1
|
Chen C, Masotti M, Shepard N, Promes V, Tombesi G, Arango D, Manzoni C, Greggio E, Hilfiker S, Kozorovitskiy Y, Parisiadou L. LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. Mol Psychiatry 2025:10.1038/s41380-025-03030-z. [PMID: 40269187 DOI: 10.1038/s41380-025-03030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Haloperidol is used to manage psychotic symptoms in several neurological disorders through mechanisms that involve antagonism of dopamine D2 receptors that are highly expressed in the striatum. Significant side effects of haloperidol, known as extrapyramidal symptoms, lead to motor deficits similar to those seen in Parkinson's disease and present a major challenge in clinical settings. The underlying molecular mechanisms responsible for these side effects remain poorly understood. Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) has an essential role in striatal physiology and a known link to dopamine D2 receptor signaling. Here, we systematically explore convergent signaling of haloperidol and LRRK2 through pharmacological or genetic inhibition of LRRK2 kinase, as well as knock-in mouse models expressing pathogenic mutant LRRK2 with increased kinase activity. Behavioral assays show that LRRK2 kinase inhibition ameliorates haloperidol-induced motor changes in mice. A combination of electrophysiological and anatomical approaches reveals that LRRK2 kinase inhibition interferes with haloperidol-induced changes, specifically in striatal neurons of the indirect pathway. Proteomic studies and targeted intracellular pathway analyses demonstrate that haloperidol induces a similar pattern of intracellular signaling as increased LRRK2 kinase activity. Our study suggests that LRRK2 kinase plays a key role in striatal dopamine D2 receptor signaling underlying the undesirable motor side effects of haloperidol. This work opens up new therapeutic avenues for dopamine-related disorders, such as psychosis, also furthering our understanding of Parkinson's disease pathophysiology.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Meghan Masotti
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nathaniel Shepard
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Vanessa Promes
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Giulia Tombesi
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | | | - Loukia Parisiadou
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Lee AS, Arefin TM, Gubanova A, Stephen DN, Liu Y, Lao Z, Krishnamurthy A, De Marco García NV, Heck DH, Zhang J, Rajadhyaksha AM, Joyner AL. Cerebellar output neurons can impair non-motor behaviors by altering development of extracerebellar connectivity. Nat Commun 2025; 16:1858. [PMID: 39984491 PMCID: PMC11845701 DOI: 10.1038/s41467-025-57080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the mouse cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the main requirement for these neurons is for motor coordination and not basic learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.
Collapse
Affiliation(s)
- Andrew S Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tanzil M Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Alina Gubanova
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel N Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Natalia V De Marco García
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
3
|
Sporn S, Galea JM. The effects of haloperidol on motor vigour and movement fusion during sequential reaching. PLoS One 2025; 20:e0316894. [PMID: 39888903 PMCID: PMC11785334 DOI: 10.1371/journal.pone.0316894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/17/2024] [Indexed: 02/02/2025] Open
Abstract
Reward is a powerful tool to enhance human motor behaviour with previous research showing that during a sequential reaching movement, a monetary incentive leads to increased speed of each movement (motor vigour effect), whilst reward-based performance feedback increases the speed of transition between movements (movement fusion effect). The neurotransmitter dopamine plays a central role in the processing of reward signals and has been implicated to modulate motor vigour and regulate movement fusion. However, in humans, it is unclear if the same dopaminergic mechanism underlies both processes. To address this, we used a complex sequential reaching task in which rewards were based on movement times (MT). Crucially, MTs could be reduced via: 1) enhanced speed of individual movements (motor vigour effect) and/or 2) enhanced speed of transition between movements (movement fusion effect). 95 participants were randomly assigned to a reward or no reward group and were given either 2.5mg of the dopamine antagonist haloperidol or a placebo (control group). An independent decision-making task performed prior to the main experiment suggested that haloperidol was active during the sequential reaching task (positive control). We did not find evidence that haloperidol affected the facilitatory effects of reward on movement fusion. However, we found that haloperidol negated the reward-based effects on motor vigour. Therefore, our results suggest that a D2-antagonist differentially influences reward-based effects on movement vigour and movement fusion, indicating that the dopaminergic mechanisms underlying these two processes may be distinct.
Collapse
Affiliation(s)
- Sebastian Sporn
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Department of Clinical and Movement Neuroscience, Queens Square Institute of Neurology, UCL, London, United Kingdom
| | - Joseph M. Galea
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Chen L, Saito R, Noda-Narita S, Kassai H, Aiba A. Hyperactive mTORC1 in striatum dysregulates dopamine receptor expression and odor preference behavior. Front Neurosci 2024; 18:1461178. [PMID: 39280263 PMCID: PMC11392874 DOI: 10.3389/fnins.2024.1461178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Mechanistic target of rapamycin (mTOR) plays an important role in brain development and synaptic plasticity. Dysregulation of the mTOR pathway is observed in various human central nervous system diseases, including tuberous sclerosis complex, autism spectrum disorder (ASD), and neurodegenerative diseases, including Parkinson's disease and Huntington's disease. Numerous studies focused on the effects of hyperactivation of mTOR on cortical excitatory neurons, while only a few studies focused on inhibitory neurons. Here we generated transgenic mice in which mTORC1 signaling is hyperactivated in inhibitory neurons in the striatum, while cortical neurons left unaffected. The hyperactivation of mTORC1 signaling increased GABAergic inhibitory neurons in the striatum. The transgenic mice exhibited the upregulation of dopamine receptor D1 and the downregulation of dopamine receptor D2 in medium spiny neurons in the ventral striatum. Finally, the transgenic mice demonstrated impaired motor learning and dysregulated olfactory preference behavior, though the basic function of olfaction was preserved. These findings reveal that the mTORC1 signaling pathway plays an essential role in the development and function of the striatal inhibitory neurons and suggest the critical involvement of the mTORC1 pathway in the locomotor abnormalities in neurodegenerative diseases and the sensory defects in ASD.
Collapse
Affiliation(s)
- Lin Chen
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryo Saito
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Noda-Narita
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Kassai
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Lee AS, Arefin TM, Gubanova A, Stephen DN, Liu Y, Lao Z, Krishnamurthy A, De Marco García NV, Heck DH, Zhang J, Rajadhyaksha AM, Joyner AL. Cerebellar output neurons impair non-motor behaviors by altering development of extracerebellar connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602496. [PMID: 39026865 PMCID: PMC11257463 DOI: 10.1101/2024.07.08.602496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the minimum requirement for these neurons is for motor coordination and not learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.
Collapse
Affiliation(s)
- Andrew S. Lee
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| | - Tanzil M. Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York 10016, NY, USA
- Present Address: Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alina Gubanova
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN 55812, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| | - Natalia V. De Marco García
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York 10021, NY 10021, USA
| | - Detlef H. Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN 55812, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York 10016, NY, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York 10021, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York 10021, NY, USA
- Present address: Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA and Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| |
Collapse
|
6
|
Chohan MO, Lewandowski AB, Siegel RN, O'Reilly KC, Veenstra-VanderWeele J. Adolescent chemogenetic activation of dopaminergic neurons leads to reversible decreases in amphetamine-induced stereotypic behavior. Mol Brain 2024; 17:36. [PMID: 38858755 PMCID: PMC11165814 DOI: 10.1186/s13041-024-01110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Chronic perturbations of neuronal activity can evoke homeostatic and new setpoints for neurotransmission. Using chemogenetics to probe the relationship between neuronal cell types and behavior, we recently found reversible decreases in dopamine (DA) transmission, basal behavior, and amphetamine (AMPH) response following repeated stimulation of DA neurons in adult mice. It is unclear, however, whether altering DA neuronal activity via chemogenetics early in development leads to behavioral phenotypes that are reversible, as alterations of neuronal activity during developmentally sensitive periods might be expected to induce persistent effects on behavior. To examine the impact of developmental perturbation of DA neuron activity on basal and AMPH behavior, we expressed excitatory hM3D(Gq) in postnatal DA neurons in TH-Cre and WT mice. Basal and CNO- or AMPH-induced locomotion and stereotypy was evaluated in a longitudinal design, with clozapine N-oxide (CNO, 1.0 mg/kg) administered across adolescence (postnatal days 15-47). Repeated CNO administration did not impact basal behavior and only minimally reduced AMPH-induced hyperlocomotor response in adolescent TH-CrehM3Dq mice relative to WThM3Dq littermate controls. Following repeated CNO administration, however, AMPH-induced stereotypic behavior robustly decreased in adolescent TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the diminished AMPH-induced stereotypic behavior. Our findings indicate that the homeostatic compensations that take place in response to chronic hM3D(Gq) stimulation during adolescence are temporary and are dependent on ongoing chemogenetic stimulation.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Amy B Lewandowski
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Rebecca N Siegel
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| |
Collapse
|
7
|
Chen C, Masotti M, Shepard N, Promes V, Tombesi G, Arango D, Manzoni C, Greggio E, Hilfiker S, Kozorovitskiy Y, Parisiadou L. LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597594. [PMID: 38895420 PMCID: PMC11185612 DOI: 10.1101/2024.06.06.597594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Haloperidol is used to manage psychotic symptoms in several neurological disorders through mechanisms that involve antagonism of dopamine D2 receptors that are highly expressed in the striatum. Significant side effects of haloperidol, known as extrapyramidal symptoms, lead to motor deficits similar to those seen in Parkinson's disease and present a major challenge in clinical settings. The underlying molecular mechanisms responsible for these side effects remain poorly understood. Parkinson's disease-associated LRRK2 kinase has an important role in striatal physiology and a known link to dopamine D2 receptor signaling. Here, we systematically explore convergent signaling of haloperidol and LRRK2 through pharmacological or genetic inhibition of LRRK2 kinase, as well as knock-in mouse models expressing pathogenic mutant LRRK2 with increased kinase activity. Behavioral assays show that LRRK2 kinase inhibition ameliorates haloperidol-induced motor changes in mice. A combination of electrophysiological and anatomical approaches reveals that LRRK2 kinase inhibition interferes with haloperidol-induced changes, specifically in striatal neurons of the indirect pathway. Proteomic studies and targeted intracellular pathway analyses demonstrate that haloperidol induces a similar pattern of intracellular signaling as increased LRRK2 kinase activity. Our study suggests that LRRK2 kinase plays a key role in striatal dopamine D2 receptor signaling underlying the undesirable motor side effects of haloperidol. This work opens up new therapeutic avenues for dopamine-related disorders, such as psychosis, also furthering our understanding of Parkinson's disease pathophysiology.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Meghan Masotti
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nathaniel Shepard
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Vanessa Promes
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Giulia Tombesi
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | | | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers, New Jersey Medical School, NJ, USA
| | | | - Loukia Parisiadou
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
8
|
Wang Y, Wei L, Tan M, Yang Z, Gao B, Li J, Liu Y, Zikereya T, Shi K, Chen W. Aerobic exercise improves motor dysfunction in Parkinson's model mice via differential regulation of striatal medium spiny neuron. Sci Rep 2024; 14:12132. [PMID: 38802497 PMCID: PMC11130133 DOI: 10.1038/s41598-024-63045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.
Collapse
Affiliation(s)
- Yinhao Wang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Longwei Wei
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Mingli Tan
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Zizheng Yang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Bo Gao
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Juan Li
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Yang Liu
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Talifu Zikereya
- Department of Physical Education, China University of Geoscience, Beijing, China
| | - Kaixuan Shi
- Department of Physical Education, China University of Geoscience, Beijing, China.
| | - Wei Chen
- School of Physical Education, Hebei Normal University, Shijiazhuang, China.
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
9
|
Reich N, Mannino M, Kotler S. Using caffeine as a chemical means to induce flow states. Neurosci Biobehav Rev 2024; 159:105577. [PMID: 38331128 DOI: 10.1016/j.neubiorev.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Flow is an intrinsically rewarding state characterised by positive affect and total task absorption. Because cognitive and physical performance are optimal in flow, chemical means to facilitate this state are appealing. Caffeine, a non-selective adenosine receptor antagonist, has been emphasized as a potential flow-inducer. Thus, we review the psychological and biological effects of caffeine that, conceptually, enhance flow. Caffeine may facilitate flow through various effects, including: i) upregulation of dopamine D1/D2 receptor affinity in reward-associated brain areas, leading to greater energetic arousal and 'wanting'; ii) protection of dopaminergic neurons; iii) increases in norepinephrine release and alertness, which offset sleep-deprivation and hypoarousal; iv) heightening of parasympathetic high frequency heart rate variability, resulting in improved cortical stress appraisal, v) modification of striatal endocannabinoid-CB1 receptor-signalling, leading to enhanced stress tolerance; and vi) changes in brain network activity in favour of executive function and flow. We also discuss the application of caffeine to treat attention deficit hyperactivity disorder and caveats. We hope to inspire studies assessing the use of caffeine to induce flow.
Collapse
Affiliation(s)
- Niklas Reich
- Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK; The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK.
| | - Michael Mannino
- Flow Research Collective, USA; Miami Dade College, Miami, FL, USA
| | | |
Collapse
|
10
|
Kearney PJ, Zhang Y, Liang M, Tan Y, Kahuno E, Conklin TL, Fagan RR, Pavchinskiy RG, Shaffer SA, Yue Z, Melikian HE. Silencing Parkinson's risk allele Rit2 sex-specifically compromises motor function and dopamine neuron viability. NPJ Parkinsons Dis 2024; 10:41. [PMID: 38395968 PMCID: PMC10891080 DOI: 10.1038/s41531-024-00648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and arises from dopamine (DA) neuron death selectively in the substantia nigra pars compacta (SNc). Rit2 is a reported PD risk allele, and recent single cell transcriptomic studies identified a major RIT2 cluster in PD DA neurons, potentially linking Rit2 expression loss to a PD patient cohort. However, it is still unknown whether Rit2 loss itself impacts DA neuron function and/or viability. Here we report that conditional Rit2 silencing in mouse DA neurons drove motor dysfunction that occurred earlier in males than females and was rescued at early stages by either inhibiting the DA transporter (DAT) or with L-DOPA treatment. Motor dysfunction was accompanied by decreased DA release, striatal DA content, phenotypic DAergic markers, DA neurons, and DAergic terminals, with increased pSer129-alpha synuclein and pSer935-LRRK2 expression. These results provide clear evidence that Rit2 loss is causal for SNc cell death and motor dysfunction, and reveal key sex-specific differences in the response to Rit2 loss.
Collapse
Affiliation(s)
- Patrick J Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
- University of California, San Diego, CA, USA
| | - Yuanxi Zhang
- Department of Neurology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marianna Liang
- Department of Neurology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yanglan Tan
- Mass Spectrometry Facility, Department of Biochemistry and Molecular Biotechnology, UMASS Chan Medical School, Worcester, MA, USA
- DMPK Group, Merck, S. San Francisco, CA, USA
| | - Elizabeth Kahuno
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
| | - Tucker L Conklin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
- Regeneron, Albany, NY, USA
| | - Rita R Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
- University of California, San Francisco, CA, USA
| | - Rebecca G Pavchinskiy
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Scott A Shaffer
- Mass Spectrometry Facility, Department of Biochemistry and Molecular Biotechnology, UMASS Chan Medical School, Worcester, MA, USA
| | - Zhenyu Yue
- Department of Neurology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haley E Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, MA, USA.
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Castell L, Le Gall V, Cutando L, Petit CP, Puighermanal E, Makrini-Maleville L, Kim HR, Jercog D, Tarot P, Tassou A, Harrus AG, Rubinstein M, Nouvian R, Rivat C, Besnard A, Trifilieff P, Gangarossa G, Janak PH, Herry C, Valjent E. Dopamine D2 receptors in WFS1-neurons regulate food-seeking and avoidance behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110883. [PMID: 37858736 DOI: 10.1016/j.pnpbp.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.
Collapse
Affiliation(s)
- Laia Castell
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France; Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Valentine Le Gall
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Laura Cutando
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Chloé P Petit
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Emma Puighermanal
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | | | - Ha-Rang Kim
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Daniel Jercog
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Pauline Tarot
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Adrien Tassou
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | | | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET; FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Régis Nouvian
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Cyril Rivat
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Antoine Besnard
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Pierre Trifilieff
- Université, Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux F-33000, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris F-75013, France; Institut Universitaire de France, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cyril Herry
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Emmanuel Valjent
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France.
| |
Collapse
|
12
|
Szalisznyó K, Silverstein DN. Computational insights on asymmetrical D1 and D2 receptor-mediated chunking: implications for OCD and Schizophrenia. Cogn Neurodyn 2024; 18:217-232. [PMID: 38406202 PMCID: PMC10881457 DOI: 10.1007/s11571-022-09865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 01/15/2023] Open
Abstract
Repetitive thoughts and motor programs including perseveration are bridge symptoms characteristic of obsessive compulsive disorder (OCD), schizophrenia and in the co-morbid overlap of these conditions. The above pathologies are sensitive to altered activation and kinetics of dopamine D 1 and D 2 receptors that differently influence sequence learning and recall. Recognizing start and stop elements of motor and cognitive behaviors has crucial importance. During chunking, frequent components of temporal strings are concatenated into single units. We extended a published computational model (Asabuki et al. 2018), where two populations of neurons are connected and simulated in a reservoir computing framework. These neural pools were adopted to represent D1 and D2 striatal neuronal populations. We investigated how specific neural and striatal circuit parameters can influence start/stop signaling and found that asymmetric intra-network connection probabilities, synaptic weights and differential time constants may contribute to signaling of start/stop elements within learned sequences. Asymmetric coupling between the striatal D 1 and D 2 neural populations was also demonstrated to be beneficial. Our modeling results predict that dynamical differences between the two dopaminergic striatal populations and the interaction between them may play complementary roles in chunk boundary signaling. Start and stop dichotomies can arise from the larger circuit dynamics as well, since neural and intra-striatal connections only partially support a clear division of labor.
Collapse
Affiliation(s)
- Krisztina Szalisznyó
- Department of Medical Sciences, Psychiatry, Uppsala University Hospital, Uppsala University, 751 85 Uppsala, Sweden
- Theoretical Neuroscience and Complex Systems Research Group, Wigner Research Centre for Physics, Budapest, Hungary
| | | |
Collapse
|
13
|
Zhang S, Mena-Segovia J, Gut NK. Inhibitory Pedunculopontine Neurons Gate Dopamine-Mediated Motor Actions of Unsigned Valence. Curr Neuropharmacol 2024; 22:1540-1550. [PMID: 37702175 PMCID: PMC11097985 DOI: 10.2174/1570159x21666230911103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The pedunculopontine nucleus (PPN) maintains a bidirectional connectivity with the basal ganglia that supports their shared roles in the selection and execution of motor actions. Previous studies identified a role for PPN neurons in goal-directed behavior, but the cellular substrates underlying this function have not been elucidated. We recently revealed the existence of a monosynaptic GABAergic input from the PPN that inhibits dopamine neurons of the substantia nigra. Activation of this pathway interferes with the execution of learned motor sequences when the actions are rewarded, even though the inhibition of dopamine neurons did not shift the value of the action, hence suggesting executive control over the gating of behavior. OBJECTIVE To test the attributes of the inhibition of dopamine neurons by the PPN in the context of goal-directed behavior regardless of whether the outcome is positively or negatively reinforced. METHODS We delivered optogenetic stimulation to PPN GABAergic axon terminals in the substantia nigra during a battery of behavioral tasks with positive and negative valence. RESULTS Inhibition of dopamine neurons by PPN optogenetic activation during an appetitive task impaired the initiation and overall execution of the behavioral sequence without affecting the consumption of reward. During an active avoidance task, the same activation impaired the ability of mice to avoid a foot shock, but their escape response was unaffected. In addition, responses to potential threats were significantly attenuated. CONCLUSION Our results show that PPN GABAergic neurons modulate learned, goal-directed behavior of unsigned valence without affecting overall motor behavior.
Collapse
Affiliation(s)
- Sirin Zhang
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Nadine K. Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| |
Collapse
|
14
|
Kearney PJ, Zhang Y, Tan Y, Kahuno E, Conklin TL, Fagan RR, Pavchinskiy RG, Shafer SA, Yue Z, Melikian HE. Rit2 silencing in dopamine neurons drives a Parkinsonian phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538430. [PMID: 37162843 PMCID: PMC10168302 DOI: 10.1101/2023.04.26.538430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and arises from dopamine (DA) neuron death selectively in the substantia nigra pars compacta (SNc). Rit2 is a reported PD risk allele, and recent single cell transcriptomic studies identified a major RIT2 cluster in PD DA neurons, potentially linking Rit2 expression loss to a PD patient cohort. However, it is still unknown whether Rit2 loss itself is causative for PD or PD-like symptoms. Here we report that conditional Rit2 silencing in mouse DA neurons drove motor dysfunction that occurred earlier in males than females and was rescued at early stages by either inhibiting the DA transporter (DAT) or with L-DOPA treatment. Motor dysfunction was accompanied by decreased DA release, striatal DA content, phenotypic DAergic markers, DA neurons, and DAergic terminals, with increased pSer129-alpha synuclein and pSer935-LRRK2 expression. These results provide the first evidence that Rit2 loss is causal for SNc cell death and a PD-like phenotype, and reveal key sex-specific differences in the response to Rit2 loss.
Collapse
|
15
|
Morris CW, Watkins DS, Shah NR, Pennington T, Hens B, Qi G, Doud EH, Mosley AL, Atwood BK, Baucum AJ. Spinophilin Limits Metabotropic Glutamate Receptor 5 Scaffolding to the Postsynaptic Density and Cell Type Specifically Mediates Excessive Grooming. Biol Psychiatry 2023; 93:976-988. [PMID: 36822932 PMCID: PMC10191892 DOI: 10.1016/j.biopsych.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder trichotillomania. Numerous preclinical studies have utilized SAPAP3-deficient mice for understanding the neurobiology of repetitive grooming, suggesting that excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect-pathway medium spiny neurons (MSNs). However, the MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigated the MSN subtype-specific roles of the striatal signaling hub protein spinophilin in mediating repetitive motor dysfunction associated with mGluR5 function. METHODS Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action were measured using our novel conditional spinophilin mouse model in which spinophilin was knocked out from striatal direct-pathway MSNs and/or indirect-pathway MSNs. RESULTS Loss of spinophilin only in indirect-pathway MSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator VU0360172 without impacting locomotion-relevant behavior. Biochemically, we determined that the spinophilin-mGluR5 interaction correlates with grooming behavior and that loss of spinophilin shifts mGluR5 interactions from lipid raft-associated proteins toward postsynaptic density proteins implicated in psychiatric disorders. CONCLUSIONS These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Cameron W Morris
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana
| | - Darryl S Watkins
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nikhil R Shah
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana; Medical Scientists Training Program, Indiana University School of Medicine, Indianapolis, Indiana
| | - Taylor Pennington
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Basant Hens
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Guihong Qi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony J Baucum
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
16
|
Farajizadeh F, Taghian F, Jalali Dehkordi K, Mirsafaei Rizi R. Swimming training and herbal nanoformulations as natural remedies to improve sensory-motor impairment in rat midbrain tumor models: system biology, behavioral test, and experimental validation. 3 Biotech 2023; 13:149. [PMID: 37131964 PMCID: PMC10148939 DOI: 10.1007/s13205-023-03574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Motor impairment worsens health-related quality of life in patients with primary and metastatic midbrain tumors. Here, 56-male-Wistar rats were divided into eight groups: Normal group, Midbrain Tomur Model group, Model + Exe group, Model + Lipo, Model + Extract, Model + Lipo-Extract, Model + Extract-Exe, Model + Lipo-Extract + Exe. According to the aim, mid-brain tumor models were conducted by injections of the C6 glioma cell line (5 × 105 cell suspension) and stereotaxic techniques in the substantia nigra area. Furthermore, consumption of nanoformulation of herbals extract (100 mg/kg/day), crude extract (100 mg/kg/day), and swimming training (30 min, 3 days/week) as interventional protocols were performed for 6 weeks. In addition, we evaluated the effect of polyherbal nanoliposomes containing four plant extracts and swimming training on the GABArα1/TRKB/DRD2/DRD1a/TH network in the substantia nigra of the midbrain tumor rat model. Data emphasized that DRD2 might be a druggable protein with the network's highest significance cut-point effect that could modulate sensory-motor impairment. Furthermore, we found Quercetin, Ginsenosides, Curcumin, and Rutin, as bioactive compounds present in Ginseng, Matthiola incana, Turmeric, and Green-Tea extracts, could bind over the DRD2 protein with approved binding affinity scores. Based on our data, swimming training, and nanoliposome-enriched combined supplements could consider effective complementary medicine for motor impairment recovery induced by the midbrain tumor in the substantia nigra area. Hence, regular swimming training and natural medicines rich in polyphenolic bioactive components and antioxidative effects could modify and improve the dopamine receptors' function. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03574-3.
Collapse
Affiliation(s)
- Fariba Farajizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Rezvan Mirsafaei Rizi
- Department of Sports Injuries, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
17
|
Hird E, Beierholm U, De Boer L, Axelsson J, Beckman L, Guitart-Masip M. Dopamine and reward-related vigor in younger and older adults. Neurobiol Aging 2022; 118:34-43. [DOI: 10.1016/j.neurobiolaging.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
|
18
|
St-Cyr S, Smith AR, Davidson BL. Temporal Phenotypic Changes in Huntington's Disease Models for Preclinical Studies. J Huntingtons Dis 2022; 11:35-57. [PMID: 35213386 PMCID: PMC9028736 DOI: 10.3233/jhd-210515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Mouse models bearing genetic disease mutations are instrumental in the development of therapies for genetic disorders. Huntington’s disease (HD) is a late-onset lethal dominant genetic disorder due to a CAG repeat within exon 1 of the Huntingtin (Htt) gene. Several mice were developed to model HD through the expression of a transgenic fragment (exon 1 of the human HTT), the knock-in mutation of the CAG repeat in the context of the mouse Htt gene, or the full-length HTT human gene. The different mouse models present distinct onset, symptoms, and progression of the disease. Objective: The objective of this study is to advise on the best behavioral tests to assess disease progression in three HD mouse models. Methods: We tested N171-82Q transgenic mice, zQ175 knock-in mice, and BACHD full-length mice in a comprehensive behavior test battery in early, mid-, and late disease stages. Results: We contrast and compare the models and the emerging phenotypes with the available literature. These results suggest the most effective behavioral tests and appropriate sample sizes to detect treatment efficacy in each model at the different ages. We provide options for early detection of motor deficits while minimizing testing time and training. Conclusion: This information will inform researchers in the HD field as to which mouse model, tests and sample sizes can accurately and sensitively detect treatment efficacy in preclinical HD research.
Collapse
Affiliation(s)
- Sophie St-Cyr
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alicia R Smith
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Department of Pathology & Laboratory Medicine, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Calderon CB, Verguts T, Frank MJ. Thunderstruck: The ACDC model of flexible sequences and rhythms in recurrent neural circuits. PLoS Comput Biol 2022; 18:e1009854. [PMID: 35108283 PMCID: PMC8843237 DOI: 10.1371/journal.pcbi.1009854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/14/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptive sequential behavior is a hallmark of human cognition. In particular, humans can learn to produce precise spatiotemporal sequences given a certain context. For instance, musicians can not only reproduce learned action sequences in a context-dependent manner, they can also quickly and flexibly reapply them in any desired tempo or rhythm without overwriting previous learning. Existing neural network models fail to account for these properties. We argue that this limitation emerges from the fact that sequence information (i.e., the position of the action) and timing (i.e., the moment of response execution) are typically stored in the same neural network weights. Here, we augment a biologically plausible recurrent neural network of cortical dynamics to include a basal ganglia-thalamic module which uses reinforcement learning to dynamically modulate action. This “associative cluster-dependent chain” (ACDC) model modularly stores sequence and timing information in distinct loci of the network. This feature increases computational power and allows ACDC to display a wide range of temporal properties (e.g., multiple sequences, temporal shifting, rescaling, and compositionality), while still accounting for several behavioral and neurophysiological empirical observations. Finally, we apply this ACDC network to show how it can learn the famous “Thunderstruck” song intro and then flexibly play it in a “bossa nova” rhythm without further training. How do humans flexibly adapt action sequences? For instance, musicians can learn a song and quickly speed up or slow down the tempo, or even play the song following a completely different rhythm (e.g., a rock song using a bossa nova rhythm). In this work, we build a biologically plausible network of cortico-basal ganglia interactions that explains how this temporal flexibility may emerge in the brain. Crucially, our model factorizes sequence order and action timing, respectively represented in cortical and basal ganglia dynamics. This factorization allows full temporal flexibility, i.e. the timing of a learned action sequence can be recomposed without interfering with the order of the sequence. As such, our model is capable of learning asynchronous action sequences, and flexibly shift, rescale, and recompose them, while accounting for biological data.
Collapse
Affiliation(s)
- Cristian Buc Calderon
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Michael J. Frank
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
20
|
Beeler JA, Burghardt NS. The Rise and Fall of Dopamine: A Two-Stage Model of the Development and Entrenchment of Anorexia Nervosa. Front Psychiatry 2022; 12:799548. [PMID: 35087433 PMCID: PMC8787068 DOI: 10.3389/fpsyt.2021.799548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Dopamine has long been implicated as a critical neural substrate mediating anorexia nervosa (AN). Despite nearly 50 years of research, the putative direction of change in dopamine function remains unclear and no consensus on the mechanistic role of dopamine in AN has been achieved. We hypothesize two stages in AN- corresponding to initial development and entrenchment- characterized by opposite changes in dopamine. First, caloric restriction, particularly when combined with exercise, triggers an escalating spiral of increasing dopamine that facilitates the behavioral plasticity necessary to establish and reinforce weight-loss behaviors. Second, chronic self-starvation reverses this escalation to reduce or impair dopamine which, in turn, confers behavioral inflexibility and entrenchment of now established AN behaviors. This pattern of enhanced, followed by impaired dopamine might be a common path to many behavioral disorders characterized by reinforcement learning and subsequent behavioral inflexibility. If correct, our hypothesis has significant clinical and research implications for AN and other disorders, such as addiction and obesity.
Collapse
Affiliation(s)
- Jeff A. Beeler
- Department of Psychology, Queens College, City University of New York, Flushing, NY, United States
- Psychology Program, The Graduate Center, CUNY, New York, NY, United States
- Biology Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Nesha S. Burghardt
- Psychology Program, The Graduate Center, CUNY, New York, NY, United States
- Department of Psychology, Hunter College, CUNY, New York, NY, United States
| |
Collapse
|
21
|
Simpson EH, Gallo EF, Balsam PD, Javitch JA, Kellendonk C. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry 2022; 27:436-444. [PMID: 34385603 PMCID: PMC8837728 DOI: 10.1038/s41380-021-01253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
It was first posited, more than five decades ago, that the etiology of schizophrenia involves overstimulation of dopamine receptors. Since then, advanced clinical research methods, including brain imaging, have refined our understanding of the relationship between striatal dopamine and clinical phenotypes as well as disease trajectory. These studies point to striatal dopamine D2 receptors, the main target for all current antipsychotic medications, as being involved in both positive and negative symptoms. Simultaneously, animal models have been central to investigating causal relationships between striatal dopamine D2 receptors and behavioral phenotypes relevant to schizophrenia. We begin this article by reviewing the circuit, cell-type and subcellular locations of dopamine D2 receptors and their downstream signaling pathways. We then summarize results from several mouse models in which D2 receptor levels were altered in various brain regions, cell-types and developmental periods. Behavioral, electrophysiological and anatomical consequences of these D2 receptor perturbations are reviewed with a selective focus on striatal circuit function and alterations in motivated behavior, a core negative symptom of schizophrenia. These studies show that D2 receptors serve distinct physiological roles in different cell types and at different developmental time points, regulating motivated behaviors in sometimes opposing ways. We conclude by considering the clinical implications of this complex regulation of striatal circuit function by D2 receptors.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY 10458
| | - Peter D. Balsam
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027,Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032,Department of Molecular Pharmacology and Therapeutics, Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA. .,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. .,Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Liu Y, Xing H, Yokoi F, Vaillancourt DE, Li Y. Investigating the role of striatal dopamine receptor 2 in motor coordination and balance: Insights into the pathogenesis of DYT1 dystonia. Behav Brain Res 2021; 403:113137. [PMID: 33476687 DOI: 10.1016/j.bbr.2021.113137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset, generalized dystonia. Most DYT1 dystonia patients have a heterozygous trinucleotide GAG deletion in DYT1 or TOR1A gene, with a loss of a glutamic acid residue of the protein torsinA. DYT1 dystonia patients show reduced striatal dopamine D2 receptor (D2R) binding activity. We previously reported reduced striatal D2R proteins and impaired corticostriatal plasticity in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice. It remains unclear how the D2R reduction contributes to the pathogenesis of DYT1 dystonia. Recent knockout studies indicate that D2R on cholinergic interneurons (Chls) has a significant role in corticostriatal plasticity, while D2R on medium spiny neurons (MSNs) plays a minor role. To determine how reduced D2Rs on ChIs and MSNs affect motor performance, we generated ChI- or MSN-specific D2R conditional knockout mice (Drd2 ChKO or Drd2 sKO). The striatal ChIs in the Drd2 ChKO mice showed an increased firing frequency and impaired quinpirole-induced inhibition, suggesting a reduced D2R function on the ChIs. Drd2 ChKO mice had an age-dependent deficient performance on the beam-walking test similar to the Dyt1 KI mice. The Drd2 sKO mice, conversely, had a deficit on the rotarod but not the beam-walking test. Our findings suggest that D2Rs on Chls and MSNs have critical roles in motor control and balance. The similarity of the beam-walking deficit between the Drd2 ChKO and Dyt1 KI mice supports our earlier notion that D2R reduction on striatal ChIs contributes to the pathophysiology and the motor symptoms of DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
23
|
Yang S, Boudier-Revéret M, Choo YJ, Chang MC. Association between Chronic Pain and Alterations in the Mesolimbic Dopaminergic System. Brain Sci 2020; 10:701. [PMID: 33023226 PMCID: PMC7600461 DOI: 10.3390/brainsci10100701] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pain (pain lasting for >3 months) decreases patient quality of life and even occupational abilities. It can be controlled by treatment, but often persists even after management. To properly control pain, its underlying mechanisms must be determined. This review outlines the role of the mesolimbic dopaminergic system in chronic pain. The mesolimbic system, a neural circuit, delivers dopamine from the ventral tegmental area to neural structures such as the nucleus accumbens, prefrontal cortex, anterior cingulate cortex, and amygdala. It controls executive, affective, and motivational functions. Chronic pain patients suffer from low dopamine production and delivery in this system. The volumes of structures constituting the mesolimbic system are known to be decreased in such patients. Studies on administration of dopaminergic drugs to control chronic pain, with a focus on increasing low dopamine levels in the mesolimbic system, show that it is effective in patients with Parkinson's disease, restless legs syndrome, fibromyalgia, dry mouth syndrome, lumbar radicular pain, and chronic back pain. However, very few studies have confirmed these effects, and dopaminergic drugs are not commonly used to treat the various diseases causing chronic pain. Thus, further studies are required to determine the effectiveness of such treatment for chronic pain.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman’s University Seoul Hospital, Ewha Woman’s University School of Medicine, Seoul 07804, Korea;
| | - Mathieu Boudier-Revéret
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2W 1T8, Canada;
| | - Yoo Jin Choo
- Production R&D Division Advanced Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Deagu 41061, Korea;
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|