1
|
Wang C, Zhang Q, Li Q, Wang Y, Chen X. From infection to tumor: genetic evidence of viral antibody immune response' role in urologic cancer development. Discov Oncol 2025; 16:947. [PMID: 40442531 PMCID: PMC12122962 DOI: 10.1007/s12672-025-02768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Urologic tumors are among the most common malignancies worldwide, and the association between chronic infections and the risk of developing these tumors has garnered significant attention. However, traditional observational studies are prone to confounding factors, making it challenging to establish a clear causal relationship. METHOD This study employs a two-sample bidirectional Mendelian randomization analysis, utilizing genetic data on antibody levels and urologic tumors obtained from GWAS databases. The inverse variance weighted (IVW) method was used to estimate causal relationships, while MR-Egger and MR-PRESSO methods were applied for sensitivity analyses to assess horizontal pleiotropy and heterogeneity. RESULT The results showed that antibody levels associated with various viral infections were significantly correlated with the risk of developing urologic tumors. For example, antibodies related to cytomegalovirus IgG and Epstein-Barr virus (EBV) were found to have complex associations with the risk of prostate cancer, bladder cancer, and testicular cancer. Some antibodies, such as those related to Varicella zoster virus, were associated with a reduced risk of clear cell renal carcinoma. Additionally, sensitivity analyses suggested the potential presence of horizontal pleiotropy in bladder and testicular cancers. CONCLUSION Through Mendelian randomization analysis, we revealed a potential causal relationship between antibody immune responses and urologic tumors. These findings provide new evidence for the role of chronic infections in the pathogenesis of urologic tumors, suggesting that prevention and treatment strategies targeting related pathogens, such as vaccination and antiviral therapies, could offer new avenues for the prevention and management of urologic cancers.
Collapse
Affiliation(s)
- Chen Wang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qifa Zhang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Qiang Li
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yelong Wang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Wu J, Liu Y, Wang C, Cai Y, Zhu X, Lyu R, You Q, Liu X, Qin Q, Qian Y, Chen D. AAV9-delivery of interleukin-37b gene prevents recurrent herpetic stromal keratitis via the SIGIRR pathway in mice. J Control Release 2025; 381:113600. [PMID: 40043913 DOI: 10.1016/j.jconrel.2025.113600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/09/2025]
Abstract
Ocular herpes simplex virus type I (HSV-1) infection can lead to herpes stromal keratitis (HSK), a condition that may recur throughout a person's life and often results in progressive corneal scarring, which ultimately causes visual impairment. Since existing antiviral agents are ineffective against recurrent HSK, we aimed to explore a strategy to prevent or control recurrent HSK. Adeno-associated virus (AAV) delivery system can transduce target genes into corneal epithelial cells and establish long-term stable gene expression, and providing a promising approach for the prevention and management of recurrent HSK. In this study, interleukin-37 (IL-37), an anti-inflammatory factor, is identified as a therapeutic agent for recurrent HSK via the SIGIRR pathway. AAV9-IL-37bΔ1-45 gene therapy prevents recurrent HSK in HSV-1 latently infected mice and alleviates corneal injury in mice with HSK. In conclusion, our present study establishes a strong foundation for the prevention of recurrent HSK through AAV9-IL-37bΔ1-45 gene therapy.
Collapse
Affiliation(s)
- Jing Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; Medical school of Nanjing University, Nanjing, China
| | - Ye Liu
- Department of Ophthalmology, Tianjin First Central Hospital, Tianjin, China; Medical school of Nanjing University, Nanjing, China
| | - Chenchen Wang
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Hangzhou, China; Medical school of Nanjing University, Nanjing, China
| | - Yurong Cai
- Ningxia Institute of Clinical Medicine, Central Laboratory,People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiaomin Zhu
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruining Lyu
- Medical school of Nanjing University, Nanjing, China
| | - Qiao You
- Medical school of Nanjing University, Nanjing, China
| | - Xiaoqian Liu
- Eye-X Institute, Bengbu Medical University, Bengbu, China
| | - Qin Qin
- Department of Ophthalmology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yajie Qian
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Deyan Chen
- Eye-X Institute, Bengbu Medical University, Bengbu, China; Medical school of Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Yang J, Fu L, Yang Y, Lin L. In vivo study on IL-37 inhibition of malignant melanoma metastasis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1885-1890. [PMID: 40195660 PMCID: PMC11975520 DOI: 10.11817/j.issn.1672-7347.2024.230570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 04/09/2025]
Abstract
OBJECTIVES Malignant melanoma is highly aggressive, prone to early metastasis, and associated with extremely poor prognosis, posing a serious threat to human health. Identifying molecular mechanisms that inhibit metastasis is of great significance for improving treatment and prognosis. Interleukin-37 (IL-37), an anti-inflammatory cytokine, has not only been linked to various inflammatory diseases but also exhibits anti-tumor properties. This study aims to explore the effect of IL-37 on melanoma metastasis in vivo by establishing a murine model of pulmonary metastasis. METHODS Mouse melanoma B16F1 cells were transfected with either IL-37 overexpression plasmid (IL-37 oe) or empty vector. Three groups were set: An IL-37 oe group (transfection reagent+IL-37 oe plasmid), a Vector group (transfection reagent+vector plasmid), and a Blank group (transfection reagent only). C57 mice were randomly divided into 3 groups (n=3 per group) and injected intravenously with logarithmic-phase B16F1 cells under sterile conditions. Mice were weighed every 3 days. After 1 month, mice were euthanized by cervical dislocation, and organs including lungs, heart, liver, spleen, and kidneys were harvested. Lung metastases were photographed and counted. Organs were fixed in 4% paraformaldehyde, embedded in paraffin, and stained with hematoxylin and eosin (HE). RESULTS Western blotting confirmed successful plasmid transfection. There were no significant differences in body weight among the 3 groups over the 28-day period (P>0.05). Lung tumors were observed upon dissection, indicating successful metastasis modeling. HE staining showed no morphological differences in the heart, liver, spleen, and kidneys between groups. The numbers of lung metastases in the Blank, Vector, and IL-37 oe groups were (24.00±2.08), (24.67±0.88), and (5.33±1.45), respectively. The IL-37 oe group had significantly fewer lung metastases than the other 2 groups (P<0.05), while no difference was observed between the Blank and Vector groups. CONCLUSIONS IL-37 significantly inhibits lung metastasis of malignant melanoma cells in mice without affecting body weight or major organs. It may serve as a potential molecular target for gene therapy or immunotherapy of malignant melanoma.
Collapse
Affiliation(s)
- Jiantang Yang
- Department of Oral Mucosal Diseases, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi Guizhou 563000.
| | - Lili Fu
- Department of Stomatology, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi Guizhou 563000
| | - Yanmiao Yang
- Department of Thoracic Surgery, Second Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000
| | - Lin Lin
- Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Nanjing University School of Medicine, Nanjing Jiangsu 210008, China
| |
Collapse
|
4
|
Jin K, Zhao D, Zhou J, Zhang X, Wang Y, Wu Z. Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8 + T cell dysfunction and suppress cervical cancer progression. Apoptosis 2024; 29:2108-2127. [PMID: 39404933 DOI: 10.1007/s10495-024-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/10/2024]
Abstract
Pulsed electromagnetic field (PEMF) therapy is a potential non-invasive treatment to modulate immune responses and inhibit tumor growth. Cervical cancer (CC) is influenced by IL-37-mediated immune regulation, making PEMF therapy a potential strategy to impede CC progression. This study aimed to elucidate the effects of PEMF on IL-37 regulation and its molecular mechanisms in CC. CC cell-xenografted mouse models, including IL-37 transgenic (IL-37tg) mice, were used to assess tumor growth through in vivo fluorescence imaging and analyze CC cell apoptosis via flow cytometry. TCGA-CESC transcriptome and clinical data were analyzed to identify key inflammation and immune-related genes. CD8+ T cell models were stimulated with PEMF, and apoptosis, oxidative stress, and inflammatory factor expression were analyzed through RT-qPCR, Western blot, and flow cytometry. PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis (p < 0.05). IL-37 interaction with SMAD3 impacted the p38/NF-κB signaling pathway, modulating CD8+ T cell activity and cytotoxicity. Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05). In vivo experiments with CC-bearing mice demonstrated that PEMF treatment downregulated IL-37 expression (p < 0.05), enhanced CD8+ T cell function, and inhibited tumor growth (p < 0.05). These molecular mechanisms were validated through RT-qPCR, Western blot, and immunohistochemistry. Thus, PEMF therapy inhibits CC progression by downregulating IL-37 and improving CD8+ T cell function via the SMAD3/p38/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ke Jin
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Dan Zhao
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun Zhou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xun Zhang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
5
|
Wang Q, Zhang G, An C, Hambly BD, Bao S. The role of IL-37 in gastrointestinal diseases. Front Immunol 2024; 15:1431495. [PMID: 39206201 PMCID: PMC11349528 DOI: 10.3389/fimmu.2024.1431495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Gastrointestinal mucosal surface is frequently under challenge due to it's the large surface area and most common entry of microbes. IL-37, an anti-inflammatory cytokine, regulates local and systemic host immunity. H. pylori infection leads to the inhibition of IL-37 in the gastric mucosa, contributing to heightened mucosal inflammation and destruction, thereby facilitating increased proliferation of H. pylori. Food allergy, due to immune dysregulation, also contribute to GI injury. On the other hand, elevated levels of IL-37 observed in gastric cancer patients align with reduced host immunity at the cellular and humoral levels, indicating that IL-37 may contribute to the development of gastric cancer via suppressing pro-inflammatory responses. While IL-37 provides protection in an IBD animal model, the detection of highly produced IL-37 in IBD patients suggests a stage-dependent role, being protective in acute inflammation but potentially exacerbates the development of IBD in chronic conditions. Moreover, elevated colonic IL-37 in CRC correlates with overall survival time and disease time, indicating a protective role for IL-37 in CRC. The differential regulation and expression of IL-37 between upper- and lower-GI organs may be attributed to variations in the microbial flora. This information suggests that IL-37 could be a potential therapeutic agent, depending on the stage and location.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Anatomy, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Guangrun Zhang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Caiping An
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Brett D. Hambly
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Shisan Bao
- Foreign Affairs Office, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
- Foreign Affairs Office, The First People’s Hospital of Baiyin, Baiyin, China
| |
Collapse
|
6
|
Wang L, Chen W, Jin H, Tan Y, Guo C, Fu W, Wu Z, Cui K, Wang Y, Qiu Z, Zhang G, Liu W, Zhou Z. CXCL1/IGHG1 signaling enhances crosstalk between tumor cells and tumor-associated macrophages to promote MC-LR-induced colorectal cancer progression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124081. [PMID: 38697251 DOI: 10.1016/j.envpol.2024.124081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chengwei Guo
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiqun Qiu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenbin Liu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Mei Y, Zhu Y, Yong KSM, Hanafi ZB, Gong H, Liu Y, Teo HY, Hussain M, Song Y, Chen Q, Liu H. IL-37 dampens immunosuppressive functions of MDSCs via metabolic reprogramming in the tumor microenvironment. Cell Rep 2024; 43:113835. [PMID: 38412100 DOI: 10.1016/j.celrep.2024.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Interleukin-37 (IL-37) has been shown to inhibit tumor growth in various cancer types. However, the immune regulatory function of IL-37 in the tumor microenvironment is unclear. Here, we established a human leukocyte antigen-I (HLA-I)-matched humanized patient-derived xenograft hepatocellular carcinoma (HCC) model and three murine orthotopic HCC models to study the function of IL-37 in the tumor microenvironment. We found that IL-37 inhibited HCC growth and promoted T cell activation. Further study revealed that IL-37 impaired the immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs). Pretreatment of MDSCs with IL-37 before adoptive transfer attenuated their tumor-promoting function in HCC tumor-bearing mice. Moreover, IL-37 promoted both glycolysis and oxidative phosphorylation in MDSCs, resulting in the upregulation of ATP release, which impaired the immunosuppressive capacity of MDSCs. Collectively, we demonstrated that IL-37 inhibited tumor development through dampening MDSCs' immunosuppressive capacity in the tumor microenvironment via metabolic reprogramming, making it a promising target for future cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Mei
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ying Zhu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore 138673, Singapore
| | - Zuhairah Binte Hanafi
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, P.R. China
| | - Yonghao Liu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Huey Yee Teo
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Muslima Hussain
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Yuan Song
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore 138673, Singapore.
| | - Haiyan Liu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
8
|
Xu B, Li M, Weng N, Zhou C, Chen Y, Wei J, Fu L. Pan-Cancer Analysis Reveals Disulfidoptosis-Associated Genes as Promising Immunotherapeutic Targets: Insights Gained from Bulk Omics and Single-Cell Sequencing Validation. Biomedicines 2024; 12:267. [PMID: 38397869 PMCID: PMC10887130 DOI: 10.3390/biomedicines12020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Disulfidoptosis, a novel form of cell death, is distinct from other well-known cell death mechanisms. Consequently, a profound investigation into disulfidoptosis elucidates the fundamental mechanisms underlying tumorigenesis, presenting promising avenues for therapeutic intervention. Comprehensive analysis of disulfidoptosis-associated gene (DRG) expression in pan cancer utilized TCGA, GEO, and ICGC datasets, including survival and Cox-regression analyses for prognostic evaluation. We analyzed the association between DRG expression and both immune cell infiltration and immune-related gene expression using the ESTIMATE and TISDIB datasets. We obtained our single-cell RNA sequencing (scRNA-seq) data from the GEO repository. Subsequently, we assessed disulfidoptosis activity in various cell types. Evaluation of immune cell infiltration and biological functions was analyzed via single-sample gene set enrichment (ssGSEA) and gene set variation analysis (GSVA). For in vitro validation experiments, the results from real-time PCR (RT-qPCR) and Western blot were used to explore the expression of SLC7A11 in hepatocellular carcinoma (HCC) tissues and different cancer cell lines, while siRNA-mediated SLC7A11 knockdown effects on HCC cell proliferation and migration were examined. Expression levels of DRGs, especially SLC7A11, were significantly elevated in tumor samples compared to normal samples, which was associated with poorer outcomes. Except for SLC7A11, DRGs consistently exhibited high CNV and SNV rates, particularly in HCC. In various tumors, DRGs were negatively associated with DNA promoter methylation. TME analyses further illustrated a negative correlation of DRG expression with ImmuneScore and StromalScore and a positive correlation with tumor purity. Our analysis unveiled diverse cellular subgroups within HCC, particularly focusing on Treg cell populations, providing insights into the intricate interplay of immune activation and suppression within the tumor microenvironment (TME). These findings were further validated through RT-qPCR, Western blot analyses, and immunohistochemical analyses. Additionally, the knockdown of SLC7A11 induced a suppression of proliferation and migration in HCC cell lines. In conclusion, our comprehensive pan-cancer analysis research has demonstrated the significant prognostic and immunological role of disulfidoptosis across a spectrum of tumors, notably HCC, and identified SLC7A11 as a promising therapeutic target.
Collapse
Affiliation(s)
- Borui Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Minghao Li
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Nuoqing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (N.W.); (C.Z.)
| | - Chuzhou Zhou
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (N.W.); (C.Z.)
| | - Yinghui Chen
- Department of Intensive Care Unit, Jiangmen Central Hospital, Jiangmen 529030, China;
| | - Jinhuan Wei
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Li F, Lin Y, Li R, Shen X, Xiang M, Xiong G, Zhang K, Xia T, Guo J, Miao Z, Liao Y, Zhang X, Xie L. Molecular targeted therapy for metastatic colorectal cancer: current and evolving approaches. Front Pharmacol 2023; 14:1165666. [PMID: 37927605 PMCID: PMC10622804 DOI: 10.3389/fphar.2023.1165666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Colorectal cancer (CRC) represents 10% of all cancer types, making it the third leading cause of cancer-related deaths globally. Metastasis is the primary factor causing mortality in CRC patients. Approximately 22% of CRC-related deaths have metastasis present at diagnosis, with approximately 70% of these cases recurring. Recently, with the application of novel targeted drugs, targeted therapy has become the first-line option for individualized and comprehensive treatment of CRC. The management of these patients remains a significant medical challenge. The most prevalent targeted therapies for CRC in clinical practice focus on anti-vascular endothelial growth factor and its receptor, epidermal growth factor receptor (EGFR), and multi-target kinase inhibitors. In the wake of advancements in precision diagnosis and widespread adoption of second-generation sequencing (NGS) technology, rare targets such as BRAF V600E mutation, KRAS mutation, HER2 overexpression/amplification, and MSI-H/dMMR in metastatic colorectal cancer (mCRC) are increasingly being discovered. Simultaneously, new therapeutic drugs targeting these mutations are being actively investigated. This article reviews the progress in clinical research for developing targeted therapeutics for CRC, in light of advances in precision medicine and discovery of new molecular target drugs.
Collapse
Affiliation(s)
- Furong Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yanping Lin
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Rong Li
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xin Shen
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Mengying Xiang
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Guangrui Xiong
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Ke Zhang
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Tingrong Xia
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Jiangyan Guo
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhonghui Miao
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yedan Liao
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xuan Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Lin Xie
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
11
|
Jiang B, Zhou Y, Liu Y, He S, Liao B, Peng T, Yao L, Qi L. Research Progress on the Role and Mechanism of IL-37 in Liver Diseases. Semin Liver Dis 2023; 43:336-350. [PMID: 37582401 PMCID: PMC10620037 DOI: 10.1055/a-2153-8836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Cytokines are important components of the immune system that can predict or influence the development of liver diseases. IL-37, a new member of the IL-1 cytokine family, exerts potent anti-inflammatory and immunosuppressive effects inside and outside cells. IL-37 expression differs before and after liver lesions, suggesting that it is associated with liver disease; however, its mechanism of action remains unclear. This article mainly reviews the biological characteristics of IL-37, which inhibits hepatitis, liver injury, and liver fibrosis by inhibiting inflammation, and inhibits the development of hepatocellular carcinoma (HCC) by regulating the immune microenvironment. Based on additional evidence, combining IL-37 with liver disease markers for diagnosis and treatment can achieve more significant effects, suggesting that IL-37 can be developed into a powerful tool for the clinical adjuvant treatment of liver diseases, especially HCC.
Collapse
Affiliation(s)
- Baoyi Jiang
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yulin Zhou
- Department of Clinical Laboratory, Shunde New Rongqi Hospital, Foshan, China
| | - Yanting Liu
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Siqi He
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Baojian Liao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Tieli Peng
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Leyi Yao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ling Qi
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
12
|
Papasavva M, Amvrosiou S, Pilala KM, Soureas K, Christodoulou P, Ji Y, Stravodimos K, Xu D, Scorilas A, Avgeris M, Christodoulou MI. Deregulated Expression of IL-37 in Patients with Bladder Urothelial Cancer: The Diagnostic Potential of the IL-37e Isoform. Int J Mol Sci 2023; 24:ijms24119258. [PMID: 37298214 DOI: 10.3390/ijms24119258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular and molecular immune components play a crucial role in the development and perpetuation of human malignancies, shaping anti-tumor responses. A novel immune regulator is interleukin-37 (IL-37), already shown to be involved in the inflammation associated with the pathophysiology of many human disorders, including cancer. The interplay between tumor and immune cells is of great importance, especially for highly immunogenic tumors such as bladder urothelial carcinoma (BLCA). This study aimed to investigate the potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) to serve as prognostic and/or diagnostic markers in patients with BLCA. To this end, a series of bioinformatics tools processing -omics datasets and specifically designed qPCR assays on human BLCA tumors and cancer cell lines were utilized. Bioinformatics analysis revealed that IL-37 levels correlate with BLCA tumor development and are higher in patients with longer overall survival. Furthermore, mutations on SIGIRR are associated with enhanced infiltration of the tumor by regulatory T cells and dendritic cells. Based on the qPCR validation experiments, BLCA epithelial cells express the IL-37c and IL-37e isoforms, while the latter is the predominant variant detected in tumor biopsies, also associated with higher grade and the non-muscle-invasive type. This is the first time, to the best of our knowledge, that IL-37 and SIGIRR levels have been assessed in BLCA tumor lesions, and associations with pathological and survival parameters are described, while a transcript variant-specific signature is indicated to have a diagnostic potential. These data strongly indicate the need for further investigation of the involvement of this cytokine and interconnected molecules in the pathophysiology of the disease and its prospective as a therapeutic target and biomarker for BLCA.
Collapse
Affiliation(s)
- Maria Papasavva
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Styliana Amvrosiou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Panayiota Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Yuan Ji
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen 518055, China
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
13
|
Liu Q, Zhou Q, Wang M, Pang B. Interleukin-37 suppresses the cytotoxicity of hepatitis B virus peptides-induced CD8+ T cells in patients with acute hepatitis B. BIOMOLECULES & BIOMEDICINE 2023; 23:527-534. [PMID: 36326182 PMCID: PMC10171447 DOI: 10.17305/bjbms.2022.8260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Interleukin-37 (IL-37) is a newly identified anti-inflammatory cytokine, owning immunosuppressive activity in infectious diseases. The aim of this study was to investigate the regulatory function of IL-37 on CD8+ T cells during hepatitis B virus (HBV) infection. Eighteen acute hepatitis B (AHB) patients, thirty-nine chronic hepatitis B (CHB) patients, and twenty controls were enrolled. IL-37 concentration was measured by ELISA. IL-37 receptor subunits expressions on CD8+ T cells were assessed by flow cytometry. Purified CD8+ T cells were stimulated with HBV peptides and recombinant IL-37. Perforin and granzyme B secretion was investigated by ELISPOT. Programmed death-1 (PD-1) and cytotoxic T-lymphocyte associated protein-4 (CTLA-4) mRNA expressions were semi-quantified by real-time PCR. CD8+ T cell cytotoxicity was assessed in direct contact and indirect contact coculture with HepG2.2.15 cells. Plasma IL-37 level was down-regulated and negatively correlated with aminotransferase levels in AHB patients. There were no significant differences of IL-37 receptor subunits among AHB patients, CHB patients, and controls. Exogenous IL-37 stimulation suppressed HBV peptides-induced perforin and granzyme B secretion by CD8+ T cells in AHB patients, but not in CHB patients. Exogenous IL-37 stimulation did not affect proinflammatory cytokines secretion as well as PD-1/CTLA-4 mRNA expressions in CD8+ T cells in AHB and CHB patients. Exogenous IL-37 stimulation dampened HBV peptide-induced CD8+ T cell cytotoxicity in a cell-to-cell contact manner. The current data indicated that acute HBV infection might induce down-regulation of IL-37, which might be associated with enhanced CD8+ T cell cytotoxicity and liver damage.
Collapse
Affiliation(s)
- Qian Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qiang Zhou
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingrui Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Bo Pang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
14
|
Wang Q, Zhou Y, Zhou G, Qin G, Tan C, Yin T, Zhao D, Yao S. Age-stratified proteomic characteristics and identification of promising precise clinical treatment targets of colorectal cancer. J Proteomics 2023; 277:104863. [PMID: 36870673 DOI: 10.1016/j.jprot.2023.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Colorectal cancer (CRC) is an extremely lethal disease worldwide. However, the underlying pathogenesis remains unclear. This study aimed to reveal the distinct characteristics of age-stratified CRC at the protein level and explore precise treatment targets. Patients who underwent surgical removal with pathologically confirmed CRC at China-Japan Friendship Hospital from January 2020 to October 2021 were recruited, cancer and para-carcinoma tissues (> 5 cm) were detected by mass spectrometry. Ninety-six clinical samples were collected and divided into three groups according to age: young (≤ 50 years), middle-aged (51-69 years), and old (≥ 70 years). Quantitative proteomic analysis was performed, as well as comprehensive bioinformatic analysis based on the Human Protein Atlas, Clinical Proteomic Tumor Analysis Consortium and Connectivity Map databases. The numbers of upregulated and downregulated proteins were 1315 and 560 in the young group, 757 and 311 in the old group, and 1052 and 468 in the middle-aged group, respectively. Bioinformatic analysis showed that these differentially expressed proteins had different molecular functions and participated in extensive signaling pathways. We also revealed ADH1B, ARRDC1, GATM, GTF2H4, MGME1, and LILRB2 as possible cancer-promoting molecules, which might serve as potential prognostic biomarkers and precise therapeutic targets for CRC. SIGNIFICANCE: This study comprehensively characterized the proteomic profiles of age-stratified colorectal cancer patients, focusing on the differentially expressed proteins between cancer and paracancerous tissues in different age groups, in an effort to find corresponding potential prognostic biomarkers and therapeutic targets. In addition, this study provides potentially valuable clinical small molecule inhibitory agents.
Collapse
Affiliation(s)
- Qianqian Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Yuanchen Zhou
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Geyujia Zhou
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chang Tan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Tengfei Yin
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Dongyan Zhao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
15
|
Zeng F, Wang X, Hu Y, Wang Z, Li Y, Hu J, Yu J, Zhou P, Teng X, Zhou H, Zheng H, Zhao F, Gu L, Yue C, Chen S, Cheng J, Hao Y, Zhao Q, Zhang C, Zou S, Hu Z, Wei X, Liu X, Li G, Huang N, Wu W, Zhou Y, Li W, Cui K, Li J. Interleukin-37 promotes DMBA/TPA skin cancer through SIGIRR-mediated inhibition of glycolysis in CD103 +DC cells. MedComm (Beijing) 2023; 4:e229. [PMID: 36891351 PMCID: PMC9986080 DOI: 10.1002/mco2.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
Interleukin 37 (IL-37), a member of the IL-1 family, is considered a suppressor of innate and adaptive immunity and, hence is a regulator of tumor immunity. However, the specific molecular mechanism and role of IL-37 in skin cancer remain unclear. Here, we report that IL-37b-transgenic mice (IL-37tg) treated with the carcinogenic 7,12-dimethylbenzoanthracene (DMBA)/12-o-tetradecylphorbol-13-acetate (TPA) exhibited enhanced skin cancer and increased tumor burden in the skin by inhibiting the function of CD103+ dendritic cells (DCs). Notably, IL-37 induced rapid phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and via single immunoglobulin IL-1-related receptor (SIGIRR), inhibited the long-term Akt activation. Specifically, by affecting the SIGIRR-AMPK-Akt signaling axis, which is related to the regulation of glycolysis in CD103+DCs, IL-37 inhibited their anti-tumor function. Our results show that a marked correlation between the CD103+DC signature (IRF8, FMS-like tyrosine kinase 3 ligand, CLEC9A, CLNK, XCR1, BATF3, and ZBTB46) and chemokines C-X-C motif chemokine ligand 9, CXCL10, and CD8A in a mouse model with DMBA/TPA-induced skin cancer. In a word, our results highlight that IL-37 as an inhibitor of tumor immune surveillance through modulating CD103+DCs and establishing an important link between metabolism and immunity as a therapeutic target for skin cancer.
Collapse
Affiliation(s)
- Fan‐lian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Xiao‐yan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Ya‐wen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
- Department of Liver Surgery and Liver TransplantationWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
- Laboratory of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Jia‐dong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Xiu Teng
- Laboratory of Human Disease and ImmunotherapiesWest China HospitalSichuan UniversityChengduChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Hua‐ping Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Fu‐lei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Lin‐na Gu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Cheng‐cheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Shu‐wen Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Juan Cheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yan Hao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Qi‐xiang Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Song Zou
- Department of CardiologyWest China HospitalSichuan UniversityChengduChina
| | - Zhong‐lan Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Xiao‐qiong Wei
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Xiao Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Guo‐lin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Nong‐yu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Wen‐ling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yi‐fan Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Wei Li
- Department of DermatovenereologyWest China HospitalSichuan UniversityChengduChina
| | - Kaijun Cui
- Department of CardiologyWest China HospitalSichuan UniversityChengduChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
16
|
Teng X, Mou DC, Li HF, Jiao L, Wu SS, Pi JK, Wang Y, Zhu ML, Tang M, Liu Y. SIGIRR deficiency contributes to CD4 T cell abnormalities by facilitating the IL1/C/EBPβ/TNF-α signaling axis in rheumatoid arthritis. Mol Med 2022; 28:135. [DOI: 10.1186/s10020-022-00563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Rheumatoid arthritis (RA) is a complex autoimmune disease with multiple etiological factors, among which aberrant memory CD4 T cells activation plays a key role in the initiation and perpetuation of the disease. SIGIRR (single immunoglobulin IL-1R-related receptor), a member of the IL-1 receptor (ILR) family, acts as a negative regulator of ILR and Toll-like receptor (TLR) downstream signaling pathways and inflammation. The aim of this study was to investigate the potential roles of SIGIRR on memory CD4 T cells in RA and the underlying cellular and molecular mechanisms.
Methods
Single-cell transcriptomics and bulk RNA sequencing data were integrated to predict SIGIRR gene distribution on different immune cell types of human PBMCs. Flow cytometry was employed to determine the differential expression of SIGIRR on memory CD4 T cells between the healthy and RA cohorts. A Spearman correlation study was used to determine the relationship between the percentage of SIGIRR+ memory CD4 T cells and RA disease activity. An AIA mouse model (antigen-induced arthritis) and CD4 T cells transfer experiments were performed to investigate the effect of SIGIRR deficiency on the development of arthritis in vivo. Overexpression of SIGIRR in memory CD4 T cells derived from human PBMCs or mouse spleens was utilized to confirm the roles of SIGIRR in the intracellular cytokine production of memory CD4 T cells. Immunoblots and RNA interference were employed to understand the molecular mechanism by which SIGIRR regulates TNF-α production in CD4 T cells.
Results
SIGIRR was preferentially distributed by human memory CD4 T cells, as revealed by single-cell RNA sequencing. SIGIRR expression was substantially reduced in RA patient-derived memory CD4 T cells, which was inversely associated with RA disease activity and related to enhanced TNF-α production. SIGIRR-deficient mice were more susceptible to antigen-induced arthritis (AIA), which was attributed to unleashed TNF-α production in memory CD4 T cells, confirmed by decreased TNF-α production resulting from ectopic expression of SIGIRR. Mechanistically, SIGIRR regulates the IL-1/C/EBPβ/TNF-α signaling axis, as established by experimental evidence and cis-acting factor bioinformatics analysis.
Conclusion
Taken together, SIGIRR deficiency in memory CD4 T cells in RA raises the possibility that receptor induction can target key abnormalities in T cells and represents a potentially novel strategy for immunomodulatory therapy.
Collapse
|
17
|
Aberrant Expression and Prognostic Potential of IL-37 in Human Lung Adenocarcinoma. Biomedicines 2022; 10:biomedicines10123037. [PMID: 36551790 PMCID: PMC9775426 DOI: 10.3390/biomedicines10123037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Interleukin-37 (IL-37) is a relatively new IL-1 family cytokine that, due to its immunoregulatory properties, has lately gained increasing attention in basic and translational biomedical research. Emerging evidence supports the implication of this protein in any human disorder in which immune homeostasis is compromised, including cancer. The aim of this study was to explore the prognostic and/or diagnostic potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) in human tumors. We utilized a series of bioinformatics tools and -omics datasets to unravel possible associations of IL-37 and SIGIRR expression levels and genetic aberrations with tumor development, histopathological parameters, distribution of tumor-infiltrating immune cells, and survival rates of patients. Our data revealed that amongst the 17 human malignancies investigated, IL-37 exhibits higher expression levels in tumors of lung adenocarcinoma (LUAD). Moreover, the expression profiles of IL-37 and SIGIRR are associated with LUAD development and tumor stage, whereas their high mRNA levels are favorable prognostic factors for the overall survival of patients. What is more, IL-37 correlates positively with a LUAD-associated transcriptomic signature, and its nucleotide changes and expression levels are linked with distinct infiltration patterns of certain cell subsets known to control LUAD anti-tumor immune responses. Our data indicate the potential value of IL-37 and its receptor SIGIRR to serve as biomarkers and/or immune-checkpoint therapeutic targets for LUAD patients. Further, the data highlight the urgent need for further exploration of this cytokine and the underlying pathogenetic mechanisms to fully elucidate its implication in LUAD development and progression.
Collapse
|
18
|
Jiang N, Guo Q, Luo Q. Inhibition of ITGB1-DT expression delays the growth and migration of stomach adenocarcinoma and improves the prognosis of cancer patients using the bioinformatics and cell model analysis. J Gastrointest Oncol 2022; 13:615-629. [PMID: 35557569 PMCID: PMC9086027 DOI: 10.21037/jgo-22-233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND The long non-coding RNA, integrin subunit beta 1 (ITGB1) divergent transcript (ITGB1-DT), is known to be involved in cancer progression and associated with the poor prognosis of cancer patients. At present, the role of ITGB1-DT in stomach adenocarcinoma (STAD) has not been reported. METHODS The expression level of ITGB1-DT was detected in normal gastric and STAD tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. A receiver operating characteristic (ROC) analysis was used to evaluate the role of ITGB1-DT in diagnosing STAD. The relationship between ITGB1-DT overexpression and clinicopathological features, prognosis, and immune-infiltrated cells in STAD were explored using correlation, survival, and Cox regression analyses. A cell model of ITGB1-DT interference was constructed to explore the roles of ITGB1-DT on STAD cell proliferation and migration, and the signaling mechanism was investigated using Gene Set Enrichment Analysis (GSEA). RESULTS ITGB1-DT was expressed up-regulated in STAD tissues. ITGB1-DT overexpression was associated with the T stage, therapeutic effect, overall survival, progression-free interval status, and poor prognosis in STAD patients. ITGB1-DT overexpression was valuable in diagnosing STAD and a negative factor affecting the prognosis of STAD patients. Interference with ITGB1-DT expression inhibited STAD cell proliferation, invasion, and migration. GSEA results showed that ITGB1-DT may be involved in STAD progression through the insulin, p53, mechanistic target of rapamycin kinase (MTOR), and other signaling pathways. Overexpression of ITGB1-DT was significantly correlated with the levels of STAD B cells, T cells, T helper cells, CD8 T cells, cytotoxic cells, and other immune cells. CONCLUSIONS ITGB1-DT was overexpressed and associated with poor prognosis in STAD. Interference with ITGB1-DT expression may delay the progression of STAD to improve the prognosis of STAD patients.
Collapse
Affiliation(s)
- Ni Jiang
- Cancer Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Cancer Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|