1
|
Paclibar CG, Schafer DM, Biju AP, Karim F, Sison SA, Liang C, Ahmed ST, Mukherjee J. Towards Imaging Tau Hyperphosphorylation: Is DYRK1A a Potential Target for Imaging Hyperphosphorylation of Tau? Molecular Modeling Assessment and Synthesis of [ 125I]Radioiodinated DYRK1A Inhibitor. Molecules 2025; 30:990. [PMID: 40076215 PMCID: PMC11901962 DOI: 10.3390/molecules30050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Dual specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A), a phosphorylation kinase, is localized within the central nervous system and is linked to hyperphosphorylation of Tau. Imaging of DYRK1A may provide an earlier biomarker for Tauopathies, including Alzheimer's disease (AD). We have used Chimera-Autodock to evaluate potential molecules for binding to the binding site of DYRK1A. Five molecules, 10-bromo-2-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acid (4E3), 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acid (KuFal184), harmine, 6-(fluoro-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine (MK-6240), and 6-iodo-3-(1H-pyrrolo[2,3-c]pyridine-1-yl)isoquinoline (IPPI), were found to have binding energies of -10.4, -10.1, -9.0, -9.1, and -9.4 kcal/mole, respectively. Two molecules, 4E3 and KuFal184, were selective for DYRK1A, while harmine also had a monoamine oxidase A affinity, and MK-6240 and IPPI had affinity for Tau. Tau present in the brain slices of AD subject were labeled with [125I]IPPI. KuFal184 had no effect on the binding of [125I]IPPI, suggesting the absence of binding overlap of the two molecules. MK-6240, a known Tau agent was, however, able to compete with [125I]IPPI. The binding energies of harmine, MK-6240, and IPPI for the DYRK1A site suggest affinities of approximately 80-100 nM, which is insufficient to serve as an imaging agent. The higher affinity of KuFal184 (6 nM for DYRK1A) suggested that [125I]KuFal184 may be a potential imaging agent. Electrophilic radioiodination was used to synthesize [125I]KuFal184 in modest yields (25%) and high radiochemical purity (>95%). Preliminary binding studies with [125I]KuFal184 in AD brain slices showed some selectivity for cortical grey matter regions containing Tau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA; (C.G.P.); (D.M.S.); (A.P.B.); (F.K.); (S.A.S.); (C.L.); (S.T.A.)
| |
Collapse
|
2
|
Malueg M, Moo KG, Arnett A, Edwards TH, Ruskin SL, Lambert K, Subramanyam A, Dufort MJ, Gersuk VH, Partridge R, Buckner JH, Khor B. Defining a novel DYRK1A-gp130/IL-6R-pSTAT axis that regulates Th17 differentiation. Immunohorizons 2025; 9:vlae005. [PMID: 39846842 PMCID: PMC11841973 DOI: 10.1093/immhor/vlae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 01/24/2025] Open
Abstract
Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). We generated a conditional knockout mouse model to validate DYRK1A as a regulator of Th17 differentiation that acts in a dose-dependent fashion at least in part by modulating interleukin (IL)-6 signaling through multiple mechanisms. We identified a new role for DYRK1A in regulating surface expression of IL-6 receptor subunits in naïve CD4+ T cells, consistent with DYRK1A's impact on Th17 differentiation. Physiologic relevance is supported by findings in people with Down syndrome, in which increased expression of DYRK1A, encoded on chromosome 21, is linked to increased IL-6 responsiveness. Our findings highlight DYRK1A as a druggable target of broad therapeutic and prognostic interest in autoimmunity and immune function.
Collapse
Affiliation(s)
- Matthew Malueg
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Keagan G Moo
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Azlann Arnett
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Thomas H Edwards
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Susan L Ruskin
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Katharina Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Aditi Subramanyam
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Rebecca Partridge
- Department of Pediatrics, Virginia Mason Medical Center, Issaquah, WA, United States
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Bernard Khor
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
3
|
McCarthy L, Baijal K, Downey M. A framework for understanding and investigating polyphosphate-protein interactions. Biochem Soc Trans 2025:BST20240678. [PMID: 39836110 DOI: 10.1042/bst20240678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Many prokaryotic and eukaryotic cells store inorganic phosphate in the form of polymers called polyphosphate (polyP). There has been an explosion of interest in polyP over the past decade, in part due to newly suggested roles related to diverse aspects of human health. The physical interaction of polyP chains with specific proteins has been proposed to regulate cellular homeostasis and modulate signaling pathways in response to environmental changes. Recently, several studies have challenged existing models for how polyP interacts with its protein targets, while identifying new motifs that are capable of binding to polyP. In this review, we summarize these findings, delineate the functional implications for polyP-protein interactions at the molecular level, and define open questions that should be addressed to propel the field forward.
Collapse
Affiliation(s)
- Liam McCarthy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kanchi Baijal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Lan C, Fang G, Qiu C, Li X, Yang F, Yang Y. Inhibition of DYRK1A attenuates vascular remodeling in pulmonary arterial hypertension via suppressing STAT3/Pim-1/NFAT pathway. Clin Exp Hypertens 2024; 46:2297642. [PMID: 38147409 DOI: 10.1080/10641963.2023.2297642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling caused by the excessive proliferation and survival of pulmonary artery smooth muscle cells (PASMCs). Dual-specificity tyrosine regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in the regulation of multiple biological functions, including cell proliferation and survival. However, the role and underlying mechanisms of DYRK1A in PAH pathogenesis remain unclear. We found that DYRK1A was upregulated in PASMCs in response to hypoxia, both in vivo and in vitro. Inhibition of DYRK1A by harmine significantly attenuated hypoxia-induced pulmonary hypertension and pulmonary artery remodeling. Mechanistically, we found that DYRK1A promoted pulmonary arterial remodeling by enhancing the proliferation and survival of PASMCs through activating the STAT3/Pim-1/NFAT pathway, because STAT3 gain-of-function via adeno-associated virus serotype 2 (AAV2) carrying the constitutively active form of STAT3 (STAT3C) nearly abolished the protective effect of harmine on PAH. Collectively, our results reveal a significant role for DYRK1A in pulmonary arterial remodeling and suggest it as a drug target with translational potential for the treatment of PAH.
Collapse
Affiliation(s)
- Cong Lan
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Guangyao Fang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiuchuan Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Hammond T, Choi JB, Membreño MW, Demeter J, Ng R, Bhattacharya D, Nguyen TN, Hartmann GG, Bossard C, Skotheim JM, Jackson PK, Pasca A, Rubin SM, Sage J. THE FAM53C/DYRK1A axis regulates the G1/S transition of the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627280. [PMID: 39713326 PMCID: PMC11661141 DOI: 10.1101/2024.12.10.627280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A growing number of therapies are being developed to target the cell cycle machinery for the treatment of cancer and other human diseases. Consequently, a greater understanding of the factors regulating cell cycle progression becomes essential to help enhance the response to these new therapies. Here, using data from the Cancer Dependency Map, we identified the poorly-studied factor FAM53C as a new regulator of cell cycle progression. We found that FAM53C is critical for this cell cycle transition and that it acts upstream of the CyclinD-CDK4/6-RB axis in the regulation of the G1/S transition. By mass spectrometry, biochemical, and cellular assays, we identified and validated DYRK1A as a cell cycle kinase that is inhibited by and directly interacts with FAM53C. DYRK1A kinase inhibition rescues the G1 arrest induced by FAM53C knock-down. Consistent with the role for FAM53C identified in cells in culture, FAM53C knockout human cortical organoids display increased cell cycle arrest and growth defects. In addition, Fam53C knockout mice show defects in body growth and behavioral phenotypes. Because DYRK1A dysregulation contributes to developmental disorders such as Down syndrome as well as tumorigenesis, future strategies aiming at regulating FAM53C activity may benefit a broad range of patients.
Collapse
|
6
|
Jin Q, Harris E, Myers JA, Mehmood R, Cotton A, Shirnekhi HK, Baggett DW, Wen JQ, Schild AB, Bhansali RS, Klein J, Narina S, Pieters T, Yoshimi A, Pruett-Miller SM, Kriwacki R, Abdel-Wahab O, Malinge S, Ntziachristos P, Obeng EA, Crispino JD. Disruption of cotranscriptional splicing suggests RBM39 is a therapeutic target in acute lymphoblastic leukemia. Blood 2024; 144:2417-2431. [PMID: 39316649 PMCID: PMC11628860 DOI: 10.1182/blood.2024024281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT There are only a few options for patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL), thus, this is a major area of unmet medical need. In this study, we reveal that the inclusion of a poison exon in RBM39, which could be induced by both CDK9 or CDK9 independent cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, CDC-like kinases (CMGC) kinase inhibition, is recognized by the nonsense-mediated messenger RNA decay pathway for degradation. Targeting this poison exon in RBM39 with CMGC inhibitors led to protein downregulation and the inhibition of ALL growth, particularly in relapsed/refractory B-ALL. Mechanistically, disruption of cotranscriptional splicing by the inhibition of CMGC kinases, including DYRK1A, or inhibition of CDK9, which phosphorylate the C-terminal domain of RNA polymerase II (Pol II), led to alteration in the SF3B1 and Pol II association. Disruption of SF3B1 and the transcriptional elongation complex altered Pol II pausing, which promoted the inclusion of a poison exon in RBM39. Moreover, RBM39 ablation suppressed the growth of human B-ALL, and targeting RBM39 with sulfonamides, which degrade RBM39 protein, showed strong antitumor activity in preclinical models. Our data reveal that relapsed/refractory B-ALL is susceptible to pharmacologic and genetic inhibition of RBM39 and provide 2 potential strategies to target this axis.
Collapse
Affiliation(s)
- Qi Jin
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ethan Harris
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Jacquelyn A. Myers
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rashid Mehmood
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anitria Cotton
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hazheen K. Shirnekhi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - David W. Baggett
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jeremy Qiang Wen
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Andrew B. Schild
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rahul S. Bhansali
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathon Klein
- Center for Advanced Genome Engineering and the Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Shilpa Narina
- Center for Advanced Genome Engineering and the Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Tim Pieters
- Department of Biomolecular Medicine, Center for Medical Genetics and Cancer Research Institute, Ghent University, Ghent, Belgium
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering and the Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sebastien Malinge
- Translational Genomics in Leukemia, Cancer Centre, The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Center for Medical Genetics and Cancer Research Institute, Ghent University, Ghent, Belgium
| | - Esther A. Obeng
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
7
|
Zebene ED, Lombardi R, Pucci B, Medhin HT, Seife E, Di Gennaro E, Budillon A, Woldemichael GB. Proteomic Analysis of Biomarkers Predicting Treatment Response in Patients with Head and Neck Cancers. Int J Mol Sci 2024; 25:12513. [PMID: 39684225 DOI: 10.3390/ijms252312513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancers (HNCs) are the sixth most commonly diagnosed cancer and the eighth leading cause of cancer-related mortality worldwide, with squamous cell carcinoma being the most prevalent type. The global incidence of HNCs is steadily increasing, projected to rise by approximately 30% per year by 2030, a trend observed in both developed and undeveloped countries. This study involved serum proteomic profiling to identify predictive clinical biomarkers in cancer patients undergoing chemoradiotherapy (CRT). Fifteen HNC patients at Tikur Anbessa Specialized Hospital, Radiotherapy (RT) center in Addis Ababa were enrolled. Serum samples were collected before and after RT, and patients were classified as responders (R) or non-responders (NR). Protein concentrations in the serum were determined using the Bradford assay, followed by nano-HPLC-MS/MS for protein profiling. Progenesis QI for proteomics identified 55 differentially expressed proteins (DEPs) between R and NR, with a significance of p < 0.05 and a fold-change (FC) ≥ 1.5. The top five-up-regulated proteins included MAD1L1, PSMC2, TRIM29, C5, and SERPING1, while the top five-down-regulated proteins were RYR1, HEY2, HIF1A, TF, and CNN3. Notably, about 16.4% of the DEPs were involved in cellular responses to DNA damage from cancer treatments, encompassing proteins related to deoxyribonucleic acid (DNA) damage sensing, checkpoint activation, DNA repair, and apoptosis/cell cycle regulation. The analysis of the relative abundance of ten proteins with high confidence scores identified three DEPs: ADIPOQ, HEY2, and FUT10 as potential predictive biomarkers for treatment response. This study highlighted the identification of three potential predictive biomarkers-ADIPOQ, HEY2, and FUT10-through serum proteomic profiling in HNC patients undergoing RT, emphasizing their significance in predicting treatment response.
Collapse
Affiliation(s)
- Emeshaw Damtew Zebene
- Nuclear Medicine Unit, Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
- Department of Microbial Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
| | - Rita Lombardi
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Hagos Tesfay Medhin
- Nuclear Medicine Unit, Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
| | - Edom Seife
- Radiotherapy Center, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Gurja Belay Woldemichael
- Department of Microbial Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia
| |
Collapse
|
8
|
Brown M, Sciascia E, Ning K, Adam W, Veraksa A. Regulation of Drosophila brain development and organ growth by the Minibrain/Rala signaling network. G3 (BETHESDA, MD.) 2024; 14:jkae219. [PMID: 39271109 PMCID: PMC11540318 DOI: 10.1093/g3journal/jkae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The human dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) is implicated in the pathology of Down syndrome, microcephaly, and cancer; however the exact mechanism through which it functions is unknown. Here, we have studied the role of the Drosophila ortholog of DYRK1A, Minibrain (Mnb), in brain development and organ growth. The neuroblasts (neural stem cells) that eventually give rise to differentiated neurons in the adult brain are formed from a specialized tissue in the larval optic lobe called the neuroepithelium, in a tightly regulated process. Molecular marker analysis of mnb mutants revealed alterations in the neuroepithelium and neuroblast regions of developing larval brains. Using affinity purification-mass spectrometry (AP-MS), we identified the novel Mnb binding partners Ral interacting protein (Rlip) and RALBP1 associated Eps domain containing (Reps). Rlip and Reps physically and genetically interact with Mnb, and the three proteins may form a ternary complex. Mnb phosphorylates Reps, and human DYRK1A binds to the Reps orthologs REPS1 and REPS2. Mnb also promotes re-localization of Rlip from the nucleus to the cytoplasm in cultured cells. Furthermore, Mnb engages the small GTPase Ras-like protein A (Rala) to regulate brain and wing development. This work uncovers a previously unrecognized role of Mnb in the neuroepithelium and defines the functions of the Mnb/Reps/Rlip/Rala signaling network in organ growth and neurodevelopment.
Collapse
Affiliation(s)
- Melissa Brown
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Erika Sciascia
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Ken Ning
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Wesam Adam
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
9
|
Zhang Y, Song L, Xia Y. MaPom1, a Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase, Positively Regulates Thermal and UV-B Tolerance in Metarhizium acridum. Int J Mol Sci 2024; 25:11860. [PMID: 39595934 PMCID: PMC11594272 DOI: 10.3390/ijms252211860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Fungi play irreplaceable roles in the functioning of natural ecosystems, but global warming poses a significant threat to them. However, the mechanisms underlying fungal tolerance to thermal and UV-B stresses remain largely unknown. Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) Pom1 is crucial for fungal growth, conidiation, and virulence. However, its role in stress tolerance within kingdom fungi has not been explored. In this study, we analyzed the function of MaPom1 (a Pom1 homologous gene) in the entomopathogenic fungus Metarhizium acridum and its regulatory roles in stress tolerance. Conidial thermal and UV-B tolerance significantly decreased in the MaPom1 disruption strain (ΔMaPom1), whereas conidial yield and virulence were unaffected. RNA-Seq analysis indicated that the differentially expressed genes (DEGs) were primarily related to amino sugar, nucleotide sugar metabolism, cell wall components, growth and development, and stress response pathways. Under heat shock treatment, the expression levels of heat shock protein genes decreased significantly, leading to reduced thermotolerance. Moreover, under UV-B treatment, MaPom1 expression and the enzyme activity significantly changed, indicating its involvement in regulating UV-B tolerance. The percentage of nuclear damage in ΔMaPom1 under UV-B treatment was higher than that in the wild-type strain (WT) and the complementary strain (CP). Additionally, the transcription levels of DNA damage-related genes significantly decreased, whereas those of several genes involved in the DNA damage repair response increased significantly. Overall, MaPom1 contributed to thermal and UV-B tolerance by regulating the expression of heat shock protein genes and DNA damage repair genes.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Y.Z.); (L.S.)
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Lei Song
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Y.Z.); (L.S.)
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (Y.Z.); (L.S.)
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| |
Collapse
|
10
|
Sester S, Wilms G, Ahlburg J, Babendreyer A, Becker W. Elevated expression levels of the protein kinase DYRK1B induce mesenchymal features in A549 lung cancer cells. BMC Cancer 2024; 24:1341. [PMID: 39482615 PMCID: PMC11529244 DOI: 10.1186/s12885-024-13057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The protein kinase DYRK1B is a negative regulator of cell proliferation but has been found to be overexpressed in diverse human solid cancers. While DYRK1B is recognized to promote cell survival and adaption to stressful conditions, the consequences of elevated DYRK1B levels in cancer cells are largely uncharted. METHODS To elucidate the role of DYRK1B in cancer cells, we established a A549 lung adenocarcinoma cell model featuring conditional overexpression of DYRK1B. This system was used to characterize the impact of heightened DYRK1B levels on gene expression and to monitor phenotypic and functional changes. RESULTS A549 cells with induced overexpression of wild type DYRK1B acquired a mesenchymal cell morphology with diminished cell-cell contacts and a reorganization of the pericellular actin cytoskeleton into stress fibers. This transition was not observed in cells overexpressing a catalytically impaired DYRK1B variant. The phenotypic changes were associated with increased expression of the transcription factors SNAIL and SLUG, which are core regulators of epithelial mesenchymal transition (EMT). Further profiling of DYRK1B-overexpressing cells revealed transcriptional changes that are characteristic for the mesenchymal conversion of epithelial cells, including the upregulation of genes that are related to cancer cell invasion and metastasis. Functionally, DYRK1B overexpression enhanced the migratory capacity of A549 cells in a wound healing assay. CONCLUSIONS The present data identify DYRK1B as a regulator of phenotypic plasticity in A549 cells. Increased expression of DYRK1B induces mesenchymal traits in A549 lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Soraya Sester
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Joana Ahlburg
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Vorwerk VA, Wilms G, Babendreyer A, Becker W. Differential regulation of expression of the protein kinases DYRK1A and DYRK1B in cancer cells. Sci Rep 2024; 14:23926. [PMID: 39397076 PMCID: PMC11471791 DOI: 10.1038/s41598-024-74190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The protein kinases DYRK1A and DYRK1B are pivotal regulators of cell cycle progression by promoting cell cycle exit into quiescence. DYRK1B appears to play a more important role in cancer cell quiescence than DYRK1A, as evidenced by its overexpression or copy number variations in human tumour samples. Nonetheless, the stimuli driving DYRK1B upregulation and the potential divergence in expression patterns between DYRK1A and DYRK1B remain largely elusive. In the present study, we scrutinized the regulatory pathways modulating DYRK1B expression relative to DYRK1A in PANC-1 and A549 cancer cell lines across varying conditions. Serum deprivation, pharmacological mTOR inhibition and increased cell density resulted in the differential upregulation of DYRK1B compared to DYRK1A. We then aimed to assess the role of protein kinases MST1 and MST2, which are key transmitters of cell density dependent effects. Unexpectedly, exposure to the MST1/2 inhibitor XMU-MP-1 resulted in increased DYRK1B levels in A549 cells. Further investigation into the off-target effects of XMU-MP-1 unveiled the inhibition of Aurora kinases (AURKA and AURKB) as a potential causative factor. Consistently, AURK inhibitors VX-680 (tozasertib), MLN8237 (alisertib), AZD1152-HQPA (barasertib) resulted in the upregulation of DYRK1B expression in A549 cells. In summary, our findings indicate that the expression of DYRK1A and DYRK1B is differentially regulated in cancer cells and reveal that the kinase inhibitor XMU-MP-1 increases DYRK1B expression likely through off target inhibition of Aurora kinases.
Collapse
Affiliation(s)
- Vincent Andreas Vorwerk
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, 52074, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Wilms G, Schofield K, Maddern S, Foley C, Shaw Y, Smith B, Basantes LE, Schwandt K, Babendreyer A, Chavez T, McKee N, Gokhale V, Kallabis S, Meissner F, Rokey SN, Dunckley T, Montfort WR, Becker W, Hulme C. Discovery and Functional Characterization of a Potent, Selective, and Metabolically Stable PROTAC of the Protein Kinases DYRK1A and DYRK1B. J Med Chem 2024; 67:17259-17289. [PMID: 39344427 DOI: 10.1021/acs.jmedchem.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Small-molecule-induced protein degradation has emerged as a promising pharmacological modality for inactivating disease-relevant protein kinases. DYRK1A and DYRK1B are closely related protein kinases that are involved in pathological processes such as neurodegeneration, cancer development, and adaptive immune homeostasis. Herein, we report the development of the first DYRK1 proteolysis targeting chimeras (PROTACs) that combine a new ATP-competitive DYRK1 inhibitor with ligands for the E3 ubiquitin ligase component cereblon (CRBN) to induce ubiquitination and subsequent proteasomal degradation of DYRK1A and DYRK1B. The lead compound (DYR684) promoted fast, efficient, potent, and selective degradation of DYRK1A in cell-based assays. Interestingly, an enzymatically inactive splicing variant of DYRK1B (p65) resisted degradation. Compared to competitive kinase inhibition, targeted degradation of DYRK1 by DYR684 provided improved suppression of downstream signaling. Collectively, our results identify DYRKs as viable targets for PROTAC-mediated degradation and qualify DYR684 as a useful chemical probe for DYRK1A and DYRK1B.
Collapse
Affiliation(s)
- Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Kevin Schofield
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy The University of Arizona, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Shayna Maddern
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Foley
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yeng Shaw
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy The University of Arizona, Tucson, Arizona 85721, United States
| | - Breland Smith
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - L Emilia Basantes
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Katharina Schwandt
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen 52074, Germany
| | - Timothy Chavez
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas McKee
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy The University of Arizona, Tucson, Arizona 85721, United States
| | - Vijay Gokhale
- BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - Sebastian Kallabis
- Core Facility Translational Proteomics, Institute of Innate Immunity, University Hospital Bonn, Bonn 53127, Germany
| | - Felix Meissner
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, Bonn 53127, Germany
| | - Samantha N Rokey
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Travis Dunckley
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - William R Montfort
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Christopher Hulme
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy The University of Arizona, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Otte ED, Roper RJ. Skeletal health in DYRK1A syndrome. Front Neurosci 2024; 18:1462893. [PMID: 39308945 PMCID: PMC11413744 DOI: 10.3389/fnins.2024.1462893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
DYRK1A syndrome results from a reduction in copy number of the DYRK1A gene, which resides on human chromosome 21 (Hsa21). DYRK1A has been implicated in the development of cognitive phenotypes associated with many genetic disorders, including Down syndrome (DS) and Alzheimer's disease (AD). Additionally, overexpression of DYRK1A in DS has been implicated in the development of abnormal skeletal phenotypes in these individuals. Analyses of mouse models with Dyrk1a dosage imbalance (overexpression and underexpression) show skeletal deficits and abnormalities. Normalization of Dyrk1a copy number in an otherwise trisomic animal rescues some skeletal health parameters, and reduction of Dyrk1a copy number in an otherwise euploid (control) animal results in altered skeletal health measurements, including reduced bone mineral density (BMD) in the femur, mandible, and skull. However, little research has been conducted thus far on the implications of DYRK1A reduction on human skeletal health, specifically in individuals with DYRK1A syndrome. This review highlights the skeletal phenotypes of individuals with DYRK1A syndrome, as well as in murine models with reduced Dyrk1a copy number, and provides potential pathways altered by a reduction of DYRK1A copy number, which may impact skeletal health and phenotypes in these individuals. Understanding how decreased expression of DYRK1A in individuals with DYRK1A syndrome impacts bone health may increase awareness of skeletal traits and assist in the development of therapies to improve quality of life for these individuals.
Collapse
Affiliation(s)
- Elysabeth D Otte
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Randall J Roper
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
14
|
Ren L, Feng M, Luo Y, Chen Y. Risk of Cancer in Patients with Congenital Heart Disease: A Systematic Review and Meta-Analysis. Cardiology 2024:1-8. [PMID: 39053445 DOI: 10.1159/000540443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION There has been remarkable progress in both diagnosis and treatment of patients with congenital heart disease (CHD), with an increasing number of survivors. Whether patients with CHD are more likely to develop cancer is still a controversial issue. This study aimed to quantitatively estimate the association between patients with CHD and the risk of developing cancer through meta-analysis. METHODS Web of Science, PubMed, and Embase databases were searched from inception to September 2023 to identify potentially relevant case-control studies and cohort studies that reported risk estimates and confidence intervals (CIs). RevMan software was used to analyze the pooled effect size and test for heterogeneity. The random effect and fixed effect models were applied to the study period. Egger's test was performed to examine publication bias. RESULTS We analyzed six studies, consisting of 2 case-control studies and 4 cohort studies comprising 276,124 participants. The overall pooled hazard risk for cancer in patients with CHD was 1.71 (95% CI: 1.28-2.28; p < 0.01), with significant heterogeneity (I2 = 97%, p < 0.01). The quantitative analysis of studies indicates that patients with CHD have an increased risk of developing cancer, even after adjusting for chromosomal disorders. CONCLUSION Our study highlights the importance of controlling modifiable factors in cancer prevention and emphasizes the need for health education for patients with CHD in primary care. Given the limited number of studies included in this analysis, further research is needed to accurately quantify the cancer risk of exposed versus unexposed CHD.
Collapse
Affiliation(s)
- Lijuan Ren
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Mei Feng
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yulan Luo
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Chen
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
16
|
Qiu N, Qian C, Guo T, Wang Y, Jin H, Yao M, Li M, Guo T, Lv Y, Si X, Wu S, Wang H, Zhang X, Xia J. Discovery of a novel chemotype as DYRK1A inhibitors against Alzheimer's disease: Computational modeling and biological evaluation. Int J Biol Macromol 2024; 269:132024. [PMID: 38704072 DOI: 10.1016/j.ijbiomac.2024.132024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) plays an essential role in Tau and Aβ pathology closely related to Alzheimer's disease (AD). Accumulative evidence has demonstrated DYRK1A inhibition is able to reduce the pathological features of AD. Nevertheless, there is no approved DYRK1A inhibitor for clinical use as anti-AD therapy. This is somewhat due to the lack of effective and safe chemotypes of DYRK1A inhibitors. To address this issue, we carried out in silico screening, in vitro assays and in vivo efficacy evaluation with the aim to discover a new class of DYRK1A inhibitors for potential treatment of AD. By in silico screening, we selected and purchased 16 potential DYRK1A inhibitors from the Specs chemical library. Among them, compound Q17 (Specs ID: AO-476/40829177) potently inhibited DYRK1A. The hydrogen bonds between compound Q17 and two amino acid residues named GLU239 and LYS188, were uncovered by molecular docking and molecular dynamics simulation. The cell-based assays showed that compound Q17 could protect the SH-SY5Y human neuroblastoma cell line from okadaic acid (OA)-induced injury by targeting DYRK1A. More importantly, compound Q17 significantly improved cognitive dysfunction of 3 × Tg-AD mice, ameliorated pathological changes, and attenuated Tau hyperphosphorylation as well as Aβ deposition. In summary, our computational modeling strategy is effective to identify novel chemotypes of DYRK1A inhibitors with great potential to treat AD, and the identified compound Q17 in this study is worthy of further study.
Collapse
Affiliation(s)
- Nianzhuang Qiu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chenliang Qian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Tingting Guo
- Beijing Tide Pharmaceutical Co., Ltd, Beijing 100176, China
| | - Yaling Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mingli Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Mei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Tianyang Guo
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yuli Lv
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| | - Xuehui Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
17
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
18
|
Di Vona C, Barba L, Ferrari R, de la Luna S. Loss of the DYRK1A Protein Kinase Results in the Reduction in Ribosomal Protein Gene Expression, Ribosome Mass and Reduced Translation. Biomolecules 2023; 14:31. [PMID: 38254631 PMCID: PMC10813206 DOI: 10.3390/biom14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Ribosomal proteins (RPs) are evolutionary conserved proteins that are essential for protein translation. RP expression must be tightly regulated to ensure the appropriate assembly of ribosomes and to respond to the growth demands of cells. The elements regulating the transcription of RP genes (RPGs) have been characterized in yeast and Drosophila, yet how cells regulate the production of RPs in mammals is less well understood. Here, we show that a subset of RPG promoters is characterized by the presence of the palindromic TCTCGCGAGA motif and marked by the recruitment of the protein kinase DYRK1A. The presence of DYRK1A at these promoters is associated with the enhanced binding of the TATA-binding protein, TBP, and it is negatively correlated with the binding of the GABP transcription factor, establishing at least two clusters of RPGs that could be coordinately regulated. However, DYRK1A silencing leads to a global reduction in RPGs mRNAs, pointing at DYRK1A activities beyond those dependent on its chromatin association. Significantly, cells in which DYRK1A is depleted have reduced RP levels, fewer ribosomes, reduced global protein synthesis and a smaller size. We therefore propose a novel role for DYRK1A in coordinating the expression of genes encoding RPs, thereby controlling cell growth in mammals.
Collapse
Affiliation(s)
- Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Laura Barba
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 23/A, 43124 Parma, Italy;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
19
|
Huang CS, Hsieh MS, Yadav VK, Wu YC, Liu SC, Yeh CT, Huang MS. PAICS/DYRK3 Multienzyme Interactions as Coregulators of Purinosome Formation and Metabolism on Radioresistance in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:17346. [PMID: 38139175 PMCID: PMC10744311 DOI: 10.3390/ijms242417346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent type of oral cancer. While therapeutic innovations have made strides, radioresistance persists as a significant hindrance in OSCC treatment. Despite identifying numerous targets that could potentially suppress the oncogenic attributes of OSCC, the exploration of oncogenic protein kinases for cancer therapy remains limited. Consequently, the functions of many kinase proteins in OSCC continue to be largely undetermined. In this research, we aim to disclose protein kinases that target OSCC and elaborate their roles and molecular mechanisms. Through the examination of the kinome library of radiotherapy-resistant/sensitive OSCC cell lines (HN12 and SAS), we identified a key gene, the tyrosine phosphorylation-regulated kinase 3 (DYRK3), a member of the DYRK family. We developed an in vitro cell model, composed of radiation-resistant OSCC, to scrutinize the clinical implications and contributions of DYRK3 and phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS) signaling in OSCC. This investigation involves bioinformatics and human tissue arrays. We seek to comprehend the role of DYRK3 and PAICS signaling in the development of OSCC and its resistance to radiotherapy. Various in vitro assays are utilized to reveal the essential molecular mechanism behind radiotherapy resistance in connection with the DYRK3 and PAICS interaction. In our study, we quantified the concentrations of DYRK3 and PAICS proteins and tracked the expression levels of key pluripotency markers, particularly PPAT. Furthermore, we extended our investigation to include an analysis of Glut-1, a gene recognized for its linkage to radioresistance in oral squamous cell carcinoma (OSCC). Furthermore, we conducted an in vivo study to affirm the impact of DYRK3 and PAICS on tumor growth and radiotherapy resistance, focusing particularly on the role of DYRK3 in the radiotherapy resistance pathway. This focus leads us to identify new therapeutic agents that can combat radiotherapy resistance by inhibiting DYRK3 (GSK-626616). Our in vitro models showed that inhibiting PAICS disrupts purinosome formation and influences the survival rate of radiation-resistant OSCC cell lines. These outcomes underscore the pivotal role of the DYRK3/PAICS axis in directing OSCC radiotherapy resistance pathways and, as a result, influencing OSCC progression or therapy resistance. Our findings also reveal a significant correlation between DYRK3 expression and the PAICS enzyme in OSCC radiotherapy resistance.
Collapse
Affiliation(s)
- Chin-Sheng Huang
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-S.H.); (M.-S.H.); (V.K.Y.); (Y.-C.W.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Ming-Shou Hsieh
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-S.H.); (M.-S.H.); (V.K.Y.); (Y.-C.W.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Vijesh Kumar Yadav
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-S.H.); (M.-S.H.); (V.K.Y.); (Y.-C.W.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Yang-Che Wu
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-S.H.); (M.-S.H.); (V.K.Y.); (Y.-C.W.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Dentistry and Oral Health, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan;
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 950, Taiwan
| | - Mao-Suan Huang
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-S.H.); (M.-S.H.); (V.K.Y.); (Y.-C.W.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
20
|
Brierley CK, Yip BH, Orlando G, Goyal H, Wen S, Wen J, Levine MF, Jakobsdottir GM, Rodriguez-Meira A, Adamo A, Bashton M, Hamblin A, Clark SA, O'Sullivan J, Murphy L, Olijnik AA, Cotton A, Narina S, Pruett-Miller SM, Enshaei A, Harrison C, Drummond M, Knapper S, Tefferi A, Antony-Debré I, Thongjuea S, Wedge DC, Constantinescu S, Papaemmanuil E, Psaila B, Crispino JD, Mead AJ. Chromothripsis orchestrates leukemic transformation in blast phase MPN through targetable amplification of DYRK1A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570880. [PMID: 38106192 PMCID: PMC10723394 DOI: 10.1101/2023.12.08.570880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Chromothripsis, the process of catastrophic shattering and haphazard repair of chromosomes, is a common event in cancer. Whether chromothripsis might constitute an actionable molecular event amenable to therapeutic targeting remains an open question. We describe recurrent chromothripsis of chromosome 21 in a subset of patients in blast phase of a myeloproliferative neoplasm (BP-MPN), which alongside other structural variants leads to amplification of a region of chromosome 21 in ∼25% of patients ('chr21amp'). We report that chr21amp BP-MPN has a particularly aggressive and treatment-resistant phenotype. The chr21amp event is highly clonal and present throughout the hematopoietic hierarchy. DYRK1A , a serine threonine kinase and transcription factor, is the only gene in the 2.7Mb minimally amplified region which showed both increased expression and chromatin accessibility compared to non-chr21amp BP-MPN controls. We demonstrate that DYRK1A is a central node at the nexus of multiple cellular functions critical for BP-MPN development, including DNA repair, STAT signalling and BCL2 overexpression. DYRK1A is essential for BP-MPN cell proliferation in vitro and in vivo , and DYRK1A inhibition synergises with BCL2 targeting to induce BP-MPN cell apoptosis. Collectively, these findings define the chr21amp event as a prognostic biomarker in BP-MPN and link chromothripsis to a druggable target.
Collapse
|
21
|
Weston WA, Barr AR. A cell cycle centric view of tumour dormancy. Br J Cancer 2023; 129:1535-1545. [PMID: 37608096 PMCID: PMC10645753 DOI: 10.1038/s41416-023-02401-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Tumour dormancy and recurrent metastatic cancer remain the greatest clinical challenge for cancer patients. Dormant tumour cells can evade treatment and detection, while retaining proliferative potential, often for years, before relapsing to tumour outgrowth. Cellular quiescence is one mechanism that promotes and maintains tumour dormancy due to its central role in reducing proliferation, elevating cyto-protective mechanisms, and retaining proliferative potential. Quiescence/proliferation decisions are dictated by intrinsic and extrinsic signals, which regulate the activity of cyclin-dependent kinases (CDKs) to modulate cell cycle gene expression. By clarifying the pathways regulating CDK activity and the signals which activate them, we can better understand how cancer cells enter, maintain, and escape from quiescence throughout the progression of dormancy and metastatic disease. Here we review how CDK activity is regulated to modulate cellular quiescence in the context of tumour dormancy and highlight the therapeutic challenges and opportunities it presents.
Collapse
Affiliation(s)
- William A Weston
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alexis R Barr
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Du Cane Rd, London, W12 0NN, UK.
| |
Collapse
|
22
|
Sit YT, Takasaki K, An HH, Xiao Y, Hurtz C, Gearhart PA, Zhang Z, Gadue P, French DL, Chou ST. Synergistic roles of DYRK1A and GATA1 in trisomy 21 megakaryopoiesis. JCI Insight 2023; 8:e172851. [PMID: 37906251 PMCID: PMC10895998 DOI: 10.1172/jci.insight.172851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Patients with Down syndrome (DS), or trisomy 21 (T21), are at increased risk of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia (ML-DS). Both TAM and ML-DS require prenatal somatic mutations in GATA1, resulting in the truncated isoform GATA1s. The mechanism by which individual chromosome 21 (HSA21) genes synergize with GATA1s for leukemic transformation is challenging to study, in part due to limited human cell models with wild-type GATA1 (wtGATA1) or GATA1s. HSA21-encoded DYRK1A is overexpressed in ML-DS and may be a therapeutic target. To determine how DYRK1A influences hematopoiesis in concert with GATA1s, we used gene editing to disrupt all 3 alleles of DYRK1A in isogenic T21 induced pluripotent stem cells (iPSCs) with and without the GATA1s mutation. Unexpectedly, hematopoietic differentiation revealed that DYRK1A loss combined with GATA1s leads to increased megakaryocyte proliferation and decreased maturation. This proliferative phenotype was associated with upregulation of D-type cyclins and hyperphosphorylation of Rb to allow E2F release and derepression of its downstream targets. Notably, DYRK1A loss had no effect in T21 iPSCs or megakaryocytes with wtGATA1. These surprising results suggest that DYRK1A and GATA1 may synergistically restrain megakaryocyte proliferation in T21 and that DYRK1A inhibition may not be a therapeutic option for GATA1s-associated leukemias.
Collapse
Affiliation(s)
- Ying Ting Sit
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaoru Takasaki
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hyun Hyung An
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yan Xiao
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christian Hurtz
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter A. Gearhart
- Deparment of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Zhe Zhang
- Department of Biomedical Informatics and
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Front Cell Dev Biol 2023; 11:1277537. [PMID: 37900285 PMCID: PMC10600473 DOI: 10.3389/fcell.2023.1277537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is encoded by a dosage-dependent gene located in the Down syndrome critical region of human chromosome 21. The known substrates of DYRK1A include proteins involved in transcription, cell cycle control, DNA repair and other processes. However, the function and regulation of this kinase is not fully understood, and the current knowledge does not fully explain the dosage-dependent function of this kinase. Several recent proteomic studies identified DYRK1A interacting proteins in several human cell lines. Interestingly, several of known protein substrates of DYRK1A were undetectable in these studies, likely due to a transient nature of the kinase-substrate interaction. It is possible that the stronger-binding DYRK1A interacting proteins, many of which are poorly characterized, are involved in regulatory functions by recruiting DYRK1A to the specific subcellular compartments or distinct signaling pathways. Better understanding of these DYRK1A-interacting proteins could help to decode the cellular processes regulated by this important protein kinase during embryonic development and in the adult organism. Here, we review the current knowledge of the biochemical and functional characterization of the DYRK1A protein-protein interaction network and discuss its involvement in human disease.
Collapse
Affiliation(s)
- Varsha Ananthapadmanabhan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Kathryn H. Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Richmond, VA, United States
| |
Collapse
|
24
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
25
|
Deau E, Lindberg MF, Miege F, Roche D, George N, George P, Krämer A, Knapp S, Meijer L. Leucettinibs, a Class of DYRK/CLK Kinase Inhibitors Inspired by the Marine Sponge Natural Product Leucettamine B. J Med Chem 2023; 66:10694-10714. [PMID: 37487467 DOI: 10.1021/acs.jmedchem.3c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) recently attracted attention due to their central involvement in various pathologies. We here describe a family of DYRK/CLK inhibitors derived from Leucettines and the marine natural product Leucettamine B. Forty-five N2-functionalized 2-aminoimidazolin-4-ones bearing a fused [6 + 5]-heteroarylmethylene were synthesized. Benzothiazol-6-ylmethylene was selected as the most potent residue among 15 different heteroarylmethylenes. 186 N2-substituted 2-aminoimidazolin-4-ones bearing a benzothiazol-6-ylmethylene, collectively named Leucettinibs, were synthesized and extensively characterized. Subnanomolar IC50 (0.5-20 nM on DYRK1A) inhibitors were identified and one Leucettinib was modeled in DYRK1A and co-crystallized with CLK1 and the weaker inhibited off-target CSNK2A1. Kinase-inactive isomers of Leucettinibs (>3-10 μM on DYRK1A), named iso-Leucettinibs, were synthesized and characterized as suitable negative control compounds for functional experiments. Leucettinibs, but not iso-Leucettinibs, inhibit the phosphorylation of DYRK1A substrates in cells. Leucettinibs provide new research tools and potential leads for further optimization toward therapeutic drug candidates.
Collapse
Affiliation(s)
- Emmanuel Deau
- Perha Pharmaceuticals, Perharidy, 29680 Roscoff, France
| | | | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Nicolas George
- Oncodesign, 25-27 Avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy, 29680 Roscoff, France
| | - Andreas Krämer
- Goethe-University Frankfurt, Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Goethe-University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Goethe-University Frankfurt, Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
26
|
Yong Y, Wu Q, Meng X, Lu R, Xia H, Pei F, Yang X. Dyrk1a Phosphorylation of α-Synuclein Mediating Apoptosis of Dopaminergic Neurons in Parkinson's Disease. PARKINSON'S DISEASE 2023; 2023:8848642. [PMID: 37469393 PMCID: PMC10352525 DOI: 10.1155/2023/8848642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023]
Abstract
Objective To investigate the role of aberrant Dyrk1a expression in phosphorylation modification at the α-synuclein serine 129 (Ser129) site to analyze its molecular mechanism in mediating apoptosis of PD. Methods The protein level of P-α-synuclein (Ser129), α-synuclein, Bcl-2, Bax, active caspase 3, GSK3β, PI3K, AKT, and cyclinD1 were detected. The mRNA transcript levels of Dyrk1a and DAT and protein levels of IL-1β, IL-6, COX-2, and TNF-α were detected. Results P-α-synuclein (Ser129), α-synuclein, Bax, active caspase 3, GSK3β, and cyclinD1 expressions were decreased in Dyrk1a-AAV-ShRNA (P < 0.05), and Bcl-2, AKT, and PI3K expressions were increased (P < 0.05). Increased TH protein expression was shown in Dyrk1a-AAV-ShRNA (P < 0.05). Dyrk1a mRNA was decreased in the Dyrk1a-AAV-ShRNA group (P < 0.05), and DAT mRNA was increased (P < 0.05). IL-1β, IL-6, COX-2, and TNF-α protein levels were decreased in Dyrk1al-AAV-Sh-RNA (P < 0.05). Transcriptome sequencing showed that Fam220a, which was expected to activate STAT family protein binding activity and participate in the negative regulation of transcription through RNA polymerase II and protein dephosphorylation showed differentially upregulated expression. The untargeted metabolome showed that the major compounds in the Dyrk1a-AAV-ShRNA group were hormones and transmission mediators and the most metabolism-related pathways. Fam220a showed differentially upregulated expression, and differentially expressed genes were enriched for the neuroactive ligand-receptor interaction, vascular smooth muscle contraction, and melanogenesis-related pathways. Conclusion Abnormal Dyrk1a expression can affect α-synuclein phosphorylation modifications, and dyrk1a knockdown activates the PI3K/AKT pathway and reduces dopaminergic neuron apoptosis. It provides a theoretical basis for the group to further investigate the molecular mechanism.
Collapse
Affiliation(s)
- Yuxuan Yong
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Qinfen Wu
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Xinling Meng
- The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Ranran Lu
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Huan Xia
- The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Feifei Pei
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Xinling Yang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| |
Collapse
|
27
|
Okumura T, Fujii T, Terabayashi K, Kojima T, Takeda S, Kashiwada T, Toriyama K, Hijioka S, Miyazaki T, Yamamoto M, Tanabe S, Shirakawa Y, Furukawa M, Honma Y, Hoshino I, Nabeya Y, Yamaguchi H, Uemoto S, Shimada Y, Matsubara H, Ozawa S, Makuuchi H, Imamura M. MicroRNAs associated with postoperative outcomes in patients with limited stage neuroendocrine carcinoma of the esophagus. Oncol Lett 2023; 26:276. [PMID: 37274462 PMCID: PMC10236049 DOI: 10.3892/ol.2023.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Esophageal neuroendocrine carcinoma (E-NEC) is an aggressive disease with a poor prognosis. The present study aimed to assess the role of surgery in the treatment of patients with resectable E-NEC, and identify a microRNA (miRNA/miR) signature in association with positive postoperative outcomes. Between February 2017 and August 2019, 36 patients with E-NEC who underwent curative surgery at the Japan Neuroendocrine Tumor Society partner hospitals were enrolled in the study. A total of 16 (44.4%) patients achieved disease-free survival (non-relapse group), whereas 20 (55.6%) patients developed tumor relapse (relapse group) during the median follow-up time of 36.5 months (range, 1-242) after surgery with a 5-year overall survival rate of 100 and 10.8%, respectively (P<0.01). No clinicopathological parameters, such as histological type or TNM staging, were associated with tumor relapse. Microarray analysis of 2,630 miRNAs in 11 patients with sufficient quality RNA revealed 12 miRNAs (miR-1260a, -1260b, -1246, -4284, -612, -1249-3p, -296-5p, -575, -6805-3p, -12136, -6822-5p and -4454) that were differentially expressed between the relapse (n=6) and non-relapse (n=5) groups. Furthermore, the top three miRNAs (miR-1246, -1260a and -1260b) were associated with overall survival (P<0.01). These results demonstrated that surgery-based multidisciplinary treatment is effective in a distinct subpopulation of limited stage E-NEC. A specific miRNA gene set is suggested to be associated with treatment outcome.
Collapse
Affiliation(s)
- Tomoyuki Okumura
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Kenji Terabayashi
- Department of Mechanical and Intellectual Systems Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Tomomi Kashiwada
- Department of Medical Oncology, Division Hematology, Respiratory Medical and Oncology, Saga University, Saga 849-8501, Japan
| | - Kazuhiro Toriyama
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Aichi 464-8681, Japan
| | - Susumu Hijioka
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Aichi 464-8681, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Miho Yamamoto
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Shunsuke Tanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masayuki Furukawa
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | - Yoshitaka Honma
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Isamu Hoshino
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Yoshihiro Nabeya
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Shinji Uemoto
- President's Office, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Soji Ozawa
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hiroyasu Makuuchi
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masayuki Imamura
- Neuroendocrine Tumor Center, Kansai Electric Power Hospital, Osaka 553-0003, Japan
| |
Collapse
|
28
|
Bonner EA, Lee SC. Therapeutic Targeting of RNA Splicing in Cancer. Genes (Basel) 2023; 14:1378. [PMID: 37510283 PMCID: PMC10379351 DOI: 10.3390/genes14071378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
RNA splicing is a key regulatory step in the proper control of gene expression. It is a highly dynamic process orchestrated by the spliceosome, a macro-molecular machinery that consists of protein and RNA components. The dysregulation of RNA splicing has been observed in many human pathologies ranging from neurodegenerative diseases to cancer. The recent identification of recurrent mutations in the core components of the spliceosome in hematologic malignancies has advanced our knowledge of how splicing alterations contribute to disease pathogenesis. This review article will discuss our current understanding of how aberrant RNA splicing regulation drives tumor initiation and progression. We will also review current therapeutic modalities and highlight emerging technologies designed to target RNA splicing for cancer treatment.
Collapse
Affiliation(s)
- Elizabeth A. Bonner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA;
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stanley C. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Bélanger F, Roussel C, Sawchyn C, St-Hilaire E, Gezzar-Dandashi S, Kimenyi Ishimwe AB, Mallette FA, Wurtele H, Drobetsky E. A genome-wide screen reveals that Dyrk1A kinase promotes nucleotide excision repair by preventing aberrant overexpression of cyclin D1 and p21. J Biol Chem 2023:104900. [PMID: 37301510 PMCID: PMC10339196 DOI: 10.1016/j.jbc.2023.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Nucleotide excision repair (NER) eliminates highly-genotoxic solar UV-induced DNA photoproducts that otherwise stimulate malignant melanoma development. Here, a genome-wide loss-of-function screen, coupling CRISPR/Cas9 technology with a flow cytometry-based DNA repair assay, was used to identify novel genes required for efficient NER in primary human fibroblasts. Interestingly, the screen revealed multiple genes encoding proteins, with no previously known involvement in UV damage repair, that significantly modulate NER uniquely during S phase of the cell cycle. Among these, we further characterized Dyrk1A, a dual specificity kinase that phosphorylates the proto-oncoprotein cyclin D1 on threonine 286 (T286), thereby stimulating its timely cytoplasmic relocalization and proteasomal degradation which is required for proper regulation of the G1-S phase transition and control of cellular proliferation. We demonstrate that in UV-irradiated HeLa cells, depletion of Dyrk1A leading to overexpression of cyclin D1 causes inhibition of NER uniquely during S phase and reduced cell survival. Consistently, expression/nuclear accumulation of nonphosphorylatable cyclin D1 (T286A) in melanoma cells strongly interferes with S phase NER and enhances cytotoxicity post-UV. Moreover, the negative impact of cyclin D1 (T286A) overexpression on repair is independent of cyclin-dependent kinase activity but requires cyclin D1-dependent upregulation of p21 expression. Our data indicate that inhibition of NER during S phase might represent a previously unappreciated non-canonical mechanism by which oncogenic cyclin D1 fosters melanomagenesis.
Collapse
Affiliation(s)
- François Bélanger
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4
| | - Cassandra Roussel
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4
| | - Christina Sawchyn
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4
| | - Edlie St-Hilaire
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4
| | - Sari Gezzar-Dandashi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4
| | - Aimé Boris Kimenyi Ishimwe
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4
| | - Frédérick Antoine Mallette
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4; Department of Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4
| | - Hugo Wurtele
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4; Department of Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4.
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4; Department of Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4.
| |
Collapse
|
30
|
Stoler-Barak L, Harris E, Peres A, Hezroni H, Kuka M, Di Lucia P, Grenov A, Gurwicz N, Kupervaser M, Yip BH, Iannacone M, Yaari G, Crispino JD, Shulman Z. B cell class switch recombination is regulated by DYRK1A through MSH6 phosphorylation. Nat Commun 2023; 14:1462. [PMID: 36927854 PMCID: PMC10020581 DOI: 10.1038/s41467-023-37205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Protection from viral infections depends on immunoglobulin isotype switching, which endows antibodies with effector functions. Here, we find that the protein kinase DYRK1A is essential for B cell-mediated protection from viral infection and effective vaccination through regulation of class switch recombination (CSR). Dyrk1a-deficient B cells are impaired in CSR activity in vivo and in vitro. Phosphoproteomic screens and kinase-activity assays identify MSH6, a DNA mismatch repair protein, as a direct substrate for DYRK1A, and deletion of a single phosphorylation site impaired CSR. After CSR and germinal center (GC) seeding, DYRK1A is required for attenuation of B cell proliferation. These findings demonstrate DYRK1A-mediated biological mechanisms of B cell immune responses that may be used for therapeutic manipulation in antibody-mediated autoimmunity.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ethan Harris
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Hadas Hezroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mirela Kuka
- Vita-Salute San Raffaele University and Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Di Lucia
- Vita-Salute San Raffaele University and Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amalie Grenov
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Gurwicz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Kupervaser
- De Botton Institute for Proteomics, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Bon Ham Yip
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matteo Iannacone
- Vita-Salute San Raffaele University and Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 52900, Israel
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
31
|
Infantino I, Tocchioni F, Ghionzoli M, Coletta R, Morini F, Morabito A. Case Report: Gut and spleen anomalies associated with DYRK1A syndrome. Front Pediatr 2023; 10:936732. [PMID: 36741085 PMCID: PMC9890171 DOI: 10.3389/fped.2022.936732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
DYRK1A syndrome has been extensively studied primarily with regard to neurologic and other phenotypic features such as skeleton and craniofacial alterations. In the present paper, we aim to highlight unusual anomalies associated with a DYRK1A mutation: a 17-year-old female patient with language and cognitive delay, microcephaly, and an autistic disorder, who was operated upon for spleen torsion with anomalous gut fixation.
Collapse
Affiliation(s)
- I. Infantino
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - F. Tocchioni
- Department of Pediatric and Neonatal Surgery, Meyer Children's Hospital IRCSS, Florence, Italy
| | - M. Ghionzoli
- Department of Pediatric and Neonatal Surgery, Meyer Children's Hospital IRCSS, Florence, Italy
| | - R. Coletta
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric and Neonatal Surgery, Meyer Children's Hospital IRCSS, Florence, Italy
- School of Health and Society, University of Salford, Salford, United Kingdom
| | - F. Morini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric and Neonatal Surgery, Meyer Children's Hospital IRCSS, Florence, Italy
| | - A. Morabito
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric and Neonatal Surgery, Meyer Children's Hospital IRCSS, Florence, Italy
- School of Health and Society, University of Salford, Salford, United Kingdom
| |
Collapse
|
32
|
Kim S, Ko E, Choi HG, Kim D, Luchi M, Khor B, Kim S. FRTX-02, a selective and potent inhibitor of DYRK1A, modulates inflammatory pathways in mouse models of psoriasis and atopic dermatitis. J Transl Autoimmun 2022; 6:100185. [PMID: 36654851 PMCID: PMC9841288 DOI: 10.1016/j.jtauto.2022.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) has been proposed as a novel regulator of adaptive immune homeostasis through modulating T cell polarization. Thus, DYRK1A could present a potential target in autoimmune disorders. Here, we identify FRTX-02 as a novel compound exhibiting potent and selective inhibition of DYRK1A. FRTX-02 induced transcriptional activity of the DYRK1A substrate NFAT in T cell lines. Correspondingly, FRTX-02 promoted ex vivo CD4+ polarization into anti-inflammatory Tregs and reduced their polarization into pro-inflammatory Th1 or Th17 cells. We show that FRTX-02 could also limit innate immune responses through negative regulation of the MyD88/IRAK4-NF-κB axis in a mast cell line. Finally, in mouse models of psoriasis and atopic dermatitis, both oral and topical formulations of FRTX-02 reduced inflammation and disease biomarkers in a dose-dependent manner. These results support further studies of DYRK1A inhibitors, including FRTX-02, as potential therapies for chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Soochan Kim
- R&D Center, Voronoi Inc., Incheon, South Korea
| | - Eunhwa Ko
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea,R&D Center, B2SBio Inc., Incheon, South Korea
| | - Hwan Geun Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea,R&D Center, B2SBio Inc., Incheon, South Korea
| | - Daekwon Kim
- R&D Center, Voronoi Inc., Incheon, South Korea
| | - Monica Luchi
- Fresh Tracks Therapeutics, Inc., Boulder, CO, 80301, USA,Corresponding author.
| | - Bernard Khor
- Benaroya Research Institute, Seattle, WA, 98195, USA
| | | |
Collapse
|
33
|
Bredel M, Kim H, Bonner JA. An ErbB Lineage Co-Regulon Harbors Potentially Co-Druggable Targets for Multimodal Precision Therapy in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms232113497. [PMID: 36362284 PMCID: PMC9658814 DOI: 10.3390/ijms232113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The ErbB lineage of oncogenic receptor tyrosine kinases is frequently overexpressed in head and neck squamous cell carcinomas. A common co-regulon triggered by the ErbB proteins; involving shared signaling circuitries; may harbor co-druggable targets or response biomarkers for potential future multimodal precision therapy in ErbB-driven head and neck squamous cell carcinoma. We here present a cohort-based; genome-wide analysis of 488 head and neck squamous cell carcinomas curated as part of The Cancer Genome Atlas Project to characterize genes that are significantly positively co-regulated with the four ErbB proteins and those that are shared among all ErbBs denoting a common ErbB co-regulon. Significant positive gene correlations involved hundreds of genes that were co-expressed with the four ErbB family members (q < 0.05). A common; overlapping co-regulon consisted of a core set of 268 genes that were uniformly co-regulated with all four ErbB genes and highly enriched for functions in chromatin organization and histone modifications. This high-priority set of genes contained ten putative antineoplastic drug-gene interactions. The nature and directionality of these ten drug-gene associations was an inhibiting interaction for seven (PIK3CB; PIK3C2B; HDAC4; FRK; PRKCE; EPHA4; and DYRK1A) of them in which the drug decreases the biological activity or expression of the gene target. For three (CHD4; ARID1A; and PBRM1) of the associations; the directionality of the interaction was such that the gene predicted sensitivit y to the drug suggesting utility as potential response biomarkers. Drug-gene interactions that predicted the gene product to be reduced by the drug included a variety of potential targeted molecular agent classes. This unbiased genome-wide analysis identified a target-rich environment for multimodal therapeutic approaches in tumors that are putatively ErbB-driven. The results of this study require preclinical validation before ultimately devising lines of combinatorial treatment strategies for ErbB-dependent head and neck squamous cell carcinomas that incorporate these findings.
Collapse
Affiliation(s)
- Markus Bredel
- Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (M.B.); (J.A.B.)
| | - Hyunsoo Kim
- Lineberger Comprehensive Cancer Center, University of Northern Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James A. Bonner
- Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (M.B.); (J.A.B.)
| |
Collapse
|
34
|
Deboever E, Fistrovich A, Hulme C, Dunckley T. The Omnipresence of DYRK1A in Human Diseases. Int J Mol Sci 2022; 23:ijms23169355. [PMID: 36012629 PMCID: PMC9408930 DOI: 10.3390/ijms23169355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023] Open
Abstract
The increasing population will challenge healthcare, particularly because the worldwide population has never been older. Therapeutic solutions to age-related disease will be increasingly critical. Kinases are key regulators of human health and represent promising therapeutic targets for novel drug candidates. The dual-specificity tyrosine-regulated kinase (DYRKs) family is of particular interest and, among them, DYRK1A has been implicated ubiquitously in varied human diseases. Herein, we focus on the characteristics of DYRK1A, its regulation and functional role in different human diseases, which leads us to an overview of future research on this protein of promising therapeutic potential.
Collapse
Affiliation(s)
- Estelle Deboever
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| | - Alessandra Fistrovich
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Travis Dunckley
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| |
Collapse
|
35
|
De Kesel J, Fijalkowski I, Taylor J, Ntziachristos P. Splicing dysregulation in human hematologic malignancies: beyond splicing mutations. Trends Immunol 2022; 43:674-686. [PMID: 35850914 DOI: 10.1016/j.it.2022.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Splicing is a fundamental process in pre-mRNA maturation. Whereas alternative splicing (AS) enriches the diversity of the proteome, its aberrant regulation can drive oncogenesis. So far, most attention has been given to spliceosome mutations (SMs) in the context of splicing dysregulation in hematologic diseases. However, in recent years, post-translational modifications (PTMs) and transcriptional alterations of splicing factors (SFs), just as epigenetic signatures, have all been shown to contribute to global splicing dysregulation as well. In addition, the contribution of aberrant splicing to the neoantigen repertoire of cancers has been recognized. With the pressing need for novel therapeutics to combat blood cancers, this article provides an overview of emerging mechanisms that contribute to aberrant splicing, as well as their clinical potential.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Igor Fijalkowski
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|