1
|
Lee J, Cheong H. The Role of A20 in Cancer: Friend or Foe? Cells 2025; 14:544. [PMID: 40214497 PMCID: PMC11988600 DOI: 10.3390/cells14070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
A20 is a ubiquitin-editing enzyme that has emerged as a key regulator of inflammatory signaling with paradoxical roles in cancer. Acting as both an oncogene and a tumor suppressor gene depending on the cellular context, A20 modulates important cell pathways, such as NF-κB signaling and autophagy. In this review, we summarize the dual roles of A20 in tumorigenesis, highlighting its ability to promote tumor progression in cancers, such as breast and melanoma, while functioning as a tumor suppressor in lymphomas and hepatocellular carcinoma. We discuss the interplay of A20 with autophagy, a process that is important for maintaining cellular homeostasis and influencing tumor dynamics. By integrating recent findings, we provide insight into how dysregulation of A20 and its associated pathways can either suppress or drive cancer development, which may lead to improved therapeutic intervention.
Collapse
Affiliation(s)
| | - Heesun Cheong
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea;
| |
Collapse
|
2
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
3
|
Chen R, Huang X, Hou J, Ni J, Zhao W, Li Q, Jiao H, Cao X. ZSH-2208: A novel retinoid with potent anti-tumour effects on ESCC stem cells via RARγ-TNFAIP3 axis. Clin Transl Med 2025; 15:e70148. [PMID: 39724264 DOI: 10.1002/ctm2.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUD Oesophageal cancer ranks among the most prevalent malignant tumours globally, primarily consisting of oesophageal squamous cell carcinoma (ESCC). Cancer stem cells (CSCs) accelerate the progression ESCC via their strong self-renewal and tumourigenic capabilities, presenting significant clinical challenges due to increased risks of recurrence and drug resistance. METHODS Our previous study has reported WYC-209, which is capable of inducing apoptosis of CSCs in melanoma and hepatoma, but is ineffective against ESCC. Additionally, clinical studies in ESCC still lack drug candidates that effectively target CSCs. Therefore, our team developed a series of novel retinoids that target retinoic acid receptors (RARs), with enhanced potency, broader efficacy and minimised toxic side effects against CSCs. Following iterative optimisation and pharmacological validation, ZSH-2208 was identified as the most promising candidate for effectively targeting ESCC tumour-repopulating cells (TRCs). Mechanistic exploration revealed that ZSH-2208 inhibits the growth of ESCC-TRCs through modulation of the RARγ-TNFAIP3 axis. The clinical significance of the key molecule TNFAIP3 in ESCC has also been demonstrated. RESULTS This study introduces ZSH-2208, a novel retinoid specifically targeting ESCC-TRCs, which holds significant potential for clinical application in ESCC. KEY POINTS The ESCC-TRCs replicates the characteristics of ESCC stem cells, which are inhibited by ZSH-2208. In vivo and in vitro experiments demonstrated that ZSH-2208, a novel RA analogue, effectively inhibits the growth of ESCC-TRCs through the RARγ-TNFAIP3 axis. Low levels of TNFIP3 protein may be associated with improved survival probability in ESCC patients.
Collapse
Affiliation(s)
- Ruoxue Chen
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Xuan Huang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiayun Hou
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Junjie Ni
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Wenrui Zhao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Quanlin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Heng Jiao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
4
|
Fan Z, Shuai H. Strategies for exploring mechanisms of polydatin against NSCLC based on experimentally validated network pharmacology and prognostic prediction of lipid metabolism gene expression. Int Immunopharmacol 2024; 142:113172. [PMID: 39298823 DOI: 10.1016/j.intimp.2024.113172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Polydatin (PD) is a glucan extracted from the plant Polygonum cuspidatum that possesses a wide range of pharmacological activities. However, the mechanism underlying its the influence of PD on NSCLC is not clear. OBJECTIVE To explore the mechanism of action of PD against non-small cell lung cancer (NSCLC) using a combination of bioinformatics and experimental validation. METHODS We utilized bioinformatics methods with the TCGA, ferroptosis, and lipid metabolism databases to assess the value, distribution, and potential role linkages of the core targets in NSCLC therapy. In vivo experiments were conducted using in situ tumor mouse models to confirm the inhibitory effect of PD on NSCLC. RESULTS Network pharmacology analysis revealed that 76 PD-related genes associated with NSCLC and five hub targets, including EGFR, TNF, ALB, CASP3, ERBB2, lipids and atherosclerosis, and the TNF signaling pathway might play essential roles in the anti-NSCLC effect of PD. EGFR and TNF are potential driver genes for ferroptosis. LASSO regression analysis was used to screen potential genes and construct an independent prognostic model of 26 LMRGs. Six genes (PLIN1, ALPI, DECR1, GPAM, OSBPL5, and MED19) were further identified by multivariate Cox regression analysis. The construction of risk models associated with LMRGs has strong potential for the prognostic prediction of NSCCLC patients. Cell and animal experiments also confirmed that PD inhibits LLC cell invasion and propagation ability. CONCLUSION This study revealed that PD may regulate multiple signaling pathways by targeting genes such as EGFR, TNF, and LMRGS to inhibit NSCLC proliferation and metastasis.
Collapse
Affiliation(s)
- Zhang Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Han Shuai
- Experimental Animal Center of Inner Mongolia Medical University, Inner Mongolia Medical University, Inner Mongolia, Hohhot 010050, China
| |
Collapse
|
5
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
6
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
7
|
SenGupta S, Cohen E, Serrenho J, Ott K, Coulombe PA, Parent CA. TGFβ1-TNFα regulated secretion of neutrophil chemokines is independent of epithelial-mesenchymal transitions in breast tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617845. [PMID: 39416223 PMCID: PMC11483069 DOI: 10.1101/2024.10.11.617845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neutrophils have tumor-promoting roles in breast cancer and are detected in higher numbers in aggressive breast tumors. How aggressive breast tumors recruit neutrophils remains undefined. Here, we investigated the roles of TGF-β1 and TNF-α in the regulation of neutrophil recruitment by breast cancer cells. TGF-β1 and TNF-α are pro-inflammatory factors upregulated in breast tumors and induce epithelial to mesenchymal transitions (EMT), a process linked to cancer cell aggressiveness. We report that, as expected, dual treatment with TGF-β1 and TNF-α induces EMT signatures in premalignant M2 cells, which are part of the MCF10A breast cancer progression model. Conditioned media (CM) harvested from M2 cells treated with TGF-β1/TNF-α gives rise to amplified neutrophil chemotaxis compared to CM from control M2 cells. This response correlates with higher levels of the neutrophil chemokines CXCL1, CXCL2, and CXCL8 and is significantly attenuated in the presence of a CXCL8-neutralizing antibody. Furthermore, we found that secretion of CXCL1 and CXCL8 from treated M2 cells depends on p38MAPK activity. By combining gene editing, immunological and biochemical approaches, we show that the regulation of neutrophil recruitment and EMT signatures are not mechanistically linked in treated M2 cells. Finally, analysis of publicly available cancer cell line transcriptomic databases revealed a significant correlation between CXCL8 and TGF-β1/TNF-α-regulated or effector genes in breast cancer. Together, our findings establish a novel role for the TGF-β1/TNF-α/p38 MAPK signaling axis in regulating neutrophil recruitment in breast cancer, independent of TGF-β1/TNF-α regulated EMT.
Collapse
|
8
|
Koksalar Alkan F, Caglayan AB, Alkan HK, Benson E, Gunduz YE, Sensoy O, Durdagi S, Zarbaliyev E, Dyson G, Assad H, Shull A, Chadli A, Shi H, Ozturk G, Korkaya H. Dual activity of Minnelide chemosensitize basal/triple negative breast cancer stem cells and reprograms immunosuppressive tumor microenvironment. Sci Rep 2024; 14:22487. [PMID: 39341857 PMCID: PMC11439009 DOI: 10.1038/s41598-024-72989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Triple negative breast cancer (TNBC) subtype is characterized with higher EMT/stemness properties and immune suppressive tumor microenvironment (TME). Women with advanced TNBC exhibit aggressive disease and have limited treatment options. Although immune suppressive TME is implicated in driving aggressive properties of basal/TNBC subtype and therapy resistance, effectively targeting it remains a challenge. Minnelide, a prodrug of triptolide currently being tested in clinical trials, has shown anti-tumorigenic activity in multiple malignancies via targeting super enhancers, Myc and anti-apoptotic pathways such as HSP70. Distinct super-enhancer landscape drives cancer stem cells (CSC) in TNBC subtype while inducing immune suppressive TME. We show that Minnelide selectively targets CSCs in human and murine TNBC cell lines compared to cell lines of luminal subtype by targeting Myc and HSP70. Minnelide in combination with cyclophosphamide significantly reduces the tumor growth and eliminates metastasis by reprogramming the tumor microenvironment and enhancing cytotoxic T cell infiltration in 4T1 tumor-bearing mice. Resection of residual tumors following the combination treatment leads to complete eradication of disseminated tumor cells as all mice are free of local and distant recurrences. All control mice showed recurrences within 3 weeks of post-resection while single Minnelide treatment delayed recurrence and one mouse was free of tumor. We provide evidence that Minnelide targets tumor intrinsic pathways and reprograms the immune suppressive microenvironment. Our studies also suggest that Minnelide in combination with cyclophosphamide may lead to durable responses in patients with basal/TNBC subtype warranting its clinical investigation.
Collapse
Affiliation(s)
- Fulya Koksalar Alkan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, HWCRC 723 4100 John R. Street, Detroit, MI, 48201, USA
| | - Ahmet Burak Caglayan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, HWCRC 723 4100 John R. Street, Detroit, MI, 48201, USA
| | - Hilmi Kaan Alkan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, HWCRC 723 4100 John R. Street, Detroit, MI, 48201, USA
| | - Elayne Benson
- Georgia Cancer Center, Department of Biochemistry, Augusta University, Augusta, GA, USA
| | - Yunus Emre Gunduz
- Regenerative and Restorative Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Department of Physiology, International School of Medicine, Medipol University, Istanbul, Turkey
| | - Ozge Sensoy
- Regenerative and Restorative Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Department of Physiology, International School of Medicine, Medipol University, Istanbul, Turkey
| | - Serdar Durdagi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| | - Elbrus Zarbaliyev
- Department of Surgery, Gaziosmanpasa Hospital Istanbul, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Greg Dyson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, HWCRC 723 4100 John R. Street, Detroit, MI, 48201, USA
| | - Hadeel Assad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, HWCRC 723 4100 John R. Street, Detroit, MI, 48201, USA
| | - Austin Shull
- Department of Biology, Presbyterian College, Clinton, SC, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Department of Biochemistry, Augusta University, Augusta, GA, USA
| | - Huidong Shi
- Georgia Cancer Center, Department of Biochemistry, Augusta University, Augusta, GA, USA
| | - Gurkan Ozturk
- Regenerative and Restorative Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Department of Physiology, International School of Medicine, Medipol University, Istanbul, Turkey
| | - Hasan Korkaya
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, HWCRC 723 4100 John R. Street, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Korkaya H, Koksalar Alkan F, Caglayan A, Alkan H, Benson E, Gunduz Y, Sensoy O, Durdagi S, Zarbaliyev E, Dyson G, Assad H, Shull A, Chadli A, Shi H, Ozturk G. Dual activity of Minnelide chemosensitize basal/triple negative breast cancer stem cells and reprograms immunosuppressive tumor microenvironment. RESEARCH SQUARE 2024:rs.3.rs-3959342. [PMID: 38464167 PMCID: PMC10925405 DOI: 10.21203/rs.3.rs-3959342/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Triple negative breast cancer (TNBC) subtype is characterized with higher EMT/stemness properties and immune suppressive tumor microenvironment (TME). Women with advanced TNBC exhibit aggressive disease and have limited treatment options. Although immune suppressive TME is implicated in driving aggressive properties of basal/TNBC subtype and therapy resistance, effectively targeting it remains a challenge. Minnelide, a prodrug of triptolide currently being tested in clinical trials, has shown anti-tumorigenic activity in multiple malignancies via targeting super enhancers, Myc and anti-apoptotic pathways such as HSP70. Distinct super-enhancer landscape drives cancer stem cells (CSC) in TNBC subtype while inducing immune suppressive TME. We show that Minnelide selectively targets CSCs in human and murine TNBC cell lines compared to cell lines of luminal subtype by targeting Myc and HSP70. Minnelide in combination with cyclophosphamide significantly reduces the tumor growth and eliminates metastasis by reprogramming the tumor microenvironment and enhancing cytotoxic T cell infiltration in 4T1 tumor-bearing mice. Resection of residual tumors following the combination treatment leads to complete eradication of disseminated tumor cells as all mice are free of local and distant recurrences. All control mice showed recurrences within 3 weeks of post-resection while single Minnelide treatment delayed recurrence and one mouse was free of tumor. We provide evidence that Minnelide targets tumor intrinsic pathways and reprograms the immune suppressive microenvironment. Our studies also suggest that Minnelide in combination with cyclophosphamide may lead to durable responses in patients with basal/TNBC subtype warranting its clinical investigation.
Collapse
|
10
|
Tishe ZH, Shawkat S, Popy MN, Mumu SB, Ferdous A, Raisa MJ, Hasan M, Sultana TN, Chaity NI, Apu MNH, Mostaid MS. Cervical cancer risk in association with TNF-alpha gene polymorphisms in Bangladeshi women. Tumour Biol 2024; 46:13-24. [PMID: 39031417 DOI: 10.3233/tub-240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α) is among the vital pro-inflammatory cytokines that potentially exerts a significant influence on the immune response, hence potentially regulating the advancement of cervical lesions. OBJECTIVE Our study objective was to examine the relationship between two single nucleotide polymorphisms (SNPs) (rs1799724 and rs1800629) of TNF-α and the risk of cervical cancer in women from Bangladesh. METHODS We recruited 133 patients with cervical cancer and 126 healthy individuals for this study. Genotyping was performed using real-time PCR SNP genotyping assay. Multivariate logistic regression analysis was used to determine the odds ratio (OR) along with 95% confidence intervals (CI) and p-values. RESULTS For rs1799724 (C > T) polymorphism, TT mutant homozygous genotype carried 3.26 times increased risk of developing cervical cancer (OR = 3.26, 95% CI = 1.15-9.28, p = 0.027). Polymorphism of rs1800629 (G > A) was also related to an elevated risk of cervical cancer. Individuals with the AG heterozygous genotype (OR = 2.85, 95% CI = 1.20-6.74, p = 0.017) and AA mutant homozygous genotype (OR = 4.55, 95% CI = 1.24-16.60, p = 0.022) also had a higher likelihood of having cervical cancer. Moreover, we found that injectable contraceptives increase the risk of cervical cancer. Individuals who smoked and/or had first-degree relatives with cancer were more likely to carry the risk allele, which increases the likelihood of developing cervical cancer. CONCLUSION TNF-α polymorphisms in rs1799724 and rs1800629 increase the susceptibility of developing cervical cancer in women from Bangladesh.
Collapse
Affiliation(s)
- Zasia Hossain Tishe
- Department of Pharmaceutical Sciences, Faculty of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Sanjana Shawkat
- Department of Pharmaceutical Sciences, Faculty of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Meherun Nessa Popy
- Department of Pharmaceutical Sciences, Faculty of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Sadia Biswas Mumu
- Department of Pharmaceutical Sciences, Faculty of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Annur Ferdous
- Department of Pharmaceutical Sciences, Faculty of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Munira Jahan Raisa
- Department of Pharmaceutical Sciences, Faculty of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Mehedi Hasan
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | | | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md Shaki Mostaid
- Department of Pharmaceutical Sciences, Faculty of Health and Life Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Chen X, Wang X, Yang Y, Fang C, Liu J, Liang X, Yang Y. A20 Enhances the Expression of the Proto-Oncogene C-Myc by Downregulating TRAF6 Ubiquitination after ALV-A Infection. Viruses 2022; 14:v14102210. [PMID: 36298765 PMCID: PMC9607361 DOI: 10.3390/v14102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Hens infected with avian leukosis virus subgroup A (ALV-A) experience stunted growth, immunosuppression, and potentially, lymphoma development. According to past research, A20 can both promote and inhibit tumor growth. In this study, DF-1 cells were infected with ALV-A rHB2015012, and Gp85 expression was measured at various time points. A recombinant plasmid encoding the chicken A20 gene and short hairpin RNA targeting chicken A20 (A20-shRNA) was constructed and transfected into DF-1 cells to determine the effect on ALV-A replication. The potential signaling pathways of A20 were explored using bioinformatics prediction, co-immunoprecipitation, and other techniques. The results demonstrate that A20 and ALV-A promoted each other after ALV-A infection of DF-1 cells, upregulated A20, inhibited TRAF6 ubiquitination, and promoted STAT3 phosphorylation. The phosphorylated-STAT3 (p-STAT3) promoted the expression of proto-oncogene c-myc, which may lead to tumorigenesis. This study will help to further understand the tumorigenic process of ALV-A and provide a reference for preventing and controlling ALV.
Collapse
Affiliation(s)
- Xueyang Chen
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xingming Wang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Yuxin Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Chun Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Jing Liu
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| | - Yuying Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| |
Collapse
|
13
|
TNFAIP3 promotes ALDH-positive breast cancer stem cells through FGFR1/MEK/ERK pathway. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:230. [PMID: 36175778 DOI: 10.1007/s12032-022-01844-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Breast cancer stem cells (BCSCs) are a tiny population of self-renewing cells that may contribute to cancer initiation, progression, and resistance to therapy in patients. In our prior study, we found that tumor necrosis factor alpha-induced protein 3 (TNFAIP3) is necessary for fibroblast growth factors receptor 1 (FGFR1) signaling-promoted tumor growth and progression in breast cancer (BC). This study aims to investigate the involvement of TNFAIP3 in regulating BCSCs. In this work, we showed that ALDH-positive BCSCs were increased by activating the FGFR1-MEK-ERK pathway, meanwhile utilizing FGFR1 inhibitor, MEK inhibitor, or ERK inhibitor reversed the phenomenon in BC cells. Moreover, ALDH-positive BCSCs were decreased in TNFAIP3-knockout or TNFAIP3-depressing cells. In vivo analysis displayed that TNFAIP3-silenced MDA-MB-231 xenografts developed smaller tumors and ALDH immunostaining levels were significantly lower in TNFAIP3-depressing or TNFAIP3-knockout tumor tissues. Besides, our results also revealed that TNFAIP3 influences the transcription stemness factors gene expression. Taken together, TNFAIP3 could be a potential regulator in FGFR1-MEK-ERK-promoted ALDH-positive BCSCs.
Collapse
|
14
|
SBP-0636457, a Novel Smac Mimetic, Cooperates with Doxorubicin to Induce Necroptosis in Breast Cancer Cells during Apoptosis Blockage. JOURNAL OF ONCOLOGY 2022; 2022:2390078. [PMID: 35859663 PMCID: PMC9293568 DOI: 10.1155/2022/2390078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer (BC) is a common health concern worldwide. Doxorubicin (Dox) is a widely used chemotherapeutic agent to treat various cancers, including BC. However, drug resistance and severe side effects often hinder the clinical application of Dox. Combination therapy is an effective potent strategy to increase chemosensitivity and reduce the adverse effects. Smac is a proapoptotic protein that interacts with inhibitors of apoptosis proteins (IAPs) and thereby promotes cell death. Smac mimetic compounds can mimic its function and can be used to kill cancer cells. In this study, Dox and SBP-0636457, a novel Smac mimetic, were found to have cooperative effects in inducing BC cell death. Dox and SBP-0636457 cotreatment induced necroptosis instead of apoptosis in BC cells. Receptor-interacting serine/threonine-protein kinase 1 or mixed-lineage kinase domain-like silencing could attenuate cell death caused by Dox/SBP-0636457 in BC cells. In addition, this combined treatment caused synergistic induction of TNFα, and TNFα/TNFR signalling is essential for cell death induced by Dox/SBP-0636457 in BC cells. Moreover, both canonical and noncanonical nuclear factor kappa B pathways were found to contribute to TNFα upregulation induced by Dox/SBP-0636457. Therefore, the findings suggest that SBP-0636457 combined with Dox is an alternative strategy for treating BC.
Collapse
|
15
|
Kabakov AE, Gabai VL. HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy. Cells 2021; 10:cells10123446. [PMID: 34943954 PMCID: PMC8700403 DOI: 10.3390/cells10123446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.
Collapse
Affiliation(s)
- Alexander E. Kabakov
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva 4, 249036 Obninsk, Russia;
| | - Vladimir L. Gabai
- CureLab Oncology Inc., Dedham, MA 02026, USA
- Correspondence: ; Tel.: +1-617-319-7314
| |
Collapse
|
16
|
Kui L, Kong Q, Yang X, Pan Y, Xu Z, Wang S, Chen J, Wei K, Zhou X, Yang X, Wu T, Mastan A, Liu Y, Miao J. High-Throughput In Vitro Gene Expression Profile to Screen of Natural Herbals for Breast Cancer Treatment. Front Oncol 2021; 11:684351. [PMID: 34490085 PMCID: PMC8418118 DOI: 10.3389/fonc.2021.684351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has surpassed lung cancer as the most commonly diagnosed cancer in women worldwide. Some therapeutic drugs and approaches could cause side effects and weaken the immune system. The combination of conventional therapies and traditional Chinese medicine (TCM) significantly improves treatment efficacy in breast cancer. However, the chemical composition and underlying anti-tumor mechanisms of TCM still need to be investigated. The primary aim of this study is to provide unique insights to screen the natural components for breast cancer therapy using high-throughput transcriptome analysis. Differentially expressed genes were identified based on two conditions: single samples and groups were classified according to their pharmaceutical effect. Subsequently, the sample treated with E. cochinchinensis Lour. generated the most significant DEGs set, including 1,459 DEGs, 805 upregulated and 654 downregulated. Similarly, group 3 treatment contained the most DEGs (414 DEGs, 311 upregulated and 103 downregulated). KEGG pathway analyses showed five significant pathways associated with the inflammatory and metastasis processes in cancer, which include the TNF, IL-17, NF-kappa B, MAPK signaling pathways, and transcriptional misregulation in cancer. Samples were classified into 13 groups based on their pharmaceutical effects. The results of the KEGG pathway analyses remained consistent with signal samples; group 3 presents a high significance. A total of 21 genes were significantly regulated in these five pathways, interestingly, IL6, TNFAIP3, and BRIC3 were enriched on at least two pathways, seven genes (FOSL1, S100A9, CXCL12, ID2, PRS6KA3, AREG, and DUSP6) have been reported as the target biomarkers and even the diagnostic tools in cancer therapy. In addition, weighted correlation network analysis (WGCNA) was used to identify 18 modules. Among them, blue and thistle2 were the most relevant modules. A total of 26 hub genes in blue and thistle2 modules were identified as the hub genes. In conclusion, we screened out three new TCM (R. communis L., E. cochinchinensis Lour., and B. fruticosa) that have the potential to develop natural drugs for breast cancer therapy, and obtained the therapeutic targets.
Collapse
Affiliation(s)
- Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qinghua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yunbing Pan
- Nowbio Biotechnology Company, Kunming, China
| | - Zetan Xu
- Nowbio Biotechnology Company, Kunming, China
| | | | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiaolei Zhou
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tingqin Wu
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Anthati Mastan
- Research Center, Microbial Technology Laboratory, Council of Scientific & Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants, Bangalore, India
| | - Yao Liu
- Baoji High-tech Hospital , Baoji, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Medicinal Botanical Garden, Nanning, China
- School of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Substance P Antagonism as a Novel Therapeutic Option to Enhance Efficacy of Cisplatin in Triple Negative Breast Cancer and Protect PC12 Cells against Cisplatin-Induced Oxidative Stress and Apoptosis. Cancers (Basel) 2021; 13:cancers13153871. [PMID: 34359773 PMCID: PMC8345440 DOI: 10.3390/cancers13153871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022] Open
Abstract
Although cisplatin is very effective as a treatment strategy in triple-negative breast cancer (TNBC), it has unwarranted outcomes owing to recurrence, chemoresistance and neurotoxicity. There is critically important to find new, effective and safe therapeutics for TNBC. We determined if SP-receptor antagonism in combination with cisplatin may serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC. We used a neuronal cell line (PC12) and two TNBC cell lines (Sum 185 and Sum 159) for these studies. We determined that the levels of cells expressing the high-affinity SP-receptor (neurokinin 1 receptor (NK1R)), as determined by flow-cytometry was significantly elevated in response to cisplatin in all three cells. We determined that treatment with aprepitant, an SP-receptor antagonist decreased cisplatin-induced, loss of viability (studied by MTT assay), production of reactive oxygen species (by DCFDA assay) and apoptosis (by flow-cytometry) in PC12 cells while it was increased in the two TNBC cells. Furthermore, we demonstrated that important genes associated with metastases, inflammation, chemoresistance and cell cycle progression are attenuated by SP-receptor antagonism in the TNBC cell line, Sum 185. These studies implicate that SP-receptor antagonism in combination with cisplatin may possibly serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC.
Collapse
|
18
|
Shi Y, Wang X, Wang J, Wang X, Zhou H, Zhang L. The dual roles of A20 in cancer. Cancer Lett 2021; 511:26-35. [PMID: 33933552 DOI: 10.1016/j.canlet.2021.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
A20 is a prototypical anti-inflammatory molecule that is linked to multiple human diseases, including cancers. The role of A20 as a tumor suppressor was first discovered in B cell lymphomas. Subsequent studies revealed the dual roles of A20 in solid cancers. This review focuses on the roles of A20 in different cancer types to demonstrate that the effects of A20 are cancer type-dependent. A20 plays antitumor roles in colorectal carcinomas and hepatocellular carcinomas, whereas A20 acts as an oncogene in breast cancers, gastric cancers and melanomas. Moreover, the roles of A20 in the setting of glioma therapy are context-dependent. The action mechanisms of A20 in different types of cancer are summarized. Additionally, the role of A20 in antitumor immunity is discussed. Furthermore, some open questions in this rapidly advancing field are proposed. Exploration of the actions and molecular mechanisms of A20 in cancer paves the way for the application of A20-targeting approaches in future cancer therapy.
Collapse
Affiliation(s)
- Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
19
|
Zhang Q, Yu K, Cao Y, Luo Y, Liu Y, Zhao C. miR-125b promotes the NF-κB-mediated inflammatory response in NAFLD via directly targeting TNFAIP3. Life Sci 2021; 270:119071. [PMID: 33515562 DOI: 10.1016/j.lfs.2021.119071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has a high incidence and mortality rate, and a rapid course of clinical development. Although miR-125b is closely associated with the pathogenesis of liver fibrosis and hepatocellular carcinoma, the role of miR-125b in NAFLD remains unknown. METHODS The levels of TNF-α, IL-6, and IL-1β expression were examined via ELISA assays. Real-time PCR was used to determine the levels of miR-125b and tumor necrosis factor alpha-induced protein 3 (TNFAIP3) expression. The related molecular mechanisms were examined by performing luciferase reporter, western blot, and immunofluorescence assays. Structural changes in the livers of mice with NAFLD were observed via H&E staining. RESULTS The levels of TNF-α, IL-6, and IL-1β in NAFLD patients were greatly increased, and miR-125b expression was significantly up-regulated. The phosphorylation of IκBα and p65, and secretion of inflammatory factors were all markedly decreased by miR-125b silencing, but greatly increased by miR-125b overexpression. We also demonstrated that downregulation of TNFAIP3 in NAFLD was negatively correlated with miR-125b. Interestingly, the influence of miR-125b inhibitors on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated inflammatory responses were greatly aggravated by co-treatment with TNFAIP siRNA; however, the opposite results were obtained after treatment with miR-125b mimics and TNFAIP plasmids. Furthermore, the HF-induced liver damage and inflammatory responses were greatly ameliorated by miR-125b inhibitors but further aggravated by co-treatment with TNFAIP3 siRNA. CONCLUSION MiR-125b promoted the NF-κB-mediated inflammatory response in NAFLD by directly targeting TNFAIP3, and that mechanism might be target for treating NAFLD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kun Yu
- Medical General Laboratory, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yazhen Cao
- Department of Cardiology Ward, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yanli Luo
- Department of geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caiyan Zhao
- Department of Infectious diseases, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
20
|
Sato J, Azuma K, Kinowaki K, Ikeda K, Ogura T, Takazawa Y, Kawabata H, Kitagawa M, Inoue S. Combined A20 and tripartite motif-containing 44 as poor prognostic factors for breast cancer patients of the Japanese population. Pathol Int 2020; 71:60-69. [PMID: 33159706 DOI: 10.1111/pin.13047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 01/06/2023]
Abstract
We previously reported that a strong immunoreactivity of tripartite motif-containing 44 (TRIM44) predicts the poor prognosis of patients with invasive breast cancer, and proposed that TRIM44 activates nuclear factor-κB (NF-κB) signaling as a causative mechanism. In the present study, we examined the clinicopathological roles of A20, which is known to be an NF-κB responsive gene, with TRIM44, in an updated cohort. Tissue samples of invasive breast cancer were obtained from 140 Japanese female breast cancer patients who underwent surgical treatment. Immunoreactivities of A20 and TRIM44 were analyzed using specific antibodies for each protein. A positive A20 immunoreactivity was significantly associated with a shorter disease-free survival (P = 0.043) and was positively correlated with TRIM44 immunoreactivity (P = 0.039). Combined use of the immunoreactivities for two proteins revealed that double-positive status for both A20 and TRIM44 immunoreactivities was associated with a shorter disease-free survival (P = 0.012) and was an independent factor for poor prognosis. These results indicate that a combined A20 and TRIM44 immunoreactivity predicted the prognosis of patients with invasive breast cancer. Moreover, the positive correlation between A20 and TRIM44 immunoreactivities suggested that the activation of NF-κB signaling by TRIM44 could occur in clinical breast cancer tissues.
Collapse
Affiliation(s)
- Junichiro Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo, Japan.,Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Kazuhiro Ikeda
- Research, Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Takuya Ogura
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Breast and Endocrine Surgery, Toranomon Hospital, Tokyo, Japan
| | | | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Research, Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
21
|
Hermawan A, Putri H. Integrative Bioinformatics Analysis Reveals Potential Target Genes and TNFα Signaling Inhibition by Brazilin in Metastatic Breast Cancer Cells. Asian Pac J Cancer Prev 2020; 21:2751-2762. [PMID: 32986377 PMCID: PMC7779440 DOI: 10.31557/apjcp.2020.21.9.2751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Metastasis is the most significant cause of morbidity and mortality in breast cancer patients. Previously, a combination of brazilin and doxorubicin has been shown to inhibit metastasis in HER2-positive breast cancer cells. This present study used an integrative bioinformatics approach to identify new targets and the molecular mechanism of brazilin in inhibiting metastasis in breast cancer. METHODS Cytotoxicity and mRNA arrays data were retreived from the DTP website, whereas genes that regulate metastatic breast cancer cells were retreived from PubMed with keywords "breast cancer metastasis". Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and Drug association analysis were carried out by using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt). Construction of protein-protein interaction (PPI) network analysis was performed by STRING-DB v11.0 and Cytoscape, respectively. The genetic alterations of the potential therapeutic target genes of brazilin (PB) were analyzed using cBioPortal. RESULTS Analysis of cytotoxicity with the public database of COMPARE showed that brazilin exerts almost the same cytotoxicity in the NCI-60 cells panel showing by similar GI50 value, in which the lowest GI50 value was observed in MDA-MB 231, a metastatic breast cancer cells. KEGG enrichment indicated several pathways regulated by brazilin such as TNF signaling pathway, cellular senescence, and pathways in cancer. We found ten drugs that are associated with PB, including protein kinase inhibitors, TNFα inhibitors, enzyme inhibitors, and anti-inflammatory agents. CONCLUSION In conclusion, this study identified eight PB, including MMP14, PTGS2, ADAM17, PTEN, CCL2, PIK3CB, MAP3K8, and CXCL3. In addition, brazilin possibly inhibits metastatic breast cancer through inhibition of TNFα signaling. The study results study need to be validated with in vitro and in vivo studies to strengthen scientific evidence of the use of brazilin in breast cancer metastasis inhibition.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
22
|
Roles of aminoacyl-tRNA synthetase-interacting multi-functional proteins in physiology and cancer. Cell Death Dis 2020; 11:579. [PMID: 32709848 PMCID: PMC7382500 DOI: 10.1038/s41419-020-02794-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are an important class of enzymes with an evolutionarily conserved mechanism for protein synthesis. In higher eukaryotic systems, eight ARSs and three ARS-interacting multi-functional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC), which seems to contribute to cellular homeostasis. Of these, AIMPs are generally considered as non-enzyme factors, playing a scaffolding role during MSC assembly. Although the functions of AIMPs are not fully understood, increasing evidence indicates that these scaffold proteins usually exert tumor-suppressive activities. In addition, endothelial monocyte-activating polypeptide II (EMAP II), as a cleavage product of AIMP1, and AIMP2-DX2, as a splice variant of AIMP2 lacking exon 2, also have a pivotal role in regulating tumorigenesis. In this review, we summarize the biological functions of AIMP1, EMAP II, AIMP2, AIMP2-DX2, and AIMP3. Also, we systematically introduce their emerging roles in cancer, aiming to provide new ideas for the treatment of cancer.
Collapse
|
23
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Wisnieski F, Santos LC, Calcagno DQ, Geraldis JC, Gigek CO, Anauate AC, Chen ES, Rasmussen LT, Payão SLM, Artigiani R, Demachki S, Assumpção PP, Lourenço LG, Arasaki CH, Pabinger S, Krainer J, Leal MF, Burbano RR, Arruda Cardoso Smith M. The impact of DNA demethylation on the upregulation of the NRN1 and TNFAIP3 genes associated with advanced gastric cancer. J Mol Med (Berl) 2020; 98:707-717. [PMID: 32285140 DOI: 10.1007/s00109-020-01902-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Very few therapeutic options are currently available in this neoplasia. The use of 5-Aza-2'-deoxycytidine (5-AZAdC) was approved for the treatment of myelodysplastic syndromes, and this drug can treat solid tumours at low doses. Epigenetic manipulation of GC cell lines is a useful tool to better understand gene expression regulatory mechanisms for clinical applications. Therefore, we compared the gene expression profile of 5-AZAdC-treated and untreated GC cell lines by a microarray assay. Among the genes identified in this analysis, we selected NRN1 and TNFAIP3 to be evaluated for gene expression by RT-qPCR and DNA methylation by bisulfite DNA next-generation sequencing in 43 and 52 pairs of GC and adjacent non-neoplastic tissue samples, respectively. We identified 83 candidate genes modulated by DNA methylation in GC cell lines. Increased expression of NRN1 and TNFAIP3 was associated with advanced tumours (P < 0.05). We showed that increased NRN1 and TNFAIP3 expression seems to be regulated by DNA demethylation in GC samples: inverse correlations between the mRNA and DNA methylation levels in the promoter of NRN1 (P < 0.05) and the intron of TNFAIP3 (P < 0.05) were detected. Reduced NRN1 promoter methylation was associated with III/IV TNM stage tumours (P = 0.03) and the presence of Helicobacter pylori infection (P = 0.02). The identification of demethylated activated genes in GC may be useful in clinical practice, stratifying patients who are less likely to benefit from 5-AZAdC-based therapies. KEY MESSAGES: Higher expression of NRN1 and TNFAIP3 is associated with advanced gastric cancer (GC). NRN1 promoter hypomethylation contributes to gene upregulation in advanced GC. TNFAIP3 intronic-specific CpG site demethylation contributes to gene upregulation in GC. These findings may be useful to stratify GC patients who are less likely to benefit from DNA demethylating-based therapies.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil. .,Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, Rua Loefgreen, 1726, São Paulo, São Paulo, 04040002, Brazil.
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Danielle Queiroz Calcagno
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil
| | - Jaqueline Cruz Geraldis
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Carolina Oliveira Gigek
- Departamento de Patologia, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Lucas Trevizani Rasmussen
- Disciplina de Genética, Hemocentro da Faculdade de Medicina de Marília, Rua Lourival Freire, 240, Marília, São Paulo, 17519-050, Brazil
| | - Spencer Luiz Marques Payão
- Disciplina de Genética, Hemocentro da Faculdade de Medicina de Marília, Rua Lourival Freire, 240, Marília, São Paulo, 17519-050, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil
| | - Samia Demachki
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil
| | - Paulo Pimentel Assumpção
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil
| | - Laercio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, R. Napoleão de Barros, 715, São Paulo, 04024002, Brazil
| | - Carlos Haruo Arasaki
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, R. Napoleão de Barros, 715, São Paulo, 04024002, Brazil
| | - Stephan Pabinger
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210, Vienna, Austria
| | - Julie Krainer
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210, Vienna, Austria
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil.,Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil
| | - Rommel Rodriguez Burbano
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Belém, Pará, 66073-000, Brazil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Avenida Governador Magalhães, 992, Belém, 66063-240, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, São Paulo, 04023900, Brazil.
| |
Collapse
|
25
|
Li H, Yu J, Wu Y, Shao B, Wei X. In situ antitumor vaccination: Targeting the tumor microenvironment. J Cell Physiol 2020; 235:5490-5500. [PMID: 32030759 DOI: 10.1002/jcp.29551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023]
Abstract
Tumor microenvironment is known to play important roles in tumor progression. Many therapies, targeting the tumor microenvironment, are designed and applied in the clinic. One of these approaches is in situ antitumor therapy. This way, bacteria, antibodies, plasmid DNA, viruses, and cells are intratumorally delivered into the tumor site as "in-situ antitumor vaccine," which seeks to enhance immunogenicity and generate systemic T cell responses. In addition, this intratumoral therapy can alter the tumor microenvironment from immunosuppressive to immunostimulatory while limiting the risk of systemic exposure and associated toxicity. Contemporarily, promising preclinical results and some initial success in clinical trials have been obtained after intratumoral therapy.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| | - Jiayun Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| | - Xiawei Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Cancer Center, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Li J, Ji H, Jing Y, Wang S. pH- and acoustic-responsive platforms based on perfluoropentane-loaded protein nanoparticles for ovarian tumor-targeted ultrasound imaging and therapy. NANOSCALE RESEARCH LETTERS 2020; 15:31. [PMID: 32016619 PMCID: PMC6997325 DOI: 10.1186/s11671-020-3252-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/14/2020] [Indexed: 05/02/2023]
Abstract
In this study, we developed a multifunctional ultrasound (US) therapeutic agent that encapsulates perfluoropentane (PFP) into ferritin (FRT) and conjugates the tumor-targeting molecule folic acid (FA) (FA-FRT-PFP). The prepared FA-FRT-PFP had an average particle diameter of 42.8 ± 2.5 nm, a zeta potential of - 41.1 ± 1.7 mV and shows good stability in physiological solution and temperatures. FRT is a pH-sensitive cage protein that, at pH 5.0, disassembles to form pores that can load PFP. The adjustment to neutral pH closes the pores and encapsulates the PFP inside the FRT to form nanoparticles. At pH 5.0, 3 min of low-intensity focused ultrasound (LIFU, 2 W/cm2) significantly enhanced the US signal of FA-FRT-PFP through the acoustic droplet vaporization (ADV) effect. Under identical conditions, 4 min of LIFU irradiation caused the bubbles generated by FA-FRT-PFP to break. FA-FRT-PFP could be efficiently targeted into ovarian cancer cells and significantly enhanced the US contrast of FA-FRT-PFP after 3 min of LIFU irradiation. After 4 min of LIFU irradiation, cell viability significantly decreased due to necrosis, likely due to the FA-FRT-PFP mediated release of PFP in the acidic environment of lysosomes after entering the tumor cells. PFP is then transformed into bubbles that burst under LIFU irradiation, forming physical shock waves that lead to the destruction of the cell structure and necrosis, achieving tumor treatment. Taken together, this demonstrates that FA-FRT-PFP is both a novel and promising US theranostics agent for future clinic application.
Collapse
Affiliation(s)
- Jianping Li
- Department of Geriatric Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610041 Sichuan China
| | - Hong Ji
- Department of Geriatric Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610041 Sichuan China
| | - Yong Jing
- Department of Imaging, Eastern Hospital of Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610000 Sichuan China
| | - Shiguang Wang
- Department of Imaging, Eastern Hospital of Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610000 Sichuan China
| |
Collapse
|
27
|
Wang Y, Guo L, Wang J, Shi W, Xia Z, Li B. Necrostatin-1 ameliorates the pathogenesis of experimental autoimmune encephalomyelitis by suppressing apoptosis and necroptosis of oligodendrocyte precursor cells. Exp Ther Med 2019; 18:4113-4119. [PMID: 31611942 DOI: 10.3892/etm.2019.8005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by neuronal demyelination. MS pathogenesis occurs via multiple mechanisms, and is mediated in part by oligodendrocyte apoptosis and a robust inflammatory response. In the present study, Necrostatin-1 (Nec-1), a specific inhibitor of the receptor-interacting protein 1 kinase domain, was revealed to effectively alleviate the severity and pathological damage associated with experimental autoimmune encephalomyelitis (EAE), a commonly used mouse model of MS. In addition, treatment with Nec-1 significantly decreased the number of lesions and inflammatory cell infiltrates in spinal cord tissues, as well as the production of associated pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), interferon-γ and interleukin-1β. Nec-1 also suppressed TNFα + zVAD-fmk-induced apoptosis and necroptosis in primary oligodendrocyte precursor cells. The present study revealed that Nec-1 effectively attenuated the progression of EAE by suppressing apoptosis and necroptosis in oligodendrocytes, and represents a potential novel therapeutic agent for the treatment of MS.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jueqiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wei Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhilun Xia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
28
|
Malynn BA, Ma A. A20: A multifunctional tool for regulating immunity and preventing disease. Cell Immunol 2019; 340:103914. [PMID: 31030956 DOI: 10.1016/j.cellimm.2019.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
A20, also known as TNFAIP3, is a potent regulator of ubiquitin (Ub) dependent signals. A20 prevents multiple human diseases, indicating that the critical functions of this protein are clinically as well as biologically impactful. As revealed by mouse models, cell specific functions of A20 are linked to its ability to regulate diverse signaling pathways. Aberrant expression or functions of A20 in specific cell types underlie divergent disease outcomes. Discernment of A20's biochemical functions and their phenotypic outcomes will contribute to our understanding of how ubiquitination is regulated, how Ub mediated functions can prevent disease, and will pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|