1
|
Deslande M, Puig-Castellvi F, Castro-Dionicio I, Pacheco-Tapia R, Raverdy V, Caiazzo R, Lassailly G, Leloire A, Andrikopoulos P, Kahoul Y, Zaïbi N, Toussaint B, Oger F, Gambardella N, Lefebvre P, Derhourhi M, Amanzougarene S, Staels B, Pattou F, Froguel P, Bonnefond A, Dumas ME. Intrahepatic levels of microbiome-derived hippurate associates with improved metabolic dysfunction-associated steatotic liver disease. Mol Metab 2025; 92:102090. [PMID: 39746606 PMCID: PMC11772989 DOI: 10.1016/j.molmet.2024.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterised by lipid accumulation in the liver and is often associated with obesity and type 2 diabetes. The gut microbiome recently emerged as a significant player in liver metabolism and health. Hippurate, a host-microbial co-metabolite has been associated with human gut microbial gene richness and with metabolic health. However, its role on liver metabolism and homeostasis is poorly understood. METHODS We characterised liver biospies from 318 patients with obesity using RNAseq and metabolomics in liver and plasma to derive associations among hepatic hippurate, hepatic gene expression and MASLD and phenotypes. To test a potential beneficial role for hippurate in hepatic insulin resistance, we profile the metabolome of (IHH) using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-MS/MS), and characterised intracellular triglyceride accumulation and glucose internalisation after a 24 h insulin exposure. RESULTS We first report significant associations among MASLD traits, plasma and hepatic hippurate. Further analysis of the hepatic transcriptome shows that liver and plasma hippurate are inversely associated with MASLD, implicating lipid metabolism and regulation of inflammatory responses pathways. Hippurate treatment inhibits lipid accumulation and rescues insulin resistance induced by 24-hour chronic insulin in IHH. Hippurate also improves hepatocyte metabolic profiles by increasing the abundance of metabolites involved in energy homeostasis that are depleted by chronic insulin treatment while decreasing those involved in inflammation. CONCLUSIONS Altogether, our results further highlight hippurate as a mechanistic marker of metabolic health, by its ability to improve metabolic homeostasis as a postbiotic candidate.
Collapse
Affiliation(s)
- Maxime Deslande
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Francesc Puig-Castellvi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Inés Castro-Dionicio
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Romina Pacheco-Tapia
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Violeta Raverdy
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Robert Caiazzo
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Guillaume Lassailly
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Audrey Leloire
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Petros Andrikopoulos
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Yasmina Kahoul
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Nawel Zaïbi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Bénédicte Toussaint
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Frédérik Oger
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Nicolas Gambardella
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Philippe Lefebvre
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Mehdi Derhourhi
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Souhila Amanzougarene
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France
| | - Bart Staels
- INSERM U1011 Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - François Pattou
- INSERM U1190, Institut Pasteur de Lille, University of Lille, Lille University Hospital, 59045, Lille, France
| | - Philippe Froguel
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Amélie Bonnefond
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom
| | - Marc-Emmanuel Dumas
- University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom; The Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, H3A 0G1, Canada.
| |
Collapse
|
2
|
Che L, Liu L, Xu M, Fan Z, Niu L, Chen Y, Chang X, Zhou P, Li M, Deng H, Chen W. Valine metabolite, 3-hydroxyisobutyrate, promotes lipid metabolism and cell proliferation in porcine mammary gland epithelial cells. Front Nutr 2025; 11:1524738. [PMID: 39867557 PMCID: PMC11757131 DOI: 10.3389/fnut.2024.1524738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism. The addition of an appropriate concentration of 3-HIB significantly increased mammary gland epithelial cell proliferation and the expression of proteins associated with cell proliferation. Compared to the control group, the addition of 0.4-0.8 mM 3-HIB increased the expression levels of mTOR signaling pathway-related proteins and the cell cycle protein, Cyclin D1, while inhibiting the expression of the cell cycle arrest protein, P27. The addition of 0.8 mM 3-HIB increased the triglyceride and lipid droplet content in the cells. The addition of 3-HIB increased the expression of proteins related to de novo fatty acid synthesis and transport, resulting in a marked increase in most polyunsaturated fatty acids in the 3-HIB-added group. Compared to the control group, the addition of 0.8 mM 3-HIB increased the expression levels of the fatty acid oxidation-related proteins, ACSL and CAD, ultimately increasing cellular ATP synthesis. In summary, the addition of 0.8 mM 3-HIB to porcine mammary gland epithelial cells promotes cell proliferation by enhancing lipid metabolism and the expression of cell proliferation-related proteins.
Collapse
Affiliation(s)
- Long Che
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Swine Biobreeding Research Institute, Zhengzhou, Henan, China
| | - Le Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mengmeng Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Zongze Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lizhu Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yujie Chen
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xueyuan Chang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Pan Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Mengyun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Hongyu Deng
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Iqbal H, Ilyas K, Rehman K, Aslam MA, Hussain A, Ibrahim M, Akash MSH, Shahid M, Shahzad A. Metabolomic Analysis of Nicotine-Induced Metabolic Disruptions and Their Amelioration by Resveratrol. J Biochem Mol Toxicol 2025; 39:e70116. [PMID: 39756060 DOI: 10.1002/jbt.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
This study investigates the metabolic disruptions caused by nicotine (NIC) exposure, with a particular focus on amino acid and lipid metabolism, and evaluates resveratrol (RSV) as a potential protective agent. Mice were divided into four groups: control (CON), NIC-exposed, NIC + RSV-treated, and RSV-only. NIC exposure resulted in significant weight loss, elevated glucose levels, altered lipid profiles, and organ damage, particularly in the liver and kidneys. Increased inflammation was evidenced by elevated levels of IL-6 and CRP. In contrast, RSV treatment mitigated these effects by improving lipid profiles, glycemic indices, and reducing inflammatory markers. Histopathological analysis confirmed reduced tissue damage in the NIC + RSV group compared to the NIC-alone group. Metabolomics analysis using LC-MS/MS revealed significant dysregulation in lipid, amino acid, and nucleotide metabolism in NIC-exposed mice. Fold-change analysis identified altered metabolites, including sphingomyelin 36:1;02 (p < 0.001), valine (p < 0.001), triacylglycerol 4:0-18:1 (p < 0.001), and ceramide 32:1;02 (p < 0.001). Amino acids such as arginine, phenylalanine, glutamic acid, tyrosine, and lysine, as well as NIC metabolites like nornicotine and cotinine, were identified, underscoring molecular fragmentation analysis findings. RSV treatment partially restored metabolic balance, highlighting its role as a metabolic modulator. This study underscores the therapeutic potential of RSV in alleviating NIC-induced metabolic dysfunctions by restoring lipid homeostasis and reducing inflammation. Additionally, it emphasizes the importance of RSV in addressing NIC-related metabolic impairments and the need for noninvasive biomarkers for early disease detection.
Collapse
Affiliation(s)
- Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Muhammad Amtiaz Aslam
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Mann G, Mora S, Adegoke OAJ. KIC (ketoisocaproic acid) and leucine have divergent effects on tissue insulin signaling but not on whole-body insulin sensitivity in rats. PLoS One 2024; 19:e0309324. [PMID: 39163364 PMCID: PMC11335129 DOI: 10.1371/journal.pone.0309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Plasma levels of branched-chain amino acids and their metabolites, the branched-chain ketoacids are increased in insulin resistance. Our previous studies showed that leucine and its metabolite KIC suppress insulin-stimulated glucose uptake in L6 myotubes along with the activation of the S6K1-IRS-1 pathway. Because other tissue and fiber types can be differentially regulated by KIC, we analyzed the effect of KIC gavage on whole-body insulin sensitivity and insulin signaling in vivo. We hypothesized that KIC gavage would reduce whole-body insulin sensitivity and increase S6K1-IRS-1 phosphorylation in various tissues and muscle fibers. Five-week-old male Sprague-Dawley rats were starved for 24 hours and then gavaged with 0.75ml/100g of water, leucine (22.3g/L) or KIC (30g/L) twice, ten minutes apart. They were then euthanized at different time points post-gavage (0.5-3h), and muscle, liver, and heart tissues were dissected. Other sets of gavaged animals underwent an insulin tolerance test. Phosphorylation (ph) of S6K1 (Thr389), S6 (Ser235/6) and IRS-1 (Ser612) was increased at 30 minutes post leucine gavage in skeletal muscles irrespective of fiber type. Ph-S6 (Ser235/6) was also increased in liver and heart 30 minutes after leucine gavage. KIC gavage increased ph-S6 (Ser235/6) in the liver. Neither Leucine nor KIC influenced whole-body insulin tolerance, nor ph-Akt (Ser473) in skeletal muscle and heart. BCKD-E1 α abundance was highest in the heart and liver, while ph-BCKD-E1 α (Ser293) was higher in the gastrocnemius and EDL compared to the soleus. Our data suggests that only leucine activates the S6K1-IRS-1 signaling axis in skeletal muscle, liver and heart, while KIC only does so in the liver. The effect of leucine and KIC on the S6K1-IRS-1 signaling pathway is uncoupled from whole-body insulin sensitivity. These results suggest that KIC and leucine may not induce insulin resistance, and the contributions of other tissues may regulate whole-body insulin sensitivity in response to leucine/KIC gavage.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Stephen Mora
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Effect of mTORC Agonism via MHY1485 with and without Rapamycin on C2C12 Myotube Metabolism. Int J Mol Sci 2024; 25:6819. [PMID: 38999929 PMCID: PMC11241331 DOI: 10.3390/ijms25136819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The mechanistic target of rapamycin complex (mTORC) regulates protein synthesis and can be activated by branched-chain amino acids (BCAAs). mTORC has also been implicated in the regulation of mitochondrial metabolism and BCAA catabolism. Some speculate that mTORC overactivation by BCAAs may contribute to insulin resistance. The present experiments assessed the effect of mTORC activation on myotube metabolism and insulin sensitivity using the mTORC agonist MHY1485, which does not share structural similarities with BCAAs. METHODS C2C12 myotubes were treated with MHY1485 or DMSO control both with and without rapamycin. Gene expression was assessed using qRT-PCR and insulin sensitivity and protein expression by western blot. Glycolytic and mitochondrial metabolism were measured by extracellular acidification rate and oxygen consumption. Mitochondrial and lipid content were analyzed by fluorescent staining. Liquid chromatography-mass spectrometry was used to assess extracellular BCAAs. RESULTS Rapamycin reduced p-mTORC expression, mitochondrial content, and mitochondrial function. Surprisingly, MHY1485 did not alter p-mTORC expression or cell metabolism. Neither treatment altered indicators of BCAA metabolism or extracellular BCAA content. CONCLUSION Collectively, inhibition of mTORC via rapamycin reduces myotube metabolism and mitochondrial content but not BCAA metabolism. The lack of p-mTORC activation by MHY1485 is a limitation of these experiments and warrants additional investigation.
Collapse
Affiliation(s)
- Norah E. Cook
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Macey R. McGovern
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Pamela M. Lundin
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Roger A. Vaughan
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| |
Collapse
|
7
|
Zheng HY, Wang L, Zhang R, Ding R, Yang CX, Du ZQ. Valine induces inflammation and enhanced adipogenesis in lean mice by multi-omics analysis. Front Nutr 2024; 11:1379390. [PMID: 38803448 PMCID: PMC11128663 DOI: 10.3389/fnut.2024.1379390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The branched-chain amino acids (BCAAs) are essential to mammalian growth and development but aberrantly elevated in obesity and diabetes. Each BCAA has an independent and specific physio-biochemical effect on the host. However, the exact molecular mechanism of the detrimental effect of valine on metabolic health remains largely unknown. Methods and results This study showed that for lean mice treated with valine, the hepatic lipid metabolism and adipogenesis were enhanced, and the villus height and crypt depth of the ileum were significantly increased. Transcriptome profiling on white and brown adipose tissues revealed that valine disturbed multiple signaling pathways (e.g., inflammation and fatty acid metabolism). Integrative cecal metagenome and metabolome analyses found that abundances of Bacteroidetes decreased, but Proteobacteria and Helicobacter increased, respectively; and 87 differential metabolites were enriched in several molecular pathways (e.g., inflammation and lipid and bile acid metabolism). Furthermore, abundances of two metabolites (stercobilin and 3-IAA), proteins (AMPK/pAMPK and SCD1), and inflammation and adipogenesis-related genes were validated. Discussion Valine treatment affects the intestinal microbiota and metabolite compositions, induces gut inflammation, and aggravates hepatic lipid deposition and adipogenesis. Our findings provide novel insights into and resources for further exploring the molecular mechanism and biological function of valine on lipid metabolism.
Collapse
Affiliation(s)
- Hui-Yi Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Li Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Rong Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Ran Ding
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| |
Collapse
|
8
|
Avery CL, Howard AG, Lee HH, Downie CG, Lee MP, Koenigsberg SH, Ballou AF, Preuss MH, Raffield LM, Yarosh RA, North KE, Gordon-Larsen P, Graff M. Branched chain amino acids harbor distinct and often opposing effects on health and disease. COMMUNICATIONS MEDICINE 2023; 3:172. [PMID: 38017291 PMCID: PMC10684599 DOI: 10.1038/s43856-023-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The branched chain amino acids (BCAA) leucine, isoleucine, and valine are essential nutrients that have been associated with diabetes, cancers, and cardiovascular diseases. Observational studies suggest that BCAAs exert homogeneous phenotypic effects, but these findings are inconsistent with results from experimental human and animal studies. METHODS Hypothesizing that inconsistencies between observational and experimental BCAA studies reflect bias from shared lifestyle and genetic factors in observational studies, we used data from the UK Biobank and applied multivariable Mendelian randomization causal inference methods designed to address these biases. RESULTS In n = 97,469 participants of European ancestry (mean age = 56.7 years; 54.1% female), we estimate distinct and often opposing total causal effects for each BCAA. For example, of the 117 phenotypes with evidence of a statistically significant total causal effect for at least one BCAA, almost half (44%, n = 52) are associated with only one BCAA. These 52 associations include total causal effects of valine on diabetic eye disease [odds ratio = 1.51, 95% confidence interval (CI) = 1.31, 1.76], valine on albuminuria (odds ratio = 1.14, 95% CI = 1.08, 1.20), and isoleucine on angina (odds ratio = 1.17, 95% CI = 1.31, 1.76). CONCLUSIONS Our results suggest that the observational literature provides a flawed picture of BCAA phenotypic effects that is inconsistent with experimental studies and could mislead efforts developing novel therapeutics. More broadly, these findings motivate the development and application of causal inference approaches that enable 'omics studies conducted in observational settings to account for the biasing effects of shared genetic and lifestyle factors.
Collapse
Affiliation(s)
- Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA.
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA.
| | - Annie Green Howard
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Harold H Lee
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Carolina G Downie
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Moa P Lee
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Sarah H Koenigsberg
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Anna F Ballou
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Rina A Yarosh
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| |
Collapse
|
9
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
10
|
Mitra A, Shanavas S, Chaudhury D, Bose B, Das UN, Shenoy P S. Mitigation of chronic glucotoxicity-mediated skeletal muscle atrophy by arachidonic acid. Life Sci 2023; 333:122141. [PMID: 37797688 DOI: 10.1016/j.lfs.2023.122141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Toxicity caused by chronic hyperglycemia is a significant factor affecting skeletal muscle myogenesis, resulting in diabetic myopathy. Chronic and persistent hyperglycemia causes activation of the atrophy-related pathways in the skeletal muscles, which eventually results in inflammation and muscle degeneration. To counteract this process, various bioactive compound has been studied for their reversal or hypertrophic effect. In this study, we explored the molecular mechanisms associated with reversing glucotoxicity's effect in C2C12 cells by arachidonic acid (AA). We found a substantial increase in the pro-inflammatory cytokines and ROS production in hyperglycemic conditions, mitigated by AA supplementation. We found that AA supplementation restored protein synthesis that was downregulated under glucotoxicity conditions. AA enhanced myogenesis by suppressing high glucose induced inflammation and ROS production and enhancing protein synthesis. These results imply that AA has cytoprotective actions against hyperglycemia-induced cytotoxicity.
Collapse
Affiliation(s)
- Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore 575018, Karnataka, India
| | - Shanooja Shanavas
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore 575018, Karnataka, India
| | - Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore 575018, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore 575018, Karnataka, India
| | - Undurti N Das
- UND Life Sciences, 2221 NW 5(th) St, Battle Ground, WA 98604, USA; Department of Biotechnology, Indian Institute of Technology-Hyderabad, Telangana, India; Department of Medicine, Omega Hospitals, Gachibowli, Hyderabad, 500032, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
11
|
Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, Bleicher A, Novak G, Liu TT, Newman S, Ricke WA, Matkowskyj KA, Ong IM, Jang C, Simcox J, Lamming DW. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab 2023; 35:1976-1995.e6. [PMID: 37939658 PMCID: PMC10655617 DOI: 10.1016/j.cmet.2023.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yasmine H Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Anneliese Bleicher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Grace Novak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Teresa T Liu
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Sarah Newman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Kristina A Matkowskyj
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
12
|
Harman JC, Pivodic A, Nilsson AK, Boeck M, Yagi H, Neilsen K, Ko M, Yang J, Kinter M, Hellström A, Fu Z. Postnatal hyperglycemia alters amino acid profile in retinas (model of Phase I ROP). iScience 2023; 26:108021. [PMID: 37841591 PMCID: PMC10568433 DOI: 10.1016/j.isci.2023.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Nutritional deprivation occurring in most preterm infants postnatally can induce hyperglycemia, a significant and independent risk factor for suppressing physiological retinal vascularization (Phase I retinopathy of prematurity (ROP)), leading to compensatory but pathological neovascularization. Amino acid supplementation reduces retinal neovascularization in mice. Little is known about amino acid contribution to Phase I ROP. In mice modeling hyperglycemia-associated Phase I ROP, we found significant changes in retinal amino acids (including most decreased L-leucine, L-isoleucine, and L-valine). Parenteral L-isoleucine suppressed physiological retinal vascularization. In premature infants, severe ROP was associated with a higher mean intake of parenteral versus enteral amino acids in the first two weeks of life after adjustment for treatment group, gestational age at birth, birth weight, and sex. The number of days with parenteral amino acids support independently predicted severe ROP. Further understanding and modulating amino acids may help improve nutritional intervention and prevent Phase I ROP.
Collapse
Affiliation(s)
- Jarrod C. Harman
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aldina Pivodic
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Kinter
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Tekwe CD, Luan Y, Meininger CJ, Bazer FW, Wu G. Dietary supplementation with L-leucine reduces nitric oxide synthesis by endothelial cells of rats. Exp Biol Med (Maywood) 2023; 248:1537-1549. [PMID: 37837386 PMCID: PMC10676130 DOI: 10.1177/15353702231199078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 10/16/2023] Open
Abstract
This study tested the hypothesis that elevated L-leucine concentrations in plasma reduce nitric oxide (NO) synthesis by endothelial cells (ECs) and affect adiposity in obese rats. Beginning at four weeks of age, male Sprague-Dawley rats were fed a casein-based low-fat (LF) or high-fat (HF) diet for 15 weeks. Thereafter, rats in the LF and HF groups were assigned randomly into one of two subgroups (n = 8/subgroup) and received drinking water containing either 1.02% L-alanine (isonitrogenous control) or 1.5% L-leucine for 12 weeks. The energy expenditure of the rats was determined at weeks 0, 6, and 11 of the supplementation period. At the end of the study, an oral glucose tolerance test was performed on all the rats immediately before being euthanized for the collection of tissues. HF feeding reduced (P < 0.001) NO synthesis in ECs by 21% and whole-body insulin sensitivity by 19% but increased (P < 0.001) glutamine:fructose-6-phosphate transaminase (GFAT) activity in ECs by 42%. Oral administration of L-leucine decreased (P < 0.05) NO synthesis in ECs by 14%, increased (P < 0.05) GFAT activity in ECs by 35%, and reduced (P < 0.05) whole-body insulin sensitivity by 14% in rats fed the LF diet but had no effect (P > 0.05) on these variables in rats fed the HF diet. L-Leucine supplementation did not affect (P > 0.05) weight gain, tissue masses (including white adipose tissue, brown adipose tissue, and skeletal muscle), or antioxidative capacity (indicated by ratios of glutathione/glutathione disulfide) in LF- or HF-fed rats and did not worsen (P > 0.05) adiposity, whole-body insulin sensitivity, or metabolic profiles in the plasma of obese rats. These results indicate that high concentrations of L-leucine promote glucosamine synthesis and impair NO production by ECs, possibly contributing to an increased risk of cardiovascular disease in diet-induced obese rats.
Collapse
Affiliation(s)
- Carmen D Tekwe
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47403, USA
| | - Yuanyuan Luan
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47403, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Aguillard AM, Tzeng J, Ferrer I, Tam BT, Lorenzo DN. A cell-autonomous mechanism regulates BCAA catabolism in white adipocytes and systemic metabolic balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551146. [PMID: 37577547 PMCID: PMC10418053 DOI: 10.1101/2023.07.31.551146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Elevated plasma branched-chain amino acids (BCAAs) are strongly associated with obesity, insulin resistance (IR), and diabetes in humans and rodent models. However, the mechanisms of BCAA dysregulation and its systemic, organ, and cell-specific implications in the development of obesity and IR are not well understood. To gain mechanistic insight into the causes and effects of plasma BCAA elevations, we leveraged mouse models with high circulating BCAA levels prior to the onset of obesity and IR. Young mice lacking ankyrin-B in white adipose tissue (WAT) or bearing an ankyrin-B variant that causes age-driven metabolic syndrome exhibit downregulation of BCAA catabolism selectively in WAT and excess plasma BCAAs. Using cellular assays, we demonstrated that ankyrin-B promotes the surface localization of the amino acid transporter Asct2 in white adipocytes, and its deficit impairs BCAA uptake. Excess BCAA supplementation worsened glucose tolerance and insulin sensitivity across genotypes. In contrast, BCAA overconsumption only increased adiposity in control mice, implicating WAT utilization of BCAAs in their obesogenic effects. These results shed light into the mechanistic underpinnings of metabolic syndrome caused by ankyrin-B deficits and provide new evidence of the relevance of WAT in the regulation of systemic BCAA levels, adiposity, and glucose homeostasis.
Collapse
Affiliation(s)
- Ashley M Aguillard
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joyce Tzeng
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ismael Ferrer
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
| | - Bjorn T Tam
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Laya A, Wangso H, Fernandes I, Djakba R, Oliveira J, Carvalho E. Bioactive Ingredients in Traditional Fermented Food Condiments: Emerging Products for Prevention and Treatment of Obesity and Type 2 Diabetes. J FOOD QUALITY 2023; 2023:1-26. [DOI: 10.1155/2023/5236509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Obesity and type 2 diabetes (T2D) are severe metabolic diseases due to inappropriate lifestyle and genetic factors and their prevention/treatment cause serious problems. Therefore, searching for effective and safe approaches to control obesity and T2D is an essential challenge. This study presents the knowledge regarding the possible use of traditional fermented condiments (TFC), a known major source of bioactive compounds (BACs), as an adjuvant treatment for obesity and T2D. Data on antiobesity, antidiabetic, and different mechanisms of BACs action of TFC were collected using a methodical search in PubMed, Scopus databases, Web of Science, SciELO, and the Cochrane Library. We discuss the mechanisms by which BCs prevent or treat obesity and T2D. The effects of TFC on obesity and T2D have been found both in animal, human, and clinical studies. The findings demonstrated that BACs in TFC confer potential promising antiobesity and antidiabetic effects. Because of the potential therapeutic significance of bioactive ingredients, the consumption of TFC could be recommended as a functional condiment. Nevertheless, further investigation is required in more clinical studies of TFC to support the formulation of functional fermented condiments and nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Alphonse Laya
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, Coimbra 3004-504, Portugal
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra 3030-789, Portugal
- APDP-Portuguese Diabetes Association, Lisbon 1250-189, Portugal
| | - Honoré Wangso
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Iva Fernandes
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Raphaël Djakba
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Joana Oliveira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, Coimbra 3004-504, Portugal
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra 3030-789, Portugal
- APDP-Portuguese Diabetes Association, Lisbon 1250-189, Portugal
| |
Collapse
|
16
|
Yu JY, Cao N, Rau CD, Lee RP, Yang J, Flach RJR, Petersen L, Zhu C, Pak YL, Miller RA, Liu Y, Wang Y, Li Z, Sun H, Gao C. Cell-autonomous effect of cardiomyocyte branched-chain amino acid catabolism in heart failure in mice. Acta Pharmacol Sin 2023; 44:1380-1390. [PMID: 36991098 PMCID: PMC10310802 DOI: 10.1038/s41401-023-01076-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/12/2023] [Indexed: 03/31/2023]
Abstract
Parallel to major changes in fatty acid and glucose metabolism, defect in branched-chain amino acid (BCAA) catabolism has also been recognized as a metabolic hallmark and potential therapeutic target for heart failure. However, BCAA catabolic enzymes are ubiquitously expressed in all cell types and a systemic BCAA catabolic defect is also manifested in metabolic disorder associated with obesity and diabetes. Therefore, it remains to be determined the cell-autonomous impact of BCAA catabolic defect in cardiomyocytes in intact hearts independent from its potential global effects. In this study, we developed two mouse models. One is cardiomyocyte and temporal-specific inactivation of the E1α subunit (BCKDHA-cKO) of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which blocks BCAA catabolism. Another model is cardiomyocyte specific inactivation of the BCKDH kinase (BCKDK-cKO), which promotes BCAA catabolism by constitutively activating BCKDH activity in adult cardiomyocytes. Functional and molecular characterizations showed E1α inactivation in cardiomyocytes was sufficient to induce loss of cardiac function, systolic chamber dilation and pathological transcriptome reprogramming. On the other hand, inactivation of BCKDK in intact heart does not have an impact on baseline cardiac function or cardiac dysfunction under pressure overload. Our results for the first time established the cardiomyocyte cell autonomous role of BCAA catabolism in cardiac physiology. These mouse lines will serve as valuable model systems to investigate the underlying mechanisms of BCAA catabolic defect induced heart failure and to provide potential insights for BCAA targeted therapy.
Collapse
Affiliation(s)
- Jia-Yu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China
| | - Nancy Cao
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christoph D Rau
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ro-Po Lee
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jieping Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Lauren Petersen
- Health Science Center, University of Utah, Salt Lake City, UT, USA
| | - Cansheng Zhu
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Yea-Lyn Pak
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Yunxia Liu
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore, Singapore
| | - Yibin Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore, Singapore
| | - Zhaoping Li
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China
| | - Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Rivera CN, Smith CE, Draper LV, Ochoa GE, Watne RM, Wommack AJ, Vaughan RA. The Selective LAT1 Inhibitor JPH203 Enhances Mitochondrial Metabolism and Content in Insulin-Sensitive and Insulin-Resistant C2C12 Myotubes. Metabolites 2023; 13:766. [PMID: 37367923 DOI: 10.3390/metabo13060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Population data have shown an association between higher circulating branched-chain amino acids (BCAA) and the severity of insulin resistance in people with diabetes. While several studies have assessed BCAA metabolism as a potential target for regulation, less attention has been paid to the role of L-type amino acid transporter 1 (LAT1), the primary transporter of BCAA in skeletal muscle. The aim of this study was to assess the impact of JPH203 (JPH), a LAT1 inhibitor, on myotube metabolism in both insulin-sensitive and insulin-resistant myotubes. C2C12 myotubes were treated with or without 1 μM or 2 μM JPH for 24 h with or without insulin resistance. Western blot and qRT-PCR were used to assess protein content and gene expression, respectively. Mitochondrial and glycolytic metabolism were measured via Seahorse Assay, and fluorescent staining was used to measure mitochondrial content. BCAA media content was quantified using liquid chromatography-mass spectrometry. JPH at 1 μM (but not 2 μM) increased mitochondrial metabolism and content without inducing changes in mRNA expression of transcripts associated with mitochondrial biogenesis or mitochondrial dynamics. Along with increased mitochondrial function, 1μM treatment also reduced extracellular leucine and valine. JPH at 2 μM reduced pAkt signaling and increased extracellular accumulation of isoleucine without inducing changes in BCAA metabolic genes. Collectively, JPH may increase mitochondrial function independent of the mitochondrial biogenic transcription pathway; however, high doses may reduce insulin signaling.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Carly E Smith
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Lillian V Draper
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Gabriela E Ochoa
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| |
Collapse
|
18
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Bishop CA, Machate T, Henkel J, Schulze MB, Klaus S, Piepelow K. Heptadecanoic Acid Is Not a Key Mediator in the Prevention of Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice. Nutrients 2023; 15:2052. [PMID: 37432205 DOI: 10.3390/nu15092052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Epidemiological studies found that the intake of dairy products is associated with an increased amount of circulating odd-chain fatty acids (OCFA, C15:0 and C17:0) in humans and further indicate that especially C17:0 is associated with a lower incidence of type 2 diabetes. However, causal relationships are not elucidated. To provide a mechanistic link, mice were fed high-fat (HF) diets supplemented with either milk fat or C17:0 for 20 weeks. Cultured primary mouse hepatocytes were used to distinguish differential effects mediated by C15:0 or C17:0. Despite an induction of OCFA after both dietary interventions, neither long-term milk fat intake nor C17:0 supplementation improved diet-induced hepatic lipid accumulation and insulin resistance in mice. HF feeding with milk fat actually deteriorates liver inflammation. Treatment of primary hepatocytes with C15:0 and C17:0 suppressed JAK2/STAT3 signaling, but only C15:0 enhanced insulin-stimulated phosphorylation of AKT. Overall, the data indicate that the intake of milk fat and C17:0 do not mediate health benefits, whereas C15:0 might be promising in further studies.
Collapse
Affiliation(s)
- Christopher A Bishop
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Tina Machate
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Janin Henkel
- Department of Nutritional Biochemistry, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Matthias B Schulze
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
- Department Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Susanne Klaus
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Karolin Piepelow
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| |
Collapse
|
20
|
Bjune MS, Lawrence-Archer L, Laupsa-Borge J, Sommersten CH, McCann A, Glastad RC, Johnston IG, Kern M, Blüher M, Mellgren G, Dankel SN. Metabolic role of the hepatic valine/3-hydroxyisobutyrate (3-HIB) pathway in fatty liver disease. EBioMedicine 2023; 91:104569. [PMID: 37084480 PMCID: PMC10148099 DOI: 10.1016/j.ebiom.2023.104569] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The valine (branched-chain amino acid) metabolite 3-hydroxyisobutyrate (3-HIB), produced by 3-Hydroxyisobutyryl-CoA Hydrolase (HIBCH), is associated with insulin resistance and type 2 diabetes, but implicated tissues and cellular mechanisms are poorly understood. We hypothesized that HIBCH and 3-HIB regulate hepatic lipid accumulation. METHODS HIBCH mRNA in human liver biopsies ("Liver cohort") and plasma 3-HIB ("CARBFUNC" cohort) were correlated with fatty liver and metabolic markers. Human Huh7 hepatocytes were supplemented with fatty acids (FAs) to induce lipid accumulation. Following HIBCH overexpression, siRNA knockdown, inhibition of PDK4 (a marker of FA β-oxidation) or 3-HIB supplementation, we performed RNA-seq, Western blotting, targeted metabolite analyses and functional assays. FINDINGS We identify a regulatory feedback loop between the valine/3-HIB pathway and PDK4 that shapes hepatic FA metabolism and metabolic health and responds to 3-HIB treatment of hepatocytes. HIBCH overexpression increased 3-HIB release and FA uptake, while knockdown increased cellular respiration and decreased reactive oxygen species (ROS) associated with metabolic shifts via PDK4 upregulation. Treatment with PDK4 inhibitor lowered 3-HIB release and increased FA uptake, while increasing HIBCH mRNA. Implicating this regulatory loop in fatty liver, human cohorts show positive correlations of liver fat with hepatic HIBCH and PDK4 expression (Liver cohort) and plasma 3-HIB (CARBFUNC cohort). Hepatocyte 3-HIB supplementation lowered HIBCH expression and FA uptake and increased cellular respiration and ROS. INTERPRETATION These data implicate the hepatic valine/3-HIB pathway in mechanisms of fatty liver, reflected in increased plasma 3-HIB concentrations, and present possible targets for therapeutic intervention. FUNDING Funding was provided by the Research Council of Norway (263124/F20), the University of Bergen, the Western Norway Health Authorities, Novo Nordisk Scandinavia AS, the Trond Mohn Foundation and the Norwegian Diabetes Association.
Collapse
Affiliation(s)
- Mona Synnøve Bjune
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Laurence Lawrence-Archer
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Johnny Laupsa-Borge
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Bevital AS, Bergen, Norway
| | - Cathrine Horn Sommersten
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | - Iain George Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Matthias Kern
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
21
|
Muli S, Brachem C, Alexy U, Schmid M, Oluwagbemigun K, Nöthlings U. Exploring the association of physical activity with the plasma and urine metabolome in adolescents and young adults. Nutr Metab (Lond) 2023; 20:23. [PMID: 37020289 PMCID: PMC10074825 DOI: 10.1186/s12986-023-00742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Regular physical activity elicits many health benefits. However, the underlying molecular mechanisms through which physical activity influences overall health are less understood. Untargeted metabolomics enables system-wide mapping of molecular perturbations which may lend insights into physiological responses to regular physical activity. In this study, we investigated the associations of habitual physical activity with plasma and urine metabolome in adolescents and young adults. METHODS This cross-sectional study included participants from the DONALD (DOrtmund Nutritional and Anthropometric Longitudinally Designed) study with plasma samples n = 365 (median age: 18.4 (18.1, 25.0) years, 58% females) and 24 h urine samples n = 215 (median age: 18.1 (17.1, 18.2) years, 51% females). Habitual physical activity was assessed using a validated Adolescent Physical Activity Recall Questionnaire. Plasma and urine metabolite concentrations were determined using ultra-high-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) methods. In a sex-stratified analysis, we conducted principal component analysis (PCA) to reduce the dimensionality of metabolite data and to create metabolite patterns. Multivariable linear regression models were then applied to assess the associations between self-reported physical activity (metabolic equivalent of task (MET)-hours per week) with single metabolites and metabolite patterns, adjusted for potential confounders and controlling the false discovery rate (FDR) at 5% for each set of regressions. RESULTS Habitual physical activity was positively associated with the "lipid, amino acids and xenometabolite" pattern in the plasma samples of male participants only (β = 1.02; 95% CI: 1.01, 1.04, p = 0.001, adjusted p = 0.042). In both sexes, no association of physical activity with single metabolites in plasma and urine and metabolite patterns in urine was found (all adjusted p > 0.05). CONCLUSIONS Our explorative study suggests that habitual physical activity is associated with alterations of a group of metabolites reflected in the plasma metabolite pattern in males. These perturbations may lend insights into some of underlying mechanisms that modulate effects of physical activity.
Collapse
Affiliation(s)
- Samuel Muli
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany.
| | - Christian Brachem
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Ute Alexy
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| |
Collapse
|
22
|
Moissl AP, Lorkowski S, Meinitzer A, Pilz S, Scharnagl H, Delgado GE, Kleber ME, Krämer BK, Pieske B, Grübler MR, Brussee H, von Lewinski D, Toplak H, Fahrleitner-Pammer A, März W, Tomaschitz A. Association of branched-chain amino acids with mortality-the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. iScience 2023; 26:106459. [PMID: 37020954 PMCID: PMC10067756 DOI: 10.1016/j.isci.2023.106459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Branched-chain amino acids (BCAAs) are effectors of metabolic diseases, but their impact on mortality is largely unknown. We investigated the association of BCAA with risk factors and mortality in 2,236 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study using linear and Cox regression. Adiponectin, hemoglobin, C-peptide, hemoglobin A1c, and homoarginine showed the strongest association with BCAA concentration (all p < 0.001). During a median follow-up of 10.5 years, 715 participants died, including 450 cardiovascular-related deaths. BCAA concentrations were inversely associated with the risk of all-cause and cardiovascular mortality (HR [95% CI] per 1-SD increase in log-BCAA: 0.75 [0.69-0.82] and 0.72 [0.65-0.80], respectively) after adjustment for potential confounders. BCAAs are directly associated with metabolic risk but inversely with mortality in persons with intermediate-to-high cardiovascular risk. Further studies are warranted to evaluate the diagnostic and therapeutic utility of BCAA in the context of cardiovascular diseases.
Collapse
|
23
|
Zhang C, Wang S, Wu Y, Guo Y, Wang X. Baseline Serum BCAAs are Related to the Improvement in Insulin Resistance in Obese People After a Weight Loss Intervention. Diabetes Metab Syndr Obes 2023; 16:179-186. [PMID: 36760594 PMCID: PMC9869786 DOI: 10.2147/dmso.s388117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Branched chain amino acids (BCAAs) have been revealed to be closely related to insulin resistance and obesity. This study aimed to investigate if BCAA levels at baseline are related to an improvement in insulin resistance after implementing a weight loss program intervention. METHODS Stored blood samples from participants in previous trials were used for BCAA evaluation. Linear regression was used to analyze the relationship between baseline amino acid levels and changes in the insulin resistance index (HOMA-IR) and blood glucose. RESULTS A total of 48 participants were enrolled. After the intervention, the body weight (78.29± 12.68 vs 72.06 ± 13.30 kg, p=0.020), fasting glucose (4.76 ± 0.43 vs 4.48 ± 0.39 mmol/L, p=0.001), fasting insulin (18.41±13.58 vs 12.87±10.88, p=0.028), and HOMA-IR (4.01±3.39 vs 2.62± 2.18, p=0.018) were improved significantly. BCAA levels were related to the improvement in HOMA-IR (β=-0.006, p=0.039), and valine was found to be the most closely related to the improvement in HOMA-IR (β=-0.013, p=0.017). CONCLUSION The baseline BCAA is related to the improvement in insulin resistance among participants after a weight loss intervention.
Collapse
Affiliation(s)
- Chenghui Zhang
- Endocrinology Department, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, People’s Republic of China
| | - Suyuan Wang
- Endocrinology Department, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, People’s Republic of China
| | - Yunhong Wu
- Endocrinology Department, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, People’s Republic of China
| | - Yanhong Guo
- Endocrinology Department, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, People’s Republic of China
| | - Xi Wang
- Endocrinology Department, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, People’s Republic of China
- Correspondence: Xi Wang, Email
| |
Collapse
|
24
|
Hinkle JS, Rivera CN, Vaughan RA. Branched-Chain Amino Acids and Mitochondrial Biogenesis: An Overview and Mechanistic Summary. Mol Nutr Food Res 2022; 66:e2200109. [PMID: 36047448 PMCID: PMC9786258 DOI: 10.1002/mnfr.202200109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Branched-chain amino acids (BCAA) are essential in the diet and promote several vital cell responses which may have benefits for health and athletic performance, as well as disease prevention. While BCAA are well-known for their ability to stimulate muscle protein synthesis, their effects on cell energetics are also becoming well-documented, but these receive less attention. In this review, much of the current evidence demonstrating BCAA ability (as individual amino acids or as part of dietary mixtures) to alter regulators of cellular energetics with an emphasis on mitochondrial biogenesis and related signaling is highlighted. Several studies have shown, both in vitro and in vivo, that BCAA (either individual or as a mixture) may promote signaling associated with increased mitochondrial biogenesis including the upregulation of master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as numerous downstream targets and related function. However, sparse data in humans and the difficulty of controlling variables associated with feeding studies leave the physiological relevance of these findings unclear. Future well-controlled diet studies will be needed to assess if BCAA consumption is associated with increased mitochondrial biogenesis and improved metabolic outcomes in healthy and/or diseased human populations.
Collapse
Affiliation(s)
- Jason S. Hinkle
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| | - Caroline N. Rivera
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| | - Roger A. Vaughan
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| |
Collapse
|