1
|
Carter SWD, Kemp MW. A review of the potential off-target effects of antenatal steroid exposures on fetal development. J Dev Orig Health Dis 2025; 16:e18. [PMID: 40135629 DOI: 10.1017/s2040174425000078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Antenatal steroids (ANS) are one of the most widely prescribed medications in pregnancy, being administered to women at risk of preterm delivery. In the setting of preterm delivery at or below 35 weeks' gestation, systematic review data show ANS reduce perinatal morbidity and mortality, primarily by promoting fetal lung maturation. However, with the expanding use of this intervention has come a growing appreciation for the potential off-target, adverse effects of ANS therapy on wider fetal development. We undertook a narrative literature review of the animal and clinical literature to assess current evidence for adverse effects of ANS exposure and fetal development. This review presents a summary of the evidence relating to the potential for wide-ranging, off-target, adverse effects of ANS therapy on fetal development and programming. We highlight an urgent need for further animal and clinical studies investigating the effects of ANS on the fetal immune, cardiovascular, renal and hepatic systems given a current sparsity of evidence. We also strongly suggest an emphasis on open disclosure, discussion and education of clinicians and patients with regard to the potential benefits and risks of ANS therapy, particularly in late preterm and term gestations where infants derive relatively few benefits from these drugs. We also propose further studies on the optimisation of ANS therapy through improved patient selection and improved dosing regimens based on a pharmacokinetic-pharmacodynamic informed understanding of ANS action on the fetal lung.
Collapse
Affiliation(s)
- Sean W D Carter
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- King Edward Memorial Hospital, Perth, Western Australia, Australia
- Women and Infants Research Foundation, Perth, Western Australia, Australia
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- Women and Infants Research Foundation, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
2
|
Fee EL, Usuda H, Carter SWD, Ikeda H, Takahashi T, Takahashi Y, Kumagai Y, Clarke MW, Ireland DJ, Newnham JP, Saito M, Illanes SE, Sesurajan BP, Shen L, Choolani MA, Oguz G, Ramasamy A, Ritchie S, Ritchie A, Jobe AH, Kemp MW. Single-nucleotide polymorphisms in dizygotic twin ovine fetuses are associated with discordant responses to antenatal steroid therapy. BMC Med 2025; 23:65. [PMID: 39901164 PMCID: PMC11792249 DOI: 10.1186/s12916-025-03910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Antenatal steroid (ANS) therapy is given to women at risk of preterm delivery to accelerate fetal lung maturation. However, the benefit of ANS therapy is variable and how maternal and fetal factors contribute to this observed variability is unknown. We aimed to test the degree of concordance in preterm lung function, and correlate this with genomic, transcriptomic, and pharmacokinetic variables in preterm dizygotic twin ovine fetuses. METHODS Thirty-one date-mated ewes carrying twin fetuses at 123 ± 1 days' gestation received maternal intramuscular injections of either (i) 1 × 0.25 mg/kg betamethasone phosphate and acetate (CS1, n = 11 twin pairs) or (ii) 2 × 0.25 mg/kg betamethasone phosphate and acetate, 24 h apart (CS2, n = 10 twin pairs) or (iii) 2 × saline, 24 h apart (negative control, n = 10 twin pairs). Fetuses were surgically delivered 24 h after their final treatment and ventilated for 30 min. RESULTS ANS-exposed female fetuses had lower arterial partial pressure of carbon dioxide (PaCO2) values than male fetuses (76.5 ± 38.0 vs. 97.2 ± 42.5 mmHg), although the observed difference was not statistically significant (p = 0.1). Only 52% of ANS-treated twins were concordant for lung maturation responses. There was no difference in fetal lung tissue or plasma steroid concentrations within or between twin pairs. Genomic analysis identified 13 single-nucleotide polymorphisms (SNPs) statistically associated with ANS-responsiveness, including in the proto-oncogene MET and the transcription activator STAT1. CONCLUSIONS Twin fetal responses and ANS tissue levels were comparable with those from singleton fetuses in earlier studies. Twin ovine fetuses thus benefit from ANS in a similar manner to singleton fetuses, and a larger dose of betamethasone is not required. Assuming no difference in input from the placental or maternal compartments, fetal lung responses to ANS therapy in dizygotic twin preterm lambs are dependent on the fetus itself. These data suggest a potential heritable role in determining ANS responsiveness.
Collapse
Affiliation(s)
- Erin L Fee
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia.
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sean W D Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hideyuki Ikeda
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tsukasa Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael W Clarke
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Center for Microscopy, Characterization and Analysis, Metabolomics Australia, The University of Western Australia, Perth, WA, Australia
| | - Demelza J Ireland
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - John P Newnham
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sebastian E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Binny Priya Sesurajan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Liang Shen
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gokce Oguz
- Genome Institute of Singapore. Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, Singapore
| | - Adaikalavan Ramasamy
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore. Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, Singapore
| | | | | | - Alan H Jobe
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Matthew W Kemp
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
- Women and Children's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Van Der Heijden JEM, Van Hove H, Van Elst NM, Van Den Broek P, Van Drongelen J, Scheepers HCJ, De Wildt SN, Greupink R. Optimization of the betamethasone and dexamethasone dosing regimen during pregnancy: a combined placenta perfusion and pregnancy physiologically based pharmacokinetic modeling approach. Am J Obstet Gynecol 2025; 232:228.e1-228.e9. [PMID: 38763343 DOI: 10.1016/j.ajog.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Antenatal betamethasone and dexamethasone are prescribed to women who are at high risk of premature birth to prevent neonatal respiratory distress syndrome (RDS). The current treatment regimens, effective to prevent neonatal RDS, may be suboptimal. Recently, concerns have been raised regarding possible adverse long-term neurological outcomes due to high fetal drug exposures. Data from nonhuman primates and sheep suggest maintaining a fetal plasma concentration above 1 ng/mL for 48 hours to retain efficacy, while avoiding undesirable high fetal plasma levels. OBJECTIVE We aimed to re-evaluate the current betamethasone and dexamethasone dosing strategies to assess estimated fetal exposure and provide new dosing proposals that meet the efficacy target but avoid excessive peak exposures. STUDY DESIGN A pregnancy physiologically based pharmacokinetic (PBPK) model was used to predict fetal drug exposures. To allow prediction of the extent of betamethasone and dexamethasone exposure in the fetus, placenta perfusion experiments were conducted to determine placental transfer. Placental transfer rates were integrated in the PBPK model to predict fetal exposure and model performance was verified using published maternal and fetal pharmacokinetic data. The verified pregnancy PBPK models were then used to simulate alternative dosing regimens to establish a model-informed dose. RESULTS Ex vivo data showed that both drugs extensively cross the placenta. For betamethasone 15.7±1.7% and for dexamethasone 14.4±1.5%, the initial maternal perfusate concentration reached the fetal circulations at the end of the 3-hour perfusion period. Pregnancy PBPK models that include these ex vivo-derived placental transfer rates accurately predicted maternal and fetal exposures resulting from current dosing regimens. The dose simulations suggest that for betamethasone intramuscular, a dose reduction from 2 dosages 11.4 mg, 24 hours apart, to 4 dosages 1.425 mg, 12 hours apart would avoid excessive peak exposures and still meet the fetal response threshold. For dexamethasone, the dose may be reduced from 4 times 6 mg every 12 hours to 8 times 1.5 mg every 6 hours. CONCLUSION A combined placenta perfusion and pregnancy PBPK modeling approach adequately predicted both maternal and fetal drug exposures of 2 antenatal corticosteroids (ACSs). Strikingly, our PBPK simulations suggest that drug doses might be reduced drastically to still meet earlier proposed efficacy targets and minimize peak exposures. We propose the provided model-informed dosing regimens are used to support further discussion on an updated ACS scheme and design of clinical trials to confirm the effectiveness and safety of lower doses.
Collapse
Affiliation(s)
- Joyce E M Van Der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Hedwig Van Hove
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niki M Van Elst
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra Van Den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joris Van Drongelen
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hubertina C J Scheepers
- Department of Obstetrics and Gynecology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Saskia N De Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatric and Neonatal Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Jobe AH. Respiratory distress syndrome is the poster child for neonatology. Pediatr Res 2025:10.1038/s41390-024-03723-1. [PMID: 39821130 DOI: 10.1038/s41390-024-03723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 01/19/2025]
Affiliation(s)
- Alan H Jobe
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
van der Heijden JEM, de Wildt SN, Greupink R. Physiologically based pharmacokinetic modeling to guide dose optimization in obstetrical pharmacology clinical trials: a response. Am J Obstet Gynecol 2025; 232:e23. [PMID: 39084499 DOI: 10.1016/j.ajog.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Joyce E M van der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatric and Neonatal Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Bart Y, Chauhan SP, Fishel Bartal M, Blackwell S, Sibai BM. Equivalence of single and standard doses of antenatal corticosteroids for late preterm neonatal outcomes: insights from a secondary analysis. Am J Obstet Gynecol 2024; 231:645.e1-645.e7. [PMID: 38588964 DOI: 10.1016/j.ajog.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The recent paradigm shift of treating individuals at risk of late preterm birth with antenatal corticosteroids warrants an assessment of the effect of single dosage. OBJECTIVE To compare outcomes of neonates born in the late preterm period (34.0-36.6 weeks) after a single dose of antenatal corticosteroids vs placebo. STUDY DESIGN We performed a secondary analysis of the Antenatal Late Preterm Steroids trial. All individuals enrolled in the parent trial who received only a single dose of either antenatal corticosteroids or placebo and delivered within 24 hours were included. Primary outcome was a composite of respiratory support at 72 hours, including continuous positive airway pressure or high-flow nasal cannula ≥2 hours, oxygen with an inspired fraction of ≥30% for ≥4 hours, or mechanical ventilation. RESULTS Of the 2831 individuals in the parent trial, 1083 (38.3%) met inclusion criteria; of them, 539 (49.8%) received a single dose of antenatal corticosteroids and 544 (50.2%) a single placebo dose. The placebo and antenatal corticosteroids groups had similar demographic and clinical characteristics. There was no difference in the rate of the primary respiratory outcome (adjusted risk ratio, 1.12; 95% confidence interval, 0.85-1.47) or in the rate of respiratory distress syndrome (adjusted risk ratio, 1.47; 95% confidence interval, 0.95-2.26) between those who received a single antenatal corticosteroids dose and placebo. An exploratory stratification by randomization-to-delivery intervals of 12-hour increments also showed no association with lower primary respiratory outcome rates. CONCLUSION In individuals with late preterm birth pregnancies who received antenatal corticosteroids and delivered before a second dose, there were no differences in neonatal respiratory morbidities compared with placebo. However, this study is not powered to detect treatment efficacy.
Collapse
Affiliation(s)
- Yossi Bart
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at UTHealth Houston, Houston, TX.
| | - Suneet P Chauhan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at UTHealth Houston, Houston, TX
| | - Michal Fishel Bartal
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at UTHealth Houston, Houston, TX; Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sean Blackwell
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at UTHealth Houston, Houston, TX
| | - Baha M Sibai
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at UTHealth Houston, Houston, TX
| |
Collapse
|
7
|
Gosavi A, Amin Z, Carter SWD, Choolani MA, Fee EL, Milad MA, Jobe AH, Kemp MW. Antenatal corticosteroids in Singapore: a clinical and scientific assessment. Singapore Med J 2024; 65:479-487. [PMID: 36254928 PMCID: PMC11479002 DOI: 10.4103/singaporemedj.smj-2022-014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
ABSTRACT Preterm birth (PTB; delivery prior to 37 weeks' gestation) is the leading cause of early childhood death in Singapore today. Approximately 9% of Singaporean babies are born preterm; the PTB rate is likely to increase given the increased use of assisted reproduction technologies, changes in the incidence of gestational diabetes/high body mass index and the ageing maternal population. Antenatal administration of dexamethasone phosphate is a key component of the obstetric management of Singaporean women who are at risk of imminent preterm labour. Dexamethasone improves preterm outcomes by crossing the placenta to functionally mature the fetal lung. The dexamethasone regimen used in Singapore today affords a very high maternofetal drug exposure over a brief period of time. Drawing on clinical and experimental data, we reviewed the pharmacokinetic profile and pharmacodynamic effects of dexamethasone treatment regimen in Singapore, with a view to creating a development pipeline for optimising this critically important antenatal therapy.
Collapse
Affiliation(s)
- Arundhati Gosavi
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zubair Amin
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sean William David Carter
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Mahesh Arjandas Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Erin Lesley Fee
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Mark Amir Milad
- Milad Pharmaceutical Consulting LLC, Plymouth, Michigan, USA
| | - Alan Hall Jobe
- Perinatal Research, Department of Pediatrics, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew Warren Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
8
|
Carter SWD, Fee EL, Usuda H, Oguz G, Ramasamy A, Amin Z, Agnihotri B, Wei Q, Xiawen L, Takahashi T, Takahashi Y, Ikeda H, Kumagai Y, Saito Y, Saito M, Mattar C, Evans MI, Illanes SE, Jobe AH, Choolani M, Kemp MW. Antenatal steroids elicited neurodegenerative-associated transcriptional changes in the hippocampus of preterm fetal sheep independent of lung maturation. BMC Med 2024; 22:338. [PMID: 39183288 PMCID: PMC11346182 DOI: 10.1186/s12916-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Antenatal steroid therapy for fetal lung maturation is routinely administered to women at risk of preterm delivery. There is strong evidence to demonstrate benefit from antenatal steroids in terms of survival and respiratory disease, notably in infants delivered at or below 32 weeks' gestation. However, dosing remains unoptimized and lung benefits are highly variable. Current treatment regimens generate high-concentration, pulsatile fetal steroid exposures now associated with increased risk of childhood neurodevelopmental diseases. We hypothesized that damage-associated changes in the fetal hippocampal transcriptome would be independent of preterm lung function. METHODS Date-mated ewes carrying a single fetus at 122 ± 2dGA (term = 150dGA) were randomized into 4 groups: (i) Saline Control Group, 4×2ml maternal saline intramuscular(IM) injections at 12hr intervals (n = 11); or (ii) Dex High Group, 2×12mg maternal IM dexamethasone phosphate injections at 12hr intervals followed by 2×2ml IM saline injections at 12hr intervals (n = 12; representing a clinical regimen used in Singapore); or (iii) Dex Low Group, 4×1.5mg maternal IM dexamethasone phosphate injections 12hr intervals (n = 12); or (iv) Beta-Acetate Group, 1×0.125mg/kg maternal IM betamethasone acetate injection followed by 3×2ml IM sterile normal saline injections 12hr intervals (n = 8). Lambs were surgically delivered 48hr after first maternal injection at 122-125dGA, ventilated for 30min to establish lung function, and euthanised for necropsy and tissue collection. RESULTS Preterm lambs from the Dex Low and Beta-Acetate Groups had statistically and biologically significant lung function improvements (measured by gas exchange, lung compliance). Compared to the Saline Control Group, hippocampal transcriptomic data identified 879 differentially significant expressed genes (at least 1.5-fold change and FDR < 5%) in the steroid-treated groups. Pulsatile dexamethasone-only exposed groups (Dex High and Dex Low) had three common positively enriched differentially expressed pathways related in part to neurodegeneration ("Prion Disease", "Alzheimer's Disease", "Arachidonic Acid metabolism"). Adverse changes were independent of respiratory function during ventilation. CONCLUSIONS Our data suggests that exposure to antenatal steroid therapy is an independent cause of damage- associated transcriptomic changes in the brain of preterm, fetal sheep. These data highlight an urgent need for careful reconsideration and balancing of how antenatal steroids are used, both for patient selection and dosing regimens.
Collapse
Affiliation(s)
- Sean W D Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Gokce Oguz
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Zubair Amin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neonatology Khoo Teck Puat, National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Biswas Agnihotri
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neonatology Khoo Teck Puat, National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Qin Wei
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Liu Xiawen
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hideyuki Ikeda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuya Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Citra Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Mark I Evans
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Fetal Medicine Foundation of America, New York, NY, USA
| | - Sebastián E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Reproductive Biology Program, Center for Biomedical Research and Innovation, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Alan H Jobe
- Centre for Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Women and Infants Research Foundation, Perth, WA, Australia
| |
Collapse
|
9
|
Koldeweij CJM, Dibbets AC, Ceulemans M, de Vries LC, Franklin BD, Scheepers HCJ, de Wildt SN. Willingness-to-use and preferences for model-informed antenatal doses: a cross-sectional study among European healthcare practitioners and pregnant women. Front Pharmacol 2024; 15:1403747. [PMID: 39211781 PMCID: PMC11358599 DOI: 10.3389/fphar.2024.1403747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Physiological changes in pregnancy may affect drug safety and efficacy, sometimes requiring dose adjustments. Pregnancy-adjusted doses, however, are missing for most medications. Increasingly, pharmacokinetic models can be used for antenatal dose finding. Given the novelty of this technique and questions regarding dose credibility, the acceptability of model-informed antenatal doses should be explored. Objective: We aimed to assess the willingness-to-use and preferred features for model-informed antenatal doses among healthcare practitioners (HCPs) and pregnant women in European countries. Methods: A cross-sectional, web-based study drawing on two open surveys was performed between 8 September and 30 November 2022. Each survey comprised statements drawn from prior focus groups, associated with Likert-scales. Themes included respondents' information needs, search behaviours along with their willingness-to-use and preferred features for model-informed antenatal doses. The surveys were disseminated through professional societies, pregnancy websites and social media. A descriptive analysis was performed. Results: In total, 608 HCPs from different specialties and 794 pregnant women across 15 countries participated, with 81% of respondents across both groups in the Netherlands or Belgium. Among pregnant women, 31% were medical professionals and 85% used medication during pregnancy. Eighty-three percent of HCPs found current antenatal pharmacotherapy suboptimal and 97% believed that model-informed antenatal doses would enhance the quality of antenatal care. Most HCPs (93%) and pregnant women (75%) would be willing to follow model-informed antenatal doses. Most HCPs desired access to the evidence (88%), including from pharmacokinetic modelling (62%). Most pregnant women (96%) wanted to understand antenatal dosing rationales and to be involved in dosing decisions (97%). Conclusion: The willingness-to-use model-informed antenatal doses is high among HCPs and pregnant women provided that certain information needs are met.
Collapse
Affiliation(s)
- C. J. M. Koldeweij
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - A. C. Dibbets
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - M. Ceulemans
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KULeuven, Belgium
- IQ Health, Radboud University Medical Center, Nijmegen, Netherlands
- L-C&Y, KU Leuven Child and Youth Institute, Leuven, Belgium
| | - L. C. de Vries
- Teratology Information Service, Netherlands Pharmacovigilance Centre Lareb, S’Hertogenbosch, Netherlands
| | - B. D. Franklin
- Centre for Medication Safety and Service Quality, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Practice and Policy, UCL School of Pharmacy, London, United Kingdom
| | - H. C. J. Scheepers
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
- Grow, School for Oncology and Reproduction, Maastricht, Netherlands
| | - S. N. de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Paediatric and Neonatal Intensive Care, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
10
|
Al-Abdi SY, Al-Aamri M. The Potential of Ambroxol as a Panacea for Neonatal Diseases: A Scoping Review. Cureus 2024; 16:e67977. [PMID: 39347262 PMCID: PMC11427714 DOI: 10.7759/cureus.67977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ambroxol, a commonly used mucolytic agent, has been extensively studied for its clinical effectiveness in managing respiratory conditions in pediatric and adult patients. The existing body of research on ambroxol demonstrates its safety and efficacy. However, its potential role in preventing and treating neonatal diseases still needs to be explored. This scoping review aims to shed light on the unexplored potential of ambroxol, particularly its applications in perinatal and neonatal care. We aim to offer valuable insights for healthcare professionals, researchers, and academics, thus presenting a positive perspective. Key scientific databases such as Google Scholar, PubMed, Cochrane Library, and Europe PMC were meticulously searched for relevant literature on ambroxol in perinatal and neonatal medicine. Gray literature was also surveyed, and the search encompassed all study designs and languages up to June 2024. Furthermore, citations and reference lists of relevant articles were scrutinized to identify additional pertinent literature. Ambroxol has demonstrated promising effects in preventing and managing respiratory distress syndrome (RDS). It can enter the placental circulation and rapidly build up in human lung tissue to a much greater extent than in plasma. It promotes fetal lung maturation, surfactant production, and alveolar expansion. Numerous studies have demonstrated the efficacy of antenatal and postnatal ambroxol in the prevention and treatment of RDS. Ambroxol has the potential to be administered intravenously or through nebulization, offering the hopeful possibility of reducing the high failure rate typically associated with non-invasive ventilation in extremely preterm infants, instilling a sense of hope and optimism about the potential of ambroxol. It also shows potential in treating bronchopulmonary dysplasia, meconium aspiration syndrome, and neonatal infections. Ambroxol has been observed to assist in the closure of patent ductus arteriosus in preterm infants by inhibiting vasodilator agents such as nitric oxide and exerting vasoconstrictive properties. However, these biological actions may raise concerns regarding the potential induction of pulmonary hypertension and an increased risk of necrotizing enterocolitis. The present scoping review also examines the clinical evidence and the potential of ambroxol in reducing the incidence of intraventricular hemorrhage in preterm infants. Ambroxol may have potential analgesic properties in managing neonatal pain, and as it can penetrate the blood-brain barrier, it suggests potential neuroprotective properties. These properties may encompass the modulation of microglial activation and the antagonistic impact on glutamate receptors. Ambroxol's attributes could contribute to a decreased susceptibility to neurological complications and have demonstrated anticonvulsant effects in preclinical studies. While low-to-moderate-quality evidence indicates potential applications of ambroxol in neonatal care, further research is needed to determine the drug's optimal dosing, timing, and safety profiles in this patient population. We need to investigate ambroxol's potential synergistic effects with antenatal steroids. Exploration is required to assess ambroxol's potential in reducing the high failure rate associated with non-invasive respiratory support for RDS. Lastly, comprehensive studies on the long-term neurodevelopmental outcomes of neonates exposed to ambroxol are essential.
Collapse
Affiliation(s)
| | - Maryam Al-Aamri
- Pediatric Nephrology, Maternity and Children Hospital Al-Ahsa, Al-Ahsa, SAU
| |
Collapse
|
11
|
Ninan K, Murphy KE, Asztalos EV, Jiang Y, Huszti E, Matthews SG, Santaguida P, Mukerji A, McDonald SD. The Impact of Infant Sex on Multiple Courses versus a Single Course of Antenatal Corticosteroids: A Secondary Analysis of a Randomized Controlled Trial. Am J Perinatol 2024; 41:e2919-e2926. [PMID: 37935374 DOI: 10.1055/s-0043-1776348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
OBJECTIVE Animal literature has suggested that the impact of antenatal corticosteroids (ACS) may vary by infant sex. Our objective was to assess the impact of infant sex on the use of multiple courses versus a single course of ACS and perinatal outcomes. STUDY DESIGN We conducted a secondary analysis of the Multiple Courses of Antenatal Corticosteroids for Preterm Birth trial, which randomly allocated pregnant people to multiple courses versus a single course of ACS. Our primary outcome was a composite of perinatal mortality or clinically significant neonatal morbidity (including neonatal death, stillbirth, severe respiratory distress syndrome, intraventricular hemorrhage [grade III or IV], cystic periventricular leukomalacia, and necrotizing enterocolitis [stage II or III]). Secondary outcomes included individual components of the primary outcome as well as anthropometric measures. Baseline characteristics were compared between participants who received multiple courses versus a single course of ACS. An interaction between exposure to ACS and infant sex was assessed for significance and multivariable regression analyses were conducted with adjustment for predefined covariates, when feasible. RESULTS Data on 2,300 infants were analyzed. The interaction term between treatment status (multiple courses vs. a single course of ACS) and infant sex was not significant for the primary outcome (p = 0.86), nor for any of the secondary outcomes (p > 0.05). CONCLUSION Infant sex did not modify the association between exposure to ACS and perinatal outcomes including perinatal mortality or neonatal morbidity or anthropometric outcomes. However, animal literature indicates that sex-specific differences after exposure to ACS may emerge over time and thus investigating long-term sex-specific outcomes warrants further attention. KEY POINTS · We explored the impact of infant sex on perinatal outcomes after multiple versus a single course of ACS.. · Infant sex was not a significant effect modifier of ACS exposure and perinatal outcomes.. · Animal literature indicates that sex-specific differences after ACS exposure may emerge over time.. · Further investigation of long-term sex-specific outcomes is warranted..
Collapse
Affiliation(s)
- Kiran Ninan
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Kellie E Murphy
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth V Asztalos
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Yidi Jiang
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Pasqualina Santaguida
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Amit Mukerji
- Division of Neonatology, Department of Pediatrics, McMaster University, Ontario, Canada
| | - Sarah D McDonald
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Krontira AC, Cruceanu C, Dony L, Kyrousi C, Link MH, Rek N, Pöhlchen D, Raimundo C, Penner-Goeke S, Schowe A, Czamara D, Lahti-Pulkkinen M, Sammallahti S, Wolford E, Heinonen K, Roeh S, Sportelli V, Wölfel B, Ködel M, Sauer S, Rex-Haffner M, Räikkönen K, Labeur M, Cappello S, Binder EB. Human cortical neurogenesis is altered via glucocorticoid-mediated regulation of ZBTB16 expression. Neuron 2024; 112:1426-1443.e11. [PMID: 38442714 DOI: 10.1016/j.neuron.2024.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/15/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.
Collapse
Affiliation(s)
- Anthi C Krontira
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany.
| | - Cristiana Cruceanu
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Leander Dony
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany; Department for Computational Health, Helmholtz Munich, Neuherberg 85764, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising 85354, Germany
| | - Christina Kyrousi
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich 80804, Germany; First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens 15784, Greece; University Mental Health, Neurosciences and Precision Medicine Research Institute "Costas Stefanis", Athens 15601, Greece
| | - Marie-Helen Link
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Nils Rek
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany
| | - Dorothee Pöhlchen
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany
| | - Catarina Raimundo
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Signe Penner-Goeke
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Alicia Schowe
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich 82152, Germany
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland; Finnish Institute for Health and Welfare, Helsinki 00271, Finland; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sara Sammallahti
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland; Psychology/Welfare, Faculty of Social Sciences, University of Tampere, Tampere 33014, Finland; Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Vincenza Sportelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Barbara Wölfel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Marta Labeur
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich 80804, Germany; Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich 82152, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
13
|
Barnes-Davis ME, Williamson BJ, Kline JE, Kline-Fath BM, Tkach J, He L, Yuan W, Parikh NA. Structural connectivity at term equivalent age and language in preterm children at 2 years corrected. Brain Commun 2024; 6:fcae126. [PMID: 38665963 PMCID: PMC11043656 DOI: 10.1093/braincomms/fcae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
We previously reported interhemispheric structural hyperconnectivity bypassing the corpus callosum in children born extremely preterm (<28 weeks) versus term children. This increased connectivity was positively associated with language performance at 4-6 years of age in our prior work. In the present study, we aim to investigate whether this extracallosal connectivity develops in extremely preterm infants at term equivalent age by leveraging a prospective cohort study of 350 very and extremely preterm infants followed longitudinally in the Cincinnati Infant Neurodevelopment Early Prediction Study. For this secondary analysis, we included only children born extremely preterm and without significant brain injury (n = 95). We use higher-order diffusion modelling to assess the degree to which extracallosal pathways are present in extremely preterm infants and predictive of later language scores at 22-26 months corrected age. We compare results obtained from two higher-order diffusion models: generalized q-sampling imaging and constrained spherical deconvolution. Advanced MRI was obtained at term equivalent age (39-44 weeks post-menstrual age). For structural connectometry analysis, we assessed the level of correlation between white matter connectivity at the whole-brain level at term equivalent age and language scores at 2 years corrected age, controlling for post-menstrual age, sex, brain abnormality score and social risk. For our constrained spherical deconvolution analyses, we performed connectivity-based fixel enhancement, using probabilistic tractography to inform statistical testing of the hypothesis that fibre metrics at term equivalent age relate to language scores at 2 years corrected age after adjusting for covariates. Ninety-five infants were extremely preterm with no significant brain injury. Of these, 53 had complete neurodevelopmental and imaging data sets that passed quality control. In the connectometry analyses adjusted for covariates and multiple comparisons (P < 0.05), the following tracks were inversely correlated with language: bilateral cerebellar white matter and middle cerebellar peduncles, bilateral corticospinal tracks, posterior commissure and the posterior inferior fronto-occipital fasciculus. No tracks from the constrained spherical deconvolution/connectivity-based fixel enhancement analyses remained significant after correction for multiple comparisons. Our findings provide critical information about the ontogeny of structural brain networks supporting language in extremely preterm children. Greater connectivity in more posterior tracks that include the cerebellum and connections to the regions of the temporal lobes at term equivalent age appears to be disadvantageous for language development.
Collapse
Affiliation(s)
- Maria E Barnes-Davis
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brady J Williamson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Julia E Kline
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Beth M Kline-Fath
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jean Tkach
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lili He
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Children’s Hospital Medical Center, Pediatric Neuroimaging Research Consortium, Cincinnati, OH, USA
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
14
|
Jobe AH, Goldenberg RL, Kemp MW. Antenatal corticosteroids: an updated assessment of anticipated benefits and potential risks. Am J Obstet Gynecol 2024; 230:330-339. [PMID: 37734637 DOI: 10.1016/j.ajog.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Antenatal steroid therapy is increasingly central to the obstetrical management of women at imminent risk of preterm birth. For women likely to deliver between 24 and 34 weeks' gestation, antenatal steroid therapy is the standard of care, conferring sizable benefits and few risks in high-resource environments when appropriately targeted. Recent studies have focused on antenatal steroid use in periviable and late preterm populations, and in term cesarean deliveries. As a result, antenatal steroid therapy has now been applied from 22 to 39+6 weeks of estimated gestational age. There is also an increased appreciation that the vast majority of randomized control data informing the use of antenatal steroids are derived from predominantly high-resource, White populations. Accordingly, a sizable amount of work has recently been undertaken to test how to safely use antenatal steroids in low- and middle-resource environments, wherein the often high rates of preterm birth make these low-cost, easily administered interventions an attractive proposition. It is likely underappreciated by the obstetrical and neonatal communities that the overall efficacy of antenatal steroid therapy is highly variable (including when preterm risk is accurately assessed), the treatment regimens used are largely arbitrary, dosing is suprapharmacologic for effect, and the benefit-risk balance is significantly and differentially modified by gestation. It is also very likely that the patients consenting to receive these treatments are similarly unaware of the complex balance of potential benefits and harms. Although a small number of follow-up studies present a generally benign picture of long-term antenatal steroid risk, several large, population-based retrospective studies have identified associations between antenatal steroid use, childhood mental disease, and newborn infections that warrant urgent attention. Of particular contemporary importance are emergent efforts to optimize antenatal steroid regimens on the basis of the pharmacokinetics and pharmacodynamics of the agents themselves, the need for better targeting of these potent drugs, and clear articulation of the potential benefits and harms of antenatal steroid use at differing stages of pregnancy and in different delivery contexts.
Collapse
Affiliation(s)
- Alan H Jobe
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH.
| | - Robert L Goldenberg
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
15
|
Pei J, Chen J. The influence of prenatal dexamethasone administration before scheduled full-term cesarean delivery on short-term adverse neonatal outcomes: a retrospective single-center cohort study. Front Pediatr 2024; 11:1323097. [PMID: 38274470 PMCID: PMC10808727 DOI: 10.3389/fped.2023.1323097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Objective There has been a gradual increase in the prevalence of cesarean section deliveries and more healthcare professionals are considering the prophylactic use of corticosteroids before planned full-term cesarean sections. However, the association between dexamethasone administration before full-term cesarean delivery and short-term adverse neonatal outcomes is unclear. This study analyzed the disparities in short-term adverse neonatal effects in neonates born via full-term elective cesarean delivery with or without antenatal dexamethasone treatment. Study design This single-center retrospective cohort study involved neonates aged 37-39 weeks. The primary neonatal outcomes included various short-term adverse events, including neonatal admission to the neonatal intensive care unit, neonatal access to the special care baby unit, transient neonatal respiratory distress, respiratory distress syndrome, and the requirement of intravenous antibiotics or ventilatory support. Multiple logistic regression analysis was used to assess the association between these outcomes and dexamethasone exposure while adjusting for covariates. Results Of the 543 neonates included in the study, 121 (22.2%) had been exposed to prenatal dexamethasone. When compared with the control group, the dexamethasone-exposed group exhibited significantly higher rates of transient neonatal respiratory distress, respiratory distress syndrome, administration of intravenous antibiotics, the need for ventilatory support, and longer duration of neonatal hospitalization (P < 0.05). The association between dexamethasone exposure and short-term adverse neonatal outcomes remained significant after adjusting for potential confounders (odds ratio: 12.76, 95% confidence interval: 6.9-23.62, P < 0.001). Conclusion The dexamethasone-exposed group had a higher likelihood of experiencing short-term adverse outcomes when compared with non-exposed neonates, suggesting that dexamethasone may have detrimental effects on infants delivered at full term. This implies the importance of exercising caution when contemplating the use of antenatal corticosteroids.
Collapse
Affiliation(s)
| | - Jiao Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chengdu Medical College, Xindu District, Chengdu, Sichuan Province, China
| |
Collapse
|
16
|
Malamitsi-Puchner A, Briana DD. Antenatal corticosteroids revisited-Novel approaches and future perspectives. Acta Paediatr 2023; 112:2465-2467. [PMID: 37399077 DOI: 10.1111/apa.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Affiliation(s)
- Ariadne Malamitsi-Puchner
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina D Briana
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Ninan K, Gojic A, Wang Y, Asztalos EV, Beltempo M, Murphy KE, McDonald SD. The proportions of term or late preterm births after exposure to early antenatal corticosteroids, and outcomes: systematic review and meta-analysis of 1.6 million infants. BMJ 2023; 382:e076035. [PMID: 37532269 PMCID: PMC10394681 DOI: 10.1136/bmj-2023-076035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVE To systematically review the proportions of infants with early exposure to antenatal corticosteroids but born at term or late preterm, and short term and long term outcomes. DESIGN Systematic review and meta-analyses. DATA SOURCES Eight databases searched from 1 January 2000 to 1 February 2023, reflecting recent perinatal care, and references of screened articles. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomised controlled trials and population based cohort studies with data on infants with early exposure to antenatal corticosteroids (<34 weeks) but born at term (≥37 weeks), late preterm (34-36 weeks), or term/late preterm combined. DATA EXTRACTION AND SYNTHESIS Two reviewers independently screened titles, abstracts, and full text articles and assessed risk of bias (Cochrane risk of bias tool for randomised controlled trials and Newcastle-Ottawa scale for population based studies). Reviewers extracted data on populations, exposure to antenatal corticosteroids, and outcomes. The authors analysed randomised and cohort data separately, using random effects meta-analyses. MAIN OUTCOME MEASURES The primary outcome was the proportion of infants with early exposure to antenatal corticosteroids but born at term. Secondary outcomes included the proportions of infants born late preterm or term/late preterm combined after early exposure to antenatal corticosteroids and short term and long term outcomes versus non-exposure for the three gestational time points (term, late preterm, term/late preterm combined). RESULTS Of 14 799 records, the reviewers screened 8815 non-duplicate titles and abstracts and assessed 713 full text articles. Seven randomised controlled trials and 10 population based cohort studies (1.6 million infants total) were included. In randomised controlled trials and population based data, ∼40% of infants with early exposure to antenatal corticosteroids were born at term (low or very low certainty). Among children born at term, early exposure to antenatal corticosteroids versus no exposure was associated with increased risks of admission to neonatal intensive care (adjusted odds ratio 1.49, 95% confidence interval 1.19 to 1.86, one study, 5330 infants, very low certainty; unadjusted relative risk 1.69, 95% confidence interval 1.51 to 1.89, three studies, 1 176 022 infants, I2=58%, τ2=0.01, low certainty), intubation (unadjusted relative risk 2.59, 1.39 to 4.81, absolute effect 7 more per 1000, 95% confidence interval from 2 more to 16 more, one study, 8076 infants, very low certainty, one study, 8076 infants, very low certainty), reduced head circumference (adjusted mean difference -0.21, 95% confidence interval -0.29 to -0.13, one study, 183 325 infants, low certainty), and any long term neurodevelopmental or behavioural disorder in population based studies (eg, any neurodevelopmental or behavioural disorder in children born at term, adjusted hazard ratio 1.47, 95% confidence interval 1.36 to 1.60, one study, 641 487 children, low certainty). CONCLUSIONS About 40% of infants exposed to early antenatal corticosteroids were born at term, with associated adverse short term and long term outcomes (low or very low certainty), highlighting the need for caution when considering antenatal corticosteroids. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022360079.
Collapse
Affiliation(s)
- Kiran Ninan
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Anja Gojic
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Yanchen Wang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Elizabeth V Asztalos
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Marc Beltempo
- Division of Neonatology, Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Kellie E Murphy
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Sarah D McDonald
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- Department of Radiology, McMaster University, Hamilton, ON, Canada
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
18
|
Laptook AR, Weydig H, Brion LP, Wyckoff MH, Arnautovic TI, Younge N, Oh W, Chowdhury D, Keszler M, Das A. Antenatal Steroids, Prophylactic Indomethacin, and the Risk of Spontaneous Intestinal Perforation. J Pediatr 2023; 259:113457. [PMID: 37172814 PMCID: PMC10524442 DOI: 10.1016/j.jpeds.2023.113457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE To estimate if the odds of spontaneous intestinal perforation (SIP) are increased when antenatal steroids (ANS) given close to delivery are combined with indomethacin on day 1 after birth (Indo-D1). STUDY DESIGN A retrospective cohort study using the Neonatal Research Network (NRN) database of inborn infants, gestational age 220-286 weeks or birth weight of 401-1000 g, born between January 1, 2016 and December 31, 2019, and surviving >12 hours. The primary outcome was SIP through 14 days. Time of last ANS dose prior to delivery was analyzed as a continuous variable (using 169 hours for durations >168 hours or no steroid exposure). Associations between ANS, Indo-D1, and SIP were obtained from a multilevel hierarchical generalized linear mixed model after covariate adjustment. This yielded aOR and 95% CI. RESULTS Of 6851 infants, 243 had SIP (3.5%). ANS exposure occurred in 6393 infants (93.3%) and IndoD1 was given to 1863 infants (27.2%). The time (median, IQR) from last dose of ANS to delivery was 32.5 hours (6-81) vs 37.1 hours (7-110) for infants with or without SIP, respectively (P = .10). Indo-D1 was given to 51.9 vs 26.3% of infants with SIP vs no SIP, respectively (P < .0001). Adjusted analysis indicated no interaction between time of last ANS dose and Indo-D1 for SIP (P = .7). Indo-D1 but not ANS was associated with increased odds of SIP (aOR: 1.73, 1.21-2.48, P = .003). CONCLUSION The odds of SIP were increased after receipt of Indo-D1. Exposure to ANS prior to Indo-D1 was not associated with an increase in SIP.
Collapse
Affiliation(s)
- Abbot R Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI.
| | - Heather Weydig
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Luc P Brion
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Myra H Wyckoff
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Tamara I Arnautovic
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI
| | - Noelle Younge
- Department of Pediatrics, Duke University, Durham, NC
| | - William Oh
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI
| | - Dhuly Chowdhury
- Biostatistics and Epidemiology, RTI International, Rockville, MD
| | - Martin Keszler
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI
| | - Abhik Das
- Biostatistics and Epidemiology, RTI International, Rockville, MD
| |
Collapse
|
19
|
Liauw J, Foggin H, Socha P, Crane J, Joseph KS, Burrows J, Lacaze-Masmonteil T, Jain V, Boutin A, Hutcheon J. Technical Update No. 439: Antenatal Corticosteroids at Late Preterm Gestation. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2023; 45:445-457.e2. [PMID: 36572248 DOI: 10.1016/j.jogc.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To update recommendations for administration of antenatal corticosteroids in the late preterm period. TARGET POPULATION Pregnant individuals at risk of preterm birth from 340 to 366 weeks gestation. OPTIONS Administration or non-administration of a single course of antenatal corticosteroids at 340 to 366 weeks gestation. OUTCOMES Neonatal morbidity (respiratory distress, hypoglycemia), long-term neurodevelopment, and other long-term outcomes (growth, cardiac/metabolic, respiratory). BENEFITS, HARMS, AND COSTS Administration of antenatal corticosteroids from 340 to 366 weeks gestation decreases the risk of neonatal respiratory distress but increases the risk of neonatal hypoglycemia. The long-term impacts of antenatal corticosteroid administration from 340 to 366 weeks gestation are uncertain. EVIDENCE For evidence on the neonatal effects of antenatal corticosteroid administration at late preterm gestation, we summarized evidence from the 2020 Cochrane review of antenatal corticosteroids and combined this with evidence from published randomized trials identified by searching Ovid MEDLINE from January 1, 2020, to May 11, 2022. Given the absence of direct evidence on the impact of late preterm antenatal corticosteroid administration on neurodevelopmental outcomes, we summarized evidence on the impact of antenatal corticosteroids across gestational ages on neurodevelopmental outcomes using the following sources: (1) the 2020 Cochrane review; and (2) evidence obtained by searching Ovid MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases from inception to January 5, 2022. We did not apply date or language restrictions. Given the absence of direct evidence on the impact of late preterm antenatal corticosteroid administration on other long-term outcomes, we summarized evidence on the impact of antenatal corticosteroids across gestational ages on other long-term outcomes by combining findings from the 2020 Cochrane review with evidence obtained by searching Ovid MEDLINE for observational studies related to long-term cardiometabolic, respiratory, and growth effects of antenatal corticosteroids from inception to October 22, 2021. We reviewed reference lists of included studies and relevant systematic reviews for additional references. See Appendix A for search terms and summaries. VALIDATION METHODS The authors rated the quality of evidence and strength of recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. See online Appendix B (Tables B1 for definitions and B2 for interpretations of strong and conditional [weak] recommendations). INTENDED AUDIENCE Maternity care providers, including midwives, family physicians, and obstetricians. SUMMARY STATEMENTS RECOMMENDATIONS.
Collapse
|
20
|
Garrud TAC, Teulings NEWD, Niu Y, Skeffington KL, Beck C, Itani N, Conlon FG, Botting KJ, Nicholas LM, Tong W, Derks JB, Ozanne SE, Giussani DA. Molecular mechanisms underlying adverse effects of dexamethasone and betamethasone in the developing cardiovascular system. FASEB J 2023; 37:e22887. [PMID: 37132324 PMCID: PMC10946807 DOI: 10.1096/fj.202200676rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
Antenatal glucocorticoids accelerate fetal lung maturation and reduce mortality in preterm babies but can trigger adverse effects on the cardiovascular system. The mechanisms underlying off-target effects of the synthetic glucocorticoids mostly used, Dexamethasone (Dex) and Betamethasone (Beta), are unknown. We investigated effects of Dex and Beta on cardiovascular structure and function, and underlying molecular mechanism using the chicken embryo, an established model system to isolate effects of therapy on the developing heart and vasculature, independent of effects on the mother or placenta. Fertilized eggs were treated with Dex (0.1 mg kg-1 ), Beta (0.1 mg kg-1 ), or water vehicle (Control) on embryonic day 14 (E14, term = 21 days). At E19, biometry, cardiovascular function, stereological, and molecular analyses were determined. Both glucocorticoids promoted growth restriction, with Beta being more severe. Beta compared with Dex induced greater cardiac diastolic dysfunction and also impaired systolic function. While Dex triggered cardiomyocyte hypertrophy, Beta promoted a decrease in cardiomyocyte number. Molecular changes of Dex on the developing heart included oxidative stress, activation of p38, and cleaved caspase 3. In contrast, impaired GR downregulation, activation of p53, p16, and MKK3 coupled with CDK2 transcriptional repression linked the effects of Beta on cardiomyocyte senescence. Beta but not Dex impaired NO-dependent relaxation of peripheral resistance arteries. Beta diminished contractile responses to potassium and phenylephrine, but Dex enhanced peripheral constrictor reactivity to endothelin-1. We conclude that Dex and Beta have direct differential detrimental effects on the developing cardiovascular system.
Collapse
Affiliation(s)
- Tessa A. C. Garrud
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Noor E. W. D. Teulings
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Fiona G. Conlon
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Lisa M. Nicholas
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
| | - Wen Tong
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jan B. Derks
- Department of Perinatal MedicineUniversity Medical CentreUtrechtNetherlands
| | - Susan E. Ozanne
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
- BHF Cardiovascular Centre for Research ExcellenceUniversity of CambridgeCambridgeUK
- Strategic Research Initiative in ReproductionUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- BHF Cardiovascular Centre for Research ExcellenceUniversity of CambridgeCambridgeUK
- Strategic Research Initiative in ReproductionUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
21
|
Sweet DG, Carnielli VP, Greisen G, Hallman M, Klebermass-Schrehof K, Ozek E, te Pas A, Plavka R, Roehr CC, Saugstad OD, Simeoni U, Speer CP, Vento M, Visser GH, Halliday HL. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 2023; 120:3-23. [PMID: 36863329 PMCID: PMC10064400 DOI: 10.1159/000528914] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 02/17/2023]
Abstract
Respiratory distress syndrome (RDS) care pathways evolve slowly as new evidence emerges. We report the sixth version of "European Guidelines for the Management of RDS" by a panel of experienced European neonatologists and an expert perinatal obstetrician based on available literature up to end of 2022. Optimising outcome for babies with RDS includes prediction of risk of preterm delivery, appropriate maternal transfer to a perinatal centre, and appropriate and timely use of antenatal steroids. Evidence-based lung-protective management includes initiation of non-invasive respiratory support from birth, judicious use of oxygen, early surfactant administration, caffeine therapy, and avoidance of intubation and mechanical ventilation where possible. Methods of ongoing non-invasive respiratory support have been further refined and may help reduce chronic lung disease. As technology for delivering mechanical ventilation improves, the risk of causing lung injury should decrease, although minimising time spent on mechanical ventilation by targeted use of postnatal corticosteroids remains essential. The general care of infants with RDS is also reviewed, including emphasis on appropriate cardiovascular support and judicious use of antibiotics as being important determinants of best outcome. We would like to dedicate this guideline to the memory of Professor Henry Halliday who died on November 12, 2022.These updated guidelines contain evidence from recent Cochrane reviews and medical literature since 2019. Strength of evidence supporting recommendations has been evaluated using the GRADE system. There are changes to some of the previous recommendations as well as some changes to the strength of evidence supporting recommendations that have not changed. This guideline has been endorsed by the European Society for Paediatric Research (ESPR) and the Union of European Neonatal and Perinatal Societies (UENPS).
Collapse
Affiliation(s)
- David G. Sweet
- Regional Neonatal Unit, Royal Maternity Hospital, Belfast, UK
| | - Virgilio P. Carnielli
- Department of Neonatology, University Polytechnic Della Marche, University Hospital Ancona, Ancona, Italy
| | - Gorm Greisen
- Department of Neonatology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Mikko Hallman
- Department of Children and Adolescents, Oulu University Hospital and Medical Research Center, University of Oulu, Oulu, Finland
| | - Katrin Klebermass-Schrehof
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Medical University of Vienna, Vienna, Austria
| | - Eren Ozek
- Department of Pediatrics, Marmara University Medical Faculty, Istanbul, Turkey
| | - Arjan te Pas
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Richard Plavka
- Division of Neonatology, Department of Obstetrics and Gynecology, General Faculty Hospital and 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Charles C. Roehr
- Faculty of Health Sciences, University of Bristol, UK and National Perinatal Epidemiology Unit, Oxford Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
- Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Christian P. Speer
- Department of Pediatrics, University Children's Hospital, Wuerzburg, Germany
| | - Maximo Vento
- Department of Pediatrics and Neonatal Research Unit, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Gerry H.A. Visser
- Department of Obstetrics and Gynecology, University Medical Centre, Utrecht, The Netherlands
| | - Henry L. Halliday
- Department of Child Health, Queen's University Belfast and Royal Maternity Hospital, Belfast, UK
| |
Collapse
|
22
|
Koh E, Freedman BR, Ramazani F, Gross J, Graham A, Kuttler A, Weber E, Mooney DJ. Controlled Delivery of Corticosteroids Using Tunable Tough Adhesives. Adv Healthc Mater 2023; 12:e2201000. [PMID: 36285360 PMCID: PMC11046305 DOI: 10.1002/adhm.202201000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Indexed: 01/26/2023]
Abstract
Hydrogel-based drug delivery systems typically aim to release drugs locally to tissue in an extended manner. Tissue adhesive alginate-polyacrylamide tough hydrogels are recently demonstrated to serve as an extended-release system for the corticosteroid triamcinolone acetonide. Here, the stimuli-responsive controlled release of triamcinolone acetonide from the alginate-polyacrylamide tough hydrogel drug delivery systems (TADDS) and evolving new approaches to combine alginate-polyacrylamide tough hydrogel with drug-loaded nano and microparticles, generating composite TADDS is described. Stimulation with ultrasound pulses or temperature changes is demonstrated to control the release of triamcinolone acetonide from the TADDS. The incorporation of laponite nanoparticles or PLGA microparticles into the tough hydrogel is shown to further enhance the versatility to control and modulate the release of triamcinolone acetonide. A first technical exploration of a TADDS shelf-life concept is performed using lyophilization, where lyophilized TADDS are physically stable and the bioactive integrity of released triamcinolone acetonide is demonstrated. Given the tunability of properties, the TADDS are a suggested technology platform for controlled drug delivery.
Collapse
Affiliation(s)
- Esther Koh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Farshad Ramazani
- Novartis Pharma AG, Technical Research and Development, Basel, 4056, Switzerland
| | - Johannes Gross
- Novartis Pharma AG, Technical Research and Development, Basel, 4056, Switzerland
| | - Adam Graham
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, 02138, USA
| | - Andreas Kuttler
- Novartis Institutes for Biomedical Research, Basel, 4056, Switzerland
| | - Eckhard Weber
- Novartis Institutes for Biomedical Research, Basel, 4056, Switzerland
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Three Existential Challenges in Optimizing the Lifelong Health of Infants Born Preterm. J Pediatr 2023; 252:188-190. [PMID: 36088996 DOI: 10.1016/j.jpeds.2022.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
|
24
|
Usuda H, Fee EL, Carter S, Furfaro L, Takahashi T, Takahashi Y, Newnham JP, Milad MA, Saito M, Jobe AH, Kemp MW. Low-dose antenatal betamethasone treatment achieves preterm lung maturation equivalent to that of the World Health Organization dexamethasone regimen but with reduced endocrine disruption in a sheep model of pregnancy. Am J Obstet Gynecol 2022; 227:903.e1-903.e16. [PMID: 35792176 DOI: 10.1016/j.ajog.2022.06.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The intramuscular administration of antenatal steroids to women at risk of preterm delivery achieves high maternal and fetal plasma steroid concentrations, which are associated with adverse effects and may reduce treatment efficacy. We have demonstrated that antenatal steroid efficacy is independent of peak maternofetal steroid levels once exposure is maintained above a low threshold. OBJECTIVE This study aimed to test, using a sheep model of pregnancy, whether the low-dose antenatal steroid regimen proposed as part of the Antenatal Corticosteroids for Improving Outcomes in Preterm Newborns trial would achieve preterm lung maturation equivalent to that of the existing World Health Organization dexamethasone treatment regimen, but with reduced risk of adverse outcomes. STUDY DESIGN Following ethical review and approval, date-mated ewes with single fetuses received intramuscular injections of either (1) four 6-mg maternal intramuscular injections of dexamethasone phosphate every 12 hours (n=22), (2) 4 2-mg maternal intramuscular injections of betamethasone phosphate every 12 hours (n=21), or (3) 4 2-mL maternal intramuscular injections of saline every 12 hours (n=16). Of note, 48 hours after first injection, (124±1 day), lambs were delivered, ventilated for 30 minutes, and euthanized for sampling. Arterial blood gas, respiratory, hematological, and biochemical data were analyzed for between-group differences with analysis of variance according to distribution and variance, with P<.05 taken as significant. RESULTS After 30 minutes of ventilation, lambs from both steroid-treated groups had significant and equivalent improvements in lung function relative to saline control (P<.05). There was no significant difference in arterial blood pH, pO2, pCO2, lung compliance, ventilator efficiency index, or lung volume at necropsy with a static pressure of 40 cmH2O. The messenger RNA expression of surfactant protein (Sp)a, Spb, Spc, Spd, aquaporin (Aqp)1, Aqp5, and sodium channel epithelial 1 subunit beta (Scnn1b) was equivalent between both steroid groups. Maternal and fetal plasma neutrophil, glucose, and fetal plasma C-peptide levels were significantly elevated in the dexamethasone group, relative to the betamethasone group. Fetal plasma insulin-like growth factor 1 was significantly reduced in the dexamethasone group compared with the betamethasone group (P<0.05). Fetal adrenocorticotropic hormone (r=0.53), maternal glucose value (r=-0.52), and fetal glucose values (r=-0.42) were correlated with maternal weight in the betamethasone group (P<.05), whereas fetal pCO2 and pO2 were not correlated. There was no significant difference between male and female lamb outcomes in any groups for any of the items evaluated. CONCLUSION This study reported that in preterm lambs, a low-dose treatment regimen of 8 mg betamethasone achieves lung maturation equivalent to that of a 24-mg dexamethasone-based regimen, but with smaller perturbations to the maternofetal hypothalamic-pituitary-adrenal axis. These data suggested that given steroid pharmacokinetic differences between sheep and humans, a betamethasone dose of 2 mg may remain above the minimum dose necessary for robust maturation of the preterm lung. Maternal weight-adjusted betamethasone doses might also be a key to reducing perturbations to the maternofetal hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lucy Furfaro
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - Mark A Milad
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - Masatoshi Saito
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Alan H Jobe
- Milad Pharmaceutical Consulting LLC, Plymouth, MI
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan; Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati Medical School, Cincinnati, OH; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.
| |
Collapse
|
25
|
Mise à jour technique no 439 : Corticothérapie prénatale en période de prématurité tardive. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 45:458-472.e2. [PMID: 36572247 DOI: 10.1016/j.jogc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Takahashi T, Jobe AH, Fee EL, Newnham JP, Schmidt AF, Usuda H, Kemp MW. The complex challenge of antenatal steroid therapy nonresponsiveness. Am J Obstet Gynecol 2022; 227:696-704. [PMID: 35932879 DOI: 10.1016/j.ajog.2022.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
Abstract
Antenatal steroid therapy is standard care for women at imminent risk of preterm delivery. When deliveries occur within 7 days of treatment, antenatal steroid therapy reduces the risk of neonatal death and improves preterm outcomes by exerting diverse developmental effects on the fetal organs, in particular the preterm lung and cardiovascular system. There is, however, sizable variability in antenatal steroid treatment efficacy, and an important percentage of fetuses exposed to antenatal steroid therapy do not respond sufficiently to derive benefit. Respiratory distress syndrome, for example, is a central metric of clinical trials to assess antenatal steroid outcomes. In the present analysis, we addressed the concept of antenatal steroid nonresponsiveness, and defined a failed or suboptimal response to antenatal steroids as death or a diagnosis of respiratory distress syndrome following treatment. For deliveries at 24 to 35 weeks' gestation, the number needed to treat to prevent 1 case of respiratory distress syndrome was 19 (95% confidence interval, 14-28). Reflecting gestation-dependent risk, for deliveries at >34 weeks' gestation the number needed to treat was 55 (95% confidence interval, 30-304), whereas for elective surgical deliveries at term this number was 106 (95% confidence interval, 61-421). We reviewed data from clinical and animal studies investigating antenatal steroid therapy to highlight the significant incidence of antenatal steroid therapy nonresponsiveness (ie, residual mortality or respiratory distress syndrome after treatment), and the potential mechanisms underpinning this outcome variability. The origins of this variability may be related to both the manner in which the therapy is applied (ie, the treatment regimen itself) and factors specific to the individual (ie, genetic variation, stress, infection). The primary aims of this review were: (1) to emphasize to the obstetrical and neonatal communities the extent of antenatal steroid response variability and its potential impact; (2) to propose approaches by which antenatal steroid therapy may be better applied to improve overall benefit; and (3) to stimulate further research toward the empirical optimization of this important antenatal therapy.
Collapse
Affiliation(s)
- Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Alan H Jobe
- Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - John P Newnham
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | | | - Haruo Usuda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
27
|
Ninan K, Murphy KE, McDonald SD. Study Quality Must Be Considered When Evaluating Long-term Outcomes of Antenatal Corticosteroid Therapy in Children-Reply. JAMA Pediatr 2022; 176:1049. [PMID: 35969385 DOI: 10.1001/jamapediatrics.2022.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kiran Ninan
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Kellie E Murphy
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Sarah D McDonald
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Radiology, McMaster University, Hamilton, Ontario, Canada.,Division of Maternal-Fetal Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Zafran N, Massalha M, Suleiman A, Massalha R, Mahagna L, Weiner SA, Romano S, Shalev E, Salim R. Association between betamethasone levels and respiratory distress syndrome in preterm births: A prospective cohort study. Clin Transl Sci 2022; 15:2528-2537. [PMID: 35923139 PMCID: PMC9579395 DOI: 10.1111/cts.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023] Open
Abstract
The recommended fixed dosage of betamethasone for pregnancies at risk of preterm birth was determined in the 1970s, regardless of gestational age (GA), number of fetuses, and maternal weight. We aimed to examine the association between maternal and neonatal betamethasone serum levels and neonatal respiratory distress syndrome (RDS) and to examine whether levels correlate with maternal weight, GA, or number of fetuses. A prospective study was conducted at a single academic medical center between August 2016 and February 2019. Women received betamethasone and delivered between 28+0 and 34+6 weeks were included. Maternal serum levels (MSLs), and neonatal serum levels (NSLs) of betamethasone at delivery were analyzed using Corticosteroid enzyme-linked immunosorbent assay kit. RDS was diagnosed according to clinical and radiographic findings. We assumed that the sensitivity of NSLs to detect RDS is 95%; hence, 150 neonates were needed (power 80%, alpha 0.05). Overall, 124 women were included; including 96 (77.4%) singletons, 26 (21.0%) twins, and 2 (1.6%) triplets, corresponding to 154 neonates. RDS was diagnosed in 35 neonates (22.7%). After adjusting for GA, time elapsed from the last dose, and number of doses, NSLs were associated with RDS (relative risk: 0.97, 95% confidence interval: 0.94-0.99, p = 0.011). A level of 6.00 ng/ml predicted RDS with a sensitivity of 80.0% and specificity of 64.7%. Adjusted MSLs were not associated with RDS. Both maternal and neonatal serum levels were not associated with the number of fetuses and maternal weight. In conclusion, NSLs are associated with RDS whereas MSLs are not.
Collapse
Affiliation(s)
- Noah Zafran
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael,The Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Manal Massalha
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael
| | - Abeer Suleiman
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael
| | | | - Lila Mahagna
- Endocrinology LaboratoryEmek Medical CenterAfulaIsrael
| | | | - Shabtai Romano
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael,The Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Eliezer Shalev
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael,The Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Raed Salim
- Department of Obstetrics and GynecologyEmek Medical CenterAfulaIsrael,The Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael
| |
Collapse
|
29
|
Darlow BA, Harris SL, Horwood LJ. Little evidence for long-term harm from antenatal corticosteroids in a population-based very low birthweight young adult cohort. Paediatr Perinat Epidemiol 2022; 36:631-639. [PMID: 35570644 PMCID: PMC9545416 DOI: 10.1111/ppe.12886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Antenatal corticosteroids (ACS) given to mothers with anticipated very preterm delivery are widely used and improve infant outcomes. Follow-up studies of the first trials of ACS have shown no adverse effects, but recently there have been concerns about possible longer-term harms. OBJECTIVES We aimed to assess the relationship of ACS therapy to a range of physical health and welfare measures in a cohort of very low birthweight (VLBW; <1500 g) young adults. METHODS Population-based cohort follow-up study. All VLBW infants born in New Zealand in 1986 were included in a prospective audit of retinopathy of prematurity. Perinatal data collection included information on ACS. At 26-30 years, 250 of 323 (77%) survivors participated, 58% having received ACS, with 229 assessed in one centre, including cardiovascular, metabolic, respiratory and neurocognitive measures. Differences in outcome between those receiving/not receiving ACS were summarised by the mean difference for continuous outcomes supplemented by Cohen's d as a standardised measure of effect size (ES), and risk ratios (RRI) for dichotomous outcomes, adjusted for relevant covariates using generalised linear regression methods. RESULTS There were no or minimal adverse effects of receipt of ACS versus no receipt across a range of health and welfare outcomes, both for the full cohort (adjusted ES range d = 0.01-0.23; adjusted RR range 0.78-2.03) and for individuals with gestation <28 weeks (extremely preterm; EP), except for a small increase in rates of major depression. In EP adults, receipt of ACS was associated with a higher incidence of hypertension, but might have a small benefit for IQ. CONCLUSIONS In this population-based VLBW cohort, we detected minimal adverse outcomes associated with exposure to ACS by the third decade of life, a similar result to the 30-year follow-up of participants in the first ACS trial. However, further follow-up is warranted.
Collapse
Affiliation(s)
- Brian A. Darlow
- Department of PaediatricsUniversity of OtagoChristchurchNew Zealand
| | - Sarah L. Harris
- Department of PaediatricsUniversity of OtagoChristchurchNew Zealand
| | - L. John Horwood
- Department of Psychological MedicineChristchurch Health and Development StudyUniversity of OtagoChristchurchNew Zealand
| |
Collapse
|
30
|
Schmitz T, Doret-Dion M, Sentilhes L, Parant O, Claris O, Renesme L, Abbal J, Girault A, Torchin H, Houllier M, Le Saché N, Vivanti AJ, De Luca D, Winer N, Flamant C, Thuillier C, Boileau P, Blanc J, Brevaut V, Bouet PE, Gascoin G, Beucher G, Datin-Dorriere V, Bounan S, Bolot P, Poncelet C, Alberti C, Ursino M, Aupiais C, Baud O. Neonatal outcomes for women at risk of preterm delivery given half dose versus full dose of antenatal betamethasone: a randomised, multicentre, double-blind, placebo-controlled, non-inferiority trial. Lancet 2022; 400:592-604. [PMID: 35988568 DOI: 10.1016/s0140-6736(22)01535-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Antenatal betamethasone is recommended before preterm delivery to accelerate fetal lung maturation. However, reports of growth and neurodevelopmental dose-related side-effects suggest that the current dose (12 mg plus 12 mg, 24 h apart) might be too high. We therefore investigated whether a half dose would be non-inferior to the current full dose for preventing respiratory distress syndrome. METHODS We designed a randomised, multicentre, double-blind, placebo-controlled, non-inferiority trial in 37 level 3 referral perinatal centres in France. Eligible participants were pregnant women aged 18 years or older with a singleton fetus at risk of preterm delivery and already treated with the first injection of antenatal betamethasone (11·4 mg) before 32 weeks' gestation. We used a computer-generated code producing permuted blocks of varying sizes to randomly assign (1:1) women to receive either a placebo (half-dose group) or a second 11·4 mg betamethasone injection (full-dose group) 24 h later. Randomisation was stratified by gestational age (before or after 28 weeks). Participants, clinicians, and study staff were masked to the treatment allocation. The primary outcome was the need for exogenous intratracheal surfactant within 48 h after birth. Non-inferiority would be shown if the higher limit of the 95% CI for the between-group difference between the half-dose and full-dose groups in the primary endpoint was less than 4 percentage points (corresponding to a maximum relative risk of 1·20). Four interim analyses monitoring the primary and the secondary safety outcomes were done during the study period, using a sequential data analysis method that provided futility and non-inferiority stopping rules and checked for type I and II errors. Interim analyses were done in the intention-to-treat population. This trial was registered with ClinicalTrials.gov, NCT02897076. FINDINGS Between Jan 2, 2017, and Oct 9, 2019, 3244 women were randomly assigned to the half-dose (n=1620 [49·9%]) or the full-dose group (n=1624 [50·1%]); 48 women withdrew consent, 30 fetuses were stillborn, 16 neonates were lost to follow-up, and 9 neonates died before evaluation, so that 3141 neonates remained for analysis. In the intention-to-treat analysis, the primary outcome occurred in 313 (20·0%) of 1567 neonates in the half-dose group and 276 (17·5%) of 1574 neonates in the full-dose group (risk difference 2·4%, 95% CI -0·3 to 5·2); thus non-inferiority was not shown. The per-protocol analysis also did not show non-inferiority (risk difference 2·2%, 95% CI -0·6 to 5·1). No between-group differences appeared in the rates of neonatal death, grade 3-4 intraventricular haemorrhage, stage ≥2 necrotising enterocolitis, severe retinopathy of prematurity, or bronchopulmonary dysplasia. INTERPRETATION Because non-inferiority of the half-dose compared with the full-dose regimen was not shown, our results do not support practice changes towards antenatal betamethasone dose reduction. FUNDING French Ministry of Health.
Collapse
Affiliation(s)
- Thomas Schmitz
- Department of Obstetrics and Gynaecology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Cité, Centre for Research in Epidemiology and Statistics, INSERM U1153, INRA, Paris, France.
| | - Muriel Doret-Dion
- Department of Obstetrics and Gynaecology, Hospital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Loic Sentilhes
- Department of Obstetrics and Gynaecology, Bordeaux University Hospital, Bordeaux, France
| | - Olivier Parant
- Department of Obstetrics and Gynaecology, Toulouse University Hospital, Toulouse, France
| | - Olivier Claris
- Department of Neonatology, Hospital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Laurent Renesme
- Department of Neonatology, Bordeaux University Hospital, Bordeaux, France
| | - Julie Abbal
- Department of Neonatology, Toulouse University Hospital, Toulouse, France
| | - Aude Girault
- Université Paris Cité, Centre for Research in Epidemiology and Statistics, INSERM U1153, INRA, Paris, France; MaternitéPort-Royal, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Héloïse Torchin
- Université Paris Cité, Centre for Research in Epidemiology and Statistics, INSERM U1153, INRA, Paris, France; Department of Neonatology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Houllier
- Department of Obstetrics and Gynaecology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nolwenn Le Saché
- Department of Neonatology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre J Vivanti
- Department of Obstetrics and Gynaecology, Antoine Béclère Hospital, Assistance Publique-Hôpitaux de Paris, Paris, Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
| | - Daniele De Luca
- Department of Neonatology, Antoine Béclère Hospital, Assistance Publique-Hôpitaux de Paris, Paris, Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France
| | - Norbert Winer
- Department of Obstetrics and Gynaecology, University Medical Centre of Nantes, Centre d'Investigation Clinique CIC Mere enfant, Nantes, France; National Institute of Agricultural Research, UMR 1280, Physiology of Nutritional Adaptations, University of Nantes, IMAD and CRNH-Ouest, Nantes, France
| | - Cyril Flamant
- Department of Neonatology, Nantes University Hospital, Nantes, France
| | - Claire Thuillier
- Department of Obstetrics and Gynaecology, Poissy Hospital Centre, Poissy, France
| | - Pascal Boileau
- Department of Neonatology, Poissy Hospital Centre, Poissy, France
| | - Julie Blanc
- Department of Obstetrics and Gynaecology, Marseille Nord University Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Véronique Brevaut
- Department of Neonatology, Marseille Nord University Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Pierre-Emmanuel Bouet
- Department of Obstetrics and Gynaecology, Angers University Hospital, Angers, France
| | - Géraldine Gascoin
- Department of Neonatology, Angers University Hospital, Angers, France
| | - Gaël Beucher
- Department of Obstetrics and Gynaecology, Caen University Hospital, Caen, France
| | | | - Stéphane Bounan
- Department of Obstetrics and Gynaecology, Saint-Denis Hospital, Saint-Denis, France
| | - Pascal Bolot
- Department of Neonatology, Saint-Denis Hospital, Saint-Denis, France
| | - Christophe Poncelet
- Department of Obstetrics and Gynaecology, Pontoise Hospital, Pontoise, France
| | - Corinne Alberti
- Clinical Epidemiology Unit, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Cité, INSERM U1123, ECEVE, Paris, France
| | - Moreno Ursino
- Clinical Epidemiology Unit, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Recherche des Cordeliers, Université Paris Cité, INSERM U1138, Inria, HeKA, Paris, France
| | - Camille Aupiais
- Université Paris Cité, INSERM U1123, ECEVE, Paris, France; Paediatric Emergency Department, Jean Verdier Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Paris Nord University, Paris, France
| | - Olivier Baud
- Université Paris Cité, INSERM U1141, Paris, France; Division of Neonatology and Paediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
31
|
Williams MJ, Ramson JA, Brownfoot FC. Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth. Cochrane Database Syst Rev 2022; 8:CD006764. [PMID: 35943347 PMCID: PMC9362990 DOI: 10.1002/14651858.cd006764.pub4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Despite the widespread use of antenatal corticosteroids to prevent respiratory distress syndrome (RDS) in preterm infants, there is currently no consensus as to the type of corticosteroid to use, dose, frequency, timing of use or the route of administration. OBJECTIVES: To assess the effects on fetal and neonatal morbidity and mortality, on maternal morbidity and mortality, and on the child and adult in later life, of administering different types of corticosteroids (dexamethasone or betamethasone), or different corticosteroid dose regimens, including timing, frequency and mode of administration. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth Group's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (9 May 2022) and reference lists of retrieved studies. SELECTION CRITERIA We included all identified published and unpublished randomised controlled trials or quasi-randomised controlled trials comparing any two corticosteroids (dexamethasone or betamethasone or any other corticosteroid that can cross the placenta), comparing different dose regimens (including frequency and timing of administration) in women at risk of preterm birth. We planned to exclude cross-over trials and cluster-randomised trials. We planned to include studies published as abstracts only along with studies published as full-text manuscripts. DATA COLLECTION AND ANALYSIS At least two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 11 trials (2494 women and 2762 infants) in this update, all of which recruited women who were at increased risk of preterm birth or had a medical indication for preterm birth. All trials were conducted in high-income countries. Dexamethasone versus betamethasone Nine trials (2096 women and 2319 infants) compared dexamethasone versus betamethasone. All trials administered both drugs intramuscularly, and the total dose in the course was consistent (22.8 mg or 24 mg), but the regimen varied. We assessed one new study to have no serious risk of bias concerns for most outcomes, but other studies were at moderate (six trials) or high (two trials) risk of bias due to selection, detection and attrition bias. Our GRADE assessments ranged between high- and low-certainty, with downgrades due to risk of bias and imprecision. Maternal outcomes The only maternal primary outcome reported was chorioamnionitis (death and puerperal sepsis were not reported). Although the rate of chorioamnionitis was lower with dexamethasone, we did not find conclusive evidence of a difference between the two drugs (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.48 to 1.06; 1 trial, 1346 women; moderate-certainty evidence). The proportion of women experiencing maternal adverse effects of therapy was lower with dexamethasone; however, there was not conclusive evidence of a difference between interventions (RR 0.63, 95% CI 0.35 to 1.13; 2 trials, 1705 women; moderate-certainty evidence). Infant outcomes We are unsure whether the choice of drug makes a difference to the risk of any known death after randomisation, because the 95% CI was compatible with both appreciable benefit and harm with dexamethasone (RR 1.03, 95% CI 0.66 to 1.63; 5 trials, 2105 infants; moderate-certainty evidence). The choice of drug may make little or no difference to the risk of RDS (RR 1.06, 95% CI 0.91 to 1.22; 5 trials, 2105 infants; high-certainty evidence). While there may be little or no difference in the risk of intraventricular haemorrhage (IVH), there was substantial unexplained statistical heterogeneity in this result (average (a) RR 0.71, 95% CI 0.28 to 1.81; 4 trials, 1902 infants; I² = 62%; low-certainty evidence). We found no evidence of a difference between the two drugs for chronic lung disease (RR 0.92, 95% CI 0.64 to 1.34; 1 trial, 1509 infants; moderate-certainty evidence), and we are unsure of the effects on necrotising enterocolitis, because there were few events in the studies reporting this outcome (RR 5.08, 95% CI 0.25 to 105.15; 2 studies, 441 infants; low-certainty evidence). Longer-term child outcomes Only one trial consistently followed up children longer term, reporting at two years' adjusted age. There is probably little or no difference between dexamethasone and betamethasone in the risk of neurodevelopmental disability at follow-up (RR 1.02, 95% CI 0.85 to 1.22; 2 trials, 1151 infants; moderate-certainty evidence). It is unclear whether the choice of drug makes a difference to the risk of visual impairment (RR 0.33, 95% CI 0.01 to 8.15; 1 trial, 1227 children; low-certainty evidence). There may be little or no difference between the drugs for hearing impairment (RR 1.16, 95% CI 0.63 to 2.16; 1 trial, 1227 children; moderate-certainty evidence), motor developmental delay (RR 0.89, 95% CI 0.66 to 1.20; 1 trial, 1166 children; moderate-certainty evidence) or intellectual impairment (RR 0.97, 95% CI 0.79 to 1.20; 1 trial, 1161 children; moderate-certainty evidence). However, the effect estimate for cerebral palsy is compatible with both an important increase in risk with dexamethasone, and no difference between interventions (RR 2.50, 95% CI 0.97 to 6.39; 1 trial, 1223 children; low-certainty evidence). No trials followed the children beyond early childhood. Comparisons of different preparations and regimens of corticosteroids We found three studies that included a comparison of a different regimen or preparation of either dexamethasone or betamethasone (oral dexamethasone 32 mg versus intramuscular dexamethasone 24 mg; betamethasone acetate plus phosphate versus betamethasone phosphate; 12-hourly betamethasone versus 24-hourly betamethasone). The certainty of the evidence for the main outcomes from all three studies was very low, due to small sample size and risk of bias. Therefore, we were limited in our ability to draw conclusions from any of these studies. AUTHORS' CONCLUSIONS Overall, it remains unclear whether there are important differences between dexamethasone and betamethasone, or between one regimen and another. Most trials compared dexamethasone versus betamethasone. While for most infant and early childhood outcomes there may be no difference between these drugs, for several important outcomes for the mother, infant and child the evidence was inconclusive and did not rule out significant benefits or harms. The evidence on different antenatal corticosteroid regimens was sparse, and does not support the use of one particular corticosteroid regimen over another.
Collapse
Affiliation(s)
- Myfanwy J Williams
- Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
32
|
Ekhaguere OA, Okonkwo IR, Batra M, Hedstrom AB. Respiratory distress syndrome management in resource limited settings-Current evidence and opportunities in 2022. Front Pediatr 2022; 10:961509. [PMID: 35967574 PMCID: PMC9372546 DOI: 10.3389/fped.2022.961509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
The complications of prematurity are the leading cause of neonatal mortality worldwide, with the highest burden in the low- and middle-income countries of South Asia and Sub-Saharan Africa. A major driver of this prematurity-related neonatal mortality is respiratory distress syndrome due to immature lungs and surfactant deficiency. The World Health Organization's Every Newborn Action Plan target is for 80% of districts to have resources available to care for small and sick newborns, including premature infants with respiratory distress syndrome. Evidence-based interventions for respiratory distress syndrome management exist for the peripartum, delivery and neonatal intensive care period- however, cost, resources, and infrastructure limit their availability in low- and middle-income countries. Existing research and implementation gaps include the safe use of antenatal corticosteroid in non-tertiary settings, establishing emergency transportation services from low to high level care facilities, optimized delivery room resuscitation, provision of affordable caffeine and surfactant as well as implementing non-traditional methods of surfactant administration. There is also a need to optimize affordable continuous positive airway pressure devices able to blend oxygen, provide humidity and deliver reliable pressure. If the high prematurity-related neonatal mortality experienced in low- and middle-income countries is to be mitigated, a concerted effort by researchers, implementers and policy developers is required to address these key modalities.
Collapse
Affiliation(s)
- Osayame A. Ekhaguere
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ikechukwu R. Okonkwo
- Department of Pediatrics, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Maneesh Batra
- Departments of Pediatrics and Global Health, University of Washington, Seattle, WA, United States
| | - Anna B. Hedstrom
- Departments of Pediatrics and Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Ninan K, Liyanage SK, Murphy KE, Asztalos EV, McDonald SD. Evaluation of Long-term Outcomes Associated With Preterm Exposure to Antenatal Corticosteroids: A Systematic Review and Meta-analysis. JAMA Pediatr 2022; 176:e220483. [PMID: 35404395 PMCID: PMC9002717 DOI: 10.1001/jamapediatrics.2022.0483] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023]
Abstract
Importance Animal studies have found that antenatal corticosteroids affect many organs across multiple stages of life. However, the long-term outcomes in human children are not well understood. Objective To conduct a systematic review and meta-analysis of long-term outcomes associated with preterm exposure to antenatal corticosteroids compared with no exposure in all children as well as children with preterm and full-term birth. Data Sources Academic databases were searched for articles published from January 1, 2000, to October 29, 2021, including Ovid MEDLINE, Ovid Embase, PsycInfo, CINAHL (Cumulative Index of Nursing and Allied Health Literature), Web of Science, ClinicalTrials.gov, and Google Scholar. References of articles were also searched for relevant studies. Study Selection Randomized clinical trials (RCTs), quasi-RCTs, and cohort studies that assessed long-term neurodevelopmental, psychological, or other outcomes at 1 year or older in those who had preterm exposure to antenatal corticosteroids were included. No language restrictions were set. Data Extraction and Synthesis Two reviewers independently extracted data using a piloted data extraction form. Data on study population, pregnancy characteristics, exposure to antenatal corticosteroids, and outcomes were collected. Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guidelines were followed, and random-effects models were used for the meta-analysis. Main Outcomes and Measures The primary outcome was an author-defined composite of any adverse neurodevelopmental and/or psychological disorder. The secondary outcomes included specific measures of psychological disorders; neurodevelopmental delay; and anthropometric, metabolic, and cardiorespiratory outcomes. Results A total of 30 studies met the inclusion criteria, and involved more than 1.25 million children who were at least 1 year of age when the outcomes were assessed. Exposure to a single course of antenatal corticosteroids for children with extremely preterm birth was associated with a significant reduction in risk of neurodevelopmental impairment (adjusted odds ratio, 0.69 [95% CI, 0.57-0.84]; I2 = 0%; low certainty). For children with late-preterm birth, exposure to antenatal corticosteroids was associated with a higher risk of investigation for neurocognitive disorders (n = 25 668 children; adjusted hazard ratio [aHR], 1.12 [95% CI, 1.05-1.20]; low certainty). For children with full-term birth, exposure to antenatal corticosteroids was associated with a higher risk of mental or behavioral disorders (n = 641 487 children; aHR, 1.47 [95% CI, 1.36-1.60]; low certainty) as well as proven or suspected neurocognitive disorders (n = 529 205 children; aHR, 1.16 [95% CI, 1.10-1.21]; low certainty). Conclusions and Relevance Results of this study showed that exposure to a single course of antenatal corticosteroids was associated with a significantly lower risk of neurodevelopmental impairment in children with extremely preterm birth but a significantly higher risk of adverse neurocognitive and/or psychological outcomes in children with late-preterm and full-term birth, who made up approximately half of those with exposure to antenatal corticosteroids. The findings suggest a need for caution in administering antenatal corticosteroids.
Collapse
Affiliation(s)
- Kiran Ninan
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Sugee K. Liyanage
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Kellie E. Murphy
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth V. Asztalos
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sarah D. McDonald
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
- Division of Maternal-Fetal Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Hallman M, Ronkainen E, Saarela TV, Marttila RH. Management Practices During Perinatal Respiratory Transition of Very Premature Infants. Front Pediatr 2022; 10:862038. [PMID: 35620146 PMCID: PMC9127974 DOI: 10.3389/fped.2022.862038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
The present review considers some controversial management practices during extremely premature perinatal transition. We focus on perinatal prevention and treatment of respiratory distress syndrome (RDS) in immature infants. New concerns regarding antenatal corticosteroid management have been raised. Many fetuses are only exposed to potential adverse effects of the drug. Hence, the formulation and the dosage may need to be modified. Another challenge is to increase the fraction of the high-risk fetuses that benefit from the drug and to minimize the harmful effects of the drug. On the other hand, boosting anti-inflammatory and anti-microbial properties of surfactant requires further attention. Techniques of prophylactic surfactant administration to extremely immature infants at birth may be further refined. Also, new findings suggest that prophylactic treatment of patent ductus arteriosus (PDA) of a high-risk population rather than later selective closure of PDA may be preferred. The TREOCAPA trial (Prophylactic treatment of the ductus arteriosus in preterm infants by acetaminophen) evaluates, whether early intravenous paracetamol decreases the serious cardiorespiratory consequences following extremely premature birth. Lastly, is inhaled nitric oxide (iNO) used in excess? According to current evidence, iNO treatment of uncomplicated RDS is not indicated. Considerably less than 10% of all very premature infants are affected by early persistence of pulmonary hypertension (PPHN). According to observational studies, effective ventilation combined with early iNO treatment are effective in management of this previously fatal disease. PPHN is associated with prolonged rupture of fetal membranes and birth asphyxia. The lipopolysaccharide (LPS)-induced immunotolerance and hypoxia-reperfusion-induced oxidant stress may inactivate NO-synthetases in pulmonary arterioles and terminal airways. Prospective trials on iNO in the management of PPHN are indicated. Other pulmonary vasodilators may be considered as comparison drugs or adjunctive drugs. The multidisciplinary challenge is to understand the regulation of pregnancy duration and the factors participating the onset of extremely premature preterm deliveries and respiratory adaptation. Basic research aims to identify deficiencies in maternal and fetal tissues that predispose to very preterm births and deteriorate the respiratory adaptation of immature infants. Better understanding on causes and prevention of extremely preterm births would eventually provide effective antenatal and neonatal management practices required for the intact survival.
Collapse
Affiliation(s)
- Mikko Hallman
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Eveliina Ronkainen
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Timo V. Saarela
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Riitta H. Marttila
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
35
|
Takahashi T, Takahashi Y, Fee EL, Saito M, Yaegashi N, Usuda H, Bridges JP, Milad MA, Furfaro L, Carter S, Schmidt AF, Newnham JP, Jobe AH, Kemp MW. Continuous but not pulsed low-dose fetal betamethasone exposures extend the durability of antenatal steroid therapy. Am J Physiol Lung Cell Mol Physiol 2022; 322:L784-L793. [PMID: 35380907 DOI: 10.1152/ajplung.00018.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antenatal steroid (ANS) therapy is standard care for women at imminent risk of preterm labor. Despite extensive and long-standing use, 40-50% of babies exposed antenatally to steroids do not derive benefit; remaining undelivered 7d or more after ANS treatment is associated with a lack of treatment benefit, and increased risk of harms. We used a pregnant sheep model to evaluate the impact of continuous vs. pulsed ANS treatments on fetal lung maturation at an extended, eight-day treatment to delivery interval. Continuous low-dose ANS treatments for more than 72 hours in duration improved fetal lung maturation at eight days after treatment initiation. If fetal ANS exposure was interrupted, the beneficial ANS effect was lost. Truncated treatments, including that simulating the current clinical treatment regimen, did not improve lung function. Variable fetal lung maturation was correlated to the amount of saturated phosphatidylcholine present in the lung fluid. These data demonstrate that: i) the durability of ANS therapy may be enhanced by employing an extended, low-dose treatment regimen with reducing total dose; and ii) interrupting the continuity of fetal exposure by allowing it to fall below a minimal threshold was associated with comparably poor functional maturation of the preterm ovine lung.
Collapse
Affiliation(s)
- Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nobuo Yaegashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - James P Bridges
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mark A Milad
- Milad Pharmaceutical Consulting LLC, Plymouth, MI, United States
| | - Lucy Furfaro
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Augusto F Schmidt
- Department of Neonatology, Pulmonary Biology and Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, United States.,Miller School of Medicine, University of Miami, Miami, FL, United States
| | - John P Newnham
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan Hall Jobe
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Department of Neonatology, Pulmonary Biology and Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, United States
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
36
|
Saldaña-García N, Espinosa-Fernández MG, Martínez-Pajares JD, Tapia-Moreno E, Moreno-Samos M, Cuenca-Marín C, Rius-Díaz F, Sánchez-Tamayo T. Antenatal Betamethasone Every 12 Hours in Imminent Preterm Labour. J Clin Med 2022; 11:jcm11051227. [PMID: 35268318 PMCID: PMC8911008 DOI: 10.3390/jcm11051227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Benefits of antenatal corticosteroids have been established for preterm infants who have received the full course. In imminent preterm labours there is no time to administer the second dose 24 h later. Objective: To determine whether the administration of two doses of betamethasone in a 12 h interval is equivalent to the effects of a full maturation. Methods: We performed a retrospective cohort study including preterm infants ≤34 weeks gestational age at birth and ≤1500 g, admitted to an NICU IIIC level in a tertiary hospital from 2015 to 2020. The population was divided into two cohorts: complete maturation (CM) (two doses of betamethasone 24 h apart), or advanced maturation (AM) (two doses of betamethasone 12 h apart). The primary outcomes were mortality or survival with severe morbidities. The presence of respiratory distress syndrome and other morbidities of prematurity were determined. These variables were analysed in the neonates under 28 weeks gestational age cohort. Neurodevelopment at 2 years was evaluated with the validated Ages and Stages Questionnaires®, Third Edition (ASQ®-3). Multiple regression analyses were performed and adjusted for confounding factors. Results: A total of 275 preterm neonates were included. Serious outcomes did not show differences between cohorts, no increased incidence of morbidity was found in AM. A lower percentage of hypotension during the first week (p = 0.04), a tendency towards lower maximum FiO2 (p = 0.14) and to a shorter mechanical ventilation time (p = 0.14) were observed for the AM cohort. Similar results were found in the subgroup of neonates under 28 weeks gestational age. There were no differences in cerebral palsy or sensory deficits at 24 months of corrected age, although the AM cohort showed a trend towards better scores on the ASQ3 scale. Conclusions: Administration of betamethasone every 12 h showed similar results to the traditional pattern with respect to mortality and severe morbidities. No deleterious neurodevelopmental effects were found at 24 months of corrected age. Earlier administration of betamethasone at 12 h after the first dose would be an alternative in imminent preterm delivery. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Natalia Saldaña-García
- Department of Neonatology, Regional University Hospital of Málaga, 29010 Malaga, Spain; (M.G.E.-F.); (J.D.M.-P.); (E.T.-M.); (M.M.-S.)
- School of Medicine, Malaga University, 29071 Malaga, Spain
- Correspondence: (N.S.-G.); (T.S.-T.)
| | - María Gracia Espinosa-Fernández
- Department of Neonatology, Regional University Hospital of Málaga, 29010 Malaga, Spain; (M.G.E.-F.); (J.D.M.-P.); (E.T.-M.); (M.M.-S.)
| | - Jose David Martínez-Pajares
- Department of Neonatology, Regional University Hospital of Málaga, 29010 Malaga, Spain; (M.G.E.-F.); (J.D.M.-P.); (E.T.-M.); (M.M.-S.)
| | - Elías Tapia-Moreno
- Department of Neonatology, Regional University Hospital of Málaga, 29010 Malaga, Spain; (M.G.E.-F.); (J.D.M.-P.); (E.T.-M.); (M.M.-S.)
| | - María Moreno-Samos
- Department of Neonatology, Regional University Hospital of Málaga, 29010 Malaga, Spain; (M.G.E.-F.); (J.D.M.-P.); (E.T.-M.); (M.M.-S.)
| | - Celia Cuenca-Marín
- Department of Obstetrics and Gineocology, Regional University Hospital of Málaga, 29010 Malaga, Spain;
| | - Francisca Rius-Díaz
- Department of Preventive Medicine and Public Health, Biostatistics, School of Medicine, Malaga University, 29071 Malaga, Spain;
| | - Tomás Sánchez-Tamayo
- Department of Neonatology, Regional University Hospital of Málaga, 29010 Malaga, Spain; (M.G.E.-F.); (J.D.M.-P.); (E.T.-M.); (M.M.-S.)
- Pharmacology and Pediatrics Department, Malaga University, 29071 Malaga, Spain
- Correspondence: (N.S.-G.); (T.S.-T.)
| |
Collapse
|
37
|
Fortmann I, Mertens L, Boeckel H, Grüttner B, Humberg A, Astiz M, Roll C, Rickleffs I, Rody A, Härtel C, Herting E, Göpel W, Bossung V. A Timely Administration of Antenatal Steroids Is Highly Protective Against Intraventricular Hemorrhage: An Observational Multicenter Cohort Study of Very Low Birth Weight Infants. Front Pediatr 2022; 10:721355. [PMID: 35372176 PMCID: PMC8965892 DOI: 10.3389/fped.2022.721355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/27/2022] [Indexed: 11/28/2022] Open
Abstract
AIM The aim of the study is to evaluate the influence of the timing of antenatal steroids (ANSs) on neonatal outcome of very low birth weight infants (VLBWI) born before 30 weeks of gestation in the German Neonatal Network. METHODS The German Neonatal Network is a large population-based cohort study enrolling VLBWIs since 2009. We included 672 neonates, who were born between January 1, 2009 and December 31, 2019 in our analysis in 10 selected centers. Infants were divided into four subgroups based on the interval between the first steroid administration and preterm birth: (I) two doses of betamethasone, ANS-birth interval: >24 h to 7 days, n = 187, (II) only one dose of betamethasone, ANS-birth interval 0-24 h, n = 70, (III) two doses of betamethasone, ANS-birth interval >7 days, n = 177, and (IV) no antenatal steroids, n = 238. Descriptive statistics and logistic regression analyses were performed for the main neonatal outcome parameters. Group IV (no ANS) was used as a reference. RESULTS An ANS-birth interval of 24 h to 7 days after the first dose was associated with a reduced risk for intraventricular hemorrhage (OR 0.17; 95% CI 0.09-0.31, p < 0.001) and mechanical ventilation (OR 0.37; 95% CI 0.23-0.61, p < 0.001), whereas the group of infants that only received a single dose of steroids reflected a subgroup at high risk for adverse neonatal outcomes; an ANS-birth interval of >7 days was still associated with a lower risk for intraventricular hemorrhage (OR 0.43; 95% CI 0.25-0.72, p = 0.002) and the need for mechanical ventilation (OR 0.43; 95% CI 0.27-0.71, p = 0.001). CONCLUSION Our observational data indicate that an ANS-birth interval of 24 h to 7 days is strongly associated with a reduced risk of intraventricular hemorrhage in VLBWIs. Further research is needed to improve the prediction of preterm birth in order to achieve a timely administration of antenatal steroids that may improve neonatal outcomes such as intraventricular hemorrhage.
Collapse
Affiliation(s)
- Ingmar Fortmann
- Department of Pediatrics, University of Lüebeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Luisa Mertens
- Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| | - Hannah Boeckel
- Department of Pediatrics, University of Lüebeck, Lübeck, Germany
| | - Berthold Grüttner
- Department of Obstetrics and Gynecology, University of Cologne, Cologne, Germany
| | | | - Mariana Astiz
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Claudia Roll
- Department of Pediatrics, Vestisch Children's Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | | | - Achim Rody
- Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Egbert Herting
- Department of Pediatrics, University of Lüebeck, Lübeck, Germany
| | - Wolfgang Göpel
- Department of Pediatrics, University of Lüebeck, Lübeck, Germany
| | - Verena Bossung
- Department of Obstetrics and Gynecology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
38
|
Hantoushzadeh S, Saleh M, Aghajanian S. Which corticosteroid is a better option for antenatal fetal lung maturation? Pediatr Res 2022; 92:915. [PMID: 35064232 PMCID: PMC8781712 DOI: 10.1038/s41390-022-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Sedigheh Hantoushzadeh
- grid.411705.60000 0001 0166 0922Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Maternal-Fetal Neonatal Research Center, Tehran University of Medical Sciences, Valiasr Hospital, Tehran, Iran
| | - Maasoumeh Saleh
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran.
| | - Sepehr Aghajanian
- grid.411705.60000 0001 0166 0922Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
39
|
Altal OF, Al Sharie AH, Al Zu'bi YO, Rawabdeh SA, Khasawneh W, Dawaymeh T, Tashtoush H, Obeidat R, Halalsheh OM. A Comparative Study of the Respiratory Neonatal Outcomes Utilizing Dexamethasone Sodium Phosphate versus a Mixture of Betamethasone Dipropionate and Betamethasone Sodium Phosphate as an Antenatal Corticosteroid Therapy. Int J Gen Med 2021; 14:9471-9481. [PMID: 34949936 PMCID: PMC8688832 DOI: 10.2147/ijgm.s340559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective The aim of this study is to compare the respiratory neonatal outcomes utilizing antenatal dexamethasone sodium phosphate (DSP) versus a mixture of betamethasone dipropionate and betamethasone sodium phosphate (B-DP/SP) for preterm births. Patients and Methods All neonatal intensive care unit (NICU) admissions for prematurity were retrospectively identified at our center in the period between September 2016 and September 2018. Pregnant women expected to give preterm birth and received steroid injections whether it is DSP or B-DP/SP were included in the study. Maternal and obstetrical data along with the corresponding respiratory neonatal outcomes were extracted and analyzed. The population was categorized according to the gestational age into extremely preterm (less than 28 weeks), very preterm (28 up to 32 weeks) and moderate or late preterm (32 up to 37 weeks) in which the repository outcomes were compared in each sub-group. Results A total of 650 premature neonates were included in the analysis. B-DP/SP illustrated a significant reduction in the occurrence of respiratory distress syndrome (RDS) among moderate or late preterm neonates (P = 0.003) compared to DSP. In contrast, a non-significant difference was observed between B-DP/SP and DSP regarding apnea of prematurity and transient tachypnea of the newborn. The number of neonates developed chronic lung disease has been remarkably reduced when using DSP in extremely (P = 0.038) and very (P = 0.046) preterm neonates when compared to B-DP/SP. Conclusion The dual acting B-DP/SP formulation could possess a significant potential in reducing RDS in moderate or late preterm neonates, while DSP groups exhibit a favorable result in the development of chronic lung disease in extreme and very preterm cohorts. Such findings emphasize the need of further clinical trials, pharmacokinetics, pharmacodynamics and cost effectiveness studies to evaluate the durability of these findings.
Collapse
Affiliation(s)
- Omar F Altal
- Department of Obstetrics & Gynecology, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Yazan O Al Zu'bi
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Saif Aldin Rawabdeh
- Department of Pediatrics and Neonatology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Wasim Khasawneh
- Department of Pediatrics and Neonatology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tamara Dawaymeh
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Haneen Tashtoush
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Rawan Obeidat
- Department of Obstetrics & Gynecology, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Omar M Halalsheh
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| |
Collapse
|
40
|
Benefits of a Single Dose of Betamethasone in Imminent Preterm Labour. J Clin Med 2021; 11:jcm11010020. [PMID: 35011761 PMCID: PMC8745219 DOI: 10.3390/jcm11010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Background: A complete course of prenatal corticosteroids reduces the possibility of morbimortality and neonatal respiratory distress syndrome (RDS). Occasionally, it is not possible to initiate or complete the maturation regimen, and the preterm neonate is born in a non-tertiary hospital. This study aimed to assess the effects of a single dose of betamethasone within 3 h before delivery on serious outcomes (mortality and serious sequelae) and RDS in preterm neonates born in tertiary vs. non-tertiary hospitals. Materials and methods: Preterm neonates who were <35 weeks and ≤1500 g, treated during a period of five years in a level IIIC NICU, were included in this retrospective cohort study. Participants were divided into groups as follows: NM, non-matured; PM, partial maturation (one dose of betamethasone up to 3 h antepartum). They were further divided based on their place of birth (NICU-IIIC vs. non-tertiary hospitals). The morbimortality rates and the severity of neonatal RDS were evaluated. Results: A total of 76 preterm neonates were included. A decrease in serious outcomes was found in the PM group in comparison to the NM group (OR = 0.2; 95%CI (0.07–0.9)), as well as reduced need for mechanical ventilation (54% vs. 68%). The mean time between maternal admission and birth was similar in both cohorts. The mean time from the administration of betamethasone to delivery was 1 h in the PM cohort. With regard to births in NICU-IIIC, the PM group performed better in terms of serious outcomes (32% vs. 45%) and the duration of mechanical ventilation (117.75 vs. 132.18 h) compared to the NM group. In neonates born in non-tertiary hospitals with PM in comparison to the NM group, a trend towards a reduced serious outcome (28.5% vs. 62.2%) and a decreased need for mechanical ventilation (OR = 0.09; 95%CI (0.01–0.8)) and maximum FiO2 (p = 0.01) was observed. Conclusions: A single dose of betamethasone up to 3 h antepartum may reduce the rate of serious outcomes and the severity of neonatal RDS, especially in non-tertiary hospitals.
Collapse
|
41
|
Jobe AH. Neonatal Network Data Based‒Associations Based on Large Numbers that May Be Spurious. J Pediatr 2021; 235:18-19. [PMID: 33862024 DOI: 10.1016/j.jpeds.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Alan H Jobe
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH.
| |
Collapse
|
42
|
Association of Co-Exposure of Antenatal Steroid and Prophylactic Indomethacin with Spontaneous Intestinal Perforation. J Pediatr 2021; 235:34-41.e1. [PMID: 33741365 DOI: 10.1016/j.jpeds.2021.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To evaluate the association of a combined exposure to antenatal steroids and prophylactic indomethacin with the outcome of spontaneous intestinal perforation (SIP) among neonates born at <26 weeks of gestation or <750 g birth weight. STUDY DESIGN We conducted a retrospective study of preterm infants admitted to Canadian Neonatal Network units between 2010 and 2018. Infants were classified into 2 groups based on receipt of antenatal steroids; the latter subgrouped as recent (≤7 days before birth) or latent (>7 days before birth) exposures. The co-exposure was prophylactic indomethacin. The primary outcome was SIP. Multivariable logistic regression analysis was used to calculate aORs. RESULTS Among 4720 eligible infants, 4121 (87%) received antenatal steroids and 1045 (22.1%) received prophylactic indomethacin. Among infants exposed to antenatal steroids, those who received prophylactic indomethacin had higher odds of SIP (aOR 1.61, 95% CI 1.14-2.28) compared with no prophylactic indomethacin. Subgroup analyses revealed recent antenatal steroids exposure with prophylactic indomethacin had higher odds of SIP (aOR 1.67, 95% CI 1.15-2.43), but latent antenatal steroids exposure with prophylactic indomethacin did not (aOR 1.24, 95% CI 0.48-3.21), compared with the respective groups with no prophylactic indomethacin. Among those not exposed to antenatal steroids, mortality was lower among those who received prophylactic indomethacin (aOR 0.45, 95% CI 0.28-0.73) compared with no prophylactic indomethacin. CONCLUSIONS In preterm neonates of <26 weeks of gestation or birth weight <750 g, co-exposure of antenatal steroids and prophylactic indomethacin was associated with SIP, especially if antenatal steroids was received within 7 days before birth. Among those unexposed to antenatal steroids, prophylactic indomethacin was associated with lower odds of mortality.
Collapse
|
43
|
Hallman M, Treluyer JM, Aikio O, Rozé J. Early closure mechanisms of the ductus arteriosus in immature infants. Acta Paediatr 2021; 110:1995-2007. [PMID: 33655615 DOI: 10.1111/apa.15826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
AIM According to experimental studies, cardiopulmonary distress decreases after closure of patent ductus arteriosus. However, early closure of the ductus using ibuprofen or indomethacin has failed to increase survival without serious morbidity. We review relevant data aiming to define optimal early management strategies that promote early closure of ductus arteriosus without serious adverse effects. METHODS Literature in English was searched selectively focusing on the potential of using acetaminophen for early closure of the ductus. RESULTS Prophylactic ibuprofen or indomethacin intended to close the ductus, predisposes infants to ischaemia, bleeding and immune dysfunction. Acetaminophen appears to have a similar efficacy as indomethacin or ibuprofen, and all three dose-dependently constrict the ductus. Ibuprofen and indomethacin cause non-specific inhibition of prostaglandin synthesis, while acetaminophen predominantly inhibits prostaglandin E synthesis. Owing to low CYP450 activity in infancy, acetaminophen toxicity has been rarely evident. However, increasing the dosage increases the oxidative stress. We review prophylactic treatments that may increase the safety and efficacy of acetaminophen. These include vitamin A, cysteine and glutamine, and low-dose corticosteroid supplementation. CONCLUSION The current challenge is to define a safe perinatal management practice that promotes cardiorespiratory adaptation in immature infants, particularly the seamless closure of the ductus before significant cardiopulmonary distress develops.
Collapse
Affiliation(s)
- Mikko Hallman
- Department of Pediatrics Oulu University Hospital Oulu Finland
- PEDEGO Research Unit Medical Research Center University of Oulu Oulu Finland
| | - Jean Marc Treluyer
- Faculté de Médecine Université de Paris Paris France
- CIC‐1419 InsermCochin‐Necker Paris France
| | - Outi Aikio
- Department of Pediatrics Oulu University Hospital Oulu Finland
- PEDEGO Research Unit Medical Research Center University of Oulu Oulu Finland
| | - Jean‐Christophe Rozé
- Department of Neonatology Nantes University Hospital Nantes France
- Centre d'Investigation ClinIque CIC1413INSERMNantes University Hospital Nantes France
| |
Collapse
|