with DCM confirmed the PLCG2 R268W, CLEC7A I223S, and CLEC7A Y238* variants. Stimulation with a DECTIN-1 agonist induced DUOX1/DUOXA1-derived hydrogen peroxide [H2O2] in transfected cells. Heterozygous DUOX1 or DUOXA1 variants that impaired H2O2 production were overrepresented in discovery and validation cohorts. Patients with DCM have impaired β-glucan sensing or response affecting TNF-α and H2O2 production. Impaired Coccidioides recognition and decreased cellular response are associated with disseminated coccidioidomycosis.
Collapse
Affiliation(s)
- Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Agnieszka Korzeniowska
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Cynthia C. Aguilar
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jingwen Gu
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Eric Karlins
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Gang Chen
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Glennys V. Reynoso
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Joie Davis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Alexandria Chaput
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Tao Peng
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Ling Sun
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Respiratory and Critical Care Medicine, Laboratory of Pulmonary Immunology and Inflammation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Justin B. Lack
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Derek J. Bays
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Sacramento, California, USA
| | - Ethan R. Stewart
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Sacramento, California, USA
| | - Sarah E. Waldman
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Sacramento, California, USA
| | - Daniel A. Powell
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Fariba M. Donovan
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
- Department of Medicine, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Jigar V. Desai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Nima Pouladi
- Center for Biomedical Informatics and Biostatistics and
- The Center for Applied Genetics and Genomic Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Debra A. Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daisuke Yamanaka
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Julie E. Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center and
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center and
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Christa S. Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yves A. Lussier
- Center for Biomedical Informatics and Biostatistics and
- The Center for Applied Genetics and Genomic Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Kenneth N. Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Richard C. Boucher
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jeffrey Frelinger
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Joshua Fierer
- VA HealthCare San Diego, San Diego, California, USA
- Division of Infectious Diseases, Departments of Pathology and Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lisa F. Shubitz
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Thomas L. Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - John N. Galgiani
- Valley Fever Center for Excellence, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
- Department of Medicine, University of Arizona College of Medicine–Tucson, Tucson, Arizona, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| |
Collapse
|