1
|
Boucherie C, Alkailani M, Jossin Y, Ruiz-Reig N, Mahdi A, Aldaalis A, Aittaleb M, Tissir F. Auts2 enhances neurogenesis and promotes expansion of the cerebral cortex. J Adv Res 2025; 72:151-163. [PMID: 39013538 DOI: 10.1016/j.jare.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION The AUTS2 gene is associated with various neurodevelopmental and psychiatric disorders and has been suggested to play a role in acquiring human-specific traits. Functional analyses of Auts2 knockout mice have focused on postmitotic neurons, and the reported phenotypes do not faithfully recapitulate the whole spectrum of AUTS2-related human diseases. OBJECTIVE The objective of the study is to assess the role of AUTS2 in the biology of neural progenitor cells, cortical neurogenesis and expansion; and understand how its deregulation leads to neurological disorders. METHODS We screened the literature and conducted a time point analysis of AUTS2 expression during cortical development. We used in utero electroporation to acutely modulate the expression level of AUTS2 in the developing cerebral cortex in vivo, and thoroughly characterized cortical neurogenesis and morphogenesis using immunofluorescence, cell tracing and sorting, transcriptomic profiling, and gene ontology enrichment analyses. RESULTS In addition to its expression in postmitotic neurons, we showed that AUTS2 is also expressed in neural progenitor cells at the peak of neurogenesis. Upregulation of AUTS2 dramatically altered the differentiation program and fate determination of cortical progenitors. Notably, it increased the number of basal progenitors and neurons and changed the expression of hundreds of genes, among which 444 have not been implicated in mouse brain development or function. CONCLUSION The study provides evidence that AUTS2 is expressed in germinal zones and plays a key role in fate decision of neural progenitor cells with impact on corticogenesis. It also presents comprehensive lists of AUTS2 target genes thus advancing the molecular mechanisms underlying AUTS2-associated diseases and the evolutionary expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Cédric Boucherie
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Maisa Alkailani
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Yves Jossin
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Asma Mahdi
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Arwa Aldaalis
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Mohamed Aittaleb
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium; Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar.
| |
Collapse
|
2
|
Haavik J. Genomics of Attention Deficit Hyperactivity Disorder: What the Clinician Needs to Know. Psychiatr Clin North Am 2025; 48:361-376. [PMID: 40348423 DOI: 10.1016/j.psc.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
This report provides an update on current knowledge and applications of genomic research in attention deficit hyperactivity disorder (ADHD). The history, principles, and underlying assumptions for genetic studies on psychiatric disorders are reviewed. Recent DNA sequencing and genome-wide association studies have revealed common and rare genetic variants associated with ADHD. Communication of genetic knowledge in meetings with patients and their relatives and common misconceptions are addressed. The importance of recognizing genetic syndromes masquerading as ADHD or other common psychiatric disorders is emphasized and how genetic information can be used to improve diagnosis and therapy are discussed.
Collapse
Affiliation(s)
- Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Dionne G, Mascheretti S, Feng B, Paradis H, Brendgen M, Vitaro F, Tremblay R, Boivin M. Genetic and phenotypic evidence of the predictive validity of preschool parent reports of hyperactivity/impulsivity and inattention. Dev Psychopathol 2025; 37:590-602. [PMID: 38439652 DOI: 10.1017/s095457942400035x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
To determine the validity of parent reports (PRs) of ADHD in preschoolers, we assessed hyperactivity/impulsivity (HI) and inattention (IN) in 1114 twins with PRs at 1.5, 2.5, 4, 5, 14, 15, and 17 years, and teacher-reports at 6, 7, 9, 10, and 12. We examined if preschool PRs (1) predict high HI/IN trajectories, and (2) capture genetic contributions to HI/IN into adolescence. Group-based trajectory analyses identified three 6-17 years trajectories for both HI and IN, including small groups with high HI (N = 88, 10.4%, 77% boys) and IN (N = 158, 17.3%, 75% boys). Controlling for sex, each unit of HI PRs starting at 1.5 years and at 4 years for IN, increased more than 2-fold the risk of belonging to the high trajectory, with incremental contributions (Odds Ratios = 2.5-4.5) at subsequent ages. Quantitative genetic analyses showed that genetic contributions underlying preschool PRs accounted for up to a quarter and a third of the heritability of later HI and IN, respectively. Genes underlying 1.5-year HI and 4-year IN contributed to 6 of 8 later HI and IN time-points and largely explained the corresponding phenotypic correlations. Results provide phenotypic and genetic evidence that preschool parent reports of HI and IN are valid means to predict developmental risk of ADHD.
Collapse
Affiliation(s)
- Ginette Dionne
- School of Psychology, Université Laval, Québec City, Canada
| | - Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Bei Feng
- School of Psychology, Université Laval, Québec City, Canada
| | - Hélène Paradis
- School of Psychology, Université Laval, Québec City, Canada
| | - Mara Brendgen
- Department of Psychology, Université du Québec à Montréal, Montréal, Canada
| | - Frank Vitaro
- School of Psychoeducation, Université de Montréal, Montréal, Canada
| | - Richard Tremblay
- Department of Psychology, Université de Montréal, Montréal, Canada
| | - Michel Boivin
- School of Psychology, Université Laval, Québec City, Canada
| |
Collapse
|
4
|
Bruxel EM, Rovaris DL, Belangero SI, Chavarría-Soley G, Cuellar-Barboza AB, Martínez-Magaña JJ, Nagamatsu ST, Nievergelt CM, Núñez-Ríos DL, Ota VK, Peterson RE, Sloofman LG, Adams AM, Albino E, Alvarado AT, Andrade-Brito D, Arguello-Pascualli PY, Bandeira CE, Bau CHD, Bulik CM, Buxbaum JD, Cappi C, Corral-Frias NS, Corrales A, Corsi-Zuelli F, Crowley JJ, Cupertino RB, da Silva BS, De Almeida SS, De la Hoz JF, Forero DA, Fries GR, Gelernter J, González-Giraldo Y, Grevet EH, Grice DE, Hernández-Garayua A, Hettema JM, Ibáñez A, Ionita-Laza I, Lattig MC, Lima YC, Lin YS, López-León S, Loureiro CM, Martínez-Cerdeño V, Martínez-Levy GA, Melin K, Moreno-De-Luca D, Muniz Carvalho C, Olivares AM, Oliveira VF, Ormond R, Palmer AA, Panzenhagen AC, Passos-Bueno MR, Peng Q, Pérez-Palma E, Prieto ML, Roussos P, Sanchez-Roige S, Santamaría-García H, Shansis FM, Sharp RR, Storch EA, Tavares MEA, Tietz GE, Torres-Hernández BA, Tovo-Rodrigues L, Trelles P, Trujillo-ChiVacuan EM, Velásquez MM, Vera-Urbina F, Voloudakis G, Wegman-Ostrosky T, Zhen-Duan J, Zhou H, Santoro ML, Nicolini H, Atkinson EG, Giusti-Rodríguez P, Montalvo-Ortiz JL. Psychiatric genetics in the diverse landscape of Latin American populations. Nat Genet 2025:10.1038/s41588-025-02127-z. [PMID: 40175716 DOI: 10.1038/s41588-025-02127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025]
Abstract
Psychiatric disorders are highly heritable and polygenic, influenced by environmental factors and often comorbid. Large-scale genome-wide association studies (GWASs) through consortium efforts have identified genetic risk loci and revealed the underlying biology of psychiatric disorders and traits. However, over 85% of psychiatric GWAS participants are of European ancestry, limiting the applicability of these findings to non-European populations. Latin America and the Caribbean, regions marked by diverse genetic admixture, distinct environments and healthcare disparities, remain critically understudied in psychiatric genomics. This threatens access to precision psychiatry, where diversity is crucial for innovation and equity. This Review evaluates the current state and advancements in psychiatric genomics within Latin America and the Caribbean, discusses the prevalence and burden of psychiatric disorders, explores contributions to psychiatric GWASs from these regions and highlights methods that account for genetic diversity. We also identify existing gaps and challenges and propose recommendations to promote equity in psychiatric genomics.
Collapse
Affiliation(s)
- Estela M Bruxel
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diego L Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sintia I Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Chavarría-Soley
- Escuela de Biología y Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry, School of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - José J Martínez-Magaña
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Sheila T Nagamatsu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diana L Núñez-Ríos
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Vanessa K Ota
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roseann E Peterson
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy M Adams
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Elinette Albino
- School of Health Professions, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Angel T Alvarado
- Research Unit in Molecular Pharmacology and Genomic Medicine, VRI, San Ignacio de Loyola University, La Molina, Perú
| | | | - Paola Y Arguello-Pascualli
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cibele E Bandeira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claiton H D Bau
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alejo Corrales
- Departamento de Psiquiatría, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Fabiana Corsi-Zuelli
- Department of Neuroscience, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bruna S da Silva
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Suzannah S De Almeida
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan F De la Hoz
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Gabriel R Fries
- Faillace Department of Psychiatry and Behavioral Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Yeimy González-Giraldo
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Eugenio H Grevet
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana Hernández-Garayua
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - John M Hettema
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY, USA
- Department of Statistics, Lund University, Lund, Sweden
| | | | - Yago C Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Yi-Sian Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sandra López-León
- Quantitative Safety Epidemiology, Novartis Pharma, East Hanover, NJ, USA
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Rutgers University, New Brunswick, NJ, USA
| | - Camila M Loureiro
- Department of Neuroscience, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gabriela A Martínez-Levy
- Department of Genetics, Subdirectorate of Clinical Research, National Institute of Psychiatry, México City, México
- Department of Cell and Tissular Biology, Medicine Faculty, National Autonomous University of Mexico, México City, México
| | - Kyle Melin
- School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Daniel Moreno-De-Luca
- Precision Medicine in Autism Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Alberta Health Services, CASA Mental Health, Edmonton, Alberta, Canada
| | | | - Ana Maria Olivares
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Victor F Oliveira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rafaella Ormond
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alana C Panzenhagen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Laboratório de Pesquisa Translacional em Comportamento Suicida, Universidade do Vale do Taquari, Lajeado, Brazil
| | - Maria Rita Passos-Bueno
- Departmento de Genetica e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Qian Peng
- Department of Neuroscience, the Scripps Research Institute, La Jolla, CA, USA
| | - Eduardo Pérez-Palma
- Facultad de Medicina Clínica Alemana, Centro de Genética y Genómica, Universidad del Desarrollo, Santiago, Chile
| | - Miguel L Prieto
- Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile
- Department of Psychiatry, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Panos Roussos
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hernando Santamaría-García
- PhD Program of Neuroscience, Pontificia Universidad Javeriana, Hospital San Ignacio, Center for Memory and Cognition, Intellectus, Bogotá, Colombia
| | - Flávio M Shansis
- Graduate Program of Medical Sciences, Universidade do Vale do Taquari, Lajeado, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rachel R Sharp
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Maria Eduarda A Tavares
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Grace E Tietz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Pilar Trelles
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva M Trujillo-ChiVacuan
- Research Department, Comenzar de Nuevo Eating Disorders Treatment Center, Monterrey, México
- Escuela de Medicina y Ciencias de la Salud Tecnológico de Monterrey, Monterrey, México
| | - Maria M Velásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Vera-Urbina
- School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jenny Zhen-Duan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Marcos L Santoro
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Humberto Nicolini
- Laboratorio de Enfermedades Psiquiátricas, Neurodegenerativas y Adicciones, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Center, Texas Children's Hospital, Houston, TX, USA.
| | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA.
- Department of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Lee PH, Jung JY, Sanzo BT, Duan R, Ge T, 23andMe Research Team, Waldman I, Smoller JW, Schwaba T, Tucker-Drob EM, Grotzinger AD. Transdiagnostic Polygenic Risk Models for Psychopathology and Comorbidity: Cross-Ancestry Analysis in the All of Us Research Program. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.26.25324720. [PMID: 40196240 PMCID: PMC11974969 DOI: 10.1101/2025.03.26.25324720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Psychiatric disorders exhibit substantial genetic overlap, raising questions about the utility of transdiagnostic genetic risk models. Using data from the All of Us Research Program (N=102,091), we evaluated common psychiatric genetic (CPG) factor-based polygenic risk scores (PRSs) compared to standard disorder-specific PRSs. The CPG PRS consistently outperformed disorder-specific scores in predicting individual disorder risk, explaining 1.07 to 24.6 times more phenotypic variance across 11 psychiatric conditions. Meanwhile, many disorder-specific PRSs retained independent but smaller contributions, highlighting the complementary nature of shared and disorder-specific genetic risk. While alternative multi-factor models improved model fit, the CPG PRS provided comparable or superior predictive performance across most disorders, including overall comorbidity burden. Cross-ancestry analyses however revealed notable limitations of European-centric GWAS datasets for other populations due to ancestral differences in genetic architecture. These findings underscore the potential value of transdiagnostic PRSs for psychiatric genetics while highlighting the need for more equitable genetic risk models.
Collapse
Affiliation(s)
- Phil H. Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae-Yoon Jung
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brandon T. Sanzo
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
| | - Rui Duan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Irwin Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ted Schwaba
- Department of Psychology, Michigan State University, MI, USA
| | | | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado at Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado at Boulder, CO, USA
| |
Collapse
|
6
|
Nieto-Retuerto M, Torres-Gomez B, Alonso-Arbiol I. Parental mentalization and children's externalizing problems: A systematic review and meta-analysis. Dev Psychopathol 2024:1-17. [PMID: 39397703 DOI: 10.1017/s0954579424001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Parental mentalization, as the ability to understand mental states (e.g., desires) behind their children's actions, may play a relevant role in the prevention of future externalizing problems. We conducted a meta-analysis to examine the relationship between parental mentalization and children's externalizing problems. Six electronic databases were searched for studies, published in English or Spanish, linking empirically those two variables. Participants included caregivers and children between 0 and 18 years. The filtering process yielded 42 studies with 52 effect sizes. Random-effect analysis revealed higher parental mentalization associated with fewer externalizing problems, with an effect size of r = -.19 (95% CI [-.25, -.13]). Due to high heterogeneity (I2 = 83.750), further analyses were conducted to explore factors affecting such association. Parenting experience and children's developmental stage moderated the relationship, but approaches to operationalize mentalization (MM or PRF), sample type (clinical/at-risk vs. community), and reporting figure (primary caregiver vs. other informants) did not. The study highlights the significance of parental mentalization as a potential contributor to the prevention of externalizing behaviors among infants, children, and adolescents. Our findings may underscore practical implications for equipping caregivers with mentalization skills, helping them to answer appropriately to their children needs.
Collapse
Affiliation(s)
- Maitane Nieto-Retuerto
- Department of Clinical and Health Psychology & Research Methods, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | - Barbara Torres-Gomez
- Department of Clinical and Health Psychology & Research Methods, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | - Itziar Alonso-Arbiol
- Department of Clinical and Health Psychology & Research Methods, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| |
Collapse
|
7
|
Mohamed AM, Shaaban TS, Jmaiel HA. EFL Special Education Teachers' Perspectives: Evaluating Game-Based Learning for ADHD Behavioral Disorders. J Atten Disord 2024; 28:1482-1495. [PMID: 39051595 DOI: 10.1177/10870547241265877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The purpose of this study was to examine the perspectives of English as a Foreign Language Special Education teachers (EFLSE) regarding game-based learning approaches for addressing behavioral disorders in ADHD patients. METHOD The study involved a sample (n = 131) of EFLSE teachers who completed a questionnaire to determine how feasible, acceptable, and helpful they found game-based learning. RESULTS The study revealed that EFLSE teachers perceive game-based learning to be a feasible and acceptable method for engaging ADHD students and helping to maintain their attention during game-based learning activities. Nevertheless, implementation and individualized approaches are cited as challenges. Additionally, EFLSE teachers emphasized the benefits of game-based learning, including improved problem-solving, assessment methods, collaboration, and the acquisition of academic skills. CONCLUSIONS The study contributes insights for educators, policymakers, and researchers that can support the development of evidence-based interventions offering game-based learning for students with ADHD.
Collapse
|
8
|
Høberg A, Solberg BS, Hegvik TA, Haavik J. Using polygenic scores in combination with symptom rating scales to identify attention-deficit/hyperactivity disorder. BMC Psychiatry 2024; 24:471. [PMID: 38937684 PMCID: PMC11210094 DOI: 10.1186/s12888-024-05925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The inclusion of biomarkers could improve diagnostic accuracy of attention-deficit/hyperactivity disorder (ADHD). One potential biomarker is the ADHD polygenic score (PGS), a measure of genetic liability for ADHD. This study aimed to investigate if the ADHD PGS can provide additional information alongside ADHD rating scales and examination of family history of ADHD to distinguish between ADHD cases and controls. METHODS Polygenic scores were calculated for 576 adults with ADHD and 530 ethnically matched controls. ADHD PGS was used alongside scores from the Wender-Utah Rating Scale (WURS) and the Adult ADHD Self-Report Scale (ASRS) as predictors of ADHD diagnosis in a set of nested logistic regression models. These models were compared by likelihood ratio (LR) tests, Akaike information criterion corrected for small samples (AICc), and Lee R². These analyses were repeated with family history of ADHD as a covariate in all models. RESULTS The ADHD PGS increased the variance explained of the ASRS by 0.58% points (pp) (R2ASRS = 61.11%, R2ASRS + PGS=61.69%), the WURS by 0.61pp (R2WURS = 77.33%, R2WURS + PGS= 77.94%), of ASRS and WURS together by 0.57pp (R2ASRS + WURS=80.84%, R2ASRS + WURS+PGS=81.40%), and of self-reported family history by 1.40pp (R2family = 28.06%, R2family + PGS=29.46%). These increases were statistically significant, as measured by LR tests and AICc. CONCLUSION We found that the ADHD PGS contributed additional information to common diagnostic aids. However, the increase in variance explained was small, suggesting that the ADHD PGS is currently not a clinically useful diagnostic aid. Future studies should examine the utility of ADHD PGS in ADHD prediction alongside non-genetic risk factors, and the diagnostic utility of the ADHD PGS should be evaluated as more genetic data is accumulated and computational tools are further refined.
Collapse
Affiliation(s)
- André Høberg
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.
| | - Berit Skretting Solberg
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
- Child- and adolescent psychiatric outpatient unit, Hospital Betanien, Bergen, Norway
| | - Tor-Arne Hegvik
- Clinic of Surgery, St. Olavs Hospital, Trondheim, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Koyama E, Kant T, Takata A, Kennedy JL, Zai CC. Genetics of child aggression, a systematic review. Transl Psychiatry 2024; 14:252. [PMID: 38862490 PMCID: PMC11167064 DOI: 10.1038/s41398-024-02870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 06/13/2024] Open
Abstract
Excessive and persistent aggressiveness is the most common behavioral problem that leads to psychiatric referrals among children. While half of the variance in childhood aggression is attributed to genetic factors, the biological mechanism and the interplay between genes and environment that results in aggression remains elusive. The purpose of this systematic review is to provide an overview of studies examining the genetics of childhood aggression irrespective of psychiatric diagnosis. PubMed, PsycINFO, and MEDLINE databases were searched using predefined search terms for aggression, genes and the specific age group. From the 652 initially yielded studies, eighty-seven studies were systematically extracted for full-text review and for further quality assessment analyses. Findings show that (i) investigation of candidate genes, especially of MAOA (17 studies), DRD4 (13 studies), and COMT (12 studies) continue to dominate the field, although studies using other research designs and methods including genome-wide association and epigenetic studies are increasing, (ii) the published articles tend to be moderate in sizes, with variable methods of assessing aggressive behavior and inconsistent categorizations of tandem repeat variants, resulting in inconclusive findings of genetic main effects, gene-gene, and gene-environment interactions, (iii) the majority of studies are conducted on European, male-only or male-female mixed, participants. To our knowledge, this is the first study to systematically review the effects of genes on youth aggression. To understand the genetic underpinnings of childhood aggression, more research is required with larger, more diverse sample sets, consistent and reliable assessments and standardized definition of the aggression phenotypes. The search for the biological mechanisms underlying child aggression will also benefit from more varied research methods, including epigenetic studies, transcriptomic studies, gene system and genome-wide studies, longitudinal studies that track changes in risk/ameliorating factors and aggression-related outcomes, and studies examining causal mechanisms.
Collapse
Affiliation(s)
- Emiko Koyama
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Tuana Kant
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Bonti E, Zerva IK, Koundourou C, Sofologi M. The High Rates of Comorbidity among Neurodevelopmental Disorders: Reconsidering the Clinical Utility of Distinct Diagnostic Categories. J Pers Med 2024; 14:300. [PMID: 38541042 PMCID: PMC10971064 DOI: 10.3390/jpm14030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 05/03/2024] Open
Abstract
The boundaries between neurodevelopmental disorders are often indistinct, even among specialists. But do these boundaries exist, or do experts struggle to distinguish and categorize symptoms in order to arrive at a dominant diagnosis while comorbidity continually leaves questions about where each disorder ends and begins? What should be reconsidered? The introduction of the term 'spectrum of neurodevelopmental disorders' could pave the way for a re-appraisal of the clinical continuum of neurodevelopmental disorders. This study aims to highlight the problems that emerge in the field of the differential diagnosis of neurodevelopmental disorders and propose a renegotiation of the distinctiveness criteria.
Collapse
Affiliation(s)
- Eleni Bonti
- First Psychiatric Clinic, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, Pavlos Melas, 564 29 Agios Pavlos, Greece;
- School of Education, Special Education Department, University of Nicosia, Nicosia 2417, Cyprus
| | - Irini K. Zerva
- School of Education, Special Education Department, University of Nicosia, Nicosia 2417, Cyprus
- First Psychiatric Clinic, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Christiana Koundourou
- Psychology Department, School of Health Sciences, Neapolis University Pafos, Paphos 8042, Cyprus; (C.K.); (M.S.)
| | - Maria Sofologi
- Psychology Department, School of Health Sciences, Neapolis University Pafos, Paphos 8042, Cyprus; (C.K.); (M.S.)
- Department of Early Childhood Education, Education School, University of Ioannina, 451 10 Ioannina, Greece
- Institute of Humanities and Social Sciences, University Research Center of Ioannina (URCI), 451 10 Ioannina, Greece
| |
Collapse
|
11
|
Hubers N, Hagenbeek FA, Pool R, Déjean S, Harms AC, Roetman PJ, van Beijsterveldt CEM, Fanos V, Ehli EA, Vermeiren RRJM, Bartels M, Hottenga JJ, Hankemeier T, van Dongen J, Boomsma DI. Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32955. [PMID: 37534875 DOI: 10.1002/ajmg.b.32955] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.
Collapse
Affiliation(s)
- Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, UMR 5219, University of Toulouse, CNRS, Toulouse, France
| | - Amy C Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Peter J Roetman
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Robert R J M Vermeiren
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Youz, Parnassia Group, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Faraone SV, Bellgrove MA, Brikell I, Cortese S, Hartman CA, Hollis C, Newcorn JH, Philipsen A, Polanczyk GV, Rubia K, Sibley MH, Buitelaar JK. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 2024; 10:11. [PMID: 38388701 DOI: 10.1038/s41572-024-00495-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD; also known as hyperkinetic disorder) is a common neurodevelopmental condition that affects children and adults worldwide. ADHD has a predominantly genetic aetiology that involves common and rare genetic variants. Some environmental correlates of the disorder have been discovered but causation has been difficult to establish. The heterogeneity of the condition is evident in the diverse presentation of symptoms and levels of impairment, the numerous co-occurring mental and physical conditions, the various domains of neurocognitive impairment, and extensive minor structural and functional brain differences. The diagnosis of ADHD is reliable and valid when evaluated with standard diagnostic criteria. Curative treatments for ADHD do not exist but evidence-based treatments substantially reduce symptoms and/or functional impairment. Medications are effective for core symptoms and are usually well tolerated. Some non-pharmacological treatments are valuable, especially for improving adaptive functioning. Clinical and neurobiological research is ongoing and could lead to the creation of personalized diagnostic and therapeutic approaches for this disorder.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Mark A Bellgrove
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chris Hollis
- National Institute for Health and Care Research (NIHR) MindTech MedTech Co-operative and NIHR Nottingham Biomedical Research Centre, Institute of Mental Health, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Guilherme V Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK
- Department of Child & Adolescent Psychiatry, Transcampus Professor KCL-Dresden, Technical University, Dresden, Germany
| | | | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
LaBianca S, Brikell I, Helenius D, Loughnan R, Mefford J, Palmer CE, Walker R, Gådin JR, Krebs M, Appadurai V, Vaez M, Agerbo E, Pedersen MG, Børglum AD, Hougaard DM, Mors O, Nordentoft M, Mortensen PB, Kendler KS, Jernigan TL, Geschwind DH, Ingason A, Dahl AW, Zaitlen N, Dalsgaard S, Werge TM, Schork AJ. Polygenic profiles define aspects of clinical heterogeneity in attention deficit hyperactivity disorder. Nat Genet 2024; 56:234-244. [PMID: 38036780 PMCID: PMC11439085 DOI: 10.1038/s41588-023-01593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex disorder that manifests variability in long-term outcomes and clinical presentations. The genetic contributions to such heterogeneity are not well understood. Here we show several genetic links to clinical heterogeneity in ADHD in a case-only study of 14,084 diagnosed individuals. First, we identify one genome-wide significant locus by comparing cases with ADHD and autism spectrum disorder (ASD) to cases with ADHD but not ASD. Second, we show that cases with ASD and ADHD, substance use disorder and ADHD, or first diagnosed with ADHD in adulthood have unique polygenic score (PGS) profiles that distinguish them from complementary case subgroups and controls. Finally, a PGS for an ASD diagnosis in ADHD cases predicted cognitive performance in an independent developmental cohort. Our approach uncovered evidence of genetic heterogeneity in ADHD, helping us to understand its etiology and providing a model for studies of other disorders.
Collapse
Affiliation(s)
- Sonja LaBianca
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Isabell Brikell
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Joel Mefford
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Clare E Palmer
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Walker
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesper R Gådin
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Morten Krebs
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Morteza Vaez
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Copenhagen Mental Health Center, Mental Health Services Capital Region of Denmark Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Kenneth S Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Terry L Jernigan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Andrew W Dahl
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Søren Dalsgaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Thomas M Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
14
|
Freitag EW, Kelsey CM. Taking a lifespan approach to polygenic scores. Behav Brain Sci 2023; 46:e215. [PMID: 37694999 PMCID: PMC10519617 DOI: 10.1017/s0140525x2200245x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This commentary is a call to action for researchers to create and use genome-wide association studies (GWASs) with previously missed age groups (e.g., infancy, elderly), which will improve our ability to ask important developmental questions using genetic data to trace pathways across the lifespan.
Collapse
Affiliation(s)
- Eloise W Freitag
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA,
| | - Caroline M Kelsey
- Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA,
| |
Collapse
|
15
|
Pedersen EM, Agerbo E, Plana-Ripoll O, Steinbach J, Krebs MD, Hougaard DM, Werge T, Nordentoft M, Børglum AD, Musliner KL, Ganna A, Schork AJ, Mortensen PB, McGrath JJ, Privé F, Vilhjálmsson BJ. ADuLT: An efficient and robust time-to-event GWAS. Nat Commun 2023; 14:5553. [PMID: 37689771 PMCID: PMC10492844 DOI: 10.1038/s41467-023-41210-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 08/28/2023] [Indexed: 09/11/2023] Open
Abstract
Proportional hazards models have been proposed to analyse time-to-event phenotypes in genome-wide association studies (GWAS). However, little is known about the ability of proportional hazards models to identify genetic associations under different generative models and when ascertainment is present. Here we propose the age-dependent liability threshold (ADuLT) model as an alternative to a Cox regression based GWAS, here represented by SPACox. We compare ADuLT, SPACox, and standard case-control GWAS in simulations under two generative models and with varying degrees of ascertainment as well as in the iPSYCH cohort. We find Cox regression GWAS to be underpowered when cases are strongly ascertained (cases are oversampled by a factor 5), regardless of the generative model used. ADuLT is robust to ascertainment in all simulated scenarios. Then, we analyse four psychiatric disorders in iPSYCH, ADHD, Autism, Depression, and Schizophrenia, with a strong case-ascertainment. Across these psychiatric disorders, ADuLT identifies 20 independent genome-wide significant associations, case-control GWAS finds 17, and SPACox finds 8, which is consistent with simulation results. As more genetic data are being linked to electronic health records, robust GWAS methods that can make use of age-of-onset information will help increase power in analyses for common health outcomes.
Collapse
Affiliation(s)
- Emil M Pedersen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark.
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
| | - Esben Agerbo
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrated Register-based Research at Aarhus University, Aarhus, Denmark
| | - Oleguer Plana-Ripoll
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Jette Steinbach
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Morten D Krebs
- Institute of Biological Psychiatry, Mental Health Center - Sct Hans, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center - Sct Hans, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Sciences, Copenhagen University, Copenhagen, Denmark
- Section for Geogenetics, GLOBE Institute, Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| | - Merete Nordentoft
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CORE- Copenhagen Centre for Research in Mental Health, Mental Health Center-Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Anders D Børglum
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Katherine L Musliner
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center - Sct Hans, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Section for Geogenetics, GLOBE Institute, Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA
| | - Preben B Mortensen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - John J McGrath
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Florian Privé
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Bjarni J Vilhjálmsson
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark.
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark.
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, the Broad Institute of MIT and Harvard, Massachusetts, USA.
| |
Collapse
|
16
|
Wechsler DL, Rijsdijk FV, Adamo N, Eilertsen EM, Ahmadzadeh YI, Badini I, Hannigan LJ, Ystrom E, McAdams TA. Assessing aetiological overlap between child and adult attention-deficit hyperactivity disorder symptoms in an extended family design. BJPsych Open 2023; 9:e169. [PMID: 37671545 PMCID: PMC10617499 DOI: 10.1192/bjo.2023.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Several longitudinal studies have cast doubt on the aetiological overlap between child and adult attention-deficit hyperactivity disorder (ADHD). However, a lack of genetically sensitive data following children across adulthood precludes direct evaluation of aetiological overlap between child and adult ADHD. AIMS We circumvent the existing gap in longitudinal data by exploring genetic overlap between maternal (adult) and offspring (child) ADHD and comorbid symptoms in an extended family cohort. METHOD Data were drawn from the Norwegian Mother, Father and Child Cohort Study, a Norwegian birth registry cohort of 114 500 children and their parents. Medical Birth Registry of Norway data were used to link extended families. Mothers self-reported their own ADHD symptoms when children were aged 3 years; reported children's ADHD symptoms at age 5 years; and children's ADHD, oppositional defiant disorder (ODD), conduct disorder, anxiety and depression symptoms at age 8 years. Genetic correlations were derived from Multiple-Children-of-Twins-and-Siblings and extended bivariate twin models. RESULTS Phenotypic correlations between adult ADHD symptoms and child ADHD, ODD, conduct disorder, anxiety and depression symptoms at age 8 years were underpinned by medium-to-large genetic correlations (child ADHD: rG = 0.55, 95% CI 0.43-0.93; ODD: rG = 0.80, 95% CI 0.46-1; conduct disorder: rG = 0.44, 95% CI 0.28-1; anxiety: rG = 0.72, 95% CI 0.48-1; depression: rG = 1, 95% CI 0.66-1). These cross-generational adult-child genetic correlations were of a comparable magnitude to equivalent child-child genetic correlations with ADHD symptoms at age 5 years. CONCLUSIONS Our findings provide genetically sensitive evidence that ADHD symptoms in adulthood share a common genetic architecture with symptoms of ADHD and four comorbid disorders at age 8 years. These findings suggest that in the majority of cases, ADHD symptoms in adulthood are not aetiologically distinct from in childhood.
Collapse
Affiliation(s)
- Daniel L. Wechsler
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Fruhling V. Rijsdijk
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and Department of Psychology, Faculty of Social Sciences, Anton de Kom University, Suriname
| | - Nicoletta Adamo
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and South London and Maudsley NHS Foundation Trust, London, UK
| | - Espen M. Eilertsen
- PROMENTA Research Centre, University of Oslo, Norway; and Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Yasmin I. Ahmadzadeh
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Isabella Badini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Laurie J. Hannigan
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway; and Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| | - Eivind Ystrom
- PROMENTA Research Centre, University of Oslo, Norway; Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway; and School of Pharmacy, University of Oslo, Norway
| | - Tom A. McAdams
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; and PROMENTA Research Centre, University of Oslo, Norway
| |
Collapse
|
17
|
Cabana-Domínguez J, Llonga N, Arribas L, Alemany S, Vilar-Ribó L, Demontis D, Fadeuilhe C, Corrales M, Richarte V, Børglum AD, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Transcriptomic risk scores for attention deficit/hyperactivity disorder. Mol Psychiatry 2023; 28:3493-3502. [PMID: 37537283 PMCID: PMC10618083 DOI: 10.1038/s41380-023-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. We performed a transcriptome-wide association study (TWAS) using the latest genome-wide association study (GWAS) meta-analysis, in 38,691 individuals with ADHD and 186,843 controls, and 14 gene-expression reference panels across multiple brain tissues and whole blood. Based on TWAS results, we selected subsets of genes and constructed transcriptomic risk scores (TRSs) for the disorder in peripheral blood mononuclear cells of individuals with ADHD and controls. We found evidence of association between ADHD and TRSs constructed using expression profiles from multiple brain areas, with individuals with ADHD carrying a higher burden of TRSs than controls. TRSs were uncorrelated with the polygenic risk score (PRS) for ADHD and, in combination with PRS, improved significantly the proportion of variance explained over the PRS-only model. These results support the complementary predictive potential of genetic and transcriptomic profiles in blood and underscore the potential utility of gene expression for risk prediction and deeper insight in molecular mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Ditte Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anders D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
18
|
Kazantseva A, Davydova Y, Enikeeva R, Mustafin R, Malykh S, Lobaskova M, Kanapin A, Prokopenko I, Khusnutdinova E. A Combined Effect of Polygenic Scores and Environmental Factors on Individual Differences in Depression Level. Genes (Basel) 2023; 14:1355. [PMID: 37510260 PMCID: PMC10379734 DOI: 10.3390/genes14071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The risk of depression could be evaluated through its multifactorial nature using the polygenic score (PGS) approach. Assuming a "clinical continuum" hypothesis of mental diseases, a preliminary assessment of individuals with elevated risk for developing depression in a non-clinical group is of high relevance. In turn, epidemiological studies suggest including social/lifestyle factors together with PGS to address the "missing heritability" problem. We designed regression models, which included PGS using 27 SNPs and social/lifestyle factors to explain individual differences in depression levels in high-education students from the Volga-Ural region (VUR) of Eurasia. Since issues related to population stratification in PGS scores may lead to imprecise variant effect estimates, we aimed to examine a sensitivity of PGS calculated on summary statistics of depression and neuroticism GWAS from Western Europeans to assess individual proneness to depression levels in the examined sample of Eastern Europeans. A depression score was assessed using the revised version of the Beck Depression Inventory (BDI) in 1065 young adults (age 18-25 years, 79% women, Eastern European ancestry). The models based on weighted PGS demonstrated higher sensitivity to evaluate depression level in the full dataset, explaining up to 2.4% of the variance (p = 3.42 × 10-7); the addition of social parameters enhanced the strength of the model (adjusted r2 = 15%, p < 2.2 × 10-16). A higher effect was observed in models based on weighted PGS in the women group, explaining up to 3.9% (p = 6.03 × 10-9) of variance in depression level assuming a combined SNPs effect and 17% (p < 2.2 × 10-16)-with the addition of social factors in the model. We failed to estimate BDI-measured depression based on summary statistics from Western Europeans GWAS of clinical depression. Although regression models based on PGS from neuroticism (depression-related trait) GWAS in Europeans were associated with a depression level in our sample (adjusted r2 = 0.43%, p = 0.019-for unweighted model), the effect was mainly attributed to the inclusion of social/lifestyle factors as predictors in these models (adjusted r2 = 15%, p < 2.2 × 10-16-for unweighted model). In conclusion, constructed PGS models contribute to a proportion of interindividual variability in BDI-measured depression in high-education students, especially women, from the VUR of Eurasia. External factors, including the specificity of rearing in childhood, used as predictors, improve the predictive ability of these models. Implementation of ethnicity-specific effect estimates in such modeling is important for individual risk assessment.
Collapse
Affiliation(s)
- Anastasiya Kazantseva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Yuliya Davydova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Renata Enikeeva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Rustam Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Sergey Malykh
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia
- Department of Psychology, Lomonosov Moscow State University, 125009 Moscow, Russia
| | - Marina Lobaskova
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia
| | - Alexander Kanapin
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
- Department of Psychology, Lomonosov Moscow State University, 125009 Moscow, Russia
| |
Collapse
|
19
|
Hughes DE, Kunitoki K, Elyounssi S, Luo M, Bazer OM, Hopkinson CE, Dowling KF, Doyle AE, Dunn EC, Eryilmaz H, Gilman JM, Holt DJ, Valera EM, Smoller JW, Cecil CAM, Tiemeier H, Lee PH, Roffman JL. Genetic patterning for child psychopathology is distinct from that for adults and implicates fetal cerebellar development. Nat Neurosci 2023; 26:959-969. [PMID: 37202553 PMCID: PMC7614744 DOI: 10.1038/s41593-023-01321-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Childhood psychiatric symptoms are often diffuse but can coalesce into discrete mental illnesses during late adolescence. We leveraged polygenic scores (PGSs) to parse genomic risk for childhood symptoms and to uncover related neurodevelopmental mechanisms with transcriptomic and neuroimaging data. In independent samples (Adolescent Brain Cognitive Development, Generation R) a narrow cross-disorder neurodevelopmental PGS, reflecting risk for attention deficit hyperactivity disorder, autism, depression and Tourette syndrome, predicted psychiatric symptoms through early adolescence with greater sensitivity than broad cross-disorder PGSs reflecting shared risk across eight psychiatric disorders, the disorder-specific PGS individually or two other narrow cross-disorder (Compulsive, Mood-Psychotic) scores. Neurodevelopmental PGS-associated genes were preferentially expressed in the cerebellum, where their expression peaked prenatally. Further, lower gray matter volumes in cerebellum and functionally coupled cortical regions associated with psychiatric symptoms in mid-childhood. These findings demonstrate that the genetic underpinnings of pediatric psychiatric symptoms differ from those of adult illness, and implicate fetal cerebellar developmental processes that endure through childhood.
Collapse
Affiliation(s)
- Dylan E Hughes
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Keiko Kunitoki
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Safia Elyounssi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mannan Luo
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oren M Bazer
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Casey E Hopkinson
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin F Dowling
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alysa E Doyle
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Erin C Dunn
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center on the Developing Child at Harvard University, Cambridge, MA, USA
| | - Hamdi Eryilmaz
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jodi M Gilman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eve M Valera
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, the Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
20
|
Sanchez-Roige S, Jennings MV, Thorpe HHA, Mallari JE, van der Werf LC, Bianchi SB, Huang Y, Lee C, Mallard TT, Barnes SA, Wu JY, Barkley-Levenson AM, Boussaty EC, Snethlage CE, Schafer D, Babic Z, Winters BD, Watters KE, Biederer T, Mackillop J, Stephens DN, Elson SL, Fontanillas P, Khokhar JY, Young JW, Palmer AA. CADM2 is implicated in impulsive personality and numerous other traits by genome- and phenome-wide association studies in humans and mice. Transl Psychiatry 2023; 13:167. [PMID: 37173343 PMCID: PMC10182097 DOI: 10.1038/s41398-023-02453-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jazlene E Mallari
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Yuye Huang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Calvin Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jin Yi Wu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Ely C Boussaty
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Cedric E Snethlage
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Danielle Schafer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Zeljana Babic
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Boyer D Winters
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Katherine E Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - James Mackillop
- Peter Boris Centre for Addictions Research, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada and Homewood Research Institute, Guelph, ON, Canada
| | - David N Stephens
- Laboratory of Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
| | | | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Sonuga-Barke EJS, Becker SP, Bölte S, Castellanos FX, Franke B, Newcorn JH, Nigg JT, Rohde LA, Simonoff E. Annual Research Review: Perspectives on progress in ADHD science - from characterization to cause. J Child Psychol Psychiatry 2023; 64:506-532. [PMID: 36220605 PMCID: PMC10023337 DOI: 10.1111/jcpp.13696] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
The science of attention-deficit/hyperactivity disorder (ADHD) is motivated by a translational goal - the discovery and exploitation of knowledge about the nature of ADHD to the benefit of those individuals whose lives it affects. Over the past fifty years, scientific research has made enormous strides in characterizing the ADHD condition and in understanding its correlates and causes. However, the translation of these scientific insights into clinical benefits has been limited. In this review, we provide a selective and focused survey of the scientific field of ADHD, providing our personal perspectives on what constitutes the scientific consensus, important new leads to be highlighted, and the key outstanding questions to be addressed going forward. We cover two broad domains - clinical characterization and, risk factors, causal processes and neuro-biological pathways. Part one focuses on the developmental course of ADHD, co-occurring characteristics and conditions, and the functional impact of living with ADHD - including impairment, quality of life, and stigma. In part two, we explore genetic and environmental influences and putative mediating brain processes. In the final section, we reflect on the future of the ADHD construct in the light of cross-cutting scientific themes and recent conceptual reformulations that cast ADHD traits as part of a broader spectrum of neurodivergence.
Collapse
Affiliation(s)
- Edmund J S Sonuga-Barke
- School of Academic Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London. UK
- Department of Child & Adolescent Psychiatry, Aarhus University, Denmark
| | - Stephen P. Becker
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Sven Bölte
- Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
- Division of Child and Adolescent Psychiatry, Center for Psychiatry Research, Stockholm County Council, Sweden
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Joel T. Nigg
- Department of Psychiatry, Oregon Health and Science University, USA
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Brazil; National Institute of Developmental Psychiatry, Brazil
| | - Emily Simonoff
- School of Academic Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London. UK
| |
Collapse
|
22
|
Shared genetic architecture between attention-deficit/hyperactivity disorder and lifespan. Neuropsychopharmacology 2023; 48:981-990. [PMID: 36906694 PMCID: PMC10209393 DOI: 10.1038/s41386-023-01555-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
There is evidence linking ADHD to a reduced life expectancy. The mortality rate in individuals with ADHD is twice that of the general population and it is associated with several factors, such as unhealthy lifestyle behaviors, social adversity, and mental health problems that may in turn increase mortality rates. Since ADHD and lifespan are heritable, we used data from genome-wide association studies (GWAS) of ADHD and parental lifespan, as proxy of individual lifespan, to estimate their genetic correlation, identify genetic loci jointly associated with both phenotypes and assess causality. We confirmed a negative genetic correlation between ADHD and parental lifespan (rg = -0.36, P = 1.41e-16). Nineteen independent loci were jointly associated with both ADHD and parental lifespan, with most of the alleles that increased the risk for ADHD being associated with shorter lifespan. Fifteen loci were novel for ADHD and two were already present in the original GWAS on parental lifespan. Mendelian randomization analyses pointed towards a negative causal effect of ADHD liability on lifespan (P = 1.54e-06; Beta = -0.07), although these results were not confirmed by all sensitivity analyses performed, and further evidence is required. The present study provides the first evidence of a common genetic background between ADHD and lifespan, which may play a role in the reported effect of ADHD on premature mortality risk. These results are consistent with previous epidemiological data describing reduced lifespan in mental disorders and support that ADHD is an important health condition that could negatively affect future life outcomes.
Collapse
|
23
|
Generation of four human induced pluripotent stem cells derived from ADHD patients carrying different genotypes for the risk SNP rs1397547 in the ADHD-associated gene ADGRL3. Stem Cell Res 2023; 67:103016. [PMID: 36640473 DOI: 10.1016/j.scr.2023.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the ADGRL3 gene have been significantly associated with the development of ADHD, the aetiology of which remains poorly understood. The rs1397547 SNP has additionally been associated with significantly altered ADGRL3 transcription. We therefore generated iPSCs from two wild type ADHD patients, and two ADHD patients heterozygous for the risk SNP. With this resource we aim to facilitate further investigation into the complex and heterogenous pathology of ADHD. Furthermore, we demonstrate the feasibility of using magnetic activated cell sorting to allow the unbiased selection of fully reprogrammed iPSCs.
Collapse
|
24
|
Cortese S, Solmi M, Michelini G, Bellato A, Blanner C, Canozzi A, Eudave L, Farhat LC, Højlund M, Köhler-Forsberg O, Leffa DT, Rohde C, de Pablo GS, Vita G, Wesselhoeft R, Martin J, Baumeister S, Bozhilova NS, Carlisi CO, Leno VC, Floris DL, Holz NE, Kraaijenvanger EJ, Sacu S, Vainieri I, Ostuzzi G, Barbui C, Correll CU. Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: a systematic review. World Psychiatry 2023; 22:129-149. [PMID: 36640395 PMCID: PMC9840506 DOI: 10.1002/wps.21037] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Neurodevelopmental disorders - including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders - manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genome-wide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence - from two or more studies from independent research groups, with results going into the same direction - of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multi-level approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and cost-effectiveness, before they can be implemented in daily clinical practice.
Collapse
Affiliation(s)
- Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marco Solmi
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program, University of Ottawa, Ottawa, ON, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Giorgia Michelini
- Department of Biological & Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Alessio Bellato
- School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Christina Blanner
- Mental Health Center, Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Andrea Canozzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Luis Eudave
- Faculty of Education and Psychology, University of Navarra, Pamplona, Spain
| | - Luis C Farhat
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mikkel Højlund
- Department of Psychiatry Aabenraa, Mental Health Services in the Region of Southern Denmark, Aabenraa, Denmark
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Douglas Teixeira Leffa
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher Rohde
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Gonzalo Salazar de Pablo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Child and Adolescent Mental Health Services, South London and Maudsley NHS Foundation Trust, London, UK
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute of Psychiatry and Mental Health, Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, CIBERSAM, Madrid, Spain
| | - Giovanni Vita
- Department of Neuroscience, Biomedicine, and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Rikke Wesselhoeft
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Natali S Bozhilova
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- School of Psychology, University of Surrey, Guilford, UK
| | - Christina O Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Virginia Carter Leno
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dorothea L Floris
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Eline J Kraaijenvanger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Seda Sacu
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Isabella Vainieri
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Giovanni Ostuzzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Corrado Barbui
- Department of Neuroscience, Biomedicine, and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Psychiatry Research, Northwell Health, Zucker Hillside Hospital, New York, NY, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
- Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
25
|
Andreassen OA, Hindley GFL, Frei O, Smeland OB. New insights from the last decade of research in psychiatric genetics: discoveries, challenges and clinical implications. World Psychiatry 2023; 22:4-24. [PMID: 36640404 PMCID: PMC9840515 DOI: 10.1002/wps.21034] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Psychiatric genetics has made substantial progress in the last decade, providing new insights into the genetic etiology of psychiatric disorders, and paving the way for precision psychiatry, in which individual genetic profiles may be used to personalize risk assessment and inform clinical decision-making. Long recognized to be heritable, recent evidence shows that psychiatric disorders are influenced by thousands of genetic variants acting together. Most of these variants are commonly occurring, meaning that every individual has a genetic risk to each psychiatric disorder, from low to high. A series of large-scale genetic studies have discovered an increasing number of common and rare genetic variants robustly associated with major psychiatric disorders. The most convincing biological interpretation of the genetic findings implicates altered synaptic function in autism spectrum disorder and schizophrenia. However, the mechanistic understanding is still incomplete. In line with their extensive clinical and epidemiological overlap, psychiatric disorders appear to exist on genetic continua and share a large degree of genetic risk with one another. This provides further support to the notion that current psychiatric diagnoses do not represent distinct pathogenic entities, which may inform ongoing attempts to reconceptualize psychiatric nosology. Psychiatric disorders also share genetic influences with a range of behavioral and somatic traits and diseases, including brain structures, cognitive function, immunological phenotypes and cardiovascular disease, suggesting shared genetic etiology of potential clinical importance. Current polygenic risk score tools, which predict individual genetic susceptibility to illness, do not yet provide clinically actionable information. However, their precision is likely to improve in the coming years, and they may eventually become part of clinical practice, stressing the need to educate clinicians and patients about their potential use and misuse. This review discusses key recent insights from psychiatric genetics and their possible clinical applications, and suggests future directions.
Collapse
Affiliation(s)
- Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
da Silva BS, Grevet EH, Silva LCF, Ramos JKN, Rovaris DL, Bau CHD. An overview on neurobiology and therapeutics of attention-deficit/hyperactivity disorder. DISCOVER MENTAL HEALTH 2023; 3:2. [PMID: 37861876 PMCID: PMC10501041 DOI: 10.1007/s44192-022-00030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 10/21/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent psychiatric condition characterized by developmentally inappropriate symptoms of inattention and/or hyperactivity/impulsivity, which leads to impairments in the social, academic, and professional contexts. ADHD diagnosis relies solely on clinical assessment based on symptom evaluation and is sometimes challenging due to the substantial heterogeneity of the disorder in terms of clinical and pathophysiological aspects. Despite the difficulties imposed by the high complexity of ADHD etiology, the growing body of research and technological advances provide good perspectives for understanding the neurobiology of the disorder. Such knowledge is essential to refining diagnosis and identifying new therapeutic options to optimize treatment outcomes and associated impairments, leading to improvements in all domains of patient care. This review is intended to be an updated outline that addresses the etiological and neurobiological aspects of ADHD and its treatment, considering the impact of the "omics" era on disentangling the multifactorial architecture of ADHD.
Collapse
Affiliation(s)
- Bruna Santos da Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luiza Carolina Fagundes Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - João Kleber Neves Ramos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Diego Luiz Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
27
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
28
|
Vázquez-González D, Carreón-Trujillo S, Alvarez-Arellano L, Abarca-Merlin DM, Domínguez-López P, Salazar-García M, Corona JC. A Potential Role for Neuroinflammation in ADHD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:327-356. [PMID: 36949317 DOI: 10.1007/978-981-19-7376-5_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurobehavioural disorder in children and adolescents. Although increases in oxidative stress and disturbances of neurotransmitter system such as the dopaminergic and abnormalities in several brain regions have been demonstrated, the pathophysiology of ADHD is not fully understood. Nevertheless, ADHD involves several factors that have been associated with an increase in neuroinflammation. This chapter presents an overview of factors that may increase neuroinflammation and play a potential role in the development and pathophysiology of ADHD. The altered immune response, polymorphisms in inflammatory-related genes, ADHD comorbidity with autoimmune and inflammatory disorders and prenatal exposure to inflammation are associated with alterations in offspring brain development and are a risk factor; genetic and environmental risk factors that may increase the risk for ADHD and medications can increase neuroinflammation. Evidence of an association between these factors has been an invaluable tool for research on inflammation in ADHD. Therefore, evidence studies have made it possible to generate alternative therapeutic interventions using natural products as anti-inflammatories that could have great potential against neuroinflammation in ADHD.
Collapse
Affiliation(s)
| | - Sonia Carreón-Trujillo
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | | | | | - Pablo Domínguez-López
- Unidad de Investigación Médica en Medicina Reproductiva, Hospital Gineco-Obstetricia, IMSS, Mexico City, Mexico
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
29
|
The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neurosci Rep 2022; 14:28-37. [PMID: 36590248 PMCID: PMC9794904 DOI: 10.1016/j.ibneur.2022.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide studies related to neurological disorders and neurodegenerative diseases have pointed to the role of epigenetic changes such as DNA methylation, histone modification, and noncoding RNAs. DNA methylation machinery controls the dynamic regulation of methylation patterns in discrete brain regions. Objective This review aims to describe the role of DNA methylation in inhibiting and progressing neurological and neurodegenerative disorders and therapeutic approaches. Methods A Systematic search of PubMed, Web of Science, and Cochrane Library was conducted for all qualified studies from 2000 to 2022. Results For the current need of time, we have focused on the DNA methylation role in neurological and neurodegenerative diseases and the expression of genes involved in neurodegeneration such as Alzheimer's, Depression, and Rett Syndrome. Finally, it appears that the various epigenetic changes do not occur separately and that DNA methylation and histone modification changes occur side by side and affect each other. We focused on the role of modification of DNA methylation in several genes associated with depression (NR3C1, NR3C2, CRHR1, SLC6A4, BDNF, and FKBP5), Rett syndrome (MECP2), Alzheimer's, depression (APP, BACE1, BIN1 or ANK1) and Parkinson's disease (SNCA), as well as the co-occurring modifications to histones and expression of non-coding RNAs. Understanding these epigenetic changes and their interactions will lead to better treatment strategies. Conclusion This review captures the state of understanding of the epigenetics of neurological and neurodegenerative diseases. With new epigenetic mechanisms and targets undoubtedly on the horizon, pharmacological modulation and regulation of epigenetic processes in the brain holds great promise for therapy.
Collapse
|
30
|
Langley K, Martin J, Thapar A. Genetics of Attention-Deficit Hyperactivity Disorder. Curr Top Behav Neurosci 2022; 57:243-268. [PMID: 35538303 DOI: 10.1007/7854_2022_338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) has long been recognized as being a highly heritable condition and our understanding of the genetic contributions to ADHD has grown over the past few decades. This chapter will discuss the studies that have examined its heritability and the efforts to identify specific genetic risk-variants at the molecular genetic level. We outline the various techniques that have been used to characterize genetic contributions to ADHD, describing what we have learnt so far, what there is still to learn and the methodologies that can be used to further our knowledge. In doing so we will discuss research into rare and common genetic variants, polygenic risk scores, and gene-environment interplay, while also describing what genetic studies have revealed about the biological processes involved in ADHD and what they have taught us about the overlap between ADHD and other psychiatric and somatic disorders. Finally, we will discuss the strengths and limitations of the current methodologies and clinical implications of genetic research to date.
Collapse
Affiliation(s)
- Kate Langley
- School of Psychology, Cardiff University, Cardiff, UK. .,MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Joanna Martin
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.,Division of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.,Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| | - Anita Thapar
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.,Division of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.,Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| |
Collapse
|
31
|
Rajagopal VM, Duan J, Vilar-Ribó L, Grove J, Zayats T, Ramos-Quiroga JA, Satterstrom FK, Artigas MS, Bybjerg-Grauholm J, Bækvad-Hansen M, Als TD, Rosengren A, Daly MJ, Neale BM, Nordentoft M, Werge T, Mors O, Hougaard DM, Mortensen PB, Ribasés M, Børglum AD, Demontis D. Differences in the genetic architecture of common and rare variants in childhood, persistent and late-diagnosed attention-deficit hyperactivity disorder. Nat Genet 2022; 54:1117-1124. [PMID: 35927488 PMCID: PMC10028590 DOI: 10.1038/s41588-022-01143-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/22/2022] [Indexed: 02/02/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with onset in childhood (childhood ADHD); two-thirds of affected individuals continue to have ADHD in adulthood (persistent ADHD), and sometimes ADHD is diagnosed in adulthood (late-diagnosed ADHD). We evaluated genetic differences among childhood (n = 14,878), persistent (n = 1,473) and late-diagnosed (n = 6,961) ADHD cases alongside 38,303 controls, and rare variant differences in 7,650 ADHD cases and 8,649 controls. We identified four genome-wide significant loci for childhood ADHD and one for late-diagnosed ADHD. We found increased polygenic scores for ADHD in persistent ADHD compared with the other two groups. Childhood ADHD had higher genetic overlap with hyperactivity and autism compared with late-diagnosed ADHD and the highest burden of rare protein-truncating variants in evolutionarily constrained genes. Late-diagnosed ADHD had a larger genetic overlap with depression than childhood ADHD and no increased burden in rare protein-truncating variants. Overall, these results suggest a genetic influence on age at first ADHD diagnosis, persistence of ADHD and the different comorbidity patterns among the groups.
Collapse
Affiliation(s)
- Veera M Rajagopal
- Department of Biomedicine (Human Genetics), Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jinjie Duan
- Department of Biomedicine (Human Genetics), Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jakob Grove
- Department of Biomedicine (Human Genetics), Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- BiRC, Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- PROMENTA, Department of Psychology, University of Oslo, Oslo, Norway
| | - J Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F Kyle Satterstrom
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas D Als
- Department of Biomedicine (Human Genetics), Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Anders Rosengren
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Centre Copenhagen, Capital Region of Denmark, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Preben B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Anders D Børglum
- Department of Biomedicine (Human Genetics), Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ditte Demontis
- Department of Biomedicine (Human Genetics), Aarhus University, Aarhus, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Center for Genomics and Personalized Medicine, Aarhus, Denmark.
| |
Collapse
|
32
|
Is genetic risk of ADHD mediated via dopaminergic mechanism? A study of functional connectivity in ADHD and pharmacologically challenged healthy volunteers with a genetic risk profile. Transl Psychiatry 2022; 12:264. [PMID: 35768414 PMCID: PMC9243079 DOI: 10.1038/s41398-022-02003-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Recent GWAS allow us to calculate polygenic risk scores for ADHD. At the imaging level, resting-state fMRI analyses have given us valuable insights into changes in connectivity patterns in ADHD patients. However, no study has yet attempted to combine these two different levels of investigation. For this endeavor, we used a dopaminergic challenge fMRI study (L-DOPA) in healthy participants who were genotyped for their ADHD, MDD, schizophrenia, and body height polygenic risk score (PRS) and compared results with a study comparing ADHD patients and healthy controls. Our objective was to evaluate how L-DOPA-induced changes of reward-system-related FC are dependent on the individual polygenic risk score. FMRI imaging was used to evaluate resting-state functional connectivity (FC) of targeted subcortical structures in 27 ADHD patients and matched controls. In a second study, we evaluated the effect of ADHD and non-ADHD PRS in a L-DOPA-based pharmaco-fMRI-challenge in 34 healthy volunteers. The functional connectivity between the putamen and parietal lobe was decreased in ADHD patients. In healthy volunteers, the FC between putamen and parietal lobe was lower in ADHD high genetic risk participants. This direction of connectivity was reversed during L-DOPA challenge. Further findings are described for other dopaminergic subcortical structures. The FC between the putamen and the attention network showed the most consistent change in patients as well as in high-risk participants. Our results suggest that FC of the dorsal attention network is altered in adult ADHD as well as in healthy controls with higher genetic risk.
Collapse
|
33
|
An electronic health record (EHR) phenotype algorithm to identify patients with attention deficit hyperactivity disorders (ADHD) and psychiatric comorbidities. J Neurodev Disord 2022; 14:37. [PMID: 35690720 PMCID: PMC9188139 DOI: 10.1186/s11689-022-09447-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background In over half of pediatric cases, ADHD presents with comorbidities, and often, it is unclear whether the symptoms causing impairment are due to the comorbidity or the underlying ADHD. Comorbid conditions increase the likelihood for a more severe and persistent course and complicate treatment decisions. Therefore, it is highly important to establish an algorithm that identifies ADHD and comorbidities in order to improve research on ADHD using biorepository and other electronic record data. Methods It is feasible to accurately distinguish between ADHD in isolation from ADHD with comorbidities using an electronic algorithm designed to include other psychiatric disorders. We sought to develop an EHR phenotype algorithm to discriminate cases with ADHD in isolation from cases with ADHD with comorbidities more effectively for efficient future searches in large biorepositories. We developed a multi-source algorithm allowing for a more complete view of the patient’s EHR, leveraging the biobank of the Center for Applied Genomics (CAG) at Children’s Hospital of Philadelphia (CHOP). We mined EHRs from 2009 to 2016 using International Statistical Classification of Diseases and Related Health Problems (ICD) codes, medication history and keywords specific to ADHD, and comorbid psychiatric disorders to facilitate genotype-phenotype correlation efforts. Chart abstractions and behavioral surveys added evidence in support of the psychiatric diagnoses. Most notably, the algorithm did not exclude other psychiatric disorders, as is the case in many previous algorithms. Controls lacked psychiatric and other neurological disorders. Participants enrolled in various CAG studies at CHOP and completed a broad informed consent, including consent for prospective analyses of EHRs. We created and validated an EHR-based algorithm to classify ADHD and comorbid psychiatric status in a pediatric healthcare network to be used in future genetic analyses and discovery-based studies. Results In this retrospective case-control study that included data from 51,293 subjects, 5840 ADHD cases were discovered of which 46.1% had ADHD alone and 53.9% had ADHD with psychiatric comorbidities. Our primary study outcome was to examine whether the algorithm could identify and distinguish ADHD exclusive cases from ADHD comorbid cases. The results indicate ICD codes coupled with medication searches revealed the most cases. We discovered ADHD-related keywords did not increase yield. However, we found including ADHD-specific medications increased our number of cases by 21%. Positive predictive values (PPVs) were 95% for ADHD cases and 93% for controls. Conclusion We established a new algorithm and demonstrated the feasibility of the electronic algorithm approach to accurately diagnose ADHD and comorbid conditions, verifying the efficiency of our large biorepository for further genetic discovery-based analyses. Trial registration ClinicalTrials.gov, NCT02286817. First posted on 10 November 2014. ClinicalTrials.gov, NCT02777931. First posted on 19 May 2016. ClinicalTrials.gov, NCT03006367. First posted on 30 December 2016. ClinicalTrials.gov, NCT02895906. First posted on 12 September 2016. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09447-9.
Collapse
|
34
|
Global DNA methylation changes in adults with attention deficit-hyperactivity disorder and its comorbidity with bipolar disorder: links with polygenic scores. Mol Psychiatry 2022; 27:2485-2491. [PMID: 35256746 DOI: 10.1038/s41380-022-01493-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Genetic and environmental factors contribute to the etiology of Attention Deficit-Hyperactivity Disorder (ADHD). In this sense, the study of epigenetic mechanisms could contribute to the understanding of the disorder's neurobiology. Global DNA methylation (GMe) evaluated through 5-methylcytosine levels could be a promising epigenetic biomarker to capture long-lasting biological effects in response to environmental and hormonal changes. We conducted the first assessment of GMe levels in subjects with ADHD (n = 394) and its main comorbidities in comparison to populational controls (n = 390). Furthermore, given the high genetic contribution to ADHD (heritability of 80%), polygenic risk scores (PRS) were calculated to verify the genetic contribution to GMe levels in ADHD and the comorbidities associated with GMe levels. The GMe levels observed in patients were lower than controls (P = 1.1e-8), with women being significantly less globally methylated than men (P = 0.002). Regarding comorbidities, the presence of bipolar disorder (BD) among patients with ADHD was associated with higher methylation levels compared to patients with ADHD without BD (P = 0.031). The results did not change when pharmacological treatment was accounted for in the analyses. The ADHD and BD most predictive PRSs were negatively (P = 0.0064) and positively (P = 0.0042) correlated with GMe, respectively. This study is the first to report an association between GMe, ADHD, and its comorbidity with BD and associations between PRSs for specific psychiatric disorders and GMe. Our findings add to previous evidence that GMe may be a relevant piece in the psychiatric disorders' etiological landscape.
Collapse
|
35
|
Balogh L, Pulay AJ, Réthelyi JM. Genetics in the ADHD Clinic: How Can Genetic Testing Support the Current Clinical Practice? Front Psychol 2022; 13:751041. [PMID: 35350735 PMCID: PMC8957927 DOI: 10.3389/fpsyg.2022.751041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with a childhood prevalence of 5%. In about two-thirds of the cases, ADHD symptoms persist into adulthood and often cause significant functional impairment. Based on the results of family and twin studies, the estimated heritability of ADHD approximates 80%, suggests a significant genetic component in the etiological background of the disorder; however, the potential genetic effects on disease risk, symptom severity, and persistence are unclear. This article provides a brief review of the genome-wide and candidate gene association studies with a focus on the clinical aspects, summarizing findings of ADHD disease risk, ADHD core symptoms as dimensional traits, and other traits frequently associated with ADHD, which may contribute to the susceptibility to other comorbid psychiatric disorders. Furthermore, neuropsychological impairment and measures from neuroimaging and electrophysiological paradigms, emerging as potential biomarkers, also provide a prominent target for molecular genetic studies, since they lie in the pathway from genes to behavior; therefore, they can contribute to the understanding of the underlying neurobiological mechanisms and the interindividual heterogeneity of clinical symptoms. Beyond the aforementioned aspects, throughout the review, we also give a brief summary of the genetic results, including polygenic risk scores that can potentially predict individual response to different treatment options and may offer a possibility for personalized treatment for the therapy of ADHD in the future.
Collapse
Affiliation(s)
- Lívia Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Attila J Pulay
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
Leffa DT, Horta B, Barros FC, Menezes AMB, Martins-Silva T, Hutz MH, Bau CHD, Grevet EH, Rohde LA, Tovo-Rodrigues L. Association between Polygenic Risk Scores for ADHD and Asthma: A Birth Cohort Investigation. J Atten Disord 2022; 26:685-695. [PMID: 34078169 DOI: 10.1177/10870547211020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Shared genetic mechanisms have been hypothesized to explain the comorbidity between ADHD and asthma. To evaluate their genetic overlap, we relied on data from the 1982 Pelotas birth cohort to test the association between polygenic risk scores (PRSs) for ADHD (ADHD-PRSs) and asthma, and PRSs for asthma (asthma-PRSs) and ADHD. METHOD We analyzed data collected at birth, 2, 22, and 30 years from 3,574 individuals. RESULTS Subjects with ADHD had increased risk of having asthma (OR 1.92, 95% CI 1.01-3.66). The association was stronger for females. Our results showed no evidence of association between ADHD-PRSs and asthma or asthma-PRSs and ADHD. However, an exploratory analysis suggested that adult ADHD might be genetically associated with asthma. CONCLUSION Our results do not support a shared genetic background between both conditions. Findings should be viewed in light of important limitations, particularly the sample size and the self-reported asthma diagnosis. Studies in larger datasets are required to better explore the genetic overlap between adult ADHD and asthma.
Collapse
Affiliation(s)
- Douglas Teixeira Leffa
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | - Mara Helena Hutz
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eugenio Horacio Grevet
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry, Brazil
| | | |
Collapse
|
37
|
Akingbuwa WA, Hammerschlag AR, Bartels M, Middeldorp CM. Systematic Review: Molecular Studies of Common Genetic Variation in Child and Adolescent Psychiatric Disorders. J Am Acad Child Adolesc Psychiatry 2022; 61:227-242. [PMID: 33932494 DOI: 10.1016/j.jaac.2021.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE A systematic review of studies using molecular genetics and statistical approaches to investigate the role of common genetic variation in the development, persistence, and comorbidity of childhood psychiatric traits was conducted. METHOD A literature review was performed using the PubMed database, following PRISMA guidelines. There were 131 studies meeting inclusion criteria, having investigated at least one type of childhood-onset or childhood-measured psychiatric disorder or trait with the aim of identifying trait-associated common genetic variants, estimating the contribution of single nucleotide polymorphisms (SNPs) to the amount of variance explained (SNP-based heritability), investigating genetic overlap between psychiatric traits, or investigating whether the stability in traits or the association with adult traits is explained by genetic factors. RESULTS The first robustly associated genetic variants have started to be identified for childhood psychiatric traits. There were substantial contributions of common genetic variants to many traits, with variation in single nucleotide polymorphism heritability estimates depending on age and raters. Moreover, genetic variants also appeared to explain comorbidity as well as stability across a range of psychiatric traits in childhood and across the life span. CONCLUSION Common genetic variation plays a substantial role in childhood psychiatric traits. Increased sample sizes will lead to increased power to identify genetic variants and to understand genetic architecture, which will ultimately be beneficial to targeted and prevention strategies. This can be achieved by harmonizing phenotype measurements, as is already proposed by large international consortia and by including the collection of genetic material in every study.
Collapse
Affiliation(s)
- Wonuola A Akingbuwa
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| | - Anke R Hammerschlag
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands; Dr. Hammerschlag and Prof. Middeldorp are also with the Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Meike Bartels
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Christel M Middeldorp
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Dr. Hammerschlag and Prof. Middeldorp are also with the Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia; Prof. Middeldorp is also with the Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Services, Brisbane, Queensland, Australia
| |
Collapse
|
38
|
Wei WQ, Sun H, Chen YJ, Liu XW, Zhou R, Li Y, Liu XW. Genetic identification of tissues and cell types underlying attention-deficit/hyperactivity disorder. Front Psychiatry 2022; 13:999007. [PMID: 36090352 PMCID: PMC9458853 DOI: 10.3389/fpsyt.2022.999007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified numerous genetic variants associated with attention-deficit/hyperactivity disorder (ADHD), which is considered highly genetically heritable. However, because most of the variants located in the non-coding region of the human genome, the onset of ADHD requires further exploration. METHODS The risk genes involved in ADHD were identified by integrating GWAS summary data and expression quantitative trait locus (eQTL) data using summary-data-based Mendelian randomization (SMR) method. We then used a stratified linkage disequilibrium score regression (LDSR) method to estimate the contribution of ADHD-relevant tissues to its heritability to screen out disease-relevant tissues. To determine the ADHD-relevant cell types, we used an R package for expression-weighted cell type enrichment (EWCE) analysis. RESULTS By integrating the brain eQTL data and ADHD GWAS data using SMR, we identified 247 genes associated with ADHD. The LDSR applied to specifically expressed genes results showed that the ADHD risk genes were mainly enriched in brain tissue, especially in the mesencephalon, visual cortex, and frontal lobe regions. Further cell-type-specific analysis suggested that ADHD risk genes were highly expressed in excitatory neurons. CONCLUSION The study showed that the etiology of ADHD is associated with excitatory neurons in the midbrain, visual cortex, and frontal lobe regions.
Collapse
Affiliation(s)
- Wen-Qiong Wei
- Department of Digestive, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Sun
- Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Juan Chen
- Department of Breast Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wen Liu
- Department of General Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Department of Orthopaedics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Li
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Xin-Wen Liu
- Nursing Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Fernàndez-Castillo N, Cabana-Domínguez J, Kappel DB, Torrico B, Weber H, Lesch KP, Lao O, Reif A, Cormand B. Exploring the Contribution to ADHD of Genes Involved in Mendelian Disorders Presenting with Hyperactivity and/or Inattention. Genes (Basel) 2021; 13:93. [PMID: 35052433 PMCID: PMC8775234 DOI: 10.3390/genes13010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Djenifer B. Kappel
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF10 3AT, UK;
| | - Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Heike Weber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt, Germany; (H.W.); (A.R.)
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, 97080 Wurzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wurzburg, Germany;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6221 LK Maastricht, The Netherlands
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), 08028 Barcelona, Spain;
- Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt, Germany; (H.W.); (A.R.)
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
40
|
Zhang H, Zeng W, Deng J, Shi Y, Zhao L, Li Y. Brain Relatively Inert Network: Taking Adult Attention Deficit Hyperactivity Disorder as an Example. Front Neurosci 2021; 15:771947. [PMID: 34924940 PMCID: PMC8678527 DOI: 10.3389/fnins.2021.771947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Resting-state functional MRI (rs-fMRI) has been increasingly applied in the research of brain cognitive science and psychiatric diseases. However, previous studies only focused on specific activation areas of the brain, and there are few studies on the inactivation areas. This may overlook much information that explains the brain's cognitive function. In this paper, we propose a relatively inert network (RIN) and try to explore its important role in understanding the cognitive mechanism of the brain and the study of mental diseases, using adult attention deficit hyperactivity disorder (ADHD) as an example. Here, we utilize methods based on group independent component analysis (GICA) and t-test to identify RIN and calculate its corresponding time series. Through experiments, alterations in the RIN and the corresponding activation network (AN) in adult ADHD patients are observed. And compared with those in the left brain, the activation changes in the right brain are greater. Further, when the RIN functional connectivity is introduced as a feature to classify adult ADHD patients from healthy controls (HCs), the classification accuracy rate is 12% higher than that of the original functional connectivity feature. This was also verified by testing on an independent public dataset. These findings confirm that the RIN of the brain contains much information that will probably be neglected. Moreover, this research provides an effective new means of exploring the information integration between brain regions and the diagnosis of mental illness.
Collapse
Affiliation(s)
- Hua Zhang
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Jin Deng
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Yuhu Shi
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Le Zhao
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Ying Li
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| |
Collapse
|
41
|
Cannon Homaei S, Barone H, Kleppe R, Betari N, Reif A, Haavik J. ADHD symptoms in neurometabolic diseases: Underlying mechanisms and clinical implications. Neurosci Biobehav Rev 2021; 132:838-856. [PMID: 34774900 DOI: 10.1016/j.neubiorev.2021.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
Neurometabolic diseases (NMDs) are typically caused by genetic abnormalities affecting enzyme functions, which in turn interfere with normal development and activity of the nervous system. Although the individual disorders are rare, NMDs are collectively relatively common and often lead to lifelong difficulties and high societal costs. Neuropsychiatric manifestations, including ADHD symptoms, are prominent in many NMDs, also when the primary biochemical defect originates in cells and tissues outside the nervous system. ADHD symptoms have been described in phenylketonuria, tyrosinemias, alkaptonuria, succinic semialdehyde dehydrogenase deficiency, X-linked ichthyosis, maple syrup urine disease, and several mitochondrial disorders, but are probably present in many other NMDs and may pose diagnostic and therapeutic challenges. Here we review current literature linking NMDs with ADHD symptoms. We cite emerging evidence that many NMDs converge on common neurochemical mechanisms that interfere with monoamine neurotransmitter synthesis, transport, metabolism, or receptor functions, mechanisms that are also considered central in ADHD pathophysiology and treatment. Finally, we discuss the therapeutic implications of these findings and propose a path forward to increase our understanding of these relationships.
Collapse
Affiliation(s)
- Selina Cannon Homaei
- Division of Psychiatry, Haukeland University Hospital, Norway; Department of Biomedicine, University of Bergen, Norway.
| | - Helene Barone
- Regional Resource Center for Autism, ADHD, Tourette Syndrome and Narcolepsy, Western Norway, Division of Psychiatry, Haukeland University Hospital, Norway.
| | - Rune Kleppe
- Division of Psychiatry, Haukeland University Hospital, Norway; Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine, Haukeland University Hospital, Norway.
| | - Nibal Betari
- Department of Biomedicine, University of Bergen, Norway.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Jan Haavik
- Division of Psychiatry, Haukeland University Hospital, Norway; Department of Biomedicine, University of Bergen, Norway.
| |
Collapse
|
42
|
Hess JL, Radonjić NV, Patak J, Glatt SJ, Faraone SV. Autophagy, apoptosis, and neurodevelopmental genes might underlie selective brain region vulnerability in attention-deficit/hyperactivity disorder. Mol Psychiatry 2021; 26:6643-6654. [PMID: 33339955 PMCID: PMC8760041 DOI: 10.1038/s41380-020-00974-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Large-scale brain imaging studies by the ENIGMA Consortium identified structural changes associated with attention-deficit/hyperactivity disorder (ADHD). It is not clear why some brain regions are impaired and others spared by the etiological risks for ADHD. We hypothesized that spatial variation in brain cell organization and/or pathway expression levels contribute to selective brain region vulnerability (SBRV) in ADHD. In this study, we used the largest available collection of magnetic resonance imaging (MRI) results from the ADHD ENIGMA Consortium (subcortical MRI n = 3242; cortical MRI n = 4180) along with high-resolution postmortem brain microarray data from Allen Brain Atlas (donors n = 6) from 22 brain regions to investigate our SBRV hypothesis. We performed deconvolution of the bulk transcriptomic data to determine abundances of neuronal and nonneuronal cells in the brain. We assessed the relationships between gene-set expression levels, cell abundance, and standardized effect sizes representing regional changes in brain sizes in cases of ADHD. Our analysis yielded significant correlations between apoptosis, autophagy, and neurodevelopment genes with smaller brain sizes in ADHD, along with associations to regional abundances of astrocytes and oligodendrocytes. The lack of enrichment of common genetic risk variants for ADHD within implicated gene sets suggests an environmental etiology to these differences. This work provides novel mechanistic clues about SBRV in ADHD.
Collapse
Affiliation(s)
- Jonathan L Hess
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Nevena V Radonjić
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jameson Patak
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephen J Glatt
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
43
|
Kittel-Schneider S, Arteaga-Henriquez G, Vasquez AA, Asherson P, Banaschewski T, Brikell I, Buitelaar J, Cormand B, Faraone SV, Freitag CM, Ginsberg Y, Haavik J, Hartman CA, Kuntsi J, Larsson H, Matura S, McNeill RV, Ramos-Quiroga JA, Ribases M, Romanos M, Vainieri I, Franke B, Reif A. Non-mental diseases associated with ADHD across the lifespan: Fidgety Philipp and Pippi Longstocking at risk of multimorbidity? Neurosci Biobehav Rev 2021; 132:1157-1180. [PMID: 34757108 DOI: 10.1016/j.neubiorev.2021.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
Several non-mental diseases seem to be associated with an increased risk of ADHD and ADHD seems to be associated with increased risk for non-mental diseases. The underlying trajectories leading to such brain-body co-occurrences are often unclear - are there direct causal relationships from one disorder to the other, or does the sharing of genetic and/or environmental risk factors lead to their occurring together more frequently or both? Our goal with this narrative review was to provide a conceptual synthesis of the associations between ADHD and non-mental disease across the lifespan. We discuss potential shared pathologic mechanisms, genetic background and treatments in co-occurring diseases. For those co-occurrences for which published studies with sufficient sample sizes exist, meta-analyses have been published by others and we discuss those in detail. We conclude that non-mental diseases are common in ADHD and vice versa and add to the disease burden of the patient across the lifespan. Insufficient attention to such co-occurring conditions may result in missed diagnoses and suboptimal treatment in the affected individuals.
Collapse
Affiliation(s)
- Sarah Kittel-Schneider
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany.
| | - Gara Arteaga-Henriquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandro Arias Vasquez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Phil Asherson
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Isabell Brikell
- National Centre for Register-based Research, Department of Economics and Business Economics Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Aarhus, Denmark; iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen and Aarhus, Denmark; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstraße 50, D-60528 Frankfurt am Main, Germany
| | - Ylva Ginsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Norra Stationsgatan 69, SE-113 64 Stockholm, Sweden
| | - Jan Haavik
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Postboks 1400, 5021 Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Jonna Kuntsi
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden; Örebro University, School of Medical Sciences, Campus USÖ, S-701 82 Örebro, Sweden
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| | - Rhiannon V McNeill
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribases
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | - Marcel Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - Isabella Vainieri
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
44
|
The role of glucocorticoid receptor gene in the association between attention deficit-hyperactivity disorder and smaller brain structures. J Neural Transm (Vienna) 2021; 128:1907-1916. [PMID: 34609638 DOI: 10.1007/s00702-021-02425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
ADHD is associated with smaller subcortical brain volumes and cortical surface area, with greater effects observed in children than adults. It is also associated with dysregulation of the HPA axis. Considering the effects of the glucocorticoid receptor (NR3C1) in neurophysiology, we hypothesize that the blurred relationships between brain structures and ADHD in adults could be partly explained by NR3C1 gene variation. Structural T1-weighted images were acquired on a 3 T scanner (N = 166). Large-scale genotyping was performed, and it was followed by quality control and pruning procedures, which resulted in 48 independent NR3C1 gene variants analyzed. After a stringent Bonferroni correction, two SNPs (rs2398631 and rs72801070) moderated the association between ADHD and accumbens and amygdala volumes in adults. The significant SNPs that interacted with ADHD appear to have a role in gene expression regulation, and they are in linkage disequilibrium with NR3C1 variants that present well-characterized physiological functions. The literature-reported associations of ADHD with accumbens and amygdala were only observed for specific NR3C1 genotypes. Our findings reinforce the influence of the NR3C1 gene on subcortical volumes and ADHD. They suggest a genetic modulation of the effects of a pivotal HPA axis component in the neuroanatomical features of ADHD.
Collapse
|
45
|
Brikell I, Burton C, Mota NR, Martin J. Insights into attention-deficit/hyperactivity disorder from recent genetic studies. Psychol Med 2021; 51:2274-2286. [PMID: 33814023 DOI: 10.1017/s0033291721000982] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder (NDD). In this narrative review, we summarize recent advances in quantitative and molecular genetic research from the past 5-10 years. Combined with large-scale international collaboration, these advances have resulted in fast-paced progress in understanding the etiology of ADHD and how genetic risk factors map on to clinical heterogeneity. Studies are converging on a number of key insights. First, ADHD is a highly polygenic NDD with a complex genetic architecture encompassing risk variants across the spectrum of allelic frequencies, which are implicated in neurobiological processes. Second, genetic studies strongly suggest that ADHD diagnosis shares a large proportion of genetic risks with continuously distributed traits of ADHD in the population, with shared genetic risks also seen across development and sex. Third, ADHD genetic risks are shared with those implicated in many other neurodevelopmental, psychiatric and somatic phenotypes. As sample sizes and the diversity of genetic studies continue to increase through international collaborative efforts, we anticipate further success with gene discovery, characterization of how the ADHD phenotype relates to other human traits and growing potential to use genomic risk factors for understanding clinical trajectories and for precision medicine approaches.
Collapse
Affiliation(s)
- Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
| | - Christie Burton
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| |
Collapse
|
46
|
Martin J, Shameem Agha S, Eyre O, Riglin L, Langley K, Hubbard L, Stergiakouli E, O'Donovan M, Thapar A. Sex differences in anxiety and depression in children with attention deficit hyperactivity disorder: Investigating genetic liability and comorbidity. Am J Med Genet B Neuropsychiatr Genet 2021; 186:412-422. [PMID: 33939260 DOI: 10.1002/ajmg.b.32842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 01/15/2023]
Abstract
It is unknown why attention deficit hyperactivity disorder (ADHD) is more common in males, whereas anxiety and depression show a female population excess. We tested the hypothesis that anxiety and depression risk alleles manifest as ADHD in males. We also tested whether anxiety and depression in children with ADHD show a different etiology to typical anxiety and depression and whether this differs by sex. The primary clinical ADHD sample consisted of 885 (14% female) children. Psychiatric symptoms were assessed using standardized interviews. Polygenic risk scores (PRS) were derived using large genetic studies. Replication samples included independent clinical ADHD samples (N = 3,794; 25.7% female) and broadly defined population ADHD samples (N = 995; 33.4% female). We did not identify sex differences in anxiety or depression PRS in children with ADHD. In the primary sample, anxiety PRS were associated with social and generalized anxiety in males, with evidence of a sex-by-PRS interaction for social anxiety. These results did not replicate in the broadly defined ADHD sample. Depression PRS were not associated with comorbid depression symptoms. The results suggest that anxiety and depression genetic risks are not more likely to lead to ADHD in males. Also, the evidence for shared etiology between anxiety symptoms in those with ADHD and typical anxiety was weak and needs replication.
Collapse
Affiliation(s)
- Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sharifah Shameem Agha
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Cwm Taf Morgannwg University Health Board Health Board, Wales, UK
| | - Olga Eyre
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lucy Riglin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Kate Langley
- School of Psychology, Cardiff University, Cardiff, UK
| | - Leon Hubbard
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, University of Bristol, Bristol, UK
| | | | - Michael O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
47
|
Common and Unique Genetic Background between Attention-Deficit/Hyperactivity Disorder and Excessive Body Weight. Genes (Basel) 2021; 12:genes12091407. [PMID: 34573389 PMCID: PMC8464917 DOI: 10.3390/genes12091407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Comorbidity studies show that children with ADHD have a higher risk of being overweight and obese than healthy children. This study aimed to assess the genetic alternations that differ between and are shared by ADHD and excessive body weight (EBW). The sample consisted of 743 Polish children aged between 6 and 17 years. We analyzed a unique set of genes and polymorphisms selected for ADHD and/or obesity based on gene prioritization tools. Polymorphisms in the KCNIP1, SLC1A3, MTHFR, ADRA2A, and SLC6A2 genes proved to be associated with the risk of ADHD in the studied population. The COMT gene polymorphism was one that specifically increased the risk of EBW in the ADHD group. Using the whole-exome sequencing technique, we have shown that the ADHD group contains rare and protein-truncating variants in the FBXL17, DBH, MTHFR, PCDH7, RSPH3, SPTBN1, and TNRC6C genes. In turn, variants in the ADRA2A, DYNC1H1, MAP1A, SEMA6D, and ZNF536 genes were specific for ADHD with EBW. In this way, we confirmed, at the molecular level, the existence of genes specifically predisposing to EBW in ADHD patients, which are associated with the biological pathways involved in the regulation of the reward system, intestinal microbiome, and muscle metabolism.
Collapse
|
48
|
Knott R, Johnson BP, Tiego J, Mellahn O, Finlay A, Kallady K, Kouspos M, Mohanakumar Sindhu VP, Hawi Z, Arnatkeviciute A, Chau T, Maron D, Mercieca EC, Furley K, Harris K, Williams K, Ure A, Fornito A, Gray K, Coghill D, Nicholson A, Phung D, Loth E, Mason L, Murphy D, Buitelaar J, Bellgrove MA. The Monash Autism-ADHD genetics and neurodevelopment (MAGNET) project design and methodologies: a dimensional approach to understanding neurobiological and genetic aetiology. Mol Autism 2021; 12:55. [PMID: 34353377 PMCID: PMC8340366 DOI: 10.1186/s13229-021-00457-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background ASD and ADHD are prevalent neurodevelopmental disorders that frequently co-occur and have strong evidence for a degree of shared genetic aetiology. Behavioural and neurocognitive heterogeneity in ASD and ADHD has hampered attempts to map the underlying genetics and neurobiology, predict intervention response, and improve diagnostic accuracy. Moving away from categorical conceptualisations of psychopathology to a dimensional approach is anticipated to facilitate discovery of data-driven clusters and enhance our understanding of the neurobiological and genetic aetiology of these conditions. The Monash Autism-ADHD genetics and neurodevelopment (MAGNET) project is one of the first large-scale, family-based studies to take a truly transdiagnostic approach to ASD and ADHD. Using a comprehensive phenotyping protocol capturing dimensional traits central to ASD and ADHD, the MAGNET project aims to identify data-driven clusters across ADHD-ASD spectra using deep phenotyping of symptoms and behaviours; investigate the degree of familiality for different dimensional ASD-ADHD phenotypes and clusters; and map the neurocognitive, brain imaging, and genetic correlates of these data-driven symptom-based clusters. Methods The MAGNET project will recruit 1,200 families with children who are either typically developing, or who display elevated ASD, ADHD, or ASD-ADHD traits, in addition to affected and unaffected biological siblings of probands, and parents. All children will be comprehensively phenotyped for behavioural symptoms, comorbidities, neurocognitive and neuroimaging traits and genetics. Conclusion The MAGNET project will be the first large-scale family study to take a transdiagnostic approach to ASD-ADHD, utilising deep phenotyping across behavioural, neurocognitive, brain imaging and genetic measures. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00457-3.
Collapse
Affiliation(s)
- Rachael Knott
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia.
| | - Beth P Johnson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Olivia Mellahn
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Amy Finlay
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Kathryn Kallady
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Maria Kouspos
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Vishnu Priya Mohanakumar Sindhu
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Tracey Chau
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Dalia Maron
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Emily-Clare Mercieca
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Kirsten Furley
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Katrina Harris
- Department of Paediatrics, Monash University, Melbourne, VIC, 3800, Australia.,Department of Developmental Paediatrics, Monash Children's Hospital, 246 Clayton Rd, Clayton, VIC, 3168, Australia
| | - Katrina Williams
- Department of Paediatrics, Monash University, Melbourne, VIC, 3800, Australia.,Department of Developmental Paediatrics, Monash Children's Hospital, 246 Clayton Rd, Clayton, VIC, 3168, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Alexandra Ure
- Department of Paediatrics, Monash University, Melbourne, VIC, 3800, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia.,Department of Mental Health, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia.,Neurodevelopment and Disability Research, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Kylie Gray
- Centre for Educational Development, Appraisal, and Research, University of Warwick, Coventry, CV4 7AL, UK.,Department of Psychiatry, School of Clinical Sciences, Monash University, 246 Clayton Rd, Melbourne, VIC, 3168, Australia
| | - David Coghill
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Mental Health, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia.,Neurodevelopment and Disability Research, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Ann Nicholson
- Faculty of Information and Technology, Monash University, Melbourne, VIC, 3800, Australia
| | - Dinh Phung
- Faculty of Information and Technology, Monash University, Melbourne, VIC, 3800, Australia
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Welcome Building, Malet Street, London, WC1E 7HX, UK
| | - Declan Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| |
Collapse
|
49
|
Genetic Variation in the ASTN2 Locus in Cardiovascular, Metabolic and Psychiatric Traits: Evidence for Pleiotropy Rather Than Shared Biology. Genes (Basel) 2021; 12:genes12081194. [PMID: 34440368 PMCID: PMC8391428 DOI: 10.3390/genes12081194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The link between cardiometabolic and psychiatric illness has long been attributed to human behaviour, however recent research highlights shared biological mechanisms. The ASTN2 locus has been previously implicated in psychiatric and cardiometabolic traits, therefore this study aimed to systematically investigate the genetic architecture of ASTN2 in relation to a wide range of relevant traits. Methods: Baseline questionnaire, assessment and genetic data of 402111 unrelated white British ancestry individuals from the UK Biobank was analysed. Genetic association analyses were conducted using PLINK 1.07, assuming an additive genetic model and adjusting for age, sex, genotyping chip, and population structure. Conditional analyses and linkage disequilibrium assessment were used to determine whether cardiometabolic and psychiatric signals were independent. Results: Associations between genetic variants in the ASTN2 locus and blood pressure, total and central obesity, neuroticism, anhedonia and mood instability were identified. All analyses support the independence of the cardiometabolic traits from the psychiatric traits. In silico analyses provide support for the central obesity signal acting through ASTN2, however most of the other signals are likely acting through other genes in the locus. Conclusions: Our systematic analysis demonstrates that ASTN2 has pleiotropic effects on cardiometabolic and psychiatric traits, rather than contributing to shared pathology.
Collapse
|
50
|
Richarte V, Sánchez-Mora C, Corrales M, Fadeuilhe C, Vilar-Ribó L, Arribas L, Garcia E, Rosales-Ortiz SK, Arias-Vasquez A, Soler-Artigas M, Ribasés M, Ramos-Quiroga JA. Gut microbiota signature in treatment-naïve attention-deficit/hyperactivity disorder. Transl Psychiatry 2021; 11:382. [PMID: 34238926 PMCID: PMC8266901 DOI: 10.1038/s41398-021-01504-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence supports alterations in gut microbial diversity, bacterial composition, and/or relative abundance of several bacterial taxa in attention-deficit/hyperactivity disorder (ADHD). However, findings for ADHD are inconsistent among studies, and specific gut microbiome signatures for the disorder remain unknown. Given that previous studies have mainly focused on the pediatric form of the disorder and involved small sample sizes, we conducted the largest study to date to compare the gastrointestinal microbiome composition in 100 medication-naïve adults with ADHD and 100 sex-matched healthy controls. We found evidence that ADHD subjects have differences in the relative abundance of several microbial taxa. At the family level, our data support a lower relative abundance of Gracilibacteraceae and higher levels of Selenomonadaceae and Veillonellaceae in adults with ADHD. In addition, the ADHD group showed higher levels of Dialister and Megamonas and lower abundance of Anaerotaenia and Gracilibacter at the genus level. All four selected genera explained 15% of the variance of ADHD, and this microbial signature achieved an overall sensitivity of 74% and a specificity of 71% for distinguishing between ADHD patients and healthy controls. We also tested whether the selected genera correlate with age, body mass index (BMI), or scores of the ADHD rating scale but found no evidence of correlation between genera relative abundance and any of the selected traits. These results are in line with recent studies supporting gut microbiome alterations in neurodevelopment disorders, but further studies are needed to elucidate the role of the gut microbiota on the ADHD across the lifespan and its contribution to the persistence of the disorder from childhood to adulthood.
Collapse
Grants
- PI15/01789,PI16/01505,PI17/00289,PI18/01788,PI19/00721,PI19/01224,PI20/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI15/01789,PI16/01505,PI17/00289,PI18/01788,PI19/00721,PI19/01224,PI20/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI15/01789,PI16/01505,PI17/00289,PI18/01788,PI19/00721,PI19/01224,PI20/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI15/01789,PI16/01505,PI17/00289,PI18/01788,PI19/00721,PI19/01224,PI20/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- H2020/2014-2020 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science)
- H2020/2014-2020 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science)
- H2020/2014-2020 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science)
- 092330/31 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
Collapse
Affiliation(s)
- Vanesa Richarte
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Sánchez-Mora
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Montserrat Corrales
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Vilar-Ribó
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Lorena Arribas
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Estela Garcia
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Silvia Karina Rosales-Ortiz
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - María Soler-Artigas
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain.
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Mental Health and Addictions, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|