1
|
Cory-Slechta DA, Downs CJ, Sobolewski M. Cumulative risk assessment as the pathway to public health protection for behavioral neurotoxicity. Neurotoxicology 2025; 108:400-411. [PMID: 40349850 DOI: 10.1016/j.neuro.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
The formulation of adverse outcome pathways (AOPs) based on high-throughput in vitro new approach methods linking biochemical/mechanistic data with an apical endpoint considered an adverse outcome (AO), is increasingly proposed to accelerate the process of risk assessment for environmental chemical exposures. While a laudable goal, this approach ignores the extensive evidence demonstrating context-dependence of neurotoxicological consequences, including behavioral toxicity of chemical exposures. Such contextual modifiers can include environmental conditions (poverty, psychosocial stress, behavioral experience/history), physiological conditions (sex, period of exposure, nutritional status, brain region, exposure parameters), and genetic background. Context dependence represents a serious omission for AOP formulation because an environmental context can alter a chemical's molecular targets, or potentially enhance toxicity through interactions with other contextual conditions, thus leading to potential underestimation of neurological risks due to such exposures. The integrative physiological basis of AOs requires cumulative risk assessments that model environmental contexts across scales of biology, i.e., integration and testing in whole-animal models. AOPs contribute to the derivation of cumulative risk considerations regarding factors to incorporate into cumulative risk assessments by defining risk factors with shared biological targets. Epidemiological and animal model studies can provide information to prioritize interactive effects of greatest magnitude. Additionally, a focus on how a single risk factor in different physiological contexts may attribute risk across multiple neurologic conditions, rather than to a single unique condition, would provide broader public health protection. Realistic acknowledgement of context-dependence is requisite to understanding both the etiological basis of neurological diseases and disorders and to human health protection.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States.
| |
Collapse
|
2
|
Goldstein JM, Konishi K, Aroner S, Lee H, Remington A, Chitnis T, Buka SL, Hornig M, Tobet SA. Prenatal immune origins of brain aging differ by sex. Mol Psychiatry 2025; 30:1887-1896. [PMID: 39567743 PMCID: PMC12014477 DOI: 10.1038/s41380-024-02798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
With an increasing aging population and Alzheimer's disease tsunami, it is critical to identify early antecedents of brain aging to target for intervention and prevention. Women and men develop and age differently, thus using a sex differences lens can contribute to identification of early risk biomarkers and resilience. There is growing evidence for fetal antecedents to adult memory impairments, potentially through disruption of maternal prenatal immune pathways. Here, we hypothesized that in utero exposure to maternal pro-inflammatory cytokines will have sex-dependent effects on specific brain circuitry regulating offspring's memory and immune function that will be retained across the lifespan. Using a unique prenatal cohort, we tested this in 204 adult offspring, equally divided by sex, who were exposed/unexposed to an adverse in utero maternal immune environment and followed into early midlife (~age 50). Functional magnetic resonance imaging results showed exposure to pro-inflammatory cytokines in utero (i.e., higher maternal IL-6 and TNF-α levels) was significantly associated with sex differences in brain activity and connectivity underlying memory circuitry and performance and with a hyperimmune state, 50 years later. In contrast, the anti-inflammatory cytokine, IL-10 alone, was not significantly associated with memory circuitry in midlife. Predictive validity of prenatal exposure was underscored by significant associations with age 7 academic achievement, also associated with age 50 memory performance. Results uniquely demonstrated that adverse levels of maternal in utero pro-inflammatory cytokines during a critical period of the sexual differentiation of the brain produced long-lasting effects on immune function and memory circuitry/function from childhood to midlife that were sex-dependent, brain region-specific, and, within women, reproductive stage-dependent.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Kyoko Konishi
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Biostatistics, Massachusetts General Hospital, Boston, MA, USA
| | - Anne Remington
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and MGH, Harvard Medical School, Boston, MA, USA
| | - Stephen L Buka
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology and Population Health, Brown University, Providence, RI, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Stuart A Tobet
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Geng M, Yu Z, Wang Y, Tong J, Gao H, Gan H, Zhou J, Wang B, Ding P, Yan S, Huang K, Wu X, Tao F. Placental and cord serum inflammatory cytokines and children's domain-specific neurodevelopment at 18 months: effect modification by maternal vitamin D status. BMC Med 2025; 23:252. [PMID: 40307787 PMCID: PMC12044988 DOI: 10.1186/s12916-025-04096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Epidemiological studies that have simultaneously explored the effects of placental and cord blood inflammatory cytokine levels on neurodevelopment in offspring, as well as the role of maternal vitamin D in these associations, are lacking. To investigate the associations of placental and cord blood inflammatory cytokine levels with neurodevelopment in 18-month-old children, and the potential modification effect by maternal vitamin D. METHODS Based on the Ma'anshan birth cohort, the current study involved 1241 mother-child pairs. The placental inflammatory cytokine mRNA expression levels, cord serum inflammatory cytokine concentrations, and maternal serum vitamin D concentrations were determined. Children's neurodevelopmental outcomes were defined as the Chinese version of the Ages and Stages Questionnaire (Third Edition) subdomain scores below the established cutoff scores. Generalized linear models were utilized to assess the effects of placental and cord serum inflammatory cytokines on neurodevelopmental outcomes and to examine the modification effects of maternal vitamin D. RESULTS After adjusting for confounders, each one-unit increase in placental IL-6 (OR = 1.30, 95% CI: 1.09, 1.55, P-FDR = 0.024), IL-8 (OR = 1.25, 95% CI: 1.05, 1.49, P-FDR = 0.036), and IFN-γ level in the cord serum (OR = 1.74, 95% CI: 1.16, 2.61, P-FDR = 0.042) was associated with an increased risk of fine motor delay. Elevated levels of placental TNF-α (OR = 1.38, 95% CI: 1.12, 1.69, P-FDR = 0.012), IL-6 (OR = 1.29, 95% CI: 1.04, 1.61, P-FDR = 0.042), and IL-8 (OR = 1.31, 95% CI: 1.06, 1.62, P-FDR = 0.036) were associated with an increased risk of personal-social delay. Stratified analyses showed that lower maternal vitamin D levels (< 20 ng/mL) moderated the associations between inflammatory markers and delays in fine motor, gross motor, and personal-social subdomains. CONCLUSIONS Elevated levels of specific inflammatory cytokines in the placenta and umbilical cord blood were associated with developmental delays on a parental-reported screening tool. Maternal vitamin D status can modify the adverse effects of the intrauterine pro-inflammatory milieu on the neurodevelopment of children.
Collapse
Affiliation(s)
- Menglong Geng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Zhen Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Yafei Wang
- Department of Nursing, Anhui Medical College, Hefei, Anhui, 230601, China
| | - Juan Tong
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hui Gao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hong Gan
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jixing Zhou
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Baolin Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Peng Ding
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Shuangqin Yan
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Xiaoyan Wu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- Department of Maternal, School of Public Health, Anhui Medical University, Child & Adolescent HealthNo. 81 Meishan Road, Hefei, Anhui Province, 230032, China.
| | - Fangbiao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui, 230032, China.
- Department of Maternal, School of Public Health, Anhui Medical University, Child & Adolescent HealthNo. 81 Meishan Road, Hefei, Anhui Province, 230032, China.
| |
Collapse
|
4
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2025; 97:12-27. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the lifespan, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Seiffe A, Kazlauskas N, Campolongo M, Depino AM. Juvenile peripheral LPS exposure overrides female resilience to prenatal VPA effects on adult sociability in mice. Sci Rep 2024; 14:11435. [PMID: 38763939 PMCID: PMC11102908 DOI: 10.1038/s41598-024-62217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024] Open
Abstract
Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Araceli Seiffe
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Nadia Kazlauskas
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Marcos Campolongo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Scorza P, Duarte CS, Lee S, Wu H, Posner J, Baccarelli A, Monk C. Stage 2 Registered Report: Epigenetic Intergenerational Transmission: Mothers' Adverse Childhood Experiences and DNA Methylation. J Am Acad Child Adolesc Psychiatry 2023; 62:1110-1122. [PMID: 37330044 PMCID: PMC10594411 DOI: 10.1016/j.jaac.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Individual differences in risk for mental disorders over the lifespan are shaped by forces acting before the individual is born-in utero, but likely even earlier, during the mother's own childhood. The environmental epigenetics hypothesis proposes that sustained effects of environmental conditions on gene expression are mediated by epigenetic mechanisms. Recent human studies have shown that adversities in childhood are correlated with DNA methylation (DNAm) in adulthood. In the current study, we tested the following pre-registered hypotheses: Mothers' adverse childhood experiences (ACEs) are correlated with DNAm in peripheral blood during pregnancy (hypothesis 1) and in cord blood samples from newborn infants (hypothesis 2), and women's depression and anxiety symptoms during pregnancy mediate the association between mothers' ACE exposure and prenatal/neonatal DNA methylation (hypothesis 3). METHOD Data were from the Avon Longitudinal Study of Parents and Children Accessible Resource for Integrated Epigenomic Studies substudy. Women provided retrospective self-reports during pregnancy of ACE exposure. We conducted an epigenome-wide association study testing whether mothers' ACE exposure, cumulative score (0-10), was associated with DNAm in maternal antenatal blood and infant cord blood in more than 450,000 CpG (point on DNA sequence where cytosine and guanine base pairs are linked by a phosphate, where methylation usually occurs) sites on the Illumina 450K BeadChip. Analyses for cord blood were separated by infant sex, a pre-registered analysis. RESULTS Hypothesis 1: In 896 mother-infant pairs with available methylation and ACE exposure data, there were no significant associations between mothers' ACE score and DNAm from antenatal peripheral blood, after controlling for covariates. Hypothesis 2: In infant cord blood, there were 5 CpG sites significantly differentially methylated in relation to mothers' ACEs (false discovery rate [FDR] < .05), but only in male offspring. Effect sizes were medium, with partial eta squared values ranging from 0.060 to 0.078. CpG sites were in genes related to mitochondrial function and neuronal development in the cerebellum. Hypothesis 3: There was no mediation by maternal anxiety/depression symptoms found between mothers' ACEs score and DNAm in the significant CpG sites in male cord blood. Mediation was not tested in antenatal peripheral blood, because no direct association between mothers' ACE score and antenatal peripheral blood was found. CONCLUSION Our results show that mothers' ACE exposure is associated with DNAm in male offspring, supporting the notion that DNAm could be a marker of intergenerational biological embedding of mothers' childhood adversity. STUDY REGISTRATION INFORMATION Epigenetic Intergenerational Transmission: Mothers' Adverse Childhood Experiences and DNA Methylation; https://doi.org/10.1016/j.jaac.2020.03.008.
Collapse
Affiliation(s)
- Pamela Scorza
- Columbia University Vagelos College of Physicians and Surgeons, New York.
| | - Cristiane S Duarte
- New York State Psychiatric Institute, New York; Columbia University, New York
| | - Seonjoo Lee
- New York State Psychiatric Institute, New York; Columbia University, New York
| | - Haotian Wu
- Mailman School of Public Health, Columbia University, New York
| | - Jonathan Posner
- New York State Psychiatric Institute, New York; Columbia University, New York
| | | | - Catherine Monk
- Columbia University Vagelos College of Physicians and Surgeons, New York
| |
Collapse
|
8
|
Cornil CA, Balthazart J. Contribution of birds to the study of sexual differentiation of brain and behavior. Horm Behav 2023; 155:105410. [PMID: 37567061 PMCID: PMC10543621 DOI: 10.1016/j.yhbeh.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Behavioral neuroendocrinology has largely relied on mammalian models to understand the relationship between hormones and behavior, even if this discipline has historically used a larger diversity of species than other fields. Recent advances revealed the potential of avian models in elucidating the neuroendocrine bases of behavior. This paper provides a review focused mainly on the contributions of our laboratory to the study of sexual differentiation in Japanese quail and songbirds. Quail studies have firmly established the role of embryonic estrogens in the sexual differentiation of male copulatory behavior. While most sexually differentiated features identified in brain structure and physiology result from the different endocrine milieu of adults, a few characteristics are organized by embryonic estrogens. Among them, a sex difference was identified in the number and morphology of microglia which is not associated with sex differences in the concentration/expression of neuroinflammatory molecules. The behavioral role of microglia and neuroinflammatory processes requires further investigations. Sexual differentiation of singing in zebra finches is not mediated by the same endocrine mechanisms as male copulatory behavior and "direct" genetic effect, i.e., not mediated by gonadal steroids have been identified. Epigenetic contributions have also been considered. Finally sex differences in specific aspects of singing behavior have been identified in canaries after treatment of adults with exogenous testosterone suggesting that these aspects of song are differentiated during ontogeny. Integration of quail and songbirds as alternative models has thus expanded understanding of the interplay between hormones and behavior in the control of sexual differentiation.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate (Bat. B36), 4000 Liège, Belgium.
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate (Bat. B36), 4000 Liège, Belgium
| |
Collapse
|
9
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
King'uyu DN, Stephens SBZ, Kopec AM. Immune signaling in sex-specific neural and behavioral development: Adolescent opportunity. Curr Opin Neurobiol 2022; 77:102647. [PMID: 36332416 PMCID: PMC9893405 DOI: 10.1016/j.conb.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Sex differences in neural and behavioral development are integral to understanding neurodevelopmental, mental health, and neurodegenerative disorders. Much of the literature has focused on late prenatal and early postnatal life as a critical juncture for establishing sex-specific developmental trajectories, and data are now clear that immune signaling plays a central role in establishing sex differences early in life. Adolescence is another developmental period during which sex differences arise. However, we know far less about how immune signaling plays a role in establishing sex differences during adolescence. Herein, we review well-defined examples of sex differences during adolescence and then survey the literature to speculate how immune signaling might be playing a role in defining sex-specific adolescent outcomes. We discuss open questions in the literature and propose experimental design tenets that may assist in better understanding adolescent neurodevelopment.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA
| | - Shannon B Z Stephens
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA. https://twitter.com/Stephens_Lab
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA.
| |
Collapse
|
11
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
12
|
Otaru S, Lawrence DA. Autism: genetics, environmental stressors, maternal immune activation, and the male bias in autism. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022. [DOI: 10.37349/ent.2022.00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/20/2022] [Indexed: 01/05/2025]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders (NDD) characterized by deficits in three domains: impairments in social interactions, language, and communication, and increased stereotyped restrictive/repetitive behaviors and interests. The exact etiology of ASD remains unknown. Genetics, gestational exposure to inflammation, and environmental stressors, which combine to affect mitochondrial dysfunction and metabolism, are implicated yet poorly understood contributors and incompletely delineated pathways toward the relative risk of ASD. Many studies have shown a clear male bias in the incidence of ASD and other NDD. In other words, being male is a significant yet poorly understood risk factor for the development of NDD. This review discusses the link between these factors by looking at the current body of evidence. Understanding the link between the multiplicity of hits—from genes to environmental stressors and possible sexual determinants, contributing to autism susceptibility is critical to developing targeted interventions to mitigate these risks.
Collapse
Affiliation(s)
- Sarah Otaru
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York 12144, USA
| | - David A. Lawrence
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York 12144, USA;Clinical and Experimental Immunology, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| |
Collapse
|
13
|
Christiansen DM, McCarthy MM, Seeman MV. Where Sex Meets Gender: How Sex and Gender Come Together to Cause Sex Differences in Mental Illness. Front Psychiatry 2022; 13:856436. [PMID: 35836659 PMCID: PMC9273892 DOI: 10.3389/fpsyt.2022.856436] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/02/2022] [Indexed: 12/25/2022] Open
Abstract
Sex differences are prevalent in multiple mental disorders. Internalizing disorders are more commonly diagnosed in women, whereas externalizing and neurodevelopmental disorders are more often diagnosed in men. Significant sex/gender differences are reported in prevalence, symptom profile, age of onset, comorbidities, functional impairment, prognosis, as well as in responses to various treatments. In this conceptual article, we discuss theories and empirical studies of sex- and gender-related influences in mental health, by focusing on three examples: autism spectrum disorder (ASD), acknowledged as a disorder whose roots are mainly biological; eating disorders, whose origins are considered to be mainly psychosocial, and posttraumatic stress disorder (PTSD), an environmentally caused disorder with both psychosocial and biological underpinnings. We examine the ways in which sex differences emerge, from conception through adulthood. We also examine how gender dichotomies in exposures, expectations, role assumptions, and cultural traditions impact the expression of our three selected mental illnesses. We are especially interested in how sex-based influences and gender-based influences interact with one another to affect mental illness. We suggest that sex and gender are multi-faceted and complex phenomena that result in variations, not only between men and women, but also within each sex and gender through alterations in genes, hormone levels, self-perceptions, trauma experiences, and interpersonal relationships. Finally, we propose a conceptual diatheses-stress model, depicting how sex and gender come together to result in multiple sex/gender differences across mental disorders. In our model, we categorize diatheses into several categories: biological, intrapersonal, interpersonal, and environmental. These diatheses interact with exposure to stressors, ranging from relatively minor to traumatic, which allows for the sometimes bidirectional influences of acute and long-term stress responses. Sex and gender are discussed at every level of the model, thereby providing a framework for understanding and predicting sex/gender differences in expression, prevalence and treatment response of mental disorders. We encourage more research into this important field of study.
Collapse
Affiliation(s)
- Dorte M. Christiansen
- Department of Psychology, National Centre for Psychotraumatology, University of Southern Denmark, Odense, Denmark
| | - Margaret M. McCarthy
- Department of Pharmacology, University of Maryland, Baltimore, MD, United States
| | - Mary V. Seeman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Abstract
ABSTRACT Inflammatory phenomena are found in many psychiatric disorders-notably, depression, schizophrenia, and posttraumatic stress disorder. Inflammation has been linked to severity and treatment resistance, and may both contribute to, and result from, the pathophysiology of some psychiatric illnesses. Emerging research suggests that inflammation may contribute to symptom domains of reward, motor processing, and threat reactivity across different psychiatric diagnoses. Reward-processing deficits contribute to motivational impairments in depression and schizophrenia, and motor-processing deficits contribute to psychomotor slowing in both depression and schizophrenia. A number of experimental models and clinical trials suggest that inflammation produces deficits in reward and motor processing through common pathways connecting the cortex and the striatum, which includes the nucleus accumbens, caudate nucleus, and putamen.The observed effects of inflammation on psychiatric disorders may cut across traditional conceptualizations of psychiatric diagnoses. Further study may lead to targeted immunomodulating treatments that address difficult-to-treat symptoms in a number of psychiatric disorders. In this review, we use a Research Domain Criteria framework to discuss proposed mechanisms for inflammation and its effects on the domains of reward processing, psychomotor slowing, and threat reactivity. We also discuss data that support contributing roles of metabolic dysregulation and sex differences on the behavioral outcomes of inflammation. Finally, we discuss ways that future studies can help disentangle this complex topic to yield fruitful results that will help advance the field of psychoneuroimmunology.
Collapse
Affiliation(s)
- David S Thylur
- From the Department of Psychiatry and Behavioral Sciences, Emory University
| | | |
Collapse
|
15
|
Blokland GAM, Grove J, Chen CY, Cotsapas C, Tobet S, Handa R, St Clair D, Lencz T, Mowry BJ, Periyasamy S, Cairns MJ, Tooney PA, Wu JQ, Kelly B, Kirov G, Sullivan PF, Corvin A, Riley BP, Esko T, Milani L, Jönsson EG, Palotie A, Ehrenreich H, Begemann M, Steixner-Kumar A, Sham PC, Iwata N, Weinberger DR, Gejman PV, Sanders AR, Buxbaum JD, Rujescu D, Giegling I, Konte B, Hartmann AM, Bramon E, Murray RM, Pato MT, Lee J, Melle I, Molden E, Ophoff RA, McQuillin A, Bass NJ, Adolfsson R, Malhotra AK, Martin NG, Fullerton JM, Mitchell PB, Schofield PR, Forstner AJ, Degenhardt F, Schaupp S, Comes AL, Kogevinas M, Guzman-Parra J, Reif A, Streit F, Sirignano L, Cichon S, Grigoroiu-Serbanescu M, Hauser J, Lissowska J, Mayoral F, Müller-Myhsok B, Świątkowska B, Schulze TG, Nöthen MM, Rietschel M, Kelsoe J, Leboyer M, Jamain S, Etain B, Bellivier F, Vincent JB, Alda M, O'Donovan C, Cervantes P, Biernacka JM, Frye M, McElroy SL, Scott LJ, Stahl EA, Landén M, Hamshere ML, Smeland OB, Djurovic S, Vaaler AE, Andreassen OA, Baune BT, Air T, Preisig M, Uher R, Levinson DF, Weissman MM, Potash JB, Shi J, Knowles JA, Perlis RH, Lucae S, et alBlokland GAM, Grove J, Chen CY, Cotsapas C, Tobet S, Handa R, St Clair D, Lencz T, Mowry BJ, Periyasamy S, Cairns MJ, Tooney PA, Wu JQ, Kelly B, Kirov G, Sullivan PF, Corvin A, Riley BP, Esko T, Milani L, Jönsson EG, Palotie A, Ehrenreich H, Begemann M, Steixner-Kumar A, Sham PC, Iwata N, Weinberger DR, Gejman PV, Sanders AR, Buxbaum JD, Rujescu D, Giegling I, Konte B, Hartmann AM, Bramon E, Murray RM, Pato MT, Lee J, Melle I, Molden E, Ophoff RA, McQuillin A, Bass NJ, Adolfsson R, Malhotra AK, Martin NG, Fullerton JM, Mitchell PB, Schofield PR, Forstner AJ, Degenhardt F, Schaupp S, Comes AL, Kogevinas M, Guzman-Parra J, Reif A, Streit F, Sirignano L, Cichon S, Grigoroiu-Serbanescu M, Hauser J, Lissowska J, Mayoral F, Müller-Myhsok B, Świątkowska B, Schulze TG, Nöthen MM, Rietschel M, Kelsoe J, Leboyer M, Jamain S, Etain B, Bellivier F, Vincent JB, Alda M, O'Donovan C, Cervantes P, Biernacka JM, Frye M, McElroy SL, Scott LJ, Stahl EA, Landén M, Hamshere ML, Smeland OB, Djurovic S, Vaaler AE, Andreassen OA, Baune BT, Air T, Preisig M, Uher R, Levinson DF, Weissman MM, Potash JB, Shi J, Knowles JA, Perlis RH, Lucae S, Boomsma DI, Penninx BWJH, Hottenga JJ, de Geus EJC, Willemsen G, Milaneschi Y, Tiemeier H, Grabe HJ, Teumer A, Van der Auwera S, Völker U, Hamilton SP, Magnusson PKE, Viktorin A, Mehta D, Mullins N, Adams MJ, Breen G, McIntosh AM, Lewis CM, Hougaard DM, Nordentoft M, Mors O, Mortensen PB, Werge T, Als TD, Børglum AD, Petryshen TL, Smoller JW, Goldstein JM. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biol Psychiatry 2022; 91:102-117. [PMID: 34099189 PMCID: PMC8458480 DOI: 10.1016/j.biopsych.2021.02.972] [Show More Authors] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
Collapse
Affiliation(s)
- Gabriëlla A M Blokland
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark; Bioinformatics Research Centre (BiRC), Aarhus, Denmark
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Biogen Inc., Cambridge, Massachusetts
| | - Chris Cotsapas
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Departments of Neurology and Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Stuart Tobet
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert Handa
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - David St Clair
- University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Todd Lencz
- The Feinstein Institute for Medical Research, Manhasset, New York; The Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; The Zucker Hillside Hospital, Glen Oaks, New York
| | - Bryan J Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia
| | - Sathish Periyasamy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; Queensland Centre for Mental Health Research, The Park - Centre for Mental Health, Wacol, Queensland, Australia
| | - Murray J Cairns
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Brian Kelly
- Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Brien P Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Tõnu Esko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden; Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Hannelore Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Begemann
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes Steixner-Kumar
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China; State Key Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China; Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, SAR China
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland; Departments of Psychiatry, Neurology, Neuroscience and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo V Gejman
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois
| | - Alan R Sanders
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois
| | - Joseph D Buxbaum
- Departments of Human Genetics and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany; Department of Psychiatry, University of Munich, Munich, Germany
| | - Ina Giegling
- Department of Psychiatry, University of Halle, Halle, Germany; Department of Psychiatry, University of Munich, Munich, Germany
| | - Bettina Konte
- Department of Psychiatry, University of Halle, Halle, Germany
| | | | - Elvira Bramon
- Mental Health Neuroscience Research Department, Division of Psychiatry, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Robin M Murray
- Institute of Psychiatry, King's College London, London, United Kingdom
| | - Michele T Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, New York; Department of Psychiatry and Zilkha Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, California
| | - Jimmy Lee
- Research Division and Department of General Psychiatry, Institute of Mental Health, Singapore, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roel A Ophoff
- University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands; Department of Human Genetics, University of California, Los Angeles, California; David Geffen School of Medicine, and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Nicholas J Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University Medical Faculty, Umeå, Sweden
| | - Anil K Malhotra
- The Feinstein Institute for Medical Research, Manhasset, New York; The Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; The Zucker Hillside Hospital, Glen Oaks, New York
| | - Nicholas G Martin
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia; Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andreas J Forstner
- Centre for Human Genetics, University of Marburg, Marburg, Germany; Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Sabrina Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Joanna Hauser
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Bertram Müller-Myhsok
- University of Liverpool, Liverpool, United Kingdom; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Marion Leboyer
- Faculté de Médecine, Université Paris Est, Créteil, France; Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Stéphane Jamain
- Faculté de Médecine, Université Paris Est, Créteil, France; INSERM U955, Psychiatrie Translationnelle, Créteil, France
| | - Bruno Etain
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; UMR-S1144 Team 1 Biomarkers of relapse and therapeutic response in addiction and mood disorders, INSERM, Paris, France; Psychiatry, Université Paris Diderot, Paris, France
| | - Frank Bellivier
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; UMR-S1144 Team 1 Biomarkers of relapse and therapeutic response in addiction and mood disorders, INSERM, Paris, France; Psychiatry, Université Paris Diderot, Paris, France; Paris Bipolar and TRD Expert Centres, FondaMental Foundation, Paris, France
| | - John B Vincent
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pablo Cervantes
- Department of Psychiatry, Mood Disorders Program, McGill University Health Center, Montréal, Québec, Canada
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Mark Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | | | - Laura J Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Eli A Stahl
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute of Neuroscience and Physiology, the Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Marian L Hamshere
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, University of Münster, Münster, Germany
| | - Tracy Air
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Austrlalia, Australia
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Douglas F Levinson
- Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - James A Knowles
- Psychiatry & The Behavioral Sciences, University of Southern California, Los Angeles, California
| | - Roy H Perlis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Susanne Lucae
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Henning Tiemeier
- Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Divya Mehta
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerome Breen
- NIHR Maudsley Biomedical Research Centre, King's College London, London, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Cathryn M Lewis
- Department of Medical & Molecular Genetics, King's College London, London, United Kingdom
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Copenhagen Mental Health Center, Mental Health Services Capital Region of Denmark Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Preben B Mortensen
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark; National Centre for Register-Based Research (NCCR), Aarhus University, Aarhus, Denmark; Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Thomas Werge
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Concert Pharmaceuticals, Inc., Lexington, Massachusetts
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jill M Goldstein
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry and Vincent Department of Obstetrics, Gynecology & Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts; MGH-MIT-HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Figueroa C, Yang H, DiSpirito J, Bourgeois JR, Kalyanasundaram G, Doshi I, Bilbo SD, Kopec AM. Morphine exposure alters Fos expression in a sex-, age-, and brain region-specific manner during adolescence. Dev Psychobiol 2021; 63:e22186. [PMID: 34423851 DOI: 10.1002/dev.22186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/17/2021] [Accepted: 08/08/2021] [Indexed: 11/06/2022]
Abstract
Data in both humans and preclinical animal models clearly indicate drug exposure during adolescence, when the "reward" circuitry of the brain develops, increases the risk of substance use and other mental health disorders later in life. Human data indicate that different neural and behavioral sequelae can be observed in early versus late adolescence. However, most studies with rodent models examine a single adolescent age compared to a mature adult age, and often only in males. Herein, we sought to determine whether the acute response to the opioid morphine would also differ across adolescence, and by sex. By quantifying Fos positive cells, a proxy for neural activity, at different stages during adolescence (pre-, early, mid-, and late adolescence) and in multiple reward regions (prefrontal cortex, nucleus accumbens, caudate/putamen), we determined that the neural response to acute morphine is highly dependent on adolescent age, sex, and brain region. These data suggest that heterogeneity in the consequences of adolescent opioid exposure may be due to age- and sex-specific developmental profiles in individual reward processing regions. In future studies, it will be important to add age within adolescence as an independent variable for a holistic view of healthy or abnormal reward-related neural development.
Collapse
Affiliation(s)
- C Figueroa
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - H Yang
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Northeastern University, Boston, MA, USA
| | - J DiSpirito
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Rensselaer Polytechnic Institute, Troy, NY, USA
| | - J R Bourgeois
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - G Kalyanasundaram
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - I Doshi
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - S D Bilbo
- Deptartment of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Deptartment of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Lurie Center for Autism, Harvard Medical School, Boston, MA, USA
| | - A M Kopec
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Deptartment of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Lurie Center for Autism, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Breach MR, Dye CN, Joshi A, Platko S, Gilfarb RA, Krug AR, Franceschelli DV, Galan A, Dodson CM, Lenz KM. Maternal allergic inflammation in rats impacts the offspring perinatal neuroimmune milieu and the development of social play, locomotor behavior, and cognitive flexibility. Brain Behav Immun 2021; 95:269-286. [PMID: 33798637 PMCID: PMC8187275 DOI: 10.1016/j.bbi.2021.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal systemic inflammation increases risk for neurodevelopmental disorders like autism, ADHD, and schizophrenia in offspring. Notably, these disorders are male-biased. Studies have implicated immune system dysfunction in the etiology of these disorders, and rodent models of maternal immune activation provide useful tools to examine mechanisms of sex-dependent effects on brain development, immunity, and behavior. Here, we employed an allergen-induced model of maternal inflammation in rats to characterize levels of mast cells and microglia in the perinatal period in male and female offspring, as well as social, emotional, and cognitive behaviors throughout the lifespan. Adult female rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally on gestational day 15 of pregnancy with OVA or saline. Allergic inflammation upregulated microglia in the fetal brain, increased mast cell number in the hippocampus on the day of birth, and conferred region-, time- and sex- specific changes in microglia measures. Additionally, offspring of OVA-exposed mothers subsequently exhibited abnormal social behavior, hyperlocomotion, and reduced cognitive flexibility. These data demonstrate the long-term effects of maternal allergic challenge on offspring development and provide a basis for understanding neurodevelopmental disorders linked to maternal systemic inflammation in humans.
Collapse
Affiliation(s)
- Michaela R. Breach
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aarohi Joshi
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Steven Platko
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Rachel A. Gilfarb
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Annemarie R. Krug
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Claire M. Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
19
|
Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci U S A 2021; 118:2014464118. [PMID: 33876747 DOI: 10.1073/pnas.2014464118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Collapse
|
20
|
López-Villarreal A, Sánchez-Morla EM, Jiménez-López E, Martínez-Vizcaíno V, Aparicio AI, Mateo-Sotos J, Rodriguez-Jimenez R, Vieta E, Santos JL. Progression of the functional deficit in a group of patients with bipolar disorder: a cluster analysis based on longitudinal data. Eur Arch Psychiatry Clin Neurosci 2020; 270:947-957. [PMID: 31422453 DOI: 10.1007/s00406-019-01050-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
We aimed to examine the trajectory of psychosocial functioning in a sample of euthymic patients with bipolar disorder (BD) throughout a 5-year follow-up. Ninety-nine euthymic bipolar patients and 40 healthy controls (HC) were included. A neurocognitive assessment (17 neurocognitive measures grouped in 6 domains) was carried out at baseline. The split version of the Global Assessment of Functioning scale (GAF-F) and the Functioning Assessment Short Test (FAST) were used to examine psychosocial functioning at baseline (T1), and after a 5-year follow-up (T2). The statistical analysis was performed through repeated measures ANOVA and hierarchical cluster analysis based on the GAF-F and the FAST scores at T1 and T2. Eighty-seven patients (87.9%) were evaluated at T2. The cluster analysis identified two groups of patients. The first group included 44 patients (50.6%) who did not show a progression of the functional impairment (BD-NPI). The second cluster, which included 43 patients (49.4%), was characterized by a progression of the functional impairment (BD-PI). The BD-PI had a higher number of relapses and a higher number of hospitalizations during the follow-up period, as well as worse neurocognitive functioning than the BD-NPI. The repeated measures ANOVA confirmed that the psychosocial performance of BD-NPI is stable while there was a progression of the functional deterioration in BD-PI. The trajectory of the psychosocial functioning of patients with BD is not homogeneous. Our results suggest that in at least one subset of patients with BD, which might account for half of the patients, the disease has a progressive course.
Collapse
Affiliation(s)
- Ana López-Villarreal
- Department of Psychiatry, Hospital Virgen de La Luz CIBERSAM, Cuenca, Spain.,Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Eva María Sánchez-Morla
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), CIBERSAM, Madrid, Spain. .,CogPsy-Group, Universidad Complutense de Madrid (UCM), Madrid, Spain. .,Department of Psychiatry, Hospital Universitario 12 de Octubre, Avda. Córdoba km. 5400, 28041, Madrid, Spain.
| | - Estela Jiménez-López
- Department of Psychiatry, Hospital Virgen de La Luz CIBERSAM, Cuenca, Spain.,Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain.,Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Ana Isabel Aparicio
- Department of Psychiatry, Hospital Virgen de La Luz CIBERSAM, Cuenca, Spain.,Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Jorge Mateo-Sotos
- Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Roberto Rodriguez-Jimenez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), CIBERSAM, Madrid, Spain.,CogPsy-Group, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Eduard Vieta
- Department of Psychiatry, Hospital Clínic of Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - José Luis Santos
- Department of Psychiatry, Hospital Virgen de La Luz CIBERSAM, Cuenca, Spain.,Neurobiological Research Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| |
Collapse
|
21
|
Delage CI, Cornil CA. Estrogen‐dependent sex difference in microglia in the developing brain of Japanese quail (
Coturnix japonica
). Dev Neurobiol 2020; 80:239-262. [DOI: 10.1002/dneu.22781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Affiliation(s)
| | - Charlotte Anne Cornil
- Laboratory of Neuroendocrinology GIGA Neurosciences University of Liège Liège Belgium
| |
Collapse
|
22
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Stewart AN, MacLean SM, Stromberg AJ, Whelan JP, Bailey WM, Gensel JC, Wilson ME. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front Neurol 2020; 11:802. [PMID: 32849242 PMCID: PMC7419700 DOI: 10.3389/fneur.2020.00802] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
In response to NIH initiatives to investigate sex as a biological variable in preclinical animal studies, researchers have increased their focus on male and female differences in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the identification of novel areas for therapeutic and scientific exploitation. Here, we review the organizational and activational effects of sex hormones on recovery from injury and how these changes impact the long-term health of spinal cord injury (SCI) patients. When determining how sex affects SCI it remains imperative to expand outcomes beyond locomotor recovery and consider other complications plaguing the quality of life of patients with SCI. Interestingly, the SCI field predominately utilizes female rodents for basic science research which contrasts most other male-biased research fields. We discuss the unique caveats this creates to the translatability of preclinical research in the SCI field. We also review current clinical and preclinical data examining sex as biological variable in SCI. Further, we report how technical considerations such as housing, size, care management, and age, confound the interpretation of sex-specific effects in animal studies of SCI. We have uncovered novel findings regarding how age differentially affects mortality and injury-induced anemia in males and females after SCI, and further identified estrus cycle dysfunction in mice after injury. Emerging concepts underlying sexually dimorphic responses to therapy are also discussed. Through a combination of literature review and primary research observations we present a practical guide for considering and incorporating sex as biological variable in preclinical neurotrauma studies.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Jessica P Whelan
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Melinda E Wilson
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
24
|
Scheggi S, Guzzi F, Braccagni G, De Montis MG, Parenti M, Gambarana C. Targeting PPARα in the rat valproic acid model of autism: focus on social motivational impairment and sex-related differences. Mol Autism 2020; 11:62. [PMID: 32718349 PMCID: PMC7385875 DOI: 10.1186/s13229-020-00358-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The social motivational theory of autism spectrum disorder (ASD) focuses on social anhedonia as key causal feature of the impaired peer relationships that characterize ASD patients. ASD prevalence is higher in boys, but increasing evidence suggests underdiagnosis and undertreatment in girls. We showed that stress-induced motivational anhedonia is relieved by repeated treatment with fenofibrate (FBR), a peroxisome proliferator-activated receptor α (PPARα) agonist. Here, we used the valproic acid (VPA) model of ASD in rats to examine male and female phenotypes and assess whether FBR administration from weaning to young adulthood relieved social impairments. METHODS Male and female rats exposed to saline or VPA at gestational day 12.5 received standard or FBR-enriched diet from postnatal day 21 to 48-53, when behavioral tests and ex vivo neurochemical analyses were performed. Phosphorylation levels of DARPP-32 in response to social and nonsocial cues, as index of dopamine D1 receptor activation, levels of expression of PPARα, vesicular glutamatergic and GABAergic transporters, and postsynaptic density protein PSD-95 were analyzed by immunoblotting in selected brain regions. RESULTS FBR administration relieved social impairment and perseverative behavior in VPA-exposed male and female rats, but it was only effective on female stereotypies. Dopamine D1 receptor signaling triggered by social interaction in the nucleus accumbens shell was blunted in VPA-exposed rats, and it was rescued by FBR treatment only in males. VPA-exposed rats of both sexes exhibited an increased ratio of striatal excitatory over inhibitory synaptic markers that was normalized by FBR treatment. LIMITATIONS This study did not directly address the extent of motivational deficit in VPA-exposed rats and whether FBR administration restored the likely decreased motivation to operate for social reward. Future studies using operant behavior protocols will address this relevant issue. CONCLUSIONS The results support the involvement of impaired motivational mechanisms in ASD-like social deficits and suggest the rationale for a possible pharmacological treatment. Moreover, the study highlights sex-related differences in the expression of ASD-like symptoms and their differential responses to FBR treatment.
Collapse
Affiliation(s)
- Simona Scheggi
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy.
| | - Francesca Guzzi
- Department Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Braccagni
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| | - Maria Graziella De Montis
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| | - Marco Parenti
- Department Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carla Gambarana
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| |
Collapse
|
25
|
Arambula SE, McCarthy MM. Neuroendocrine-Immune Crosstalk Shapes Sex-Specific Brain Development. Endocrinology 2020; 161:bqaa055. [PMID: 32270188 PMCID: PMC7217281 DOI: 10.1210/endocr/bqaa055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Sex is an essential biological variable that significantly impacts multiple aspects of neural functioning in both the healthy and diseased brain. Sex differences in brain structure and function are organized early in development during the critical period of sexual differentiation. While decades of research establish gonadal hormones as the primary modulators of this process, new research has revealed a critical, and perhaps underappreciated, role of the neuroimmune system in sex-specific brain development. The immune and endocrine systems are tightly intertwined and share processes and effector molecules that influence the nervous system. Thus, a natural question is whether endocrine-immune crosstalk contributes to sexual differentiation of the brain. In this mini-review, we first provide a conceptual framework by classifying the major categories of neural sex differences and review the concept of sexual differentiation of the brain, a process occurring early in development and largely controlled by steroid hormones. Next, we describe developmental sex differences in the neuroimmune system, which may represent targets or mediators of the sexual differentiation process. We then discuss the overwhelming evidence in support of crosstalk between the neuroendocrine and immune systems and highlight recent examples that shape sex differences in the brain. Finally, we review how early life events can perturb sex-specific neurodevelopment via aberrant immune activation.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
26
|
McCarthy MM. A new view of sexual differentiation of mammalian brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:369-378. [PMID: 31705197 PMCID: PMC7196030 DOI: 10.1007/s00359-019-01376-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Establishment of enduring sex differences in brain and behavior occurs during pre- or perinatal development, depending on species. For over 50 years the focus has been on gonadal steroid production by male fetuses and the impact on developing brain. An increasing awareness of the importance of sex chromosome complement has broadened the focus but identifying specific roles in development has yet to be achieved. Recent emphasis on transcriptomics has revealed myriad and unexpected differences in gene expression in specific regions of male and female brains which may produce sex differences, serve a compensatory role or provide latent sex differences revealed only in response to challenge. More surprising, however, has been the consistent observation of a central role for inflammatory signaling molecules and immune cells in masculinization of brain and behavior. The signal transduction pathways and specific immune cells vary by brain region, as does the neuroanatomical substrate subject to differentiation, reflecting substantial complexity emerging from what may be a common origin, the maternal immune system. A working hypothesis integrating these various ideas is proposed.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland, School of Medicine, MD, Baltimore, USA.
| |
Collapse
|
27
|
Martini M, Corces VG, Rissman EF. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm Behav 2020; 119:104677. [PMID: 31927019 PMCID: PMC9942829 DOI: 10.1016/j.yhbeh.2020.104677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
It is our hope this mini-review will stimulate discussion and new research. Here we briefly examine the literature on transgenerational actions of endocrine disrupting chemicals (EDCs) on brain and behavior and their underlying epigenetic mechanisms including: DNA methylation, histone modifications, and non-coding RNAs. We stress that epigenetic modifications need to be examined in a synergistic manner, as they act together in situ on chromatin to change transcription. Next we highlight recent work from one of our laboratories (VGC). The data provide new evidence that the sperm genome is poised for transcription. In developing sperm, gene enhancers and promoters are accessible for transcription and these activating motifs are also found in preimplantation embryos. Thus, DNA modifications associated with transcription factors during fertilization, in primordial germ cells (PGCs), and/or during germ cell maturation may be passed to offspring. We discuss the implications of this model to EDC exposures and speculate on whether natural variation in hormone levels during fertilization and PGC migration may impart transgenerational effects on brain and behavior. Lastly we discuss how this mechanism could apply to neural sexual differentiation.
Collapse
Affiliation(s)
- Mariangela Martini
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
28
|
Lee YH, Cherkerzian S, Seidman LJ, Papandonatos GD, Savitz DA, Tsuang MT, Goldstein JM, Buka SL. Maternal Bacterial Infection During Pregnancy and Offspring Risk of Psychotic Disorders: Variation by Severity of Infection and Offspring Sex. Am J Psychiatry 2020; 177:66-75. [PMID: 31581799 PMCID: PMC6939139 DOI: 10.1176/appi.ajp.2019.18101206] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Previous studies suggest that prenatal immune challenges may elevate the risk of schizophrenia and related psychoses in offspring, yet there has been limited research focused on maternal bacterial infection. The authors hypothesized that maternal bacterial infection during pregnancy increases offspring risk of psychotic disorders in adulthood, and that the magnitude of this association varies as a function of severity of infectious exposure and offspring sex. METHODS The authors analyzed prospectively collected data from 15,421 pregnancies among women enrolled between 1959 and 1966 at two study sites through the Collaborative Perinatal Project. The sample included 116 offspring with confirmed psychotic disorders. The authors estimated associations between maternal bacterial infection during pregnancy and psychosis risk over the subsequent 40 years, stratified by offspring sex and presence of reported parental mental illness, with adjustment for covariates. RESULTS Maternal bacterial infection during pregnancy was strongly associated with psychosis in offspring (adjusted odds ratio=1.8, 95% CI=1.2-2.7) and varied by severity of infection and offspring sex. The effect of multisystemic bacterial infection (adjusted odds ratio=2.9, 95% CI=1.3-5.9) was nearly twice that of less severe localized bacterial infection (adjusted odds ratio=1.6, 95% CI=1.1-2.3). Males were significantly more likely than females to develop psychosis after maternal exposure to any bacterial infection during pregnancy. CONCLUSIONS The study findings suggest that maternal bacterial infection during pregnancy is associated with an elevated risk for psychotic disorders in offspring and that the association varies by infection severity and offspring sex. These findings call for additional investigation and, if the findings are replicated, public health and clinical efforts that focus on preventing and managing bacterial infection in pregnant women.
Collapse
Affiliation(s)
- Younga H. Lee
- Brown University, Department of Epidemiology, Providence, RI 02912, USA
| | - Sara Cherkerzian
- Brigham and Women’s Hospital, Department of Pediatric Newborn Medicine, Boston, MA 02115, USA,Harvard Medical School, Department of Medicine, Boston, MA 02115, USA
| | - Larry J. Seidman
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA,Massachusetts General Hospital, Department of Psychiatry, Boston, MA 02114, USA,Harvard Medical School, Department of Psychiatry, Boston, MA 02115, USA
| | | | - David A. Savitz
- Brown University, Department of Epidemiology, Providence, RI 02912, USA
| | - Ming T. Tsuang
- University of California at San Diego, Department of Psychiatry, La Jolla, CA 92093, USA
| | - Jill M. Goldstein
- Harvard Medical School, Department of Medicine, Boston, MA 02115, USA,Massachusetts General Hospital, Department of Psychiatry, Boston, MA 02114, USA,Harvard Medical School, Department of Psychiatry, Boston, MA 02115, USA,Brigham and Women’s Hospital, Division of Women’s Health, Department of Medicine, Boston, MA 02115, USA
| | - Stephen L. Buka
- Brown University, Department of Epidemiology, Providence, RI 02912, USA,Corresponding Author: Stephen L. Buka, ScD., Mailing address: 121 South Main Street, Providence, RI 02912, ; Telephone: +1 401-863-6224; Fax: +1 401-863-5715
| |
Collapse
|
29
|
Walsh K, McCormack CA, Webster R, Pinto A, Lee S, Feng T, Krakovsky HS, O'Grady SM, Tycko B, Champagne FA, Werner EA, Liu G, Monk C. Maternal prenatal stress phenotypes associate with fetal neurodevelopment and birth outcomes. Proc Natl Acad Sci U S A 2019; 116:23996-24005. [PMID: 31611411 PMCID: PMC6883837 DOI: 10.1073/pnas.1905890116] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maternal prenatal stress influences offspring neurodevelopment and birth outcomes including the ratio of males to females born; however, there is limited understanding of what types of stress matter, and for whom. Using a data-driven approach with 27 variables from questionnaires, ambulatory diaries, and physical assessments collected early in the singleton pregnancies of 187 women, 3 latent profiles of maternal prenatal stress emerged that were differentially associated with sex at birth, birth outcomes, and fetal neurodevelopment. Most women (66.8%) were in the healthy group (HG); 17.1% were in the psychologically stressed group (PSYG), evidencing clinically meaningful elevations in perceived stress, depression, and anxiety; and 16% were in the physically stressed group (PHSG) with relatively higher ambulatory blood pressure and increased caloric intake. The population normative male:female secondary sex ratio (105:100) was lower in the PSYG (2:3) and PHSG (4:9), and higher in the HG (23:18), consistent with research showing diminished male births in maternal stress contexts. PHSG versus HG infants were born 1.5 wk earlier (P < 0.05) with 22% compared to 5% born preterm. PHSG versus HG fetuses had decreased fetal heart rate-movement coupling (P < 0.05), which may indicate slower central nervous system development, and PSYG versus PHSG fetuses had more birth complications, consistent with previous findings among offspring of women with psychiatric illness. Social support most strongly differentiated the HG, PSYG, and PHSG groups, and higher social support was associated with increased odds of male versus female births. Stress phenotypes in pregnant women are associated with male vulnerability and poor fetal outcomes.
Collapse
Affiliation(s)
- Kate Walsh
- Ferkauf Graduate School of Psychology, Yeshiva University, The Bronx, NY 10461
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Clare A McCormack
- Center for Science and Society, Columbia University, New York, NY 10027
| | - Rachel Webster
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
| | - Anita Pinto
- Data Science, Columbia University, New York, NY 10027
| | - Seonjoo Lee
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, NY 10032
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Tianshu Feng
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University, New York, NY 10032
| | - H Sloan Krakovsky
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
| | - Sinclaire M O'Grady
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
| | - Benjamin Tycko
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110
| | - Frances A Champagne
- Department of Psychiatry, Columbia University, New York, NY 10032
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Elizabeth A Werner
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Grace Liu
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Catherine Monk
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032;
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| |
Collapse
|
30
|
Maternal viral infection causes global alterations in porcine fetal microglia. Proc Natl Acad Sci U S A 2019; 116:20190-20200. [PMID: 31527230 DOI: 10.1073/pnas.1817014116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maternal infections during pregnancy are associated with increased risk of neurodevelopmental disorders, although the precise mechanisms remain to be elucidated. Previously, we established a maternal immune activation (MIA) model using swine, which results in altered social behaviors of piglet offspring. These behavioral abnormalities occurred in the absence of microglia priming. Thus, we examined fetal microglial activity during prenatal development in response to maternal infection with live porcine reproductive and respiratory syndrome virus. Fetuses were obtained by cesarean sections performed 7 and 21 d postinoculation (dpi). MIA fetuses had reduced brain weights at 21 dpi compared to controls. Furthermore, MIA microglia increased expression of major histocompatibility complex class II that was coupled with reduced phagocytic and chemotactic activity compared to controls. High-throughput gene-expression analysis of microglial-enriched genes involved in neurodevelopment, the microglia sensome, and inflammation revealed differential regulation in primary microglia and in whole amygdala tissue. Microglia density was increased in the fetal amygdala at 7 dpi. Our data also reveal widespread sexual dimorphisms in microglial gene expression and demonstrate that the consequences of MIA are sex dependent. Overall, these results indicate that fetal microglia are significantly altered by maternal viral infection, presenting a potential mechanism through which MIA impacts prenatal brain development and function.
Collapse
|
31
|
Nissen SK, Shrivastava K, Schulte C, Otzen DE, Goldeck D, Berg D, Møller HJ, Maetzler W, Romero-Ramos M. Alterations in Blood Monocyte Functions in Parkinson's Disease. Mov Disord 2019; 34:1711-1721. [PMID: 31449711 DOI: 10.1002/mds.27815] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PD is a multisystem disease where both central and peripheral nervous systems are affected. This systemic involvement also includes the immune response in PD, which implicates not only microglia in the brain, but also peripheral immune cells, such as monocytes; however, this aspect has been understudied. OBJECTIVES The purpose of this study was to investigate the PD-related changes in peripheral immune cells, their responsiveness to stimulation, and their ability to release immunomodulatory molecules that might have consequences for the disease progression. METHODS Using flow cytometry, we investigated the monocytic population in peripheral blood mononuclear cells from PD patients and healthy individuals. We also evaluated the in vitro response to inflammogen lipopolysaccharides and to fibrillar α-synuclein by measuring the expression of CD14, CD163, and HLA-DR and by analysis of soluble immune-related molecules in the supernatant. RESULTS Peripheral blood immune cells from PD patients had lower survival in culture, but showed a higher monocytic proliferative ability than control cells, which was correlated with shorter disease duration and late disease onset. In addition, PD patients' cells were less responsive to stimulation, as shown by the lack of changes in CD163 and CD14 expression, and by the absence of significant upregulation of anti-inflammatory cytokines in culture. Moreover, PD peripheral immune cells shed lower in vitro levels of soluble CD163, which suggests a less responsive monocytic population and/or an activation status different from control cells. Interestingly, some of the results were sex associated, supporting a differential immune response in females versus males. CONCLUSIONS Our data suggest that PD involves monocytic changes in blood. These cells show reduced viability and are unresponsive to specific stimuli, which might have a relevant consequence for disease progression. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen & German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology and Genetics & iNANO, Aarhus University, Aarhus, Denmark
| | - David Goldeck
- Department of Internal Medicine II, Centre for Medical Research, University of Tuebingen, Tuebingen, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | | |
Collapse
|
32
|
Early Sex Differences in the Immune-Inflammatory Responses to Neonatal Ischemic Stroke. Int J Mol Sci 2019; 20:ijms20153809. [PMID: 31382688 PMCID: PMC6695584 DOI: 10.3390/ijms20153809] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
We recently reported that neonatal ischemia induces microglia/macrophage activation three days post-ischemia. We also found that female mice sustained smaller infarcts than males three months post-ischemia. The objective of our current study was to examine whether differential acute neuroinflammatory response and infiltrated immune cells occurs between male and females after three days post-ischemia. Permanent middle cerebral artery occlusion was induced in male and female postnatal 9-day-old (P9) mice, and mice were sacrificed three days after ischemia. Brains were analyzed for mRNA transcription after microglia magnetic cell sorting to evaluate M1 and M2 markers. FACS analysis was performed to assess myeloid infiltration and microglial expression of CX3 chemokine receptor 1 (CX3CR1). Inflammatory cytokine expression and microglia/macrophage activation were analyzed via in situ hybridization combined with immunofluorescence techniques. Lesion volume and cell death were measured. An increase in microglia/macrophages occurred in male versus female mice. The cells exhibited amoeboid morphology, and TNFα and ptgs2 (Cox-2) genes were more expressed in males. More myeloid cell infiltration was found in male versus female brains. However, we did not observe sex-dependent differences in the injured volume or cell death density. Our data show that sex differences in the acute microglial and immune responses to neonatal ischemia are likely both gene- and region-specific.
Collapse
|
33
|
Schwarz JM. Frank Beach Award Winner - The future of mental health research: Examining the interactions of the immune, endocrine and nervous systems between mother and infant and how they affect mental health. Horm Behav 2019; 114:104521. [PMID: 30981689 PMCID: PMC7367439 DOI: 10.1016/j.yhbeh.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Pregnancy and the postpartum period are periods of significant change in the immune and endocrine systems. This period of life is also associated with an increased risk of mental health disorders in the mother, and an increased risk of developmental and neuropsychiatric disorders in her infant. The collective data described here supports the idea that peripartum mood disorders in mother and developmental disorders in her infant likely reflects multiple pathogeneses, stemming from various interactions between the immune, endocrine and nervous systems, thereby resulting in various symptom constellations. In this case, testing the mechanisms underlying specific symptoms of these disorders (e.g. deficits in specific types of learning or anhedonia) may provide a better understanding of the various physiological interactions and multiple etiologies that most likely underlie the risk of mental health disorders during this unique time in life. The goal here is to summarize the current understanding of how immune and endocrine factors contribute to maternal mental health, while simultaneously understanding the impact these unique interactions have on the developing brain of her infant.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
34
|
Brenhouse HC, Bath KG. Bundling the haystack to find the needle: Challenges and opportunities in modeling risk and resilience following early life stress. Front Neuroendocrinol 2019; 54:100768. [PMID: 31175880 PMCID: PMC6708473 DOI: 10.1016/j.yfrne.2019.100768] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Various forms of early life adversity (ELA) have been linked with increased risk for negative health outcomes, including neuropsychiatric disorders. Understanding how the complex interplay between types, timing, duration, and severity of ELA, together with individual differences in genetic, socio-cultural, and physiological differences can mediate risk and resilience has proven difficult in population based studies. Use of animal models provides a powerful toolset to isolate key variables underlying risk for altered neural and behavioral maturational trajectories. However, a lack of clarity regarding the unique features of differing forms of adversity, lab differences in the implementation and reporting of methods, and the ability compare across labs and types of ELA has led to some confusion. Here, we highlight the diversity of approaches available, current challenges, and a possible ways forward to increase clarity and drive more meaningful and fruitful implementation and comparison of these approaches.
Collapse
Affiliation(s)
- Heather C Brenhouse
- Psychology Department, Northeastern University, 125 Nightingale Hall, Boston, MA 02115, United States.
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer St. Box 1821, Providence, RI 02912, United States
| |
Collapse
|
35
|
Kopec AM, Smith CJ, Bilbo SD. Neuro-Immune Mechanisms Regulating Social Behavior: Dopamine as Mediator? Trends Neurosci 2019; 42:337-348. [PMID: 30890276 DOI: 10.1016/j.tins.2019.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Abstract
Social interactions are fundamental to survival and overall health. The mechanisms underlying social behavior are complex, but we now know that immune signaling plays a fundamental role in the regulation of social interactions. Prolonged or exaggerated alterations in social behavior often accompany altered immune signaling and function in pathological states. Thus, unraveling the link between social behavior and immune signaling is a fundamental challenge, not only to advance our understanding of human health and development, but for the design of comprehensive therapeutic approaches for neural disorders. In this review, we synthesize literature demonstrating the bidirectional relationship between social behavior and immune signaling and highlight recent work linking social behavior, immune function, and dopaminergic signaling in adolescent neural and behavioral development.
Collapse
Affiliation(s)
- Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Caroline J Smith
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Staci D Bilbo
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
36
|
Arambula SE, Reinl EL, El Demerdash N, McCarthy MM, Robertson CL. Sex differences in pediatric traumatic brain injury. Exp Neurol 2019; 317:168-179. [PMID: 30831070 DOI: 10.1016/j.expneurol.2019.02.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
Abstract
The response of the developing brain to traumatic injury is different from the response of the mature, adult brain. There are critical developmental trajectories in the young brain, whereby injury can lead to long term functional abnormalities. Emerging preclinical and clinical literature supports the presence of significant sex differences in both the response to and the recovery from pediatric traumatic brain injury (TBI). These sex differences are seen at all pediatric ages, including neonates/infants, pre-pubertal children, and adolescents. As importantly, the response to neuroprotective therapies or treatments can differ between male and females subjects. These sex differences can result from several biologic origins, and may manifest differently during the various phases of brain and body development. Recognizing and understanding these potential sex differences is crucial, and should be considered in both preclinical and clinical studies of pediatric TBI.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
37
|
Kano SI, Choi EY, Dohi E, Agarwal S, Chang DJ, Wilson AM, Lo BD, Rose IVL, Gonzalez S, Imai T, Sawa A. Glutathione S-transferases promote proinflammatory astrocyte-microglia communication during brain inflammation. Sci Signal 2019; 12:12/569/eaar2124. [PMID: 30783009 DOI: 10.1126/scisignal.aar2124] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astrocytes and microglia play critical roles in brain inflammation. Here, we report that glutathione S-transferases (GSTs), particularly GSTM1, promote proinflammatory signaling in astrocytes and contribute to astrocyte-mediated microglia activation during brain inflammation. In vivo, astrocyte-specific knockdown of GSTM1 in the prefrontal cortex attenuated microglia activation in brain inflammation induced by systemic injection of lipopolysaccharides (LPS). Knocking down GSTM1 in astrocytes also attenuated LPS-induced production of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) by microglia when the two cell types were cocultured. In astrocytes, GSTM1 was required for the activation of nuclear factor κB (NF-κB) and the production of proinflammatory mediators, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif chemokine ligand 2 (CCL2), both of which enhance microglia activation. Our study suggests that GSTs play a proinflammatory role in priming astrocytes and enhancing microglia activation in a microglia-astrocyte positive feedback loop during brain inflammation.
Collapse
Affiliation(s)
- Shin-Ichi Kano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Eric Y Choi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eisuke Dohi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Swati Agarwal
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel J Chang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashley M Wilson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Brian D Lo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Indigo V L Rose
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Santiago Gonzalez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Takashi Imai
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8510, Japan
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
|
39
|
Chistyakov DV, Azbukina NV, Astakhova AA, Goriainov SV, Chistyakov VV, Sergeeva MG. Sex-Mediated Differences in LPS Induced Alterations of TNFα, IL-10 Expression, and Prostaglandin Synthesis in Primary Astrocytes. Int J Mol Sci 2018; 19:ijms19092793. [PMID: 30227622 PMCID: PMC6164227 DOI: 10.3390/ijms19092793] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/14/2023] Open
Abstract
Although many neurological and psychiatric disorders reveal clear sex-dependent variations, the molecular mechanism of this process is not clear enough. Astrocytes are involved in the response of neural tissue to injury and inflammation, produce steroid hormones, and sense steroid presence. To explore the hypothesis that astrocytes may participate in sex-mediated differences of inflammatory responses, we have examined whether male and female primary rat astrocytes show different responses to lipopolysaccharide (LPS) as a toll-like receptor 4 (TLR4) agonist. Levels of mRNA and proteins of tumor necrosis factor alpha (TNFα), interleukin-10 (IL-10), and cyclooxygenase (COX)-2 were assessed using qPCR, immunoblotting, and ELISA. UPLC-MS/MS was used to detect prostaglandins (PGs). LPS stimulation resulted in different levels of cytokine production; more TNFα and less IL-10 were produced in female cells compared with male astrocytes. Although the levels of the COX-2 expression were not altered, LPS significantly induced the synthesis of PGs with notable sex-related differences. PGE2 and PGD2 were less and 6-keto-PGF1α was more upregulated in female astrocytes, and TXB2 had similar levels in cells obtained from males and females. Trilostane, an inhibitor of 3β-Hydroxysteroid dehydrogenase (3β-HSD), inhibited the LPS-induced TNFα production and the release of PGE2, PGD2, and 6-keto-PGF1α in female astrocytes. Thus, male and female astrocytes differentially respond to inflammatory challenges on the level of production of cytokines and steroid hormones. Sex-mediated differences in pro- and anti-inflammatory responses should be taken into consideration for the effective treatment of disorders with neuroinflammation.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
- Laboratory of electrophysiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Nadezda V Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow 119234, Russia.
| | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| | - Sergei V Goriainov
- SREC PFUR, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia.
| | - Viktor V Chistyakov
- SREC PFUR, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia.
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
40
|
Das TK, Dey A, Sabesan P, Javadzadeh A, Théberge J, Radua J, Palaniyappan L. Putative Astroglial Dysfunction in Schizophrenia: A Meta-Analysis of 1H-MRS Studies of Medial Prefrontal Myo-Inositol. Front Psychiatry 2018; 9:438. [PMID: 30298023 PMCID: PMC6160540 DOI: 10.3389/fpsyt.2018.00438] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/24/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Several lines of evidence support a role for astroglial pathology in schizophrenia. Myo-inositol is particularly abundant in astroglia. Many small sized studies have reported on myo-inositol concentration in schizophrenia, but to date these have not been pooled to estimate a collective effect size. Methods: We reviewed all proton magnetic resonance spectroscopy (1H-MRS) studies reporting myo-inositol values for patients satisfying DSM or ICD based criteria for schizophrenia in comparison to a healthy controls group in the medial prefrontal cortex published until February 2018. A random-effects model was used to calculate the pooled effect size using metafor package. A meta-regression analysis of moderator variables was also undertaken. Results: The literature search identified 19 studies published with a total sample size of 585 controls, 561 patients with schizophrenia. Patients with schizophrenia had significantly reduced medial prefrontal myo-inositol compared to controls (RFX standardized mean difference = 0.19, 95% CI [0.05-0.32], z = 2.72, p = 0.0067; heterogeneity p = 0.09). Studies with more female patients reported more notable schizophrenia-related reduction in myo-inositol (z = 2.53, p = 0.011). Discussion: We report a small, but significant reduction in myo-inositol concentration in the medial prefrontal cortex in schizophrenia. The size of the reported effect indicates that the biological pathways affecting the astroglia are likely to operate only in a subset of patients with schizophrenia. MRS myo-inositol could be a useful tool to stratify and investigate such patients.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Psychiatry, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - Avyarthana Dey
- Department of Psychiatry, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada
| | | | - Alborz Javadzadeh
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Jean Théberge
- Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat & Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|