1
|
Balada F, Aymamí N, García Ó, García LF, Aluja A. Prefrontal Oxygenation in a Subjective Decision on a Situational Danger Assessment Task: Personality Traits and Decision-Making Styles Involvement. Behav Sci (Basel) 2025; 15:647. [PMID: 40426425 PMCID: PMC12109266 DOI: 10.3390/bs15050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
This study investigated prefrontal cortex activity during the viewing and evaluation of pictures depicting scenarios with varying levels of danger, with a focus on the modulatory effects of personality traits and decision-making styles. The study sample included 120 male participants (44.4 ± 12.9 years) and 87 female participants (38.9 ± 10.5 years). Functional Near-Infrared Spectroscopy (fNIRS) was used to measure prefrontal oxygenation during the period of looking at pictures and the subsequent period of judging how dangerous they looked. Psychometric assessments included the Zuckerman-Kuhlman-Aluja Personality Questionnaire (ZKA-PQ) and the Melbourne Decision-Making Questionnaire (MDMQ). The results revealed significant time-by-region (F = 2.9, p = 0.013) and danger level by region interactions (F = 2.8, p = 0.021) during the viewing period. During the evaluation period, a significant time-by-region interaction was observed (F = 8.7, p < 0.001). High sensation seekers exhibited reduced oxygenation levels in specific right prefrontal regions, reflecting a differential neural response to varying danger levels. Similarly, individuals with higher Aggressiveness and Extraversion displayed distinct oxygenation patterns during the evaluation phase, suggesting that personality traits influence prefrontal activity. However, no significant effects of decision-making styles were detected in either phase. These findings emphasise the pivotal role of the prefrontal cortex in assessing scene safety and highlight how neural responses are modulated by personality traits, rather than by decision-making styles.
Collapse
Affiliation(s)
- Ferran Balada
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (N.A.); (Ó.G.); (L.F.G.); (A.A.)
- Department of Psychobiology and Methodology of Health Sciences, Faculty of Psychology, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Neus Aymamí
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (N.A.); (Ó.G.); (L.F.G.); (A.A.)
- Psychiatry, Mental Health and Addictions Service, Santa Maria Hospital of Lleida, 25198 Lleida, Spain
| | - Óscar García
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (N.A.); (Ó.G.); (L.F.G.); (A.A.)
- Department of Psychology, European University of Madrid, 28670 Madrid, Spain
| | - Luis F. García
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (N.A.); (Ó.G.); (L.F.G.); (A.A.)
- Department of Biological and Health Psychology, Faculty of Psychology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Anton Aluja
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (N.A.); (Ó.G.); (L.F.G.); (A.A.)
- Department of Psychology, Faculty of Psychology, University of Lleida, 25001 Lleida, Spain
| |
Collapse
|
2
|
Kurtin DL, Prabhu AM, Hassan Q, Groen A, Amer MJ, Lingford-Hughes A, Paterson LM. Differences in fMRI-based connectivity during abstinence or interventions between heroin-dependent individuals and healthy controls. Neurosci Biobehav Rev 2025; 172:106116. [PMID: 40122357 DOI: 10.1016/j.neubiorev.2025.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
The substantial personal, societal, and economic impacts of opioid addiction drive research investigating how opioid addiction affects the brain, and whether therapies attenuate addiction-related metrics of brain function. Evaluating the connectivity between brain regions is a useful approach to characterise the effects of opioid addiction on the brain. This work is a systematic narrative review of studies investigating the effect of abstinence or interventions on connectivity in people who are dependent on heroin (HD) and healthy controls (HC). We found that HD typically showed weaker connectivity than HC between three functional networks: the Executive Control Network, Default Mode Network, and the Salience Network. Abstinence and Transcranial Magnetic Stimulation (TMS) both attenuated differences in connectivity between HD and HC, often by strengthening connectivity in HD. We observed that increased connectivity due to abstinence or TMS consistently related to decreased craving/risk of relapse. Using these findings, we present an "urge and action framework" relating therapeutic factors contributing to craving/relapse, connectivity results, and neurobiological models of HD. To inform future research, we critically assessed the impact of study design and analysis methods on study results. We conclude that the weaker between-network connectivity in HD and HC and its relationship to craving/relapse merits further exploration as a biomarker and target for therapeutic interventions.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Division of Psychiatry, Imperial College London, London, UK; Division of Brain Sciences, Imperial College London, London, UK.
| | | | - Qasim Hassan
- Addictions Recovery Community Hillingdon, Uxbridge, London, UK
| | - Alissa Groen
- Division of Psychiatry, Imperial College London, London, UK
| | - Matthew J Amer
- Division of Psychiatry, Imperial College London, London, UK
| | | | | |
Collapse
|
3
|
Hynes T, Bowden-Jones H, Chamberlain S, Belin D. A roadmap for transformative translational research on gambling disorder in the UK. Neurosci Biobehav Rev 2025; 171:106071. [PMID: 39988286 DOI: 10.1016/j.neubiorev.2025.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The UK has one of the highest rates of recreational gambling in the world. Some vulnerable individuals progressively lose control over gambling and develop at-risk gambling or gambling disorder (GD), characterised by the compulsive pursuit of gambling. GD destroys lives and incurs massive costs to societies, yet only a few treatments are available. Failure to develop a wider range of interventions is in part due to a lack of funding that has slowed progress in the translational research necessary to understand the individual vulnerability to switch from controlled to compulsive gambling. Current preclinical models of GD do not operationalise the key clinical features of the human condition. The so-called "gambling tasks" for non-human mammals almost exclusively assess probabilistic decision-making, which is not real-world gambling. While they have provided insights into the psychological and neural mechanisms involved in the processing of gains and losses, these tasks have failed to capture those underlying real-world gambling and its compulsive manifestation in humans. Here, we highlight the strengths and weaknesses of current gambling-like behaviour tasks and suggest how their translational validity may be improved. We then propose a theoretical framework, the incentive habit theory of GD, which may prove useful for the operationalisation of the biobehavioural mechanisms of GD in preclinical models. We conclude with a list of recommendations for the development of next-generation preclinical models of GD and discuss how modern techniques in animal behavioural experimentation can be deployed in the context of GD preclinical research to bolster the translational pipeline.
Collapse
Affiliation(s)
- Tristan Hynes
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | - Henrietta Bowden-Jones
- Department of Psychiatry, University of Cambridge, UK; National Problem Gambling Clinic & National Centre for Gaming Disorders, London, UK; Department of Brain Sciences, University College London, London, UK
| | - Samuel Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, UK; NHS Southern Gambling Service, and NHS Specialist Clinic for Impulsive-Compulsive Conditions, Hampshire and Isle of Wight Healthcare NHS Foundation Trust, Southampton, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| |
Collapse
|
4
|
Wang H, Ortega HK, Kelly EB, Indajang J, Savalia NK, Glaeser-Khan S, Feng J, Li Y, Kaye AP, Kwan AC. Frontal noradrenergic and cholinergic transients exhibit distinct spatiotemporal dynamics during competitive decision-making. SCIENCE ADVANCES 2025; 11:eadr9916. [PMID: 40138407 PMCID: PMC11939063 DOI: 10.1126/sciadv.adr9916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Norepinephrine (NE) and acetylcholine (ACh) are crucial for learning and decision-making. In the cortex, NE and ACh are released transiently at specific sites along neuromodulatory axons, but how the spatiotemporal patterns of NE and ACh signaling link to behavioral events is unknown. Here, we use two-photon microscopy to visualize neuromodulatory signals in the premotor cortex (medial M2) as mice engage in a competitive matching pennies game. Spatially, NE signals are more segregated with choice and outcome encoded at distinct locations, whereas ACh signals can multiplex and reflect different behavioral correlates at the same site. Temporally, task-driven NE transients were more synchronized and peaked earlier than ACh transients. To test functional relevance, we stimulated neuromodulatory signals using optogenetics to find that NE, but not ACh, increases the animals' propensity to explore alternate options. Together, the results reveal distinct subcellular spatiotemporal patterns of ACh and NE transients during decision-making in mice.
Collapse
Affiliation(s)
- Hongli Wang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Heather K. Ortega
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Emma B. Kelly
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Neil K. Savalia
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Samira Glaeser-Khan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- VA National Center for PTSD Clinical Neuroscience Division, West Haven, CT 06477, USA
- Wu Tsai Institute, New Haven, CT 06511, USA
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Jun DJ, Shannon R, Tschida K, Smith DM. The infralimbic, but not the prelimbic cortex is needed for a complex olfactory memory task. Neurobiol Learn Mem 2025; 219:108038. [PMID: 40032132 DOI: 10.1016/j.nlm.2025.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in memory and behavioral flexibility, and a growing body of evidence suggests that the prelimbic (PL) and infralimbic (IL) subregions contribute differently to these processes. Studies of fear conditioning and goal-directed learning suggest that the PL promotes behavioral responses and memory retrieval, while the IL inhibits them. Other studies have shown that the mPFC is engaged under conditions of high interference. This raises the possibility that the PL and IL play differing roles in resolving interference. To examine this, we first used chemogenetics (DREADDs) to suppress mPFC neuronal activity and tested subjects on a conditional discrimination task known to be sensitive to muscimol inactivation. After confirming the effectiveness of the DREADD procedures, we conducted a second experiment to examine the PL and IL roles in a high interference memory task. We trained rats on two consecutive sets of conflicting odor discrimination problems, A and B, followed by test sessions involving a mid-session switch between the problem sets. Controls repeatedly performed worse on Set A, suggesting that learning Set B inhibited the rats' ability to retrieve Set A memories (i.e. retroactive interference). PL inactivation rats performed similarly to controls. However, IL inactivation rats did not show this effect, suggesting that the IL plays a critical role in suppressing the retrieval of previously acquired memories that may interfere with retrieval of more recent memories. These results suggest that the IL plays a critical role in memory control processes needed for resolving interference.
Collapse
Affiliation(s)
- Dahae J Jun
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853 United States
| | - Rebecca Shannon
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853 United States
| | - Katherine Tschida
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853 United States
| | - David M Smith
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853 United States.
| |
Collapse
|
6
|
Groos D, Reuss AM, Rupprecht P, Stachniak T, Lewis C, Han S, Roggenbach A, Sturman O, Sych Y, Wieckhorst M, Bohacek J, Karayannis T, Aguzzi A, Helmchen F. A distinct hypothalamus-habenula circuit governs risk preference. Nat Neurosci 2025; 28:361-373. [PMID: 39779821 DOI: 10.1038/s41593-024-01856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive. A candidate region is the lateral habenula (LHb), which is prominently involved in value-guided behavior. Here, using a balanced two-alternative choice task and longitudinal two-photon calcium imaging in mice, we identify risk-preference-selective activity in LHb neurons reflecting individual risk preference before action selection. By using whole-brain anatomical tracing, multi-fiber photometry and projection-specific and cell-type-specific optogenetics, we find glutamatergic LHb projections from the medial (MH) but not lateral (LH) hypothalamus providing behavior-relevant synaptic input before action selection. Optogenetic stimulation of MH→LHb axons evoked excitatory and inhibitory postsynaptic responses, whereas LH→LHb projections were excitatory. We thus reveal functionally distinct hypothalamus-habenula circuits for risk preference in habitual economic decision-making.
Collapse
Affiliation(s)
- Dominik Groos
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Anna Maria Reuss
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Peter Rupprecht
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Tevye Stachniak
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada
| | | | - Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Adrian Roggenbach
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Yaroslav Sych
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Institute of Cellular and Integrative Neuroscience, Strasbourg, France
| | | | - Johannes Bohacek
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Theofanis Karayannis
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Jun DJ, Shannon R, Tschida K, Smith DM. The Infralimbic, but not the Prelimbic Cortex is needed for a Complex Olfactory Memory Task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618554. [PMID: 39463969 PMCID: PMC11507807 DOI: 10.1101/2024.10.15.618554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in memory and behavioral flexibility, and a growing body of evidence suggests that the prelimbic (PL) and infralimbic (IL) subregions contribute differently to these processes. Studies of fear conditioning and goal-directed learning suggest that the PL promotes behavioral responses and memory retrieval, while the IL inhibits them. Other studies have shown that the mPFC is engaged under conditions of high interference. This raises the possibility that the PL and IL play differing roles in resolving interference. To examine this, we first used chemogenetics (DREADDs) to suppress mPFC neuronal activity and tested subjects on a conditional discrimination task known to be sensitive to muscimol inactivation. After confirming the effectiveness of the DREADD procedures, we conducted a second experiment to examine the PL and IL roles in a high interference memory task. We trained rats on two consecutive sets of conflicting odor discrimination problems, A and B, followed by test sessions involving a mid-session switch between the problem sets. Controls repeatedly performed worse on Set A, suggesting that learning Set B inhibited the rats' ability to retrieve Set A memories (i.e. retroactive interference). PL inactivation rats performed similarly to controls. However, IL inactivation rats did not show this effect, suggesting that the IL plays a critical role in suppressing the retrieval of previously acquired memories that may interfere with retrieval of more recent memories. These results suggest that the IL plays a critical role in memory control processes needed for resolving interference.
Collapse
Affiliation(s)
- Dahae J. Jun
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - Rebecca Shannon
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - Katherine Tschida
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - David M. Smith
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| |
Collapse
|
8
|
Urueña-Méndez G, Arrondeau C, Marchessaux F, Goutaudier R, Ginovart N. Dissociable Roles of the mPFC-to-VTA Pathway in the Control of Impulsive Action and Risk-Related Decision-Making in Roman High- and Low-Avoidance Rats. Int J Neuropsychopharmacol 2024; 27:pyae034. [PMID: 39155560 PMCID: PMC11450641 DOI: 10.1093/ijnp/pyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Impulsive action and risk-related decision-making (RDM) are associated with various psychiatric disorders, including drug abuse. Both behavioral traits have also been linked to reduced frontocortical activity and alterations in dopamine function in the ventral tegmental area (VTA). However, despite direct projections from the medial prefrontal cortex (mPFC) to the VTA, the specific role of the mPFC-to-VTA pathway in controlling impulsive action and RDM remains unexplored. METHODS We used positron emission tomography with [18F]-fluorodeoxyglucose to evaluate brain metabolic activity in Roman high- (RHA) and low-avoidance (RLA) rats, which exhibit innate differences in impulsive action and RDM. Notably, we used a viral-based double dissociation chemogenetic strategy to isolate, for the first time to our knowledge, the role of the mPFC-to-VTA pathway in controlling these behaviors. We selectively activated the mPFC-to-VTA pathway in RHA rats and inhibited it in RLA rats, assessing the effects on impulsive action and RDM in the rat gambling task. RESULTS Our results showed that RHA rats displayed higher impulsive action, less optimal decision-making, and lower cortical activity than RLA rats at baseline. Chemogenetic activation of the mPFC-to-VTA pathway reduced impulsive action in RHA rats, whereas chemogenetic inhibition had the opposite effect in RLA rats. However, these manipulations did not affect RDM. Thus, by specifically targeting the mPFC-to-VTA pathway in a phenotype-dependent way, we reverted innate patterns of impulsive action but not RDM. CONCLUSION Our findings suggest a dissociable role of the mPFC-to-VTA pathway in impulsive action and RDM, highlighting its potential as a target for investigating impulsivity-related disorders.
Collapse
Affiliation(s)
- Ginna Urueña-Méndez
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chloé Arrondeau
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Marchessaux
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphaël Goutaudier
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalie Ginovart
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Knyazev GG, Savostyanov AN, Bocharov AV, Rudych PD, Saprigyn AE. Multivariate pattern analysis of cooperation and competition in constructive action. Neuropsychologia 2024; 202:108956. [PMID: 39002772 DOI: 10.1016/j.neuropsychologia.2024.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The neural underpinning of cooperative and competitive constructive activity has been investigated using mass-univariate approaches. In this study, we sought to compare the results of these approaches with the results of multivariate pattern analysis (MVPA). In particular, we wanted to test whether MVPA supports the claim made in previous studies that cooperation is associated with the activity of reward-related brain circuits. Participants were required to construct a pattern on the screen either individually or in cooperation or competition with another person during an fMRI scan. Both the MVPA classification methods and the representational similarity analysis indicated the involvement of orbitofrontal and ventromedial prefrontal areas in processes that distinguish between cooperation and competition, and activation analysis showed that these areas are more active during cooperation than during competition. However, a single trial analysis showed that the effect was reversed when only winning trials were considered. In these trials, activation of reward-related areas was higher during competition than during cooperation. Moreover, the contrast between won and lost trials in terms of reward circuits involvement was sharper under competition than under cooperation. Thus, although cooperation can be generally more rewarding than competition, it is associated with smaller difference between trials lost and trials won in terms of reward circuits activation. One may speculate that in cooperation, victory and defeat are shared with the partner and, contrary to competition, are not experienced as personal achievement or failure.
Collapse
Affiliation(s)
- G G Knyazev
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
| | - A N Savostyanov
- Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - A V Bocharov
- Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - P D Rudych
- Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - A E Saprigyn
- Institute of Neurosciences and Medicine, Novosibirsk, Russia
| |
Collapse
|
10
|
Arrondeau C, Urueña-Méndez G, Marchessaux F, Goutaudier R, Ginovart N. Activation of the mPFC-NAc Pathway Reduces Motor Impulsivity but Does Not Affect Risk-Related Decision-Making in Innately High-Impulsive Male Rats. J Neurosci Res 2024; 102:e25387. [PMID: 39314180 DOI: 10.1002/jnr.25387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUD) are characterized by exacerbated motor and risk-related impulsivities, which are associated with decreased cortical activity. In rodents, the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been separately implicated in impulsive behaviors, but studies on the specific role of the mPFC-NAc pathway in these behaviors are limited. Here, we investigated whether heightened impulsive behaviors are associated with reduced mPFC activity in rodents and determined the involvement of the mPFC-NAc pathway in motor and risk-related impulsivities. We used the Roman High- (RHA) and Low-Avoidance (RLA) rat lines, which display divergent phenotypes in impulsivity. To investigate alterations in cortical activity in relation to impulsivity, regional brain glucose metabolism was measured using positron emission tomography and [18F]-fluorodeoxyglucose ([18F]FDG). Using chemogenetics, the activity of the mPFC-NAc pathway was either selectively activated in high-impulsive RHA rats or inhibited in low-impulsive RLA rats, and the effects of these manipulations on motor and risk-related impulsivity were concurrently assessed using the rat gambling task. We showed that basal [18F]FDG uptake was lower in the mPFC and NAc of RHA compared to RLA rats. Activation of the mPFC-NAc pathway in RHA rats reduced motor impulsivity, without affecting risk-related decision-making. Conversely, inhibition of the mPFC-NAc pathway had no effect in RLA rats. Our results suggest that the mPFC-NAc pathway controls motor impulsivity, but has limited involvement in risk-related decision-making in our current model. Our findings suggest that reducing fronto-striatal activity may help attenuate motor impulsivity in patients with impulse control dysregulation.
Collapse
Affiliation(s)
- Chloé Arrondeau
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Ginna Urueña-Méndez
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Florian Marchessaux
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Raphaël Goutaudier
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Nathalie Ginovart
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Nishio M, Kondo M, Yoshida E, Matsuzaki M. Medial prefrontal cortex suppresses reward-seeking behavior with risk of punishment by reducing sensitivity to reward. Front Neurosci 2024; 18:1412509. [PMID: 38903603 PMCID: PMC11188571 DOI: 10.3389/fnins.2024.1412509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Reward-seeking behavior is frequently associated with risk of punishment. There are two types of punishment: positive punishment, which is defined as addition of an aversive stimulus, and negative punishment, involves the omission of a rewarding outcome. Although the medial prefrontal cortex (mPFC) is important in avoiding punishment, whether it is important for avoiding both positive and negative punishment and how it contributes to such avoidance are not clear. In this study, we trained male mice to perform decision-making tasks under the risks of positive (air-puff stimulus) and negative (reward omission) punishment, and modeled their behavior with reinforcement learning. Following the training, we pharmacologically inhibited the mPFC. We found that pharmacological inactivation of mPFC enhanced the reward-seeking choice under the risk of positive, but not negative, punishment. In reinforcement learning models, this behavioral change was well-explained as an increase in sensitivity to reward, rather than a decrease in the strength of aversion to punishment. Our results suggest that mPFC suppresses reward-seeking behavior by reducing sensitivity to reward under the risk of positive punishment.
Collapse
Affiliation(s)
- Monami Nishio
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Kondo
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eriko Yoshida
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
12
|
Groos D, Helmchen F. The lateral habenula: A hub for value-guided behavior. Cell Rep 2024; 43:113968. [PMID: 38522071 DOI: 10.1016/j.celrep.2024.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
The habenula is an evolutionarily highly conserved diencephalic brain region divided into two major parts, medial and lateral. Over the past two decades, studies of the lateral habenula (LHb), in particular, have identified key functions in value-guided behavior in health and disease. In this review, we focus on recent insights into LHb connectivity and its functional relevance for different types of aversive and appetitive value-guided behavior. First, we give an overview of the anatomical organization of the LHb and its main cellular composition. Next, we elaborate on how distinct LHb neuronal subpopulations encode aversive and appetitive stimuli and on their involvement in more complex decision-making processes. Finally, we scrutinize the afferent and efferent connections of the LHb and discuss their functional implications for LHb-dependent behavior. A deepened understanding of distinct LHb circuit components will substantially contribute to our knowledge of value-guided behavior.
Collapse
Affiliation(s)
- Dominik Groos
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Urueña-Méndez G, Arrondeau C, Bellés L, Ginovart N. Decoupling Dopamine Synthesis from Impulsive Action, Risk-Related Decision-Making, and Propensity to Cocaine Intake: A Longitudinal [ 18F]-FDOPA PET Study in Roman High- and Low-Avoidance Rats. eNeuro 2024; 11:ENEURO.0492-23.2023. [PMID: 38253584 PMCID: PMC10867553 DOI: 10.1523/eneuro.0492-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Impulsive action and risk-related decision-making (RDM) are two facets of impulsivity linked to a hyperdopaminergic release in the striatum and an increased propensity to cocaine intake. We previously showed that with repeated cocaine exposure, this initial hyperdopaminergic release is blunted in impulsive animals, potentially signaling drug-induced tolerance. Whether such dopaminergic dynamics involve changes in dopamine (DA) synthesis as a function of impulsivity is currently unknown. Here, we investigated the predictive value of DA synthesis for impulsive action, RDM, and the propensity to take cocaine in a rat model of vulnerability to cocaine abuse. Additionally, we assessed the effects of cocaine intake on these variables. Rats were tested sequentially in the rat Gambling Task (rGT) and were scanned with positron emission tomography and [18F]-FDOPA to respectively assess both impulsivity facets and striatal DA synthesis before and after cocaine self-administration (SA). Our results revealed that baseline striatal levels of DA synthesis did not significantly predict impulsive action, RDM, or a greater propensity to cocaine SA in impulsive animals. Besides, we showed that impulsive action, but not RDM, predicted higher rates of cocaine taking. However, chronic cocaine exposure had no impact on DA synthesis, nor affected impulsive action and RDM. These findings indicate that the hyper-responsive DA system associated with impulsivity and a propensity for cocaine consumption, along with the reduction in this hyper-responsive DA state in impulsive animals with a history of cocaine use, might not be mediated by dynamic changes in DA synthesis.
Collapse
Affiliation(s)
- Ginna Urueña-Méndez
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Chloé Arrondeau
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Lidia Bellés
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Nathalie Ginovart
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| |
Collapse
|
14
|
Wang H, Ortega HK, Kelly EB, Indajang J, Feng J, Li Y, Kwan AC. Frontal noradrenergic and cholinergic transients exhibit distinct spatiotemporal dynamics during competitive decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576893. [PMID: 38328186 PMCID: PMC10849696 DOI: 10.1101/2024.01.23.576893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Norepinephrine (NE) and acetylcholine (ACh) are neuromodulators that are crucial for learning and decision-making. In the cortex, NE and ACh are released at specific sites along neuromodulatory axons, which would constrain their spatiotemporal dynamics at the subcellular scale. However, how the fluctuating patterns of NE and ACh signaling may be linked to behavioral events is unknown. Here, leveraging genetically encoded NE and ACh indicators, we use two-photon microscopy to visualize neuromodulatory signals in the superficial layer of the mouse medial frontal cortex during decision-making. Head-fixed mice engage in a competitive game called matching pennies against a computer opponent. We show that both NE and ACh transients carry information about decision-related variables including choice, outcome, and reinforcer. However, the two neuromodulators differ in their spatiotemporal pattern of task-related activation. Spatially, NE signals are more segregated with choice and outcome encoded at distinct locations, whereas ACh signals can multiplex and reflect different behavioral correlates at the same site. Temporally, task-driven NE transients were more synchronized and peaked earlier than ACh transients. To test functional relevance, using optogenetics we found that evoked elevation of NE, but not ACh, in the medial frontal cortex increases the propensity of the animals to switch and explore alternate options. Taken together, the results reveal distinct spatiotemporal patterns of rapid ACh and NE transients at the subcellular scale during decision-making in mice, which may endow these neuromodulators with different ways to impact neural plasticity to mediate learning and adaptive behavior.
Collapse
Affiliation(s)
- Hongli Wang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Heather K. Ortega
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Emma B. Kelly
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, 10065, USA
| |
Collapse
|
15
|
Bao C, Zhu X, Mōller-Mara J, Li J, Dubroqua S, Erlich JC. The rat frontal orienting field dynamically encodes value for economic decisions under risk. Nat Neurosci 2023; 26:1942-1952. [PMID: 37857772 PMCID: PMC10620098 DOI: 10.1038/s41593-023-01461-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Frontal and parietal cortex are implicated in economic decision-making, but their causal roles are untested. Here we silenced the frontal orienting field (FOF) and posterior parietal cortex (PPC) while rats chose between a cued lottery and a small stable surebet. PPC inactivations produced minimal short-lived effects. FOF inactivations reliably reduced lottery choices. A mixed-agent model of choice indicated that silencing the FOF caused a change in the curvature of the rats' utility function (U = Vρ). Consistent with this finding, single-neuron and population analyses of neural activity confirmed that the FOF encodes the lottery value on each trial. A dynamical model, which accounts for electrophysiological and silencing results, suggests that the FOF represents the current lottery value to compare against the remembered surebet value. These results demonstrate that the FOF is a critical node in the neural circuit for the dynamic representation of action values for choice under risk.
Collapse
Affiliation(s)
- Chaofei Bao
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Xiaoyue Zhu
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Joshua Mōller-Mara
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Jingjie Li
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Sylvain Dubroqua
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Jeffrey C Erlich
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China.
- NYU Shanghai, Shanghai, China.
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China.
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
16
|
Chang VN, Peters J. Neural circuits controlling choice behavior in opioid addiction. Neuropharmacology 2023; 226:109407. [PMID: 36592884 PMCID: PMC9898219 DOI: 10.1016/j.neuropharm.2022.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
As the opioid epidemic presents an ever-expanding public health threat, there is a growing need to identify effective new treatments for opioid use disorder (OUD). OUD is characterized by a behavioral misallocation in choice behavior between opioids and other rewards, as opioid use leads to negative consequences, such as job loss, family neglect, and potential overdose. Preclinical models of addiction that incorporate choice behavior, as opposed to self-administration of a single drug reward, are needed to understand the neural circuits governing opioid choice. These choice models recapitulate scenarios that humans suffering from OUD encounter in their daily lives. Indeed, patients with substance use disorders (SUDs) exhibit a propensity to choose drug under certain conditions. While most preclinical addiction models have focused on relapse as the outcome measure, our data suggest that choice is an independent metric of addiction severity, perhaps relating to loss of cognitive control over choice, as opposed to excessive motivational drive to seek drugs during relapse. In this review, we examine both preclinical and clinical literature on choice behavior for drugs, with a focus on opioids, and the neural circuits that mediate drug choice versus relapse. We argue that preclinical models of opioid choice are needed to identify promising new avenues for OUD therapy that are translationally relevant. Both forward and reverse translation will be necessary to identify novel treatment interventions. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Victoria N Chang
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
17
|
Bercovici DA, Princz-Lebel O, Schumacher JD, Lo VM, Floresco SB. Temporal Dynamics Underlying Prelimbic Prefrontal Cortical Regulation of Action Selection and Outcome Evaluation during Risk/Reward Decision-Making. J Neurosci 2023; 43:1238-1255. [PMID: 36609453 PMCID: PMC9962784 DOI: 10.1523/jneurosci.0802-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Risk/reward decision-making is a dynamic process that includes periods of deliberation before action selection and evaluation of the action outcomes that bias subsequent choices. Inactivation of the prelimbic (PL) cortex has revealed its integral role in updating decision biases in the face of changes in probabilistic reward contingencies, yet how phasic PL signals during different phases of the decision process influence choice remains unclear. We used temporally specific optogenetic inhibition to selectively disrupt PL activity coinciding with action selection and outcome phases to examine how these signals influence choice. Male rats expressing the inhibitory opsin eArchT within PL excitatory neurons were well trained on a probabilistic discounting task, entailing choice between small/certain versus large/risky rewards, the probability of which varied over a session (50-12.5%). During testing, brief light pulses suppressed PL activity before choice or after different outcomes. Prechoice suppression reduced bias toward more preferred/higher utility options and disrupted how recent outcomes influenced subsequent choice. Inhibition during risky losses induced a similar profile, but here, the impact of reward omissions were either amplified or diminished, relative to the context of the estimated profitability of the risky option. Inhibition during large or small reward receipt reduced risky choice when this option was more profitable, suggesting these signals can both reinforce rewarded risky choices and also act as a relative value comparator signal that augments incentive for larger rewards. These findings reveal multifaceted contributions by the PL in implementing decisions and integrating action-outcome feedback to assign context to the decision space.SIGNIFICANCE STATEMENT The PL prefrontal cortex plays an integral role in guiding risk/reward decisions, but how activity in this region during different phases of the decision process influences choice is unclear. By using temporally specific optogenetic manipulations of this activity, the present study unveiled previously uncharacterized and differential contributions by PL in implementing decision policies and how evaluation of decision outcomes shape subsequent choice. These findings provide novel insight into the dynamic processes engaged by the PL that underlie action selection in situations involving reward uncertainty that may aid in understanding the mechanism underlying normal and aberrant decision-making processes.
Collapse
Affiliation(s)
- Debra A Bercovici
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Oren Princz-Lebel
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Jackson D Schumacher
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Valerie M Lo
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
18
|
Berridge CW, Martin AJ, Hupalo S, Nicol SE. Estrus cycle-dependent working memory effects of prefrontal cortex corticotropin-releasing factor neurotransmission. Neuropsychopharmacology 2022; 47:2016-2023. [PMID: 35618840 PMCID: PMC9556710 DOI: 10.1038/s41386-022-01349-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
The prefrontal cortex (PFC) supports a diversity of cognitive processes. Impairment in PFC-dependent cognition is associated with multiple psychiatric disorders, including those known to display sex differences. Our ability to treat this impairment is limited, in part due to an incomplete understanding of the neural mechanisms that support PFC-dependent cognition. In previous studies in male rats, we demonstrated that corticotropin-releasing factor (CRF) receptors and neurons in caudal dorsomedial PFC (dmPFC) regulate PFC-dependent working memory. Subcortically, CRF can exert sex-specific actions, a subset of which are ovarian steroid dependent. To date, the cognitive actions of dmPFC CRF neurotransmission in females are unknown. To address this gap, the current studies examined the effects of chemogenetic and pharmacological manipulations of CRF receptors and neurons within the dmPFC of female rats tested in a spatial working memory task. Outside of proestrus, activation of both CRF receptors and neurons in the caudal, but not rostral, dmPFC impaired working memory. Meanwhile, blockade of CRF receptors in the caudal dmPFC or globally in the brain, improved working memory performance, similar to that seen in males. In contrast, these effects were not observed during proestrus. These observations demonstrate that while CRF neurotransmission in the PFC regulates working memory similarly in males and females, these actions are not observed in females when ovarian steroids are at peak levels.
Collapse
Affiliation(s)
- Craig W Berridge
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Andrea J Martin
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sofiya Hupalo
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Shannon E Nicol
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
19
|
Yang M, Fu Q, Ma C, Li B. Prefrontal Dopaminergic Regulation of Cue-Guided Risky Decision-Making Performance in Rats. Front Behav Neurosci 2022; 16:934834. [PMID: 35898651 PMCID: PMC9309612 DOI: 10.3389/fnbeh.2022.934834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Risky decision-making is the decision made by individuals when they know the probability of each outcome. In order to survive in unpredictable environments, it is necessary for individuals to assess the probability of events occurring to an make appropriate decisions. There are few studies on the neural basis of risky decision-making behavior guided by external cues, which is related to the relative paucity of animal behavioral paradigms. Previous studies have shown that the prefrontal cortex (PFC) plays a key role in risk-based decision-making. The PFC receives projections from the dopamine (DA) system from the ventral tegmental area of the midbrain. The mesocorticolimbic DA system regulates the judgments of reward and value in decision-making. However, the specific receptor mechanism for prefrontal DA regulation of cue-guided risky decision-making behavior remains unclear. Here we established a cue-guided risky decision-making behavioral paradigm (RDM task) to detect the behavior of rats making decisions between a small certain reward and a large uncertain reward in a self-paced manner. The D1 receptor antagonist SCH-23390 (5 mM) or agonist SKF-82958 (5 mM), and the D2 receptor antagonist thioridazine hydrochloride (5 mM) or agonist MLS-1547 (5 mM) was injected into the mPFC, respectively, to investigate how the behavior in the RDM task was changed. The results showed that: (1) rats were able to master the operation of the cue-guided RDM task in a self-paced way; (2) a majority of rats were inclined to choose risk rather than a safe option when the reward expectations were equal; and (3) risk selection was reduced upon inhibition of D1 receptors or stimulation of D2 receptors, but increased upon stimulation of D1 receptors or inhibition of D2 receptors, suggesting that the RDM performance is regulated by D1 and D2 receptors in the mPFC. The present results suggest that DA receptors in the mPFC of rats are involved in regulating cue-guided RDM behavior, with differential involvement of D1 and D2 receptors in the regulation.
Collapse
Affiliation(s)
- Minzhe Yang
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Qiangpei Fu
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Baoming Li
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
- School of Basic Medical Sciences and Institute of Brain Science, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Baoming Li,
| |
Collapse
|
20
|
Behavior of Rats in a Self-Paced Risky Decision-Making Task Based on Definite Probability. Brain Sci 2022; 12:brainsci12060795. [PMID: 35741680 PMCID: PMC9220963 DOI: 10.3390/brainsci12060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Risky decision-making (RDM) is when individuals make choices based on the definite cognition for the probabilities of the options. Risk is embodied in the certainty of reward, and the smaller the probability is, the greater the risk will be. As simulated in human behavior paradigms, RDM scenarios in real life are often guided by external cues that inform the likelihood of receiving certain rewards. There are few studies on the neural basis of RDM behavior guided by external cues, which is related to the relative paucity of the animal behavioral paradigms. Here, we established a cue-guided RDM task to detect the behavior of rats making a decision between a small certain reward and a large uncertain reward in a naturalistic manner. The reward of the risk option could be adjusted to observe the change of choice. Our results showed that: (1) rats were able to master the operation of the cue-guided RDM task; (2) many rats were inclined to choose risk rather than the safe option when the reward expectations were equal; (3) rats were able to adjust the decision strategy in time upon a change in risk, suggesting that they have the ability to perceive risk indicated by the external cues.
Collapse
|
21
|
Chen Z, Feng T. Neural connectome features of procrastination: Current progress and future direction. Brain Cogn 2022; 161:105882. [PMID: 35679698 DOI: 10.1016/j.bandc.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Procrastination refers to an irrationally delay for intended courses of action despite of anticipating a negative consequence due to this delay. Previous studies tried to reveal the neural substrates of procrastination in terms of connectome-based biomarkers. Based on this, we proposed a unified triple brain network model for procrastination and pinpointed out what challenges we are facing in understanding neural mechanism of procrastination. Specifically, based on neuroanatomical features, the unified triple brain network model proposed that connectome-based underpinning of procrastination could be ascribed to the abnormalities of self-control network (i.e., dorsolateral prefrontal cortex, DLPFC), emotion-regulation network (i.e., orbital frontal cortex, OFC), and episodic prospection network (i.e., para-hippocampus cortex, PHC). Moreover, based on the brain functional features, procrastination had been attributed to disruptive neural circuits on FPN (frontoparietal network)-SCN (subcortical network) and FPN-SAN (salience network), which led us to hypothesize the crucial roles of interplay between these networks on procrastination in unified triple brain network model. Despite of these findings, poor interpretability and computational model limited further understanding for procrastination from theoretical and neural perspectives. On balance, the current study provided an overview to show current progress on the connectome-based biomarkers for procrastination, and proposed the integrative neurocognitive model of procrastination.
Collapse
Affiliation(s)
- Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China.
| |
Collapse
|
22
|
PKCδ-positive GABAergic neurons in the central amygdala exhibit tissue-type plasminogen activator: role in the control of anxiety. Mol Psychiatry 2022; 27:2197-2205. [PMID: 35145231 DOI: 10.1038/s41380-022-01455-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
Tissue plasminogen activator (tPA) is a serine protease expressed in several brain regions and reported to be involved in the control of emotional and cognitive functions. Nevertheless, little is known about the structure-function relationships of these tPA-dependent behaviors. Here, by using a new model of constitutive tPA-deficient mice (tPAnull), we first show that tPA controls locomotor activity, spatial cognition and anxiety. To investigate the brain structures involved in these tPA-dependent behavioral phenotypes, we next generated tPAflox mice allowing conditional tPA deletion (cKO) following stereotaxic injections of adeno-associated virus driving Cre-recombinase expression (AAV-Cre-GFP). We demonstrate that tPA removal in the dentate gyrus of the hippocampus induces hyperactivity and partial spatial memory deficits. Moreover, the deletion of tPA in the central nucleus of the amygdala, but not in the basolateral nucleus, induces hyperactivity and reduced anxiety-like level. Importantly, we prove that these behaviors depend on the tPA present in the adult brain and not on neurodevelopmental disorders. Also, interestingly, our data show that tPA from Protein kinase-C delta-positive (PKCδ) GABAergic interneurons of the lateral/ capsular part of adult mouse central amygdala controls emotional functions through neuronal activation of the medial central amygdala. Together, our study brings new data about the critical central role of tPA in behavioral modulations in adult mice.
Collapse
|
23
|
Gupta A, Bansal R, Alashwal H, Kacar AS, Balci F, Moustafa AA. Neural Substrates of the Drift-Diffusion Model in Brain Disorders. Front Comput Neurosci 2022; 15:678232. [PMID: 35069160 PMCID: PMC8776710 DOI: 10.3389/fncom.2021.678232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Many studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.
Collapse
Affiliation(s)
- Ankur Gupta
- CNRS UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Rohini Bansal
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anil Safak Kacar
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Fuat Balci
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmed A. Moustafa
- School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia
- School of Psychology, Faculty of Society and Design, Bond University, Robina, QLD, Australia
- Faculty of Health Sciences, Department of Human Anatomy and Physiology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
24
|
Anderson MC, Floresco SB. Prefrontal-hippocampal interactions supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology 2022; 47:180-195. [PMID: 34446831 PMCID: PMC8616908 DOI: 10.1038/s41386-021-01131-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroimaging has revealed robust interactions between the prefrontal cortex and the hippocampus when people stop memory retrieval. Efforts to stop retrieval can arise when people encounter reminders to unpleasant thoughts they prefer not to think about. Retrieval stopping suppresses hippocampal and amygdala activity, especially when cues elicit aversive memory intrusions, via a broad inhibitory control capacity enabling prepotent response suppression. Repeated retrieval stopping reduces intrusions of unpleasant memories and diminishes their affective tone, outcomes resembling those achieved by the extinction of conditioned emotional responses. Despite this resemblance, the role of inhibitory fronto-hippocampal interactions and retrieval stopping broadly in extinction has received little attention. Here we integrate human and animal research on extinction and retrieval stopping. We argue that reconceptualising extinction to integrate mnemonic inhibitory control with learning would yield a greater understanding of extinction's relevance to mental health. We hypothesize that fear extinction spontaneously engages retrieval stopping across species, and that controlled suppression of hippocampal and amygdala activity by the prefrontal cortex reduces fearful thoughts. Moreover, we argue that retrieval stopping recruits extinction circuitry to achieve affect regulation, linking extinction to how humans cope with intrusive thoughts. We discuss novel hypotheses derived from this theoretical synthesis.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Stan B Floresco
- Department of Psychology, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Seamans JK, Floresco SB. Event-based control of autonomic and emotional states by the anterior cingulate cortex. Neurosci Biobehav Rev 2021; 133:104503. [PMID: 34922986 DOI: 10.1016/j.neubiorev.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Despite being an intensive area of research, the function of the anterior cingulate cortex (ACC) remains somewhat of a mystery. Human imaging studies implicate the ACC in various cognitive functions, yet surgical ACC lesions used to treat emotional disorders have minimal lasting effects on cognition. An alternative view is that ACC regulates autonomic states, consistent with its interconnectivity with autonomic control regions and that stimulation evokes changes in autonomic/emotional states. At the cellular level, ACC neurons are highly multi-modal and promiscuous, and can represent a staggering array of task events. These neurons nevertheless combine to produce highly event-specific ensemble patterns that likely alter activity in downstream regions controlling emotional and autonomic tone. Since neuromodulators regulate the strength of the ensemble activity patterns, they would regulate the impact these patterns have on downstream targets. Through these mechanisms, the ACC may determine how strongly to react to the very events its ensembles represent. Pathologies arise when specific event-related representations gain excessive control over autonomic/emotional states.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Depts. of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada.
| | - Stan B Floresco
- Depts. of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada
| |
Collapse
|
26
|
Roughley S, Killcross S. The role of the infralimbic cortex in decision making processes. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Maisson DJN, Cash-Padgett TV, Wang MZ, Hayden BY, Heilbronner SR, Zimmermann J. Choice-relevant information transformation along a ventrodorsal axis in the medial prefrontal cortex. Nat Commun 2021; 12:4830. [PMID: 34376663 PMCID: PMC8355277 DOI: 10.1038/s41467-021-25219-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Choice-relevant brain regions in prefrontal cortex may progressively transform information about options into choices. Here, we examine responses of neurons in four regions of the medial prefrontal cortex as macaques performed two-option risky choices. All four regions encode economic variables in similar proportions and show similar putative signatures of key choice-related computations. We provide evidence to support a gradient of function that proceeds from areas 14 to 25 to 32 to 24. Specifically, we show that decodability of twelve distinct task variables increases along that path, consistent with the idea that regions that are higher in the anatomical hierarchy make choice-relevant variables more separable. We also show progressively longer intrinsic timescales in the same series. Together these results highlight the importance of the medial wall in choice, endorse a specific gradient-based organization, and argue against a modular functional neuroanatomy of choice.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Tyler V Cash-Padgett
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Maya Z Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Piantadosi PT, Halladay LR, Radke AK, Holmes A. Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 2021; 157:1547-1571. [PMID: 33704784 PMCID: PMC8981567 DOI: 10.1111/jnc.15342] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
The risk of an aversive consequence occurring as the result of a reward-seeking action can have a profound effect on subsequent behavior. Such aversive events can be described as punishers, as they decrease the probability that the same action will be produced again in the future and increase the exploration of less risky alternatives. Punishment can involve the omission of an expected rewarding event ("negative" punishment) or the addition of an unpleasant event ("positive" punishment). Although many individuals adaptively navigate situations associated with the risk of negative or positive punishment, those suffering from substance use disorders or behavioral addictions tend to be less able to curtail addictive behaviors despite the aversive consequences associated with them. Here, we discuss the psychological processes underpinning reward seeking despite the risk of negative and positive punishment and consider how behavioral assays in animals have been employed to provide insights into the neural mechanisms underlying addictive disorders. We then review the critical contributions of dopamine signaling to punishment learning and risky reward seeking, and address the roles of interconnected ventral striatal, cortical, and amygdala regions to these processes. We conclude by discussing the ample opportunities for future study to clarify critical gaps in the literature, particularly as related to delineating neural contributions to distinct phases of the risky decision-making process.
Collapse
Affiliation(s)
- Patrick T. Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, Santa Clara, California 95053, USA
| | - Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
29
|
West EA, Niedringhaus M, Ortega HK, Haake RM, Frohlich F, Carelli RM. Noninvasive Brain Stimulation Rescues Cocaine-Induced Prefrontal Hypoactivity and Restores Flexible Behavior. Biol Psychiatry 2021; 89:1001-1011. [PMID: 33678418 PMCID: PMC8106639 DOI: 10.1016/j.biopsych.2020.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND To obtain desirable goals, individuals must predict the outcome of specific choices, use that information to direct appropriate actions, and adjust behavior accordingly in changing environments (behavioral flexibility). Substance use disorders are marked by impairments in behavioral flexibility along with decreased prefrontal cortical function that limits the efficacy of treatment strategies. Restoring prefrontal hypoactivity, ideally in a noninvasive manner, is an intriguing target for improving flexible behavior and treatment outcomes. METHODS A behavioral flexibility task was used in Long-Evans male rats (n = 97) in conjunction with electrophysiology, optogenetics, and a novel rat model of transcranial alternating current stimulation (tACS) to examine the prelimbic cortex (PrL) to nucleus accumbens (NAc) core circuit in behavioral flexibility and determine whether tACS can restore cocaine-induced neural and cognitive dysfunction. RESULTS Optogenetic inactivation revealed that the PrL-NAc core circuit is necessary for the ability to learn strategies to flexibly shift behavior. Cocaine self-administration history caused aberrant PrL-NAc core neural encoding and deficits in flexibility. Optogenetics that selectively activated the PrL-NAc core pathway prior to learning rescued cocaine-induced cognitive flexibility deficits. Remarkably, tACS prior to learning the task reestablished adaptive signaling in the PrL-NAc circuit and restored flexible behavior in a relatively noninvasive and frequency-specific manner. CONCLUSIONS We establish a role of NAc core-projecting PrL neurons in behavioral flexibility and provide a novel noninvasive brain stimulation method in rats to rescue cocaine-induced frontal hypofunction and restore flexible behavior, supporting a role of tACS as a therapeutic to treat cognitive deficits in substance use disorders.
Collapse
Affiliation(s)
- Elizabeth A West
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey.
| | - Mark Niedringhaus
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| | - Heather K Ortega
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel M Haake
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Regina M Carelli
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
30
|
Kocoń J, Maziarz M. Mapping WordNet onto human brain connectome in emotion processing and semantic similarity recognition. Inf Process Manag 2021. [DOI: 10.1016/j.ipm.2021.102530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Cabeza L, Ramadan B, Giustiniani J, Houdayer C, Pellequer Y, Gabriel D, Fauconnet S, Haffen E, Risold PY, Fellmann D, Belin D, Peterschmitt Y. Chronic exposure to glucocorticoids induces suboptimal decision-making in mice. Eur Neuropsychopharmacol 2021; 46:56-67. [PMID: 33531260 DOI: 10.1016/j.euroneuro.2021.01.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Anxio-depressive symptoms as well as severe cognitive dysfunction including aberrant decision-making (DM) are documented in neuropsychiatric patients with hypercortisolaemia. Yet, the influence of the hypothalamo-pituitary-adrenal (HPA) axis on DM processes remains poorly understood. As a tractable mean to approach this human condition, adult male C57BL/6JRj mice were chronically treated with corticosterone (CORT) prior to behavioural, physiological and neurobiological evaluation. The behavioural data indicate that chronic CORT delays the acquisition of contingencies required to orient responding towards optimal DM performance in a mouse Gambling Task (mGT). Specifically, CORT-treated animals show a longer exploration and a delayed onset of the optimal DM performance. Remarkably, the proportion of individuals performing suboptimally in the mGT is increased in the CORT condition. This variability seems to be better accounted for by variations in sensitivity to negative rather than to positive outcome. Besides, CORT-treated animals perform worse than control animals in a spatial working memory (WM) paradigm and in a motor learning task. Finally, Western blotting neurobiological analyses show that chronic CORT downregulates glucocorticoid receptor expression in the medial Prefrontal Cortex (mPFC). Besides, corticotropin-releasing factor signalling in the mPFC of CORT individuals negatively correlates with their DM performance. Collectively, this study describes how chronic exposure to glucocorticoids induces suboptimal DM under uncertainty in a mGT, hampers WM and motor learning processes, thus affecting specific emotional, motor, cognitive and neurobiological endophenotypic dimensions relevant for precision medicine in biological psychiatry.
Collapse
Affiliation(s)
- Lidia Cabeza
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France.
| | - Bahrie Ramadan
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Julie Giustiniani
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Christophe Houdayer
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Yann Pellequer
- PEPITE EA-4267, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Damien Gabriel
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Sylvie Fauconnet
- Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France; Laboratoire de Carcinogenèse associée aux HPV EA-3181, Université de Bourgogne - Franche-Comté, Besançon, France; Urologie, andrologie et transplantation rénale, Hôpital Universitaire CHRU, Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Dominique Fellmann
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Yvan Peterschmitt
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France.
| |
Collapse
|
32
|
Tervo DGR, Kuleshova E, Manakov M, Proskurin M, Karlsson M, Lustig A, Behnam R, Karpova AY. The anterior cingulate cortex directs exploration of alternative strategies. Neuron 2021; 109:1876-1887.e6. [PMID: 33852896 DOI: 10.1016/j.neuron.2021.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/31/2020] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
The ability to adjust one's behavioral strategy in complex environments is at the core of cognition. Doing so efficiently requires monitoring the reliability of the ongoing strategy and, when appropriate, switching away from it to evaluate alternatives. Studies in humans and non-human primates have uncovered signals in the anterior cingulate cortex (ACC) that reflect the pressure to switch away from the ongoing strategy, whereas other ACC signals relate to the pursuit of alternatives. However, whether these signals underlie computations that actually underpin strategy switching or merely reflect tracking of related variables remains unclear. Here we provide causal evidence that the rodent ACC actively arbitrates between persisting with the ongoing behavioral strategy and temporarily switching away to re-evaluate alternatives. Furthermore, by individually perturbing distinct output pathways, we establish that the two associated computations-determining whether to switch strategy and committing to the pursuit of a specific alternative-are segregated in the ACC microcircuitry.
Collapse
Affiliation(s)
| | - Elena Kuleshova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Maxim Manakov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Mikhail Proskurin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Mattias Karlsson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; SpikeGadgets, San Francisco, CA, USA
| | - Andy Lustig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Reza Behnam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alla Y Karpova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
33
|
Xu T, Sirois FM, Zhang L, Yu Z, Feng T. Neural basis responsible for self-control association with procrastination: Right MFC and bilateral OFC functional connectivity with left dlPFC. JOURNAL OF RESEARCH IN PERSONALITY 2021. [DOI: 10.1016/j.jrp.2021.104064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
fMRI evidence reveals emotional biases in bilingual decision making. Brain Struct Funct 2021; 226:1405-1421. [PMID: 33675396 DOI: 10.1007/s00429-021-02246-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/26/2021] [Indexed: 01/16/2023]
Abstract
Research indicates that the foreign language effect on decision making can be partially explained by a reduction in emotional response in the second language. In this fMRI study, we aimed at elucidating the neural mechanisms underpinning the interaction between language and emotion in decision making. Across multiple trials, Chinese-English bilinguals were asked to decide whether to gamble in a Gambling task, and received feedbacks either in L1 (Chinese) or in L2 (English). If they gambled, feedbacks were either positively or negatively valenced words; if they did not gamble, feedback was the word 'safe'. We assessed how emotionally valenced words were processed in the two languages, and how this processing influenced subsequent decision making. Overall, we found evidence that in L2 context, but not in L1 context, loss aversion was mediated by the dorsolateral prefrontal cortex (dlPFC) which also showed strong functional connectivity with the visual cortex, suggesting an avoidance mechanism for negative stimuli in L2. However, we also found an enhanced response to positive feedbacks in L2 compared to L1, as evidenced by greater activation of the hippocampus for win feedbacks compared to safe feedbacks in L2, eventually resulting in a greater tendency to gamble. Thus, foreign language influenced decision making by both regulating emotional response to negative stimuli and enhancing emotional response to positive stimuli. This study helps unveiling the neural bases of the interaction between language and emotion in the foreign language context.
Collapse
|
35
|
Yang X, Meng YJ, Tao YJ, Deng RH, Wang HY, Li XJ, Wei W, Hua Y, Wang Q, Deng W, Zhao LS, Ma XH, Li ML, Xu JJ, Li J, Liu YS, Tang Z, Du XD, Coid JW, Greenshaw AJ, Li T, Guo WJ. Functional Connectivity of Nucleus Accumbens and Medial Prefrontal Cortex With Other Brain Regions During Early-Abstinence Is Associated With Alcohol Dependence and Relapse: A Resting-Functional Magnetic Resonance Imaging Study. Front Psychiatry 2021; 12:609458. [PMID: 33584384 PMCID: PMC7876376 DOI: 10.3389/fpsyt.2021.609458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Alcohol dependence (AD) is a chronic recurrent brain disease that causes a heavy disease burden worldwide, partly due to high relapse rates after detoxification. Verified biomarkers are not available for AD and its relapse, although the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) may play important roles in the mechanism of addiction. This study investigated AD- and relapse-associated functional connectivity (FC) of the NAc and mPFC with other brain regions during early abstinence. Methods: Sixty-eight hospitalized early-abstinence AD male patients and 68 age- and education-matched healthy controls (HCs) underwent resting-functional magnetic resonance imaging (r-fMRI). Using the NAc and mPFC as seeds, we calculated changes in FC between the seeds and other brain regions. Over a follow-up period of 6 months, patients were measured with the Alcohol Use Disorder Identification Test (AUDIT) scale to identify relapse outcomes (AUDIT ≥ 8). Results: Thirty-five (52.24%) of the AD patients relapsed during the follow-up period. AD displayed lower FC of the left fusiform, bilateral temporal superior and right postcentral regions with the NAc and lower FC of the right temporal inferior, bilateral temporal superior, and left cingulate anterior regions with the mPFC compared to controls. Among these FC changes, lower FC between the NAc and left fusiform, lower FC between the mPFC and left cingulate anterior cortex, and smoking status were independently associated with AD. Subjects in relapse exhibited lower FC of the right cingulate anterior cortex with NAc and of the left calcarine sulcus with mPFC compared to non-relapsed subjects; both of these reductions in FC independently predicted relapse. Additionally, FC between the mPFC and right frontal superior gyrus, as well as years of education, independently predicted relapse severity. Conclusion: This study found that values of FC between selected seeds (i.e., the NAc and the mPFC) and some other reward- and/or impulse-control-related brain regions were associated with AD and relapse; these FC values could be potential biomarkers of AD or for prediction of relapse. These findings may help to guide further research on the neurobiology of AD and other addictive disorders.
Collapse
Affiliation(s)
- Xia Yang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Jing Meng
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Jie Tao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ren-Hao Deng
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hui-Yao Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Jing Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Wei
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Hua
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Lian-Sheng Zhao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ming-Li Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jia-Jun Xu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Zhen Tang
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiang-Dong Du
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jeremy W Coid
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | | | - Tao Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Center for Educational and Health Psychology, Sichuan University, Chengdu, China
| | - Wan-Jun Guo
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Dorsomedial striatal contributions to different forms of risk/reward decision making. Neurobiol Learn Mem 2020; 178:107369. [PMID: 33383183 DOI: 10.1016/j.nlm.2020.107369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
Optimal decision making involving reward uncertainty is integral to adaptive goal-directed behavior. In some instances, these decisions are guided by internal representations of reward history, whereas in other situations, external cues inform a decision maker about how likely certain actions are to yield reward. Different regions of the frontal lobe form distributed networks with striatal and amygdalar regions that facilitate different types of risk/reward decision making. The dorsal medial striatum (DMS) is one key output region of the prefrontal cortex, yet there have been few preclinical studies investigating the involvement of the DMS in different forms of risk/reward decision making. The present study addressed this issue, wherein separate groups of male rats were trained on one of two tasks where they chose between a small/certain or a large/risky reward. In a probabilistic discounting task, reward probabilities changed systematically over blocks of trials (100-6.25% or 6.25-100%), requiring rats to use internal representations of reward history to guide choice. Cue-guided decision-making was assessed with a "Blackjack" task, where different auditory cues indicated the odds associated with the large/risky option (50 or 12.5%). Inactivation of the DMS with GABA agonists impaired adjustments in choice biases during probabilistic discounting, resulting in either increases or decreases in risky choice as the probabilities associated with the large/risky reward decreased or increased over a session. In comparison, DMS inactivation increased risky choices on poor-odds trials on the Blackjack task, which was associated with a reduced impact that non-rewarded choices had on subsequent choices. DMS inactivation also impaired performance of an auditory conditional discrimination. These findings highlight a previously uncharacterized role for the DMS in facilitating flexible action selection during multiple forms of risk/reward decision making.
Collapse
|
37
|
Piantadosi PT, Yeates DCM, Floresco SB. Prefrontal cortical and nucleus accumbens contributions to discriminative conditioned suppression of reward-seeking. ACTA ACUST UNITED AC 2020; 27:429-440. [PMID: 32934096 PMCID: PMC7497111 DOI: 10.1101/lm.051912.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Fear can potently inhibit ongoing behavior, including reward-seeking, yet the neural circuits that underlie such suppression remain to be clarified. Prior studies have demonstrated that distinct subregions of the rodent medial prefrontal cortex (mPFC) differentially affect fear behavior, whereby fear expression is promoted by the more dorsal prelimbic cortex (PL) and inhibited by the more ventral infralimbic cortex (IL). These mPFC regions project to subregions of the nucleus accumbens, the core (NAcC) and shell (NAcS), that differentially contribute to reward-seeking as well as affective processes that may be relevant to fear expression. Here, we investigated how these mPFC and NAc subregions contribute to discriminative fear conditioning, assessed by conditioned suppression of reward-seeking. Bilateral inactivation of the NAcS or PL reduced the expression of conditioned suppression to a shock-associated CS+, whereas NAcC inactivation reduced reward-seeking without affecting suppression. IL inactivation caused a general reduction in conditioned suppression following discriminative conditioning, but not when using a single-stimulus design. Pharmacological disconnection of the PL → NAcS pathway revealed that this projection mediates conditioned suppression. These data add to a growing literature implicating discrete cortico-striatal pathways in the suppression of reward-seeking in response to aversive stimuli. Dysfunction within related structures may contribute to aberrant patterns of behavior in psychiatric illnesses including substance use disorders.
Collapse
Affiliation(s)
- Patrick T Piantadosi
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dylan C M Yeates
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
38
|
Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking. J Neurosci 2020; 40:4773-4787. [PMID: 32393535 DOI: 10.1523/jneurosci.0414-20.2020] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 11/21/2022] Open
Abstract
Flexible initiation or suppression of actions to avoid aversive events is crucial for survival. The prelimbic (PL) and infralimbic (IL) regions of the medial prefrontal cortex (mPFC) have been implicated in different aspects of avoidance and reward-seeking, but their respective contribution in instigating versus suppressing actions in aversive contexts remains to be clarified. We examined mPFC involvement in different forms of avoidance in rats well trained on different cued lever-press avoidance tasks. Active/inhibitory avoidance required flexible discrimination between auditory cues signaling foot-shock could be avoided by making or withholding instrumental responses. On a simpler active avoidance task, a single cue signaled when a lever press would avoid shock. PL inactivation disrupted active but not inhibitory avoidance on the discriminative task while having no effect on single-cued avoidance. In comparison, IL inactivation broadly impaired active and inhibitory avoidance. Conversely, on a cued appetitive go/no-go task, both IL and PL inactivation impaired inhibitory but not active reward-seeking, the latter effect being diametrically opposite to that observed on the avoidance task. These findings highlight the complex manner in which different mPFC regions aid in initiating or inhibiting actions in the service of avoiding aversive outcomes or obtaining rewarding ones. IL facilitates active avoidance but suppress inappropriate actions in appetitive and aversive contexts. In contrast, contextual valence plays a critical role in how the PL is recruited in initiating or suppressing actions, which may relate to the degree of cognitive control required to flexibly negotiate response or motivational conflicts and override prepotent behaviors.SIGNIFICANCE STATEMENT Choosing to make or withhold actions in a context-appropriate manner to avoid aversive events or obtain other goals is a critical survival skill. Different medial prefrontal cortex (mPFC) regions have been implicated in certain aspects of avoidance, but their contributions to instigating or suppressing actions remains to be clarified. Here, we show that the dorsal, prelimbic (PL) region of the medial PFC aids active avoidance in situations requiring flexible mitigation of response conflicts, but also aids in withholding responses to obtain rewards. In comparison the ventral infralimbic (IL) cortex plays a broader role in active and inhibitory avoidance as well as suppressing actions to obtain rewards. These findings provide insight into mechanisms underlying normal and maladaptive avoidance behaviors and response inhibition.
Collapse
|
39
|
Abstract
Previous research has focused on the anterior cingulate cortex (ACC) as a key brain region in the mitigation of the competition that arises from two simultaneously active signals. However, to date, no study has demonstrated that ACC is necessary for this form of behavioral flexibility, nor have any studies shown that ACC acts by modulating downstream brain regions such as the dorsal medial striatum (DMS) that encode action plans necessary for task completion. Here, we performed unilateral excitotoxic lesions of ACC while recording downstream from the ipsilateral hemisphere of DMS in rats, performing a variant of the STOP-signal task. We show that on STOP trials lesioned rats perform worse, in part due to the failure of timely directional action plans to emerge in the DMS, as well as the overrepresentation of the to-be-inhibited behavior. Collectively, our findings suggest that ACC is necessary for the mitigation of competing inputs and validates many of the existing theoretical predictions for the role of ACC in cognitive control.
Collapse
|
40
|
Basolateral amygdala - nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109830. [PMID: 31811876 DOI: 10.1016/j.pnpbp.2019.109830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 11/21/2022]
Abstract
Maladaptive decision making is a characteristic feature of substance use disorder and pathological gambling. Studies in humans and animals have implicated neural circuits that include the basolateral amygdala (BLA) and nucleus accumbens (NAc) in facilitating risk/reward decision making. However, the preclinical literature has focussed primarily on situations where animals use internally-generated information to adapt to changes in reward likelihood, whereas many real-life situations require the use of external stimuli to facilitate context-appropriate behavior. We recently developed the "Blackjack" task, to measure cued risk/reward decision making requiring rats to chose between Small/Certain and Large/Risky rewards, with auditory cues at the start of each trial explicitly informing that the probability of obtaining a large reward was either good (50%) or poor (12.5%). Here we investigated the contribution of the BLA and its interaction with the NAc in guiding these types of decisions. In well-trained male rats, bilateral inactivation of the BLA induced suboptimal decision making, primarily by reducing risky choice on good-odds trials. In comparison, pharmacological disconnection of the BLA and NAc-shell also induced suboptimal decision making, diverting choice from more preferred option by reducing or increasing risky choice on good vs. poor odds trials respectively. Together, these results suggest that the BLA-NAc circuitry plays a crucial role in integrating information provided by discriminative stimuli. Furthermore, this circuitry may aid in guiding action selection of advantageous options in situations to maximize rewards. Finally, they suggest that perturbations in optimal decision making observed in substance abuse and gambling disorders may be driven in part by dysfunction within this circuitry.
Collapse
|
41
|
Bryce CA, Adalbert AJ, Claes MM, van Holstein M, Floresco SB. Differential effects of corticotropin-releasing factor and acute stress on different forms of risk/reward decision-making. Neurobiol Learn Mem 2020; 169:107167. [DOI: 10.1016/j.nlm.2020.107167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
|
42
|
Grimm JW, Sauter F. Environmental enrichment reduces food seeking and taking in rats: A review. Pharmacol Biochem Behav 2020; 190:172874. [PMID: 32084492 PMCID: PMC7100331 DOI: 10.1016/j.pbb.2020.172874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/21/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
Environmental enrichment (EE) for rodents is generally defined as providing subjects with an environment enhanced with access to conspecifics, novel and tactile stimuli, and in many preparations, more space. EE exposure, in particular as an "intervention" in adult rodents, decreases food and drug seeking and taking. This review focuses on the reduction of sucrose seeking and taking in rats assessed in operant-based procedures. The operant-based model provides a means to evaluate addiction-related behaviors. Findings using the model might translate to clinically-relevant addiction behaviors directed towards both drugs and food. Both overnight (acute) and one month (chronic) EE effects on behavior are described, including a recent evaluation of the persistence of EE effects following its removal. EE effects on neurobiology related to sucrose seeking using the model are outlined, with a special emphasis on meso-cortico-limbic terminals. Overall, our working hypothesis for how EE reduces sucrose seeking and taking is that EE alters processing of incentive valence. This may also be accompanied by changes in learning and affect. Anti-seeking and anti-taking effects of EE have translational implications for the prevention and treatment of both drug addiction and food-focused behaviors ("food addiction").
Collapse
Affiliation(s)
- Jeffrey W Grimm
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, USA.
| | - Frances Sauter
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, USA
| |
Collapse
|