1
|
Ma S, Su S, Zhang X, Wang X, Yi H. CircRNA encoded-peptide: Potential stock in the transcriptomics market. Life Sci 2025; 372:123643. [PMID: 40246192 DOI: 10.1016/j.lfs.2025.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
The emergence of circRNA-encoded peptides has sparked significant debate in recent years as a novel mode of action for circRNAs. A mounting body of evidence suggests that these peptides play vital roles in cancer development and immune responses. This review initially elucidates the presence of circRNA-encoded peptides and delineates their specific functions across various biological processes and pathological conditions. It goes on to furnish illustrative instances to underscore the pivotal involvement of circRNA-encoded peptides in both innate and adaptive immune responses. The study sheds new light on the biological roles of circRNAs, their potential tumor-promoting and tumor-suppressing functions of circRNA-encoded peptides in specific tumor environment, and their significance in immunological contexts. Meanwhile, the limitations of existing studies on circRNA-encoded peptides are discussed in depth. In particular, circRNA-encoded peptides are critically analyzed as biomarkers and therapeutic targets. Intriguingly, the review concludes with a more organized discussion of future research on circRNA-encoded peptides.
Collapse
Affiliation(s)
- Siyuan Ma
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
| | - Sensen Su
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China; Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiuna Zhang
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China
| | - Xiangxiu Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Gongli Hospital of Pudong New Area, Shanghai 200135, China
| | - Huanfa Yi
- Central Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130031, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Lin Y, Wang Y, Li L, Zhang K. Coding circular RNA in human cancer. Genes Dis 2025; 12:101347. [PMID: 40034125 PMCID: PMC11875173 DOI: 10.1016/j.gendis.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 03/05/2025] Open
Abstract
circular RNA (circRNA) is a covalently closed single-stranded RNA that lacks 5' and 3' ends and has long been considered a noncoding RNA. With the development of high-throughput sequencing and bioinformatics technology, the understanding of circRNA has become increasingly advanced. Recent studies have shown that some cytoplasmic circRNAs can be effectively translated into detectable proteins, further indicating the importance of circRNA in cellular pathology and physiological functions. Internal ribosome entry site (IRES) and N6-methyladenosine (m6A) mediated cap-independent translation initiation are considered potential mechanisms of circRNA translation. Multiple circRNAs have been shown to play crucial roles in human cancer. This paper provides an overview of the nature and functions of circRNA and describes the possible mechanisms underlying the initiation of circRNA translation. We summarized the emerging functions of circRNA-encoded proteins in human cancer. Finally, we discuss the therapeutic potential of circRNAs and the challenges of research in this field. This review on circRNA translation will reveal a hidden human proteome and enhance our understanding of the importance of circRNAs in human malignant tumors.
Collapse
Affiliation(s)
| | | | - Lixin Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| |
Collapse
|
3
|
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X, Wu Z, Oyang L, Luo X, Lin J, Xia L, Peng M, Wu N, Tang Y, Han Y, Liao Q, Zhou Y. Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential. J Hematol Oncol 2025; 18:20. [PMID: 39972384 PMCID: PMC11841355 DOI: 10.1186/s13045-025-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
In the present era, noncoding RNAs (ncRNAs) have become a subject of considerable scientific interest, with peptides encoded by ncRNAs representing a particularly promising avenue of investigation. The identification of ncRNA-encoded peptides in human cancers is increasing. These peptides regulate cancer progression through multiple molecular mechanisms. Here, we delineate the patterns of diverse ncRNA-encoded peptides and provide a synopsis of the methodologies employed for the identification of ncRNAs that possess the capacity to encode these peptides. Furthermore, we discuss the impacts of ncRNA-encoded peptides on the biological behavior of cancer cells and the underlying molecular mechanisms. In conclusion, we describe the prospects of ncRNA-encoded peptides in cancer and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhu Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The Role of the Dysregulation of circRNAs Expression in Glioblastoma Multiforme. J Mol Neurosci 2025; 75:9. [PMID: 39841303 DOI: 10.1007/s12031-024-02285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025]
Abstract
Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes. circRNA molecules are rich in miRNA binding sites. The discovery of more structurally diverse and GBM-related circRNAs has great promise for the use of GMB prognostic biomarkers and therapeutic targets, as well as for comprehending the molecular regulatory mechanisms of GBM. In this work, we present an overview of the circRNA expression patterns associated with GBM and offer a potential integrated electrochemical strategy for detecting circRNA with extreme sensitivity in the diagnosis of glioblastoma.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wang Q, Qin B, Yu H, Hu Y, Yu H, Zhong J, Liu J, Yao C, Zeng J, Fan J, Diao L. Advances in Circular RNA in the Pathogenesis of Epilepsy. Neuroscience 2024; 551:246-253. [PMID: 38843987 DOI: 10.1016/j.neuroscience.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Recent studies evidenced the involvement of circular RNA (circRNA) in neuroinflammation, apoptosis, and synaptic remodeling suggesting an important role for circRNA in the occurrence and development of epilepsy. This review provides an overview of circRNAs considered to be playing regulatory roles in the process of epilepsy and to be involved in multiple biological epilepsy-related processes, such as hippocampal sclerosis, inflammatory response, cell apoptosis, synaptic remodeling, and cell proliferation and differentiation. This review covers the current research status of differential expression of circRNA-mediated seizures, m6A methylation, demethylation-mediated seizures in post transcriptional circRNA modification, as well as the mechanisms of m5C- and m7G-modified circRNA. In summary, this article reviews the research progress on the relationship between circRNA in non-coding RNA and epilepsy.
Collapse
Affiliation(s)
- Qin Wang
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Baijun Qin
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, 6 Seventh Branch Road, Panxi, Jiangbei District, Chongqing 400021, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, Guangxi 30007, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Han Yu
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jie Zhong
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jinwen Liu
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Chunyuan Yao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jiawei Zeng
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jingjing Fan
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Limei Diao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China.
| |
Collapse
|
7
|
Xu N, Jiang J, Jiang F, Dong G, Meng L, Wang M, Chen J, Li C, Shi Y, He S, Li R. CircCDC42-encoded CDC42-165aa regulates macrophage pyroptosis in Klebsiella pneumoniae infection through Pyrin inflammasome activation. Nat Commun 2024; 15:5730. [PMID: 38977695 PMCID: PMC11231140 DOI: 10.1038/s41467-024-50154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
The circular RNA (circRNA) family is a group of endogenous non-coding RNAs (ncRNAs) that have critical functions in multiple physiological and pathological processes, including inflammation, cancer, and cardiovascular diseases. However, their roles in regulating innate immune responses remain unclear. Here, we define Cell division cycle 42 (CDC42)-165aa, a protein encoded by circRNA circCDC42, which is overexpressed in Klebsiella pneumoniae (KP)-infected alveolar macrophages. High levels of CDC42-165aa induces the hyperactivation of Pyrin inflammasomes and aggravates alveolar macrophage pyroptosis, while the inhibition of CDC42-165aa reduces lung injury in mice after KP infection by inhibiting Pyrin inflammasome-mediated pyroptosis. Overall, these results demonstrate that CDC42-165aa stimulates Pyrin inflammasome by inhibiting CDC42 GTPase activation and provides a potential clinical target for pathogenic bacterial infection in clinical practice.
Collapse
Affiliation(s)
- Nana Xu
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Jiebang Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guokai Dong
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Li Meng
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Meng Wang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Jing Chen
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong Li
- Xuzhou Key Laboratory of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yongping Shi
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
8
|
Han Y, Meng J, Ling X, Pan Z, Zhang H, Zhong B, Chen S, Pang J, Ma Y, Chen J, Liu L. DNMT1 regulates hypermethylation and silences hsa_circ_401351 in hydroquinone-induced malignant TK6 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:2092-2101. [PMID: 38108535 DOI: 10.1002/tox.24089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Benzene and its metabolite hydroquinone (HQ) are widely used in daily life, and long-term exposure to benzene or HQ can induce acute myeloid leukemia (AML). Circular RNAs (circRNAs) are mostly produced by reverse splicing of gene exon mRNA precursors. The modulation of circRNA expression is connected to leukemia progression; however, the molecular mechanism is still unknown. MATERIALS AND METHODS In this study, the cells were divided into four groups: PBS control group (PBS-TK6), TK6 malignantly transformed cells induced by 10.0 μmol/L HQ (HQ-TK6), and HQ-TK6 cells treated with 5 μmol/L 5-AzaC (DNA methyltransferase inhibitor) for 24 h (HQ + 5-AzaC). HQ-TK6 cells were treated with 200 nmol/L TSA (histone deacetylation inhibitor) for 24 h (HQ + TSA). qRT-PCR was used to identify the differential hsa_circ_401351 expression between the four groups. We further determined the hsa_circ_401351 promoter methylation level with methylation-specific PCR. DNMT1 and DNMT3b were knocked down by CRISPR/Cas9 to elucidate the specific molecular mechanism of hsa_circ_401351 in HQ-TK6 cells. CCK-8 and flow cytometry detected cell proliferation and apoptosis, respectively, after hsa_circ_401351 was overexpressed in HQ-TK6 cells. RESULTS Compared with the PBS-TK6 group, the expression of hsa_circ_401351 was found to be lower in the HQ-TK6 group. Nevertheless, treatment with 5-AzaC or TSA increased hsa_circ_401351 expression, with the upregulation being more pronounced in the TSA group. The expression of hsa_circ_401351 in the DNMT1 knockdown group was dramatically increased by 50% compared to that in the control group, and the DNA methylation level of the hsa_circ_401351 promoter region was decreased. When hsa_circ_401351 was overexpressed, HQ-TK6 cell proliferation was significantly slowed after 48 h compared with the control group. Flow cytometry showed that cells were mainly arrested in G1 phase, and apoptosis was significantly enhanced. Similarly, qRT-PCR and Western blot data showed significant reductions in Caspase-3 mRNA and protein production, and Bcl-2 mRNA levels were also elevated. CONCLUSIONS Overall, our research showed that elevated DNMT1 expression in HQ-TK6 cells increased methylation levels and decreased expression of the hsa_circ_401351 promoter region, limiting its ability to suppress HQ-TK6 cell growth and enhance apoptosis.
Collapse
Affiliation(s)
- Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Zhijie Pan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Haiqiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Hospital Infection Management, Dongguan Maternal and Child Health Care Hospital, Dongguan, People's Republic of China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Shi Chen
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jing Pang
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Yuliang Ma
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| |
Collapse
|
9
|
Begliarzade S, Sufianov A, Ilyasova T, Shumadalova A, Sufianov R, Beylerli O, Yan Z. Circular RNA in cervical cancer: Fundamental mechanism and clinical potential. Noncoding RNA Res 2024; 9:116-124. [PMID: 38035041 PMCID: PMC10686810 DOI: 10.1016/j.ncrna.2023.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
CC (CC) remains a significant global health concern, imposing a substantial health burden on women worldwide due to its high incidence and mortality rates. To address this issue, there is a need for ongoing research to uncover the underlying molecular mechanisms of CC and to discover novel diagnostic and therapeutic strategies. Recent progress in non-coding RNAs (ncRNAs) has opened new avenues for investigation, and circular RNAs (circRNAs) have emerged as molecules with diverse roles in various cellular processes. These circRNAs are distinct in structure, forming a closed loop, setting them apart from their linear counterparts. They are intricately involved in regulating different aspects of cellular functions, particularly in cell growth and development. Remarkably, circRNAs can have varying functions, either promoting or inhibiting oncogenic processes, depending on the specific cellular context. Recent studies have identified abnormal circRNAs expression patterns associated with CC, indicating their significant involvement in disease development. The differing circRNAs profiles linked to CC present promising opportunities for early detection, precise prognosis evaluation, and personalized treatment strategies. In this comprehensive review, we embark on a detailed exploration of CC-related circRNAs, elucidating their distinct roles and providing insights into the intricate molecular mechanisms governing CC's onset and progression. A growing body of evidence strongly suggests that circRNAs can serve as valuable biomarkers for early CC detection and hold potential as therapeutic targets for intervention. By delving into the complex interplay between circRNAs and CC, we are paving the way for innovative, individualized approaches to combat this serious disease, with the goal of reducing its impact on women's health globally and improving patient outcomes. As our understanding of circRNAs in the context of CC continues to deepen, the outlook for breakthroughs in diagnosis and treatment becomes increasingly promising.
Collapse
Affiliation(s)
- Sema Begliarzade
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Rinat Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Neurooncology, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Zhongrui Yan
- Department of Gynecology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| |
Collapse
|
10
|
Gao J, Pan H, Li J, Jiang J, Wang W. A peptide encoded by the circular form of the SHPRH gene induces apoptosis in neuroblastoma cells. PeerJ 2024; 12:e16806. [PMID: 38282862 PMCID: PMC10812589 DOI: 10.7717/peerj.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Background Circular RNAs (circRNAs) and their derived peptides represent largely unchartered areas in cellular biology, with many potential roles yet to be discovered. This study aimed to elucidate the role and molecular interactions of circSHPRH and its peptide derivative SHPRH-146aa in the pathogenesis of neuroblastoma (NB). Methods NB samples in the GSE102285 dataset were analyzed to measure circSHPRH expression, followed by in vitro experiments for validation. The role of SHPRH-146aa in NB cell proliferation, migration, and invasion was then examined, and luciferase activity assay was performed after SHPRH-146aa and RUNX1 transfection. Finally, the regulation of NB cell apoptosis by SHPRH-146aa combined with NFKBIA was tested. Results The GSE102285 dataset indicated overexpression of circSHPRH in NB samples, further supported by in vitro findings. Overexpression of circ-SHPRH and SHPRH-146aa inhibited proliferation, migration, and invasion of NB cells. A significant increase in apoptosis was observed, with upregulation of Caspase-3 and downregulation of Bcl-2. Furthermore, the peptide derivative SHPRH-146aa, derived from circSHPRH, suppressed NB cell malignancy traits, suggesting its role as a therapeutic target. A direct interaction between SHPRH-146aa and the transcription factor RUNX1 was identified, subsequently leading to increased NFKBIA expression. Notably, NFKBIA knockdown inhibited the pro-apoptotic effect of SHPRH-146aa on NB cells. Conclusion The study demonstrates that circ-SHPRH and SHPRH-146aa play significant roles in inhibiting the malignant progression of NB. They induce apoptosis primarily by modulating key apoptotic proteins Caspase-3 and Bcl-2, a process that appears to be regulated by NFKBIA. The SHPRH-146aa-RUNX1 interaction further elucidates a novel pathway in the regulation of apoptosis in NB. These findings indicate that circ-SHPRH and its derived peptide SHPRH-146aa could be potential therapeutic targets for NB treatment.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Pan
- Department of Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Department of Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Jiang
- Endoscopy Center, Minhang District Central Hospital of Fudan University, Shanghai, China
| | - Wenxian Wang
- Department of Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Li Z, Ren Y, Lv Z, Li M, Li Y, Fan X, Xiong Y, Qian L. Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications. Biomed Pharmacother 2023; 168:115744. [PMID: 37862970 DOI: 10.1016/j.biopha.2023.115744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of single-stranded noncoding RNAs with a covalently closed loop structure, are generated in a circular conformation via non-canonical splicing or back-splicing events. Functionally, circRNAs have been elucidated to soak up microRNAs (miRNAs) and RNA binding proteins (RBPs), serve as protein scaffolds, maintain mRNA stability, and regulate gene transcription and translation. Notably, circRNAs are strongly implicated in the regulation of β-cell functions, insulin resistance, adipocyte functions, inflammation as well as oxidative stress via acting as miRNA sponges and RBP sponges. Basic and clinical studies have demonstrated that aberrant alterations of circRNAs expressions are strongly associated with the initiation and progression of diabetes mellitus (DM) and its complications. Here in this review, we present a summary of the biogenesis, transportation, degradation and functions of circRNAs, and highlight the recent findings on circRNAs and their action mechanisms in DM and its complications. Overall, this review should contribute greatly to our understanding of circRNAs in DM pathogenesis, offering insights into the further perspectives of circRNAs for DM diagnosis and therapy.
Collapse
Affiliation(s)
- Zi Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Man Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yujia Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China.
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
12
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
13
|
Grafanaki K, Grammatikakis I, Ghosh A, Gopalan V, Olgun G, Liu H, Kyriakopoulos GC, Skeparnias I, Georgiou S, Stathopoulos C, Hannenhalli S, Merlino G, Marie KL, Day CP. Noncoding RNA circuitry in melanoma onset, plasticity, and therapeutic response. Pharmacol Ther 2023; 248:108466. [PMID: 37301330 PMCID: PMC10527631 DOI: 10.1016/j.pharmthera.2023.108466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ioannis Grammatikakis
- Cancer Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arin Ghosh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulden Olgun
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George C Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerrie L Marie
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Centrón-Broco A, Rossi F, Grelloni C, Garraffo R, Dattilo D, Giuliani A, Di Timoteo G, Colantoni A, Bozzoni I, Beltran Nebot M. CircAFF1 Is a Circular RNA with a Role in Alveolar Rhabdomyosarcoma Cell Migration. Biomedicines 2023; 11:1893. [PMID: 37509532 PMCID: PMC10376778 DOI: 10.3390/biomedicines11071893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed RNAs that originate from back-splicing events, participate in the control of several processes, including those that occur in the development of pathological conditions such as cancer. Hereby, we describe circAFF1, a circular RNA overexpressed in alveolar rhabdomyosarcoma. Using RH4 and RH30 cell lines, a classical cell line models for alveolar rhabdomyosarcoma, we demonstrated that circAFF1 is a cytoplasmatic circRNA and its depletion impacts cell homeostasis favouring cell migration through the downregulation of genes involved in cell adhesion pathways. The presented data underline the importance of this circular RNA as a new partial suppressor of the alveolar rhabdomyosarcoma tumour progression and as a putative future therapeutic target.
Collapse
Affiliation(s)
- Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Rossi
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaele Garraffo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Manuel Beltran Nebot
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Zhong D, Huang K, Zhang L, Cai Y, Li H, Liu Q, Shi D, Li H, Jiang Y. Circ2388 regulates myogenesis and muscle regeneration. Cell Tissue Res 2023; 393:149-161. [PMID: 37221302 DOI: 10.1007/s00441-023-03787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
The formation of skeletal muscle is a complex process that is coordinated by many regulatory factors, such as myogenic factors and noncoding RNAs. Numerous studies have proved that circRNA is an indispensable part of muscle development. However, little is known about circRNAs in bovine myogenesis. In this study, we discovered a novel circRNA, circ2388, formed by reverse splicing of the fourth and fifth exons of the MYL1 gene. The expression of circ2388 was different between fetal and adult cattle muscle. This circRNA is 99% homologous between cattle and buffalo and is localized in the cytoplasm. Thoroughly, we proved that circ2388 had no effect on cattle and buffalo myoblast proliferation but promotes myoblast differentiation and myotube fusion. Furthermore, circ2388 in vivo stimulated skeletal muscle regeneration in mouse muscle injury model. Taken together, our findings suggest that circ2388 promotes myoblast differentiation and promotes the recovery and regeneration of damaged muscles.
Collapse
Affiliation(s)
- Dandan Zhong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Xianyang, Yangling, Shaanxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Xianyang, Yangling, Shaanxi, China
| | - Huiren Li
- Animal Husbandry Station of Chongzuo City, 532200, Chongzuo, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528225, Foshan, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Xianyang, Yangling, Shaanxi, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Xianyang, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
18
|
Seeler S, Andersen MS, Sztanka-Toth T, Rybiczka-Tešulov M, van den Munkhof MH, Chang CC, Maimaitili M, Venø MT, Hansen TB, Pasterkamp RJ, Rybak-Wolf A, Denham M, Rajewsky N, Kristensen LS, Kjems J. A Circular RNA Expressed from the FAT3 Locus Regulates Neural Development. Mol Neurobiol 2023; 60:3239-3260. [PMID: 36840844 PMCID: PMC10122638 DOI: 10.1007/s12035-023-03253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
Circular RNAs (circRNAs) are key regulators of cellular processes, are abundant in the nervous system, and have putative regulatory roles during neural differentiation. However, the knowledge about circRNA functions in brain development is limited. Here, using RNA-sequencing, we show that circRNA levels increased substantially over the course of differentiation of human embryonic stem cells into rostral and caudal neural progenitor cells (NPCs), including three of the most abundant circRNAs, ciRS-7, circRMST, and circFAT3. Knockdown of circFAT3 during early neural differentiation resulted in minor transcriptional alterations in bulk RNA analysis. However, single-cell transcriptomics of 30 and 90 days differentiated cerebral organoids deficient in circFAT3 showed a loss of telencephalic radial glial cells and mature cortical neurons, respectively. Furthermore, non-telencephalic NPCs in cerebral organoids showed changes in the expression of genes involved in neural differentiation and migration, including FAT4, ERBB4, UNC5C, and DCC. In vivo depletion of circFat3 in mouse prefrontal cortex using in utero electroporation led to alterations in the positioning of the electroporated cells within the neocortex. Overall, these findings suggest a conserved role for circFAT3 in neural development involving the formation of anterior cell types, neuronal differentiation, or migration.
Collapse
Affiliation(s)
- Sabine Seeler
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Maria Schertz Andersen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Tamas Sztanka-Toth
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Mateja Rybiczka-Tešulov
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Chi-Chih Chang
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Muyesier Maimaitili
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Morten Trillingsgaard Venø
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Omiics ApS, 8200 Aarhus N, Aarhus, Denmark
| | - Thomas Birkballe Hansen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Agnieszka Rybak-Wolf
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Mark Denham
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Lasse Sommer Kristensen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
| |
Collapse
|
19
|
Cheng L, Liu Z, Xia J. New insights into circRNA and its mechanisms in angiogenesis regulation in ischemic stroke: a biomarker and therapeutic target. Mol Biol Rep 2023; 50:829-840. [PMID: 36331748 DOI: 10.1007/s11033-022-07949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke accounts for about 71% of strokes worldwide. Due to limited recommended therapeutics for ischemic stroke, more attention is focused on angiogenesis in ischemic stroke. Not long after ischemic stroke, angiogenesis arises and is vital for the prognosis. Various pro-angiogenic, anti-angiogenic factors and their downstream pathways engage in angiogenesis regulation. CircRNAs are differentially expressed after ischemic stroke. Up to now, circRNAs have been found to exert many functions in regulating apoptosis, autophagy, proliferation, and differentiation of neurons and neural stem cells mainly as miRNAs sponges or proteins decoy. Thus, many circRNAs are considered promising biomarkers or therapeutic targets for ischemic stroke. Besides, circRNAs participate in the modulation of endothelial-mesenchymal transition and blood-brain barrier maintenance. Moreover, circRNAs play significant roles in endothelial dysfunction concerning inflammation responses, apoptosis, proliferation, and migration. They correlate with many angiogenesis-related signaling pathways and genes via the circRNA/miRNA/mRNA network. Novel insights into circRNAs significance in angiogenesis regulation in ischemic stroke could be provided for further researches on the clinical application of circRNAs in ischemic stroke.
Collapse
Affiliation(s)
- Liuyang Cheng
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
Katsushima K, Joshi K, Perera RJ. Diagnostic and therapeutic potential of circular RNA in brain tumors. Neurooncol Adv 2023; 5:vdad063. [PMID: 37334165 PMCID: PMC10276536 DOI: 10.1093/noajnl/vdad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA with a stable cyclic structure. They are expressed in various tissues and cells with conserved, specific characteristics. CircRNAs have been found to play critical roles in a wide range of cellular processes by regulating gene expression at the epigenetic, transcriptional, and posttranscriptional levels. There is an accumulation of evidence on newly discovered circRNAs, their molecular interactions, and their roles in the development and progression of human brain tumors, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Here we summarize the current state of knowledge of the circRNAs that have been implicated in brain tumor pathogenesis, particularly in gliomas and medulloblastomas. In providing a comprehensive overview of circRNA studies, we highlight how different circRNAs have oncogenic or tumor-suppressive roles in brain tumors, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. This review article discusses circRNAs' functional roles and the prospect of using them as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, Florida, USA
| | - Kandarp Joshi
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, Florida, USA
| | - Ranjan J Perera
- Corresponding Author: Ranjan J. Perera, PhD, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA ()
| |
Collapse
|
21
|
Luo J, Wang S, Zhang L, Zhang L, Wu S, Zheng W, Huang X, Ye X, Wu M. Research advance and clinical implication of circZNF609 in human diseases. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2118076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jieyi Luo
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Shengchun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, Guangdong, PR China
| | - Lu Zhang
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Lu Zhang
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Weirang Zheng
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xueshan Huang
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xiaoxia Ye
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Minhua Wu
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| |
Collapse
|
22
|
Yang W, Lyu Y, Xiang R, Yang J. Long Noncoding RNAs in the Pathogenesis of Insulin Resistance. Int J Mol Sci 2022; 23:ijms232416054. [PMID: 36555704 PMCID: PMC9785789 DOI: 10.3390/ijms232416054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance (IR), designated as the blunted response of insulin target tissues to physiological level of insulin, plays crucial roles in the development and progression of diabetes, nonalcoholic fatty liver disease (NAFLD) and other diseases. So far, the distinct mechanism(s) of IR still needs further exploration. Long non-coding RNA (lncRNA) is a class of non-protein coding RNA molecules with a length greater than 200 nucleotides. LncRNAs are widely involved in many biological processes including cell differentiation, proliferation, apoptosis and metabolism. More recently, there has been increasing evidence that lncRNAs participated in the pathogenesis of IR, and the dysregulated lncRNA profile played important roles in the pathogenesis of metabolic diseases including obesity, diabetes and NAFLD. For example, the lncRNAs MEG3, H19, MALAT1, GAS5, lncSHGL and several other lncRNAs have been shown to regulate insulin signaling and glucose/lipid metabolism in various tissues. In this review, we briefly introduced the general features of lncRNA and the methods for lncRNA research, and then summarized and discussed the recent advances on the roles and mechanisms of lncRNAs in IR, particularly focused on liver, skeletal muscle and adipose tissues.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yixiang Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
- Correspondence:
| |
Collapse
|
23
|
Ren H, Chen S, Liu C, Wu H, Wang Z, Zhang X, Ren J, Zhou L. Circular RNA in multiple myeloma: A new target for therapeutic intervention. Pathol Res Pract 2022; 238:154129. [PMID: 36137401 DOI: 10.1016/j.prp.2022.154129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Circular RNAs (circRNAs) are RNA molecules with a stable closed-loop structure that are found in a variety of organisms. CircRNAs are highly stable and conserved, and they play important roles in transcriptional regulation and splicing. Multiple Myeloma (MM) is a malignant proliferative disease for which there are currently no effective and comprehensive treatments. Numerous circRNAs may contribute to the development and progression of MM by acting as oncogenes or regulators. Due to the unique function of circRNAs, they have a high potential for regulating the biological functions (including proliferation and apoptosis) of MM cells, and their expression levels and molecular mechanism are closely related to their diagnostic value, therapeutic sensitivity, and clinical prognosis of MM patients. In this review, we aim to provide a detailed overview of the structure and function of circRNAs and demonstrate the potential therapeutic value and potential mechanism of circRNAs in MM via experiments and clinical trials.
Collapse
Affiliation(s)
- Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Sai Chen
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Chang Liu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Hongkun Wu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaomin Zhang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jigang Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
24
|
Hu X, Qin H, Yan Y, Wu W, Gong S, Wang L, Jiang R, Zhao Q, Sun Y, Wang Q, Wang S, Zhao H, Liu J, Yuan P. Exosomal circular RNAs: Biogenesis, effect, and application in cardiovascular diseases. Front Cell Dev Biol 2022; 10:948256. [PMID: 36016651 PMCID: PMC9395648 DOI: 10.3389/fcell.2022.948256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
As natural nanoparticles, exosomes regulate a wide range of biological processes via modulation of its components, including circular RNAs (circRNAs). CircRNAs are a novel class of closed-loop single-stranded RNAs with a wide distribution, and play diverse biological roles. Due to its stability in exosomes, exosomal circRNAs serve as biomarkers, pathogenic regulators and exert therapeutic potentials in some cardiovascular diseases, including atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, heart failure, and peripheral artery disease. In this review, we detailed the current knowledge on the biogenesis and functions of exosomes, circRNAs, and exosomal circRNAs, as well as their involvement in these cardiovascular diseases, providing novel insights into the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongran Qin
- Department of Nuclear Radiation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jinming Liu, ; Ping Yuan,
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jinming Liu, ; Ping Yuan,
| |
Collapse
|
25
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
26
|
Wei SH, Liu M, Hu J, Zhang CY. Target-Initiated Cascade Signal Amplification Lights up a G-Quadruplex for a Label-Free Detection of Circular Ribonucleic Acids. Anal Chem 2022; 94:9193-9200. [PMID: 35703015 DOI: 10.1021/acs.analchem.2c01901] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circular ribonucleic acids (circRNAs) are a type of RNA that originates through back-splicing events from linear primary transcripts. CircRNAs display high structural resistance and tissue specificity. Accurate quantification of the circRNA expression level is of vital importance to disease diagnosis. Herein, we construct a label-free fluorescent biosensor for ultrasensitive analysis of circRNAs based on the integration of target-initiated cascade signal amplification strategy with a light-up G-quadruplex. This assay involves only one assistant probe that targets the circRNA-specific back-splice junction. When circRNA is present, it hybridizes with the assistant probe to initiate the duplex-specific nuclease (DSN)-catalyzed cyclic cleavage reaction, producing abundant triggers with 3'OH termini. Then, terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of dGTP and dATP at the 3'-OH termini of the resultant triggers to obtain abundant long G-rich DNA sequences that can form efficient G-quadruplex products. The addition of Thioflavin T (ThT) can light up G-quadruplex, generating an enhanced fluorescence. This assay may be performed isothermally without the involvement of any nucleic acid templates, exogenous primers, and specific labeled probes. Importantly, this biosensor can discriminate target circRNA from one-base mismatched circRNA and exhibits good performance in human serum. Moreover, it can accurately detect circRNA in cancer cells at a single-cell level and even differentiate the circRNA levels in the tissues of healthy persons and nonsmall cell lung cancer (NSCLC) patients, with promising applications in circRNA-related cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Shu-Hua Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
27
|
Miller AK, Mao G, Knicely BG, Daniels HG, Rahal C, Putnam CD, Kolodner RD, Goellner EM. Rad5 and Its Human Homologs, HLTF and SHPRH, Are Novel Interactors of Mismatch Repair. Front Cell Dev Biol 2022; 10:843121. [PMID: 35784486 PMCID: PMC9243396 DOI: 10.3389/fcell.2022.843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
DNA mismatch repair (MMR) repairs replication errors, and MMR defects play a role in both inherited cancer predisposition syndromes and in sporadic cancers. MMR also recognizes mispairs caused by environmental and chemotherapeutic agents; however, in these cases mispair recognition leads to apoptosis and not repair. Although mutation avoidance by MMR is fairly well understood, MMR-associated proteins are still being identified. We performed a bioinformatic analysis that implicated Saccharomyces cerevisiae Rad5 as a candidate for interacting with the MMR proteins Msh2 and Mlh1. Rad5 is a DNA helicase and E3 ubiquitin ligase involved in post-replicative repair and damage tolerance. We confirmed both interactions and found that the Mlh1 interaction is mediated by a conserved Mlh1-interacting motif (MIP box). Despite this, we did not find a clear role for Rad5 in the canonical MMR mutation avoidance pathway. The interaction of Rad5 with Msh2 and Mlh1 is conserved in humans, although each of the Rad5 human homologs, HLTF and SHPRH, shared only one of the interactions: HLTF interacts with MSH2, and SHPRH interacts with MLH1. Moreover, depletion of SHPRH, but not HLTF, results in a mild increase in resistance to alkylating agents although not as strong as loss of MMR, suggesting gene duplication led to specialization of the MMR-protein associated roles of the human Rad5 homologs. These results provide insights into how MMR accessory factors involved in the MMR-dependent apoptotic response interact with the core MMR machinery and have important health implications into how human cells respond to environmental toxins, tumor development, and treatment choices of tumors with defects in Rad5 homologs.
Collapse
Affiliation(s)
- Anna K. Miller
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Guogen Mao
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Breanna G. Knicely
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Hannah G. Daniels
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Christine Rahal
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
| | - Christopher D. Putnam
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Richard D. Kolodner
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
- Moores-UCSD Cancer Center, San Diego, CA, United States
- Institute of Genomic Medicine, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| | - Eva M. Goellner
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
28
|
Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett 2022; 547:215723. [DOI: 10.1016/j.canlet.2022.215723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
|
29
|
Pitolli C, Marini A, Sette C, Pagliarini V. Non-Canonical Splicing and Its Implications in Brain Physiology and Cancer. Int J Mol Sci 2022; 23:ijms23052811. [PMID: 35269953 PMCID: PMC8911335 DOI: 10.3390/ijms23052811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
The advance of experimental and computational techniques has allowed us to highlight the existence of numerous different mechanisms of RNA maturation, which have been so far unknown. Besides canonical splicing, consisting of the removal of introns from pre-mRNA molecules, non-canonical splicing events may occur to further increase the regulatory and coding potential of the human genome. Among these, splicing of microexons, recursive splicing and biogenesis of circular and chimeric RNAs through back-splicing and trans-splicing processes, respectively, all contribute to expanding the repertoire of RNA transcripts with newly acquired regulatory functions. Interestingly, these non-canonical splicing events seem to occur more frequently in the central nervous system, affecting neuronal development and differentiation programs with important implications on brain physiology. Coherently, dysregulation of non-canonical RNA processing events is associated with brain disorders, including brain tumours. Herein, we summarize the current knowledge on molecular and regulatory mechanisms underlying canonical and non-canonical splicing events with particular emphasis on cis-acting elements and trans-acting factors that all together orchestrate splicing catalysis reactions and decisions. Lastly, we review the impact of non-canonical splicing on brain physiology and pathology and how unconventional splicing mechanisms may be targeted or exploited for novel therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Alberto Marini
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
- Correspondence:
| |
Collapse
|
30
|
The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 2022; 32:243-258. [PMID: 34844857 PMCID: PMC8934435 DOI: 10.1016/j.tcb.2021.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Omics-based technologies have revolutionized our understanding of the coding potential of the genome. In particular, these studies revealed widespread unannotated open reading frames (ORFs) throughout genomes and that these regions have the potential to encode novel functional (micro-)proteins and/or hold regulatory roles. However, despite their genomic prevalence, relatively few of these noncanonical ORFs have been functionally characterized, likely in part due to their under-recognition by the broader scientific community. The few that have been investigated in detail have demonstrated their essentiality in critical and divergent biological processes. As such, here we aim to discuss recent advances in understanding the diversity of noncanonical ORFs and their roles, as well as detail biologically important examples within the context of the mammalian genome.
Collapse
|
31
|
Zuo L, Zhu Y, Han J, Liu H. Circular RNA circSHPRH inhibits the malignant behaviors of bladder cancer by regulating the miR-942/BARX2 pathway. Aging (Albany NY) 2022; 14:1891-1909. [PMID: 35200157 PMCID: PMC8908925 DOI: 10.18632/aging.203911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
Bladder cancer (BCa) is one of the most common tumors of the genitourinary system. However, the detailed molecular mechanism of BCa progression is still unclear. Recently, an increasing number of studies have demonstrated that circular RNAs (circRNAs) play a critical role in the tumorigenesis and progression of BCa. In this article, we showed that circSHPRH expression was obviously decreased in BCa tissues, compared with adjacent normal tissues. Moreover, a low circSHPRH level was positively correlated with a high grade, a high pathological stage, lymphatic metastasis and an unfavorable prognosis for BCa patients. Cell function studies indicated that silencing circSHPRH dramatically increased the proliferation, migration and invasion of BCa cells. Animal experiments revealed that circSHPRH overexpression repressed tumor growth. Mechanistic studies demonstrated that circSHPRH could combine with miR-942 and serve as a sponge of miR-942, which targets BARX2 in BCa cells. Rescue experiments showed that suppression of miR-942 or BARX2 overexpression could significantly abrogate the promoting effects of circSHPRH silencing on BCa cell proliferation and invasion. Furthermore, circSHPRH overexpression partly eliminated the suppressive effects of miR-942 on BARX2 expression. In addition, circSHPRH knockdown promoted activation of the Wnt/β-catenin signaling pathway by regulating BARX2. Taken together, our findings indicate that circSHPRH serves as a sponge of miR-942 to inhibit BCa progression by upregulating BARX2 expression, thereby inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524003, Guangdong Province, China
| | - Yi Zhu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong Province, China
| | - Jinli Han
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Hongwei Liu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong Province, China
| |
Collapse
|
32
|
Salami R, Salami M, Mafi A, Vakili O, Asemi Z. Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Commun Signal 2022; 20:13. [PMID: 35090496 PMCID: PMC8796413 DOI: 10.1186/s12964-021-00809-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), as a deadly and almost incurable brain cancer, is the most invasive form of CNS tumors that affects both children and adult population. It accounts for approximately half of all primary brain tumors. Despite the remarkable advances in neurosurgery, radiotherapy, and chemotherapeutic approaches, cell heterogeneity and numerous genetic alterations in cell cycle control, cell growth, apoptosis, and cell invasion, result in an undesirable resistance to therapeutic strategies; thereby, the median survival duration for GBM patients is unfortunately still less than two years. Identifying new therapeutics and employing the combination therapies may be considered as wonderful strategies against the GBM. In this regard, circular RNAs (circRNAs), as tumor inhibiting and/or stimulating RNA molecules, can regulate the cancer-developing processes, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Hereupon, these molecules have been introduced as potentially effective therapeutic targets to defeat GBM. The current study aims to investigate the fundamental molecular and cellular mechanisms in association with circRNAs involved in GBM pathogenesis. Among multiple mechanisms, the PI3K/Akt/mTOR, Wnt/β-catenin, and MAPK signaling, angiogenic processes, and metastatic pathways will be thoroughly discussed to provide a comprehensive understanding of the role of circRNAs in pathophysiology of GBM. Video Abstract.
Collapse
Affiliation(s)
- Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
circSLC41A1 Resists Porcine Granulosa Cell Apoptosis and Follicular Atresia by Promoting SRSF1 through miR-9820-5p Sponging. Int J Mol Sci 2022; 23:ijms23031509. [PMID: 35163432 PMCID: PMC8836210 DOI: 10.3390/ijms23031509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian granulosa cell (GC) apoptosis is the major cause of follicular atresia. Regulation of non-coding RNAs (ncRNAs) was proved to be involved in regulatory mechanisms of GC apoptosis. circRNAs have been recognized to play important roles in cellular activity. However, the regulatory network of circRNAs in follicular atresia has not been fully validated. In this study, we report a new circRNA, circSLC41A1, which has higher expression in healthy follicles compared to atretic follicles, and confirm its circular structure using RNase R treatment. The resistant function of circSLC41A1 during GC apoptosis was detected by si-RNA transfection and the competitive binding of miR-9820-5p by circSLC41A1 and SRSF1 was detected with a dual-luciferase reporter assay and co-transfection of their inhibitors or siRNA. Additionally, we predicted the protein-coding potential of circSLC41A1 and analyzed the structure of circSLC41A1-134aa. Our study revealed that circSLC41A1 enhanced SRSF1 expression through competitive binding of miR-9820-5p and demonstrated a circSLC41A1–miR-9820-5p–SRSF1 regulatory axis in follicular GC apoptosis. The study adds to knowledge of the post-transcriptional regulation of follicular atresia and provides insight into the protein-coding function of circRNA.
Collapse
|
34
|
Zhu B, Kang Z, Zhu S, Zhang Y, Lai X, Zhou L, Huang H, Gao X, Jiang C, Zeng J. Multi-Omics Characterization of Circular RNA-Encoded Novel Proteins Associated With Bladder Outlet Obstruction. Front Cell Dev Biol 2022; 9:772534. [PMID: 35071227 PMCID: PMC8777291 DOI: 10.3389/fcell.2021.772534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bladder outlet obstruction (BOO) is a common urologic disease associated with poorly understood molecular mechanisms. This study aimed to investigate the possible involvements of circRNAs (circular RNAs) and circRNA-encoded proteins in BOO development. The rat BOO model was established by the partial bladder outlet obstruction surgery. Differential expression of circRNA and protein profiles were characterized by deep RNA sequencing and iTRAQ quantitative proteomics respectively. Novel proteins encoded by circRNAs were predicted through ORF (open reading frame) selection using the GETORF software and verified by the mass spectrometry in proteomics, combined with the validation of their expressional alterations by quantitative RT-PCR. Totally 3,051 circRNAs were differentially expressed in bladder tissues of rat BOO model with widespread genomic distributions, including 1,414 up-regulated, and 1,637 down-regulated circRNAs. Our following quantitative proteomics revealed significant changes of 85 proteins in rat BOO model, which were enriched in multiple biological processes and signaling pathways such as the PPAR and Wnt pathways. Among them, 21 differentially expressed proteins were predicted to be encoded by circRNAs and showed consistent circRNA and protein levels in rat BOO model. The expression levels of five protein-encoding circRNAs were further validated by quantitative RT-PCR and mass spectrometry. The circRNA and protein profiles were substantially altered in rat BOO model, with great expressional changes of circRNA-encoded novel proteins.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Sihua Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yuying Zhang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xiangmao Lai
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Lilin Zhou
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chonghe Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Jianwen Zeng
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
35
|
Chen L, Yang Y, Zhang Y, Li K, Cai H, Wang H, Zhao Q. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies. Chembiochem 2021; 23:e202100534. [PMID: 34862721 DOI: 10.1002/cbic.202100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Indexed: 11/07/2022]
Abstract
Small open reading frames (sORFs) are an important class of genes with less than 100 codons. They were historically annotated as noncoding or even junk sequences. In recent years, accumulating evidence suggests that sORFs could encode a considerable number of polypeptides, many of which play important roles in both physiology and disease pathology. However, it has been technically challenging to directly detect sORF-encoded peptides (SEPs). Here, we discuss the latest advances in methodologies for identifying SEPs with mass spectrometry, as well as the progress on functional studies of SEPs.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Kecheng Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510623, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, P. R. China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
36
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Mecozzi N, Vera O, Karreth FA. Squaring the circle: circRNAs in melanoma. Oncogene 2021; 40:5559-5566. [PMID: 34331015 PMCID: PMC8521449 DOI: 10.1038/s41388-021-01977-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs are emerging as critical molecules in the genesis, progression, and therapy resistance of cutaneous melanoma. This includes circular RNAs (circRNAs), a class of non-coding RNAs with distinct characteristics that forms through non-canonical back-splicing. In this review, we summarize the features and functions of circRNAs and introduce the current knowledge of the roles of circRNAs in melanoma. We also highlight the various mechanisms of action of the well-studied circRNA CDR1as and describe how it acts as a melanoma tumor suppressor. We further discuss the utility of circRNAs as biomarkers, therapeutic targets, and therapeutic agents in melanoma and outline challenges that must be overcome to comprehensively characterize circRNA functions.
Collapse
Affiliation(s)
- Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
38
|
Abstract
CircRNAs are a subclass of lncRNAs that have been found to be abundantly present in a wide range of species, including humans. CircRNAs are generally produced by a noncanonical splicing event called backsplicing that is dependent on the canonical splicing machinery, giving rise to circRNAs classified into three main categories: exonic circRNA, circular intronic RNA, and exon-intron circular RNA. Notably, circRNAs possess functional importance and display their functions through different mechanisms of action including sponging miRNAs, or even being translated into functional proteins. In addition, circRNAs also have great potential as biomarkers, particularly in cancer, thanks to their high stability, tissue type and developmental stage specificity, and their presence in biological fluids, which make them promising candidates as noninvasive biomarkers. In this chapter, we describe the most commonly used techniques for the study of circRNAs as cancer biomarkers, including high-throughput techniques such as RNA-Seq and microarrays, and other methods to analyze the presence of specific circRNAs in patient samples.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Gartze Mentxaka
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain. .,Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Noor F, Noor A, Ishaq AR, Farzeen I, Saleem MH, Ghaffar K, Aslam MF, Aslam S, Chen JT. Recent Advances in Diagnostic and Therapeutic Approaches for Breast Cancer: A Comprehensive Review. Curr Pharm Des 2021; 27:2344-2365. [PMID: 33655849 DOI: 10.2174/1381612827666210303141416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
A silent monster, breast cancer, is a challenging medical task for researchers. Breast cancer is a leading cause of death in women with respect to other cancers. A case of breast cancer is diagnosed among women every 19 seconds, and every 74 seconds, a woman dies of breast cancer somewhere in the world. Several risk factors, such as genetic and environmental factors, favor breast cancer development. This review tends to provide deep insights regarding the genetics of breast cancer along with multiple diagnostic and therapeutic approaches as problem-solving negotiators to prevent the progression of breast cancer. This assembled data mainly aims to discuss omics-based approaches to provide enthralling diagnostic biomarkers and emerging novel therapies to combat breast cancer. This review article intends to pave a new path for the discovery of effective treatment options.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Ayesha Noor
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | - Iqra Farzeen
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Hamzah Saleem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | - Kanwal Ghaffar
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Farhan Aslam
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, China
| |
Collapse
|
40
|
Sun X, Deng K, Zang Y, Zhang Z, Zhao B, Fan J, Huang L. Exploring the regulatory roles of circular RNAs in the pathogenesis of atherosclerosis. Vascul Pharmacol 2021; 141:106898. [PMID: 34302990 DOI: 10.1016/j.vph.2021.106898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with a covalently closed loop structure. Recent evidence has shown that circRNAs can regulate gene transcription, alternative splicing, microRNA (miRNA) "molecular sponges", RNA-binding proteins and protein translation. Atherosclerosis is one of the leading causes of death worldwide, and more studies have indicated that circRNAs are related to atherosclerosis pathogenesis, including vascular endothelial cells, vascular smooth muscle cells, inflammation and lipid metabolism. In this review, we systematically summarize the biogenesis, characteristics and functions of circRNAs with a focus on their roles in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xueyuan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Kaiyuan Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Yunhui Zang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Boxin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Lijuan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
| |
Collapse
|
41
|
Ju X, Tang Y, Qu R, Hao S. The Emerging Role of Circ-SHPRH in Cancer. Onco Targets Ther 2021; 14:4177-4188. [PMID: 34285509 PMCID: PMC8286153 DOI: 10.2147/ott.s317403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Circ-SHPRH is a circular RNA that can regulate the expression of target genes by sponging microRNAs (miRNAs) or translating tumor suppressor proteins. Recent studies have suggested that circ-SHPRH may play a role in the development of tumors and cancers. Hence, this paper aimed to review the biological characteristics, molecular mechanisms, and potential clinical significance of circ-SHPRH in a variety of tumors and to evaluate its potential as a new diagnostic and prognostic biomarker. METHODS Numerous experiments were performed regarding the abnormal expression of circ-SHPRH in a variety of tumors, including hepatocellular carcinoma, gastric carcinoma, non-small cell lung cancer, osteosarcoma, colorectal cancer, cholangiocarcinoma, pancreatic ductal adenocarcinoma, retinoblastoma, and glioblastoma. RESULTS Upregulation of circ-SHPRH reportedly inhibits tumor cell proliferation, migration, and invasion, leading to the inhibition of tumor development. The clinicopathological parameters and the functional characteristics of circ-SHPRH in multiple human tumors and cancers were summarized. Circ-SHPRH functions as a tumor suppressor gene and has great potential as a diagnostic and prognostic biomarker for different types of cancer.
Collapse
Affiliation(s)
- Xinyue Ju
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
42
|
Rossi F, Centrón-Broco A, Dattilo D, Di Timoteo G, Guarnacci M, Colantoni A, Beltran Nebot M, Bozzoni I. CircVAMP3: A circRNA with a Role in Alveolar Rhabdomyosarcoma Cell Cycle Progression. Genes (Basel) 2021; 12:genes12070985. [PMID: 34203273 PMCID: PMC8303801 DOI: 10.3390/genes12070985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs), a class of covalently closed RNAs formed by a back-splicing reaction, have been involved in the regulation of diverse oncogenic processes. In this article we describe circVAMP3, a novel circular RNA overexpressed in RH4, a representative cell line of alveolar rhabdomyosarcoma. We demonstrated that circVAMP3 has a differential m6A pattern opposed to its linear counterpart, suggesting that the two isoforms can be differently regulated by such RNA modification. Moreover, we show how circVAMP3 depletion in alveolar rhabdomyosarcoma cells can impair cell cycle progression, through the alteration of the AKT-related pathways, pointing to this non-coding RNA as a novel regulator of the alveolar rhabdomyosarcoma progression and as a putative future therapeutic target.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (A.C.-B.); (D.D.); (G.D.T.); (M.G.); (M.B.N.)
| | - Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (A.C.-B.); (D.D.); (G.D.T.); (M.G.); (M.B.N.)
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (A.C.-B.); (D.D.); (G.D.T.); (M.G.); (M.B.N.)
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (A.C.-B.); (D.D.); (G.D.T.); (M.G.); (M.B.N.)
| | - Marco Guarnacci
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (A.C.-B.); (D.D.); (G.D.T.); (M.G.); (M.B.N.)
| | - Alessio Colantoni
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy;
| | - Manuel Beltran Nebot
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (A.C.-B.); (D.D.); (G.D.T.); (M.G.); (M.B.N.)
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (A.C.-B.); (D.D.); (G.D.T.); (M.G.); (M.B.N.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy;
- Correspondence:
| |
Collapse
|
43
|
Lu Y, Li Z, Lin C, Zhang J, Shen Z. Translation role of circRNAs in cancers. J Clin Lab Anal 2021; 35:e23866. [PMID: 34097315 PMCID: PMC8275004 DOI: 10.1002/jcla.23866] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) constitute a class of covalently closed RNA molecules. With the continuous advancement of high‐throughput sequencing technology and bioinformatics tools, many circRNAs have been identified in various human tissues and cell lines. Notably, recent studies have indicated that some circRNAs have translational functions. Internal ribosome entry sites and the N6‐methyladenosine modification mediate cap‐independent translation. This review describes these two translation mechanisms and verification methods at the molecular level. Databases (including ORF Finder, Pfam, BLASTp, CircRNADb, CircBase, CircPro, CircCode, IRESite, IRESbase) were used to analyze whether circRNAs have the structural characteristic of translation. CircRNA minigene reporter system containing green fluorescent protein (GFP) confirmed the translation potential of circRNAs. Also, we briefly summarize the roles of proteins/peptides encoded by circRNAs (circFBXW7, circFNDC3B, circLgr4, circPPP1R12A, circMAPK1, circβ‐catenin, circGprc5a, circ‐SHPRH, circPINTexon2, circAKT3) that have been verified thus far in human cancers (triple‐negative breast cancer, colon cancer, gastric cancer, hepatocellular carcinoma, bladder cancer, glioblastoma). Those findings suggest circRNAs have a great implication in translation of the human genome.
Collapse
Affiliation(s)
- Yaqin Lu
- Ningbo University School of MedicineNingboChina
| | - Zhe Li
- Ningbo University School of MedicineNingboChina
| | - Chen Lin
- Ningbo University School of MedicineNingboChina
| | - Jian Zhang
- Li Huili Hospital Affiliated to Ningbo University SchoolNingboChina
| | - Zhisen Shen
- Li Huili Hospital Affiliated to Ningbo University SchoolNingboChina
| |
Collapse
|
44
|
Chu J, Robert F, Pelletier J. Trans-spliced mRNA products produced from circRNA expression vectors. RNA (NEW YORK, N.Y.) 2021; 27:676-682. [PMID: 33762403 PMCID: PMC8127989 DOI: 10.1261/rna.078261.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Circular (circ) RNA expression vectors are used as a method of identifying and characterizing RNA sequences that harbor internal ribosome entry site (IRES) activity. During the course of developing a vector series tailored for IRES discovery, we found evidence for the occurrence of trans-spliced mRNAs arising when sequences with promoter activity were embedded between the upstream CTD and downstream NTD exons of the pre-mRNA. These trans-spliced products regenerate the same open reading frame expected from a circRNA and can lead to false-positive signals in screens relying on circRNA expression vectors for IRES discovery. Our results caution against interpretations of IRES activity solely based on results obtained from circRNA expression vectors.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
- Department of Oncology, McGill University, Montreal, Canada, H3A 1G5
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3A 1A3
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, Canada, H3G 1Y6
| |
Collapse
|
45
|
Tang M, Lv Y. The Role of N6 -Methyladenosine Modified Circular RNA in Pathophysiological Processes. Int J Biol Sci 2021; 17:2262-2277. [PMID: 34239354 PMCID: PMC8241720 DOI: 10.7150/ijbs.60131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA) is a type of covalently closed and endogenous non-coding RNA (ncRNA) with tissue- and cell-specific expression patterns generated by a non-canonical splicing event. Previous reports have indicated that circRNAs exert their functions in different ways, thereby participating in various pathophysiological processes. N6 -methyladenosine (m6A) methylation occurs in the N6-position, which is the most abundant and conserved internal transcriptional modification in eukaryotes, including mRNA and ncRNAs. Accumulating evidences confirm that m6A modification also exists in the circRNA and greatly affects the biological functions of circRNA. Their dysregulated expression can be a cause of various pathophysiological processes, such as spermatogenesis, myoblast differentiation, cancer, cardiovascular disease, mental illness and so on. Understanding the role of m6A-modified circRNAs in pathophysiological processes may contribute to better understanding the physiological mechanisms and develop new biomarkers. This review summarizes the regulatory mechanism of m6A modification on circRNA metabolism and the role of m6A-modified circRNAs in pathophysiological processes. This article may pave the way for a better understanding of the role of epigenetically modified circRNAs in pathophysiological process.
Collapse
Affiliation(s)
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
46
|
Mao X, Cao Y, Guo Z, Wang L, Xiang C. Biological roles and therapeutic potential of circular RNAs in osteoarthritis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:856-867. [PMID: 34026329 PMCID: PMC8131397 DOI: 10.1016/j.omtn.2021.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized by cartilage degeneration and narrow joint spaces. The regulatory functions of non-coding RNAs (long non-coding RNAs, microRNAs [miRNAs], and circular RNAs [circRNAs]) in OA progression have attracted considerable attention, and the function of circular RNAs in the context of OA has been an increasingly popular research topic in the last 6 years. Recent studies have reported that various circRNAs can delay or aggravate diverse aspects of the OA process, including extracellular matrix formation, apoptosis, proliferation, inflammation, and autophagy, via circRNA/miRNA/mRNA pathways. Thus, circRNAs and related pathways are potential therapeutic targets for OA. Our review provides comprehensive information about circRNAs, including their biogenesis, functions, and characteristics, and it reveals their critical roles in the pathogenesis of OA via a large regulatory network of sponges. Considering their regulatory functions and characteristics, we hypothesize that circRNAs not only can be transferred through bodily fluids to serve as diagnostic biomarkers, but they can also be released from mesenchymal stem cell-derived exosomes and delivered to OA chondrocytes acting as therapeutic circRNAs. Further investigations of the in-depth molecular mechanisms of action of circRNAs in OA are expected to provide effective and safe OA treatment strategies.
Collapse
Affiliation(s)
- Xingjia Mao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yanyan Cao
- MicroNano System Research Center, Taiyuan University of Technology, Taiyuan, China.,College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Zijian Guo
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chuan Xiang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
47
|
Yang W, Sun L, Cao X, Li L, Zhang X, Li J, Zhao H, Zhan C, Zang Y, Li T, Zhang L, Liu G, Li W. Detection of circRNA Biomarker for Acute Myocardial Infarction Based on System Biological Analysis of RNA Expression. Front Genet 2021; 12:686116. [PMID: 33995502 PMCID: PMC8120315 DOI: 10.3389/fgene.2021.686116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myocardial infarction (AMI) is myocardial necrosis caused by the persistent interruption of myocardial blood supply, which has high incidence rate and high mortality in middle-aged and elderly people in the worldwide. Biomarkers play an important role in the early diagnosis and treatment of AMI. Recently, more and more researches confirmed that circRNA may be a potential diagnostic biomarker and therapeutic target for cardiovascular diseases. In this paper, a series of biological analyses were performed to find new effective circRNA biomarkers for AMI. Firstly, the expression levels of circRNAs in blood samples of patients with AMI and those with mild coronary stenosis were compared to reveal circRNAs which were involved in AMI. Then, circRNAs which were significant expressed abnormally in the blood samples of patients with AMI were selected from those circRNAs. Next, a ceRNA network was constructed based on interactions of circRNA, miRNA and mRNA through biological analyses to detect crucial circRNA associated with AMI. Finally, one circRNA was selected as candidate biomarker for AMI. To validate effectivity and efficiency of the candidate biomarker, fluorescence in situ hybridization, hypoxia model of human cardiomyocytes, and knockdown and overexpression analyses were performed on candidate circRNA biomarker. In conclusion, experimental results demonstrated that the candidate circRNA was an effective biomarker for diagnosis and therapy of AMI.
Collapse
Affiliation(s)
- Wen Yang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Sun
- Department of Cardiology, The First Affiliated Hospital, China University of Science and Technology, Hefei, China
| | - Xun Cao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Luyifei Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianqian Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongyan Zhao
- Department of Cardiology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Chengchuang Zhan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanxiang Zang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tiankai Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guangzhong Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Weimin Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Xu Y, Gao P, Wang Z, Su Z, Liao G, Han Y, Cui Y, Yao Y, Zhong X. Circ-LAMP1 contributes to the growth and metastasis of cholangiocarcinoma via miR-556-5p and miR-567 mediated YY1 activation. J Cell Mol Med 2021; 25:3226-3238. [PMID: 33675150 PMCID: PMC8034453 DOI: 10.1111/jcmm.16392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of circular RNAs (circRNAs) executes important regulatory roles in carcinogenesis. Nonetheless, few studies focused on the mechanisms of circRNAs in cholangiocarcinoma (CCA). qRT‐PCR was applied to verify the dysregulated circRNAs in CCA. Fisher's exact test, Kaplan‐Meier analysis and Cox regression model were utilized to investigate the clinical implications of circ‐LAMP1 in the patients with CCA. The viability, apoptosis, migration and invasion of CCA cells were detected after silencing/overexpression of circ‐LAMP1. Xenograft and lung metastasis assays were performed to verify the in vitro results. The regulatory networks of circ‐LAMP1 were unveiled by bioinformatic analysis, RNA immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays. Up‐regulation of circ‐LAMP1 was found in CCA tissue samples and cell lines. Enhanced level of circ‐LAMP1 was linked to clinical severity, high post‐operative recurrence and poor prognosis for the patients with CCA. Gain/loss‐of‐function assays confirmed the oncogenic role of circ‐LAMP1 in mediating cell growth, apoptosis, migration and invasion. Nevertheless, the level of circ‐LAMP1 had no effect on normal biliary epithelium proliferation and apoptosis. Animal study further verified the in vitro data. Mechanistically, circ‐LAMP1 directly sponged miR‐556‐5p and miR‐567, thereby releasing their suppression on YY1 at post‐transcriptional level. Rescue assay indicated that the oncogenic role of circ‐LAMP1 is partially dependent on its modulation of YY1 in CCA. In summary, this study suggested that circ‐LAMP1 might be used as a promising biomarker/therapeutic target for CCA.
Collapse
Affiliation(s)
- Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Young Scholar of General Surgery Climbing Program of China, China
| | - Ping Gao
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Liao
- Department of Interventional Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Han
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital, Technical University Dresden, Dresden, Germany
| | - Yifeng Cui
- Department of Hepatic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Yao
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Emerging Clues of Regulatory Roles of Circular RNAs through Modulating Oxidative Stress: Focus on Neurological and Vascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659908. [PMID: 33747348 PMCID: PMC7943259 DOI: 10.1155/2021/6659908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) are novel noncoding RNAs that play regulatory roles in gene expression. Dysregulation of circRNAs is associated with the development and progression of several diseases, such as diabetes mellitus, nervous system diseases, cardiovascular diseases, and cancer. CircRNAs functionally participate in cell physiological activities through various molecular mechanisms. However, these molecular mechanisms are unclear. Oxidative stress is an essential factor in the pathogenesis of various diseases, including neurological diseases. Emerging roles of circRNAs have been identified in different systems in response to oxidative stress. In this review, we summarize the current understanding of circRNA biogenesis, properties, expression profiles, and the clues indicating the regulatory roles of circRNAs through oxidative stress in various systems, especially the nervous system.
Collapse
|
50
|
Biswas A, Chowdhury N, Bagchi A. Structural Characterization of the Hidden Peptide SHPRH-146aa Encoded by Non-Coding circ-SHPRH to Act as Tumor Suppressor. Appl Biochem Biotechnol 2021; 193:2076-2086. [PMID: 33559759 DOI: 10.1007/s12010-021-03520-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 01/22/2023]
Abstract
Circular RNAs belong to the class of non-coding RNA molecules, though surprisingly some of them have protein-coding potentials. However, the circular RNA circ-SHPRH is known to code for an unusual protein known as SHPRH-146aa. However, the molecular level details of the protein are not yet identified. It was proposed that the protein has its role in glioblastoma. Therefore, in this work, an attempt was made to decipher the various structural features of SHPRH-146aa. The binding interactions of the protein SHPRH-146aa with its partner protein DTL were also analyzed. The main aim of the work was to decipher the characteristics features of this unusual protein and the region on SHPRH-146aa that would form different types of non-covalent binding interactions both among itself as well as with its binding partner. In this work, we tried to elucidate the various structural and physico-chemical features of the protein as well as its mode of interactions with its binding partner. The study would therefore pave the pathway to design future wet lab experiments to delineate the appropriate structural features of the protein as well as its association with glioblastoma and neuro-degenerative diseases.
Collapse
Affiliation(s)
- Aniruddha Biswas
- Department of Information Technology, JIS College of Engineering, Kalyani, West Bengal, India
| | - Nilkanta Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India.
| |
Collapse
|