1
|
Andreassa NP, Suano-Souza FI, Sarni ROS. Fat Content and Energy Calculation in Pasteurized Human Milk: Comparison Between Infrared Analysis and Creamatocrit Method. Breastfeed Med 2024; 19:863-869. [PMID: 39263766 DOI: 10.1089/bfm.2024.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Aims: This study aimed to analyze and compare the quantity of energy and fat using the infrared analysis and creamatocrit method in pasteurized human milk (HM) samples. Methods: This cross-sectional study analyzed 1,858 pasteurized human samples from 317 mothers at a single center. Infrared transmission spectrophotometry (Miris, Human Milk Analyser [HMA], Uppsala, Sweden) and the creamatocrit method were used to evaluate the quantity of energy and fat in pasteurized HM samples. Results: The average age of donor mothers was 29.7 ± 5.1 years, and the median duration of lactation was 22 days (interquartile range [IQ]: 7.7-59.2). Full-term births were observed in 196 (95.1%) of the women. The values of energy (difference: +8.96 kcal/dL, 95% CI: 8.52-9.44 kcal/dL; p < 0.001) and fat (difference: +0.40 g/dL, 95% CI: 0.35-0.45 g/dL; p < 0.001) in HM samples obtained by Miris were higher than those by the creamatocrit method. The energy calculated and the fat measured by Miris in the HM samples correlated moderately and directly with the obtained by creamatocrit (fat, r = 0.585; p < 0.001 and energy, r = 0.591; p < 0.01). The linear regression, adjusted for maternal age and lactation time, showed that the energy values calculated by creamatocrit were directly associated with those of Miris (energy kcal/dL = 38.43 + [0.516 × kcal/dL of creamatocrit]). Conclusion: The energy and fat quantity of pasteurized HM samples obtained by the creamatocrit and infrared methods were significantly correlated. However, the values calculated by the creamatocrit method were significantly lower than those by the infrared analyzer.
Collapse
Affiliation(s)
| | - Fabiola Isabel Suano-Souza
- Department of Paediatrics, Centro Universitario FMABC, Sao Paulo, Brazil
- Department of Paediatrics, Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-UNIFESP), Sao Paulo, Brazil
- Multidisciplinary Nutritional Therapy Team, Hospital da Mulher de São Bernardo do Campo, Sao Paulo, Brazil
| | - Roseli Oselka Saccardo Sarni
- Department of Paediatrics, Centro Universitario FMABC, Sao Paulo, Brazil
- Department of Paediatrics, Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| |
Collapse
|
2
|
Litt JS, Belfort MB, Everson TM, Haneuse S, Tiemeier H. Neonatal multimorbidity and the phenotype of premature aging in preterm infants. Pediatr Res 2024:10.1038/s41390-024-03617-2. [PMID: 39455859 DOI: 10.1038/s41390-024-03617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Multimorbidity is the co-occurrence of multiple chronic health problems, associated with aging, frailty, and poor functioning. Children born preterm experience more multimorbid conditions in early life compared to term-born peers. Though neonatal multimorbidity is linked to poor health-related quality of life, functional outcomes, and peer group participation, gaps in our theoretical understanding and conceptualization remain. Drawing from life course epidemiology and the Developmental Origins of Heath and Disease models, we offer a framework that neonatal multimorbidity reflects maturational vulnerability posed by preterm birth. The impact of such vulnerability on health and development may be further amplified by adverse exposures and interventions within the environment of the neonatal intensive care unit. This can be exacerbated by disadvantaged home or community contexts after discharge. Uncovering the physiologic and social antecedents of multiple morbid conditions in the neonatal period and their biological underpinnings will allow for more accurate risk-prediction, counseling, and care planning for preterm infants and their families. According to this framework, the maturational vulnerability to multimorbidity imparted by preterm birth and its negative effects on health and development are not predetermined or static. Elucidating pathways of early biologic and physical aging will lead to improvements in care and outcomes. IMPACT: Multimorbidity is associated with significant frailty and dysfunction among older adults and is indicative of early physiologic aging. Preterm infants commonly experience multimorbidities in the newborn period, an underrecognized threat to long-term health and development. We offer a novel framework incorporating multimorbidity, early cellular aging, and life course health development to innovate risk-prediction, care-planning, and therapeutics.
Collapse
Affiliation(s)
- Jonathan S Litt
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, USA.
- Department of Pediatrics, Harvard Medical School, Boston, USA.
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, USA.
| | - Mandy Brown Belfort
- Department of Pediatrics, Harvard Medical School, Boston, USA
- Department of Pediatrics, Brigham and Women's Hospital, Boston, USA
| | - Todd M Everson
- Department of Environmental Health, Emory University, Atlanta, USA
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, USA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, USA
| |
Collapse
|
3
|
Sanderson KR, Wekon-Kemeni C, Charlton JR. From premature birth to premature kidney disease: does accelerated aging play a role? Pediatr Nephrol 2024; 39:2001-2013. [PMID: 37947901 PMCID: PMC11082067 DOI: 10.1007/s00467-023-06208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
As the limits of fetal viability have increased over the past 30 years, there has been a growing body of evidence supporting the idea that chronic disease should be taken into greater consideration in addition to survival after preterm birth. Accumulating evidence also suggests there is early onset of biologic aging after preterm birth. Similarly, chronic kidney disease (CKD) is also associated with a phenotype of advanced biologic age which exceeds chronologic age. Yet, significant knowledge gaps remain regarding the link between premature biologic age after preterm birth and kidney disease. This review summarizes the four broad pillars of aging, the evidence of premature aging following preterm birth, and in the setting of CKD. The aim is to provide additional plausible biologic mechanisms to explore the link between preterm birth and CKD. There is a need for more research to further elucidate the biologic mechanisms of the premature aging paradigm and kidney disease after preterm birth. Given the emerging research on therapies for premature aging, this paradigm could create pathways for prevention of advanced CKD.
Collapse
Affiliation(s)
- Keia R Sanderson
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA.
| | - Christel Wekon-Kemeni
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
- Division of Pediatric Nephrology, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Kotecha EA, Zhang L, Aboklaish A, Cousins M, Hart K, Kotecha SJ, Watkins WJ, Kotecha S. Association of early and current life factors with telomere length in preterm-born children. PLoS One 2023; 18:e0293589. [PMID: 37939053 PMCID: PMC10631654 DOI: 10.1371/journal.pone.0293589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Telomeres shorten after each cell division. Since preterm-born babies are delivered early and often suffer from inflammatory conditions such as bronchopulmonary dysplasia (BPD), their telomere length may be altered. OBJECTIVES We assessed associations of early and current life factors with telomere length in saliva samples obtained from 7-12-year-old children born at ≤34 weeks' gestation and term-born controls. STUDY DESIGN Relative telomere length was measured by qPCR on extracted DNA. Groups were compared using independent t-tests or ANOVA with post-hoc correction. Linear regression analysis was also used. RESULTS 534 children had satisfactory telomere data including 383 who were preterm-born (mean (SD) birthweight 1732g (558g), gestation 31.1 (2.6) weeks) and 151 term-born (3464g (510g); 39.8 (1.3) weeks). Telomere length was longer in children who had intrauterine growth restriction (IUGR) at birth: mean (SD): 464.6 (166.3) vs. 418.6 (110.7) in the no-IUGR group; in females: 440.2 (130.1) vs. 405.7 (101.5) in males; and in the least deprived group (397.8 (95.0) vs. 437.6 (121.9) most vs least deprivation quintile). Differences were most notable in females with IUGR. However, telomere length was not different between the preterm and term groups; the BPD and no BPD groups nor was it related to lung function or cardiovascular measurements. In multivariable regression analyses, telomere length was associated with sex, IUGR and deprivation with the greatest difference observed in females with IUGR. CONCLUSIONS Telomere length was associated with sex, IUGR and deprivation, especially in females with IUGR, but not with prematurity, BPD, lung function or cardiovascular measurements.
Collapse
Affiliation(s)
- Ella A. Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lei Zhang
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ali Aboklaish
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael Cousins
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Kylie Hart
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sarah J. Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - W. John Watkins
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sailesh Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
5
|
Bousquet A, Sanderson K, O’Shea TM, Fry RC. Accelerated Aging and the Life Course of Individuals Born Preterm. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1683. [PMID: 37892346 PMCID: PMC10605448 DOI: 10.3390/children10101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Individuals born preterm have shorter lifespans and elevated rates of chronic illness that contribute to mortality risk when compared to individuals born at term. Emerging evidence suggests that individuals born preterm or of low birthweight also exhibit physiologic and cellular biomarkers of accelerated aging. It is unclear whether, and to what extent, accelerated aging contributes to a higher risk of chronic illness and mortality among individuals born preterm. Here, we review accelerated aging phenotypes in adults born preterm and biological pathways that appear to contribute to accelerated aging. We highlight biomarkers of accelerated aging and various resiliency factors, including both pharmacologic and non-pharmacologic factors, that might buffer the propensity for accelerated aging among individuals born preterm.
Collapse
Affiliation(s)
- Audrey Bousquet
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (A.B.); (R.C.F.)
| | - Keia Sanderson
- Department of Internal Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (A.B.); (R.C.F.)
| |
Collapse
|
6
|
Teixeira V, Mohamed I, Lavoie JC. Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency. Antioxidants (Basel) 2023; 12:1361. [PMID: 37507901 PMCID: PMC10376486 DOI: 10.3390/antiox12071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In premature infants receiving parenteral nutrition, oxidative stress is a trigger for the development of bronchopulmonary dysplasia, which is an important factor in the development of adult lung diseases. Neonatal vitamin C and glutathione deficiency is suspected to induce permanent modification of redox metabolism favoring the development of neonatal and adult lung diseases. A total of 64 3-day-old guinea pigs were fed an oral diet that was either complete or deficient in vitamin C (VCD), cysteine (CD) (glutathione-limiting substrate) or both (DD) for 4 days. At 1 week of age, half of the animals were sacrificed while the other started a complete diet until 12 weeks of age. At 1 week, the decrease in lung GSH in all deficient groups was partially explained by the oxidation of liver methionine-adenosyltransferase. mRNA levels of kelch-like ECH-associated protein 1 (Keap1), glutathione-reductase (Gsr) and glutaredoxin-1 (Glrx) were significantly lower only in CD but not in DD. At 12 weeks, glutathione levels were increased in VCD and CD. Keap1, Gsr and Glrx mRNA were increased, while glutathione-reductase and glutaredoxin proteins were lower in CD, favoring a higher glutathionylation status. Both neonatal deficiencies result in a long-term change in glutathione metabolism that could contribute to lung diseases' development.
Collapse
Affiliation(s)
- Vitor Teixeira
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Ibrahim Mohamed
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Jean-Claude Lavoie
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
7
|
Modi N. The future of perinatal research. Eur J Pediatr 2023; 182:1935-1939. [PMID: 36305950 PMCID: PMC9615615 DOI: 10.1007/s00431-022-04671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Neena Modi
- Section of Neonatal Medicine, School of Public Health, Imperial College London, Chelsea and Westminster Hospital campus, 369 Fulham Road, SW10 9NH, London, UK.
| |
Collapse
|
8
|
DeFreitas MJ, Katsoufis CP, Benny M, Young K, Kulandavelu S, Ahn H, Sfakianaki A, Abitbol CL. Educational Review: The Impact of Perinatal Oxidative Stress on the Developing Kidney. Front Pediatr 2022; 10:853722. [PMID: 35844742 PMCID: PMC9279889 DOI: 10.3389/fped.2022.853722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress occurs when there is an imbalance between reactive oxygen species/reactive nitrogen species and antioxidant systems. The interplay between these complex processes is crucial for normal pregnancy and fetal development; however, when oxidative stress predominates, pregnancy related complications and adverse fetal programming such as preterm birth ensues. Understanding how oxidative stress negatively impacts outcomes for the maternal-fetal dyad has allowed for the exploration of antioxidant therapies to prevent and/or mitigate disease progression. In the developing kidney, the negative impact of oxidative stress has also been noted as it relates to the development of hypertension and kidney injury mostly in animal models. Clinical research addressing the implications of oxidative stress in the developing kidney is less developed than that of the neurodevelopmental and respiratory conditions of preterm infants and other vulnerable neonatal groups. Efforts to study the oxidative stress pathway along the continuum of the perinatal period using a team science approach can help to understand the multi-organ dysfunction that the maternal-fetal dyad sustains and guide the investigation of antioxidant therapies to ameliorate the global toxicity. This educational review will provide a comprehensive and multidisciplinary perspective on the impact of oxidative stress during the perinatal period in the development of maternal and fetal/neonatal complications, and implications on developmental programming of accelerated aging and cardiovascular and renal disease for a lifetime.
Collapse
Affiliation(s)
- Marissa J. DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
| | - Chryso P. Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
- Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Karen Young
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
- Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Hyunyoung Ahn
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Anna Sfakianaki
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Carolyn L. Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
9
|
Marlow N, Johnson S, Hurst JR. The extremely preterm young adult - State of the art. Semin Fetal Neonatal Med 2022; 27:101365. [PMID: 35710530 DOI: 10.1016/j.siny.2022.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently several studies have reported adult outcomes for individuals born at extremely low gestations, although they tend to be included as part of slightly more mature populations. The growth in collaborative studies allows greater confidence in the identification of persisting risk and allows us to have confidence in the likely outcomes in more contemporary cohorts. This review shows the persistence of adverse outcomes through to adult life and includes a range of outcomes including all body systems evaluated. Nonetheless adult outcomes demonstrate that most survivors appear to be free of major disabling conditions and demonstrate good participation in society. Several studies have reported outcomes in the third decade, but subsequent ageing trajectories have not yet been defined. The stability of many of the outcomes evaluated over childhood into adult life and the lack of improvement in prevalence of childhood impairments found in contemporary cohorts indicates persisting levels of risk.
Collapse
Affiliation(s)
- Neil Marlow
- Neonatal Medicine, UCL Institute for Women's Health, University College London, London, UK.
| | - Samantha Johnson
- Child Development, Department of Health Sciences, University of Leicester, Leicester, UK
| | - John R Hurst
- Respiratory Medicine, UCL Respiratory, University College London, London, UK
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.
Collapse
|
11
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Telomere biology is an emerging area of scientific interest. Telomeres are deoxynucleic acid caps at the ends of chromosomes that naturally shorten over one's lifespan; because of this, short telomeres have been studied as a marker of cellular aging. Given the association between short telomeres and genetic and environmental factors, their role in pregnancy has become an intriguing area of research. RECENT FINDINGS This review describes recent data on telomeres in pregnancy. Specifically, we discuss the association between short maternal leukocyte telomeres and poor nutritional status, between short neonatal telomeres and greater maternal psychosocial stress, and between shorter fetal amniotic membrane telomeres and the spontaneous onset of parturition. We also review recent studies suggesting that events during pregnancy can impact telomeres in the offspring years into the future. SUMMARY Telomere length varies in maternal, placental, and neonatal cells, but within each of these compartments telomeres may play their own distinct role during pregnancy. Whether telomeres are reflective of the cumulative impact of stressors, or part of an as-yet unknown fetal programming mechanism is an area of interest. With future research, we may work toward a better understanding of gestational biology which could have far reaching intergenerational impacts.
Collapse
Affiliation(s)
- Danielle M. Panelli
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Katherine BIANCO
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Modi N, Conti G, Hanson M. Post-COVID economic recovery: women and children first … or last? Arch Dis Child 2022; 107:214-215. [PMID: 33504473 DOI: 10.1136/archdischild-2020-320898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Neena Modi
- Section of Neonatal Medicine, School of Public Health, Imperial College London, London, UK
| | - Gabriella Conti
- Department of Economics and Social Research Institute, University College London, London, UK
| | - Mark Hanson
- Institute of Developmental Sciences and NIHR Biomedical Research Centre, University of Southampton School of Medicine, Southampton, UK
| |
Collapse
|
14
|
Vivi ACP, Azevedo-Silva TR, Neri D, Strufaldi MWL, Lebrão CW, Fonseca FLA, Sarni ROS, Suano-Souza FI. Association between ultra-processed food intake and C-reactive protein levels in preterm and term infants Ultra-processed food intake and inflammation in infants. Nutrition 2022; 99-100:111649. [DOI: 10.1016/j.nut.2022.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
15
|
Letzkus L, Conaway M, Miller-Davis C, Darring J, Keim-Malpass J, Zanelli S. A feasibility randomized controlled trial of a NICU rehabilitation program for very low birth weight infants. Sci Rep 2022; 12:1729. [PMID: 35110644 PMCID: PMC8810863 DOI: 10.1038/s41598-022-05849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
Motor disability is common in children born preterm. Interventions focusing on environmental enrichment and emotional connection can positively impact outcomes. The NICU-based rehabilitation (NeoRehab) program consists of evidence-based interventions provided by a parent in addition to usual care. The program combines positive sensory experiences (vocal soothing, scent exchange, comforting touch, skin-to-skin care) as well as motor training (massage and physical therapy) in a gestational age (GA) appropriate fashion. To investigate the acceptability, feasibility and fidelity of the NeoRehab program in very low birthweight (VLBW) infants. All interventions were provided by parents in addition to usual care. Infants (≤ 32 weeks' GA and/or ≤ 1500 g birthweight) were enrolled in a randomized controlled trial comparing NeoRehab to usual care (03/2019-10/2020). The a priori dosing goal was for interventions to be performed 5 days/week. The primary outcomes were the acceptability, feasibility and fidelity of the NeoRehab program. 36 participants were randomized to the intervention group and 34 allocated to usual care. The recruitment rate was 71% and retention rate 98%. None of the interventions met the 5 days per week pre-established goal. 97% of participants documented performing a combination of interventions at least 3 times per week. The NeoRehab program was well received and acceptable to parents of VLBW infants. Programs that place a high demand on parents (5 days per week) are not feasible and goals of intervention at least 3 times per week appear to be feasible in the context of the United States. Parent-provided motor interventions were most challenging to parents and alternative strategies should be considered in future studies. Further studies are needed to evaluate the relationship between intervention dosing on long term motor outcomes.
Collapse
Affiliation(s)
- Lisa Letzkus
- Division of Developmental Pediatrics, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA.
- University of Virginia Children's Hospital, PO BOX 800828, Charlottesville, VA, 22908, USA.
| | - Mark Conaway
- Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | | | - Jodi Darring
- Division of Developmental Pediatrics, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | - Santina Zanelli
- Division of Neonatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Kelly C, Ball G, Matthews LG, Cheong JL, Doyle LW, Inder TE, Thompson DK, Anderson PJ. Investigating brain structural maturation in children and adolescents born very preterm using the brain age framework. Neuroimage 2021; 247:118828. [PMID: 34923131 DOI: 10.1016/j.neuroimage.2021.118828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Very preterm (VP) birth is associated with an increased risk for later neurodevelopmental and behavioural challenges. Although the neurobiological underpinnings of such challenges continue to be explored, previous studies have reported brain volume and morphology alterations in children and adolescents born VP compared with full-term (FT)-born controls. How these alterations relate to the trajectory of brain maturation, with potential implications for later brain ageing, remains unclear. In this longitudinal study, we investigate the relationship between VP birth and brain development during childhood and adolescence. We construct a normative 'brain age' model to predict age over childhood and adolescence based on measures of brain cortical and subcortical volumes and cortical morphology from structural MRI of a dataset of typically developing children aged 3-21 years (n = 768). Using this model, we examined deviations from normative brain development in a separate dataset of children and adolescents born VP (<30 weeks' gestation) at two timepoints (ages 7 and 13 years) compared with FT-born controls (120 VP and 29 FT children at age 7 years; 140 VP and 47 FT children at age 13 years). Brain age delta (brain-predicted age minus chronological age) was, on average, higher in the VP group at both timepoints compared with controls, however this difference had a small to medium effect size and was not statistically significant. Variance in brain age delta was higher in the VP group compared with controls; this difference was significant at the 13-year timepoint. Within the VP group, there was little evidence of associations between brain age delta and perinatal risk factors or cognitive and motor outcomes. Under the brain age framework, our results may suggest that children and adolescents born VP have similar brain structural developmental trajectories to term-born peers between 7 and 13 years of age.
Collapse
Affiliation(s)
- Claire Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Lillian G Matthews
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
17
|
Singer D, Thiede LP, Perez A. Adults Born Preterm: Long-Term Health Risks of Former Very Low Birth Weight Infants. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:521-527. [PMID: 33734986 DOI: 10.3238/arztebl.m2021.0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/02/2020] [Accepted: 02/22/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Advances in neonatology now enable increasing numbers of very low birth weight neonates (<1500 g) to survive into early adulthood and beyond. What are the implications for their long-term care? METHODS Selective literature search on the outcome of very low birth weight neonates in adulthood ("adults born preterm"). RESULTS Robust data are available on the pulmonary, metabolic, cardiovascular, renal, neurocognitive, sensory-visual, social-emotional, mental, reproductive, and musculoskeletal long-term risks. On the somatic level, elevated rates have been documented for asthma (odds Ratio [OR] 2.37), diabetes mellitus (OR 1.54), and chronic renal disease (hazard ratio [HR] 3.01), along with the cardiovascular and cerebrovascular sequelae of a tendency toward arterial hypertension. On the psychosocial level, the main findings are deficits in romantic partnerships (OR 0.72) and a lower reproduction rate (relative risk [RR] male/female 0.24/0.33). The affected women also have an elevated risk of preterm delivery. CONCLUSION A risk profile with both somatic and psychosocial aspects can be discerned for adults who were born prematurely, even if some of these risks are present in low absolute numbers. As the ability to compensate for latent deficits declines with age, such adults may suffer from "premature aging as the late price of premature birth." A holistic approach to care with personalized prevention strategies-which for most of them was discontinued at discharge from pediatric follow-up-therefore seems appropriate in adulthood as well.
Collapse
|
18
|
Liu Y, Basty N, Whitcher B, Bell JD, Sorokin EP, van Bruggen N, Thomas EL, Cule M. Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. eLife 2021; 10:e65554. [PMID: 34128465 PMCID: PMC8205492 DOI: 10.7554/elife.65554] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiometabolic diseases are an increasing global health burden. While socioeconomic, environmental, behavioural, and genetic risk factors have been identified, a better understanding of the underlying mechanisms is required to develop more effective interventions. Magnetic resonance imaging (MRI) has been used to assess organ health, but biobank-scale studies are still in their infancy. Using over 38,000 abdominal MRI scans in the UK Biobank, we used deep learning to quantify volume, fat, and iron in seven organs and tissues, and demonstrate that imaging-derived phenotypes reflect health status. We show that these traits have a substantial heritable component (8-44%) and identify 93 independent genome-wide significant associations, including four associations with liver traits that have not previously been reported. Our work demonstrates the tractability of deep learning to systematically quantify health parameters from high-throughput MRI across a range of organs and tissues, and use the largest-ever study of its kind to generate new insights into the genetic architecture of these traits.
Collapse
Affiliation(s)
- Yi Liu
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | | | | | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | - Madeleine Cule
- Calico Life Sciences LLCSouth San FranciscoUnited States
| |
Collapse
|
19
|
Modi N. The implications of routine milk fortification for the short and long-term health of preterm babies. Semin Fetal Neonatal Med 2021; 26:101216. [PMID: 33714708 DOI: 10.1016/j.siny.2021.101216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fortification refers to the practice of enriching human milk feeds for very preterm babies with macronutrients, minerals and vitamins. Though standard of care in some parts of the world, adoption of fortification is not universal. Fortification entered into use on the assumption that human milk macronutrient content, principally protein, is insufficient to support the growth and development of very preterm babies. However, because of the substantial variability in human milk composition, routine fortification risks exposing some babies to very high protein intakes, which may be dangerous. Some clinicians fear fortification with cow-milk derived products will increase the risk of necrotising enterocolitis, leading them to favour commercial fortifiers made from pooled human milk over cow milk based products, a practice that has additional ethical implications. Randomised controlled trials of multi-nutrient fortification to-date are inadequate. No trial has had power to detect important functional effects; the majority are methodologically weak and focus primarily upon short-term growth. Evidence to guide practice is inadequate. There is an urgent need for collaboration to conduct high-quality research to end these long-standing uncertainties.
Collapse
Affiliation(s)
- Neena Modi
- Imperial College London, Chelsea and Westminster Hospital campus, 369 Fulham Road, London, SW10 9NH, UK.
| |
Collapse
|
20
|
Affiliation(s)
- Neena Modi
- Imperial College London, Chelsea and Westminster campus, London SW10 9NH, UK
| | | |
Collapse
|
21
|
Jobe AH, Schmidt AF. Chapter for antenatal steroids - Treatment drift for a potent therapy with unknown long-term safety seminars in fetal and neonatal medicine. Semin Fetal Neonatal Med 2021; 26:101231. [PMID: 33773951 DOI: 10.1016/j.siny.2021.101231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter on therapeutic drift with antenatal steroids will make the case that this pilar of treatment to improve the outcomes of preterm infants, despite multiple Randomized Control Trials (RCTs) and meta-analysis, has multiple gaps in solid clinical data to support any expanded use of Antenatal Corticosteroids (ACS). A basic problem is that agents used for ACS have never been evaluated to minimize fetal exposures. Based on the premise that all drug exposure to the fetus should be minimized and only used when necessary, ACS is a potent developmental modulator that has never been evaluated to minimize the dose and duration of fetal exposure. The use of ACS is expanding to late preterm infants where the benefit is modest, to elective C-sections, and periviable fetuses, with minimal RCT data of long-term benefit. Relevant animal experiments demonstrate that much lower doses will induce lung maturation in sheep and primates. Another area of drift in the use of ACS is based on the assumption that the old RCT data accurately predict the magnitude of benefit when ACS is used today with entirely different OB and neonatal care strategies to improve outcomes. We do not have data that demonstrate the effectiveness of ACS in very low resource environments, where most of the preterm mortality occurs. The final concern is the risk of ACS to the infant and child. Short-term risks are minimal but dysmaturation effects of ACS on multiple organ systems (lung, heart, brain, and kidney) may result in disease presentation in later life.
Collapse
Affiliation(s)
- Alan H Jobe
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| | - Augusto F Schmidt
- The University of Miami, Miller School of Medicine, Coral Gables, FL, 33124, USA.
| |
Collapse
|
22
|
Modi N, Hanson M. Maternal, neonatal, and child health is essential for meeting SDG 3.4. Lancet 2020; 396:1731-1732. [PMID: 33125929 DOI: 10.1016/s0140-6736(20)32222-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | - Mark Hanson
- Institute of Developmental Sciences and National Institute of Health Research Biomedical Research Centre, University of Southampton, Southampton, UK; University Hospital Southampton, Southampton, UK.
| |
Collapse
|
23
|
Prior E, Modi N. Adult outcomes after preterm birth. Postgrad Med J 2020; 96:619-622. [DOI: 10.1136/postgradmedj-2020-137707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 11/04/2022]
Abstract
Extremely preterm birth reflects global disruption of the third trimester environment. Young adults born preterm have an adverse cardiovascular and metabolic health profile, together with molecular evidence of accelerated ageing and a reduced life expectancy. The underlying mechanism for these observations is unknown. This review summarises recent evidence of the lifetime effects of preterm birth and highlights the risks survivors face.
Collapse
|