1
|
Peng Y, Tao H, Liu D, Tang D, Wen C, Wu M, Xu T, Wang G, Zheng X, Dai Y. Comprehensive analysis of eccDNA characteristics and associated genes expression in peripheral blood of ASLE and ISLE patients. Epigenetics 2025; 20:2477903. [PMID: 40108975 PMCID: PMC11926905 DOI: 10.1080/15592294.2025.2477903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/09/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
To explore SLE staging markers, we analyzed eccDNA in plasma using circular sequencing, comparing healthy controls (HC), active SLE (ASLE), and inactive SLE (ISLE) patients. We found higher eccDNA levels and lower GC content in ASLE and ISLE compared to healthy controls, with a negative correlation between GC content and anti-daDNA, C3, and C4 levels in SLE and HC samples. Differential expression of exon-derived eccGenes in ASLE and ISLE suggests their role in SLE development, with KEGG analysis showing enrichment in SLE-related pathways for these differentially expressed genes. By protein-protein interactions network analysis we found 9 exon-derived eccGenes that were significantly differentially expressed and scored high in both ISLE-HC and ASLE-ISLE as diagnostic criteria for differentiating different disease stages of SLE. In conclusion, the present study reveals that eccDNA length GC content as well as chromosomal distribution in ASLE, ISLE and HC suggests that with eccDNA is associated with the creation of SLE, suggesting GC count of eccDNA as a diagnostic marker for systemic lupus erythematosus. Significant changes in the abundance of eccDNA-related genes from exons such as SOS1, GAD2, BCL11B, PPT1, and GCNT3 were observed in ISLE as compared to ASLE and HC groups and were significantly correlated with SLEDAI-2K. This suggests that these exon-derived eccGenes may play a role in the development and progression of the disease. Consequently, the abundance levels of these exon-derived eccGenes could potentially assist in distinguishing different stages of SLE, beyond a confirmed diagnosis, thus serving as possible biomarkers for the condition.
Collapse
Affiliation(s)
- Yali Peng
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Huihui Tao
- School of Medicine, Anhui University of Science & Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science & Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science & Technology, Huainan, China
| | - Dongzhou Liu
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People ‘s Hospital, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Donger Tang
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People ‘s Hospital, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Chunmei Wen
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Mengyao Wu
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Tiantian Xu
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Guoying Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Xuejia Zheng
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Yong Dai
- School of Medicine, Anhui University of Science & Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science & Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science & Technology, Huainan, China
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People ‘s Hospital, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
2
|
Liang Y, Zhou Y, Xu T, Wang Y, Xu X, Chen R, Jiang Q, Lu N, Zhao L, Huang Z, Huang Z. Circ847 upregulation via CAFs suppresses salivary adenoid cystic carcinoma progression through VIM-EMT. Cell Signal 2025; 132:111806. [PMID: 40250696 DOI: 10.1016/j.cellsig.2025.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Salivary adenoid cystic carcinoma (SACC) is prone to metastasis, which strongly affects its prognosis. Cancer-associated fibroblasts (CAFs) play important roles in SACC metastasis. The purpose of this study was to identify and explore the key regulatory mechanisms of the altered expression of circRNAs in SACC CAFs. In this study, we found that circRNA-847 (circ847) expression was inhibited by pretreatment with SACC CAFs. Cell function experiments confirmed that the downregulation of circ847 promoted the proliferation and metastasis of SACC cells and that overexpression of circ847 induced the opposite effects. Mechanistically, circ847 can bind to vimentin and regulate its stability, thereby regulating epithelial-mesenchymal transition (EMT)-related signaling. Histological staining of SACC patient specimens also confirmed that the expression of circ847 was negatively correlated with SACC lymph node and lung metastasis. As a proof of concept, we successfully inhibited SACC progression and metastasis in sciatic nerve invasion models and lung metastasis models of SACC by treating the mice with nanoparticle-encapsulated circ847 plasmids to induce circ847 overexpression. This study demonstrated that circ847 expression is inhibited by CAFs. Restoring the expression of circ847 can effectively inhibit the progression of SACC, providing new research ideas for the study of effective prevention and treatment strategies for SACC and the prediction of SACC distant metastasis risk and prognosis.
Collapse
Affiliation(s)
- Yancan Liang
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Stomatology, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China
| | - Yuwei Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Tianshu Xu
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxian Xu
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiming Jiang
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Luodan Zhao
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Stomatology, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, China.
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Zhou Z, Xiao J, Yin S, Chen Y, Yuan Y, Zhang J, Xiong L, Xie K. Cas9-Rep fusion tethers donor DNA in vivo and boosts the efficiency of HDR-mediated genome editing. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2006-2017. [PMID: 40043077 PMCID: PMC12120896 DOI: 10.1111/pbi.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 05/31/2025]
Abstract
Genome editing based on the homology-directed repair (HDR) pathway enables scar-free and precise genetic manipulations. However, the low frequency of HDR hinders its application in plant genome editing. In this study, we engineered the fusion of Cas9 and a viral replication protein (Rep) as a molecular bridge to tether donor DNA in vivo, which enhances the efficiency of targeted gene insertion via the HDR pathway. This Rep-bridged knock-in (RBKI) method combines the advantages of rolling cycle replication of viral replicons and in vivo enrichment of donor DNA at the target site for HDR. Chromatin immunoprecipitation indicated that the Cas9-Rep fusion protein bound up to 66-fold more donor DNA than Cas9 did. We exemplified the RBKI method by inserting small- to middle-sized tags (33-519 bp) into 3 rice genes. Compared to Cas9, Cas9-Rep fusion increased the KI frequencies by 4-7.6-fold, and up to 72.2% of stable rice transformants carried in-frame knock-in events in the T0 generation. Whole-genome sequencing of 6 plants segregated from heterozygous KI lines indicated that the knock-in events were faithfully inherited by the progenies with neither off-target editing nor random insertions of the donor DNA fragment. Further analysis suggested that the RBKI method reduced the number of byproducts from nonhomologous end joining; however, HDR-mediated knock-in tended to accompany microhomology-mediated end joining events. Together, these findings show that the in vivo tethering of donor DNAs with Cas9-Rep is an effective strategy to increase the frequency of HDR-mediated genome editing.
Collapse
Affiliation(s)
- Zhentao Zhou
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Jiahui Xiao
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Shuai Yin
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yache Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yang Yuan
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Kabin Xie
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
4
|
Jiang L, Song M, Song F, Wang S, Zhou Y, Wang Z, Sun C, Yao H, Zhang Z, Wang X, Liao M, Wang Y, Luo H. Global characterization of extrachromosomal circular DNAs in four body fluids. Int J Legal Med 2025; 139:1053-1062. [PMID: 39945904 DOI: 10.1007/s00414-025-03442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 03/17/2025]
Abstract
Determination of the type of body fluids is highly desired in forensic investigations. Extrachromosomal circular DNA (eccDNA) is a double-stranded, circular type of nucleic acid molecule that exists outside chromosomes and is ubiquitous in eukaryotic cells, which is widely explored in clinical research. The use of eccDNA for body fluid identification has remained relatively unexplored. As such, peripheral blood, menstrual blood, semen, and saliva samples (each = 3) from healthy individuals were detected, using Circle-seq, to identify potential markers for body fluid identification. In total, 263,036 eccDNAs were identified, widely distributed throughout the genome, and most of them were within 1000 base pairs in size. The study combined eccDNA with RNA analysis in an attempt to observe the relationship between eccDNA and gene expression in healthy individuals. We performed outward PCR on selected eccDNAs using library samples and validated the predicted junction sites by Sanger sequencing. In short, this pilot study demonstrated for the first time the characterization of eccDNA profiles from four body fluids of healthy individuals. It provided a novel direction for body fluid identification. In the future, breaking the low abundance and high heterogeneity of eccDNA will lead to new possibilities in the forensic field.
Collapse
Affiliation(s)
- Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Mengyuan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Shuangshuang Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zefei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Chaoran Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Hewen Yao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhirui Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Xindi Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
5
|
Swarup N, Leung HY, Choi I, Aziz MA, Cheng JC, Wong DTW. Cell-Free DNA: Features and Attributes Shaping the Next Frontier in Liquid Biopsy. Mol Diagn Ther 2025; 29:277-290. [PMID: 40237938 PMCID: PMC12062165 DOI: 10.1007/s40291-025-00773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 04/18/2025]
Abstract
Cell-free DNA (cfDNA) is changing the face of liquid biopsy as a minimally invasive tool for disease detection and monitoring, with its main applications in oncology and prenatal testing, and rising roles in transplant patient monitoring. However, the processes of cfDNA biogenesis, fragmentation, and clearance are complex and require further investigation. Evidence suggests that cfDNA production relates to mechanisms of cell death and DNA repair, both of which further influence fragment size and its applicability as a biomarker. An emerging domain, cfDNA fragmentomics is being explored for advancing the field of diagnostics using non-mutational signatures such as fragment size ratios and methylation patterns. Thus, this review examines structural diversity in cfDNA with various fragment sizes. In examining these cfDNA subsets, we discuss their distinct biological origins and potential clinical utility. Development of sequencing methodologies has broadened the application of cfDNA in diagnosing cancers and organ-specific pathologies, as well as directing personalized therapies. This has been achieved by identifying and uncovering different subsets of cfDNA in biofluids using different methodologies and biofluids. Different cfDNA subsets provide important insights regarding genomic and epigenetic features, enhancing the understanding of gene regulation, tissue-specific functions, and disease progression. Advancement of these key areas further asserts increasing clinical relevance for the use of cfDNA as a biomarker. Continued exploration of cfDNA subsets is expected to drive further innovation in liquid biopsy and its integration into routine clinical practice.
Collapse
Affiliation(s)
- Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ho Yeung Leung
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Irene Choi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Arshad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jordan C Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Wang Y, Li H, Li Q, Li Y, Wu H, Ge Y, Zhu X, Zheng Z, Sun Z. Characterization of Extrachromosomal Circular DNA in Primary and Cisplatin-Resistant High-Grade Serous Ovarian Cancer. Genes (Basel) 2025; 16:517. [PMID: 40428339 PMCID: PMC12111702 DOI: 10.3390/genes16050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Cisplatin resistance is a major cause of tumor recurrence and mortality in high-grade serous ovarian cancer (HGSOC). Extrachromosomal circular DNA (eccDNA) has emerged as a critical factor in tumor evolution and drug resistance. However, the specific contribution of eccDNA to cisplatin resistance in HGSOC remains unclear. METHODS We performed whole-genome sequencing, Circle-Seq, and RNA-Seq in four pairs of primary and cisplatin-resistant (cisR) HGSOC cell lines to characterize genome-wide eccDNA distribution and features. Functional enrichment analyses were subsequently conducted on differentially expressed eccDNA-related genes. RESULTS In the SKOV3 cisR cell line, we identified a large extrachromosomal circular DNA (ecDNA) carrying the HIF1A gene, which regulates DNA repair, drug efflux, and epithelial-mesenchymal transition, contributing to cisplatin resistance. Using Circle-Seq, we detected a total of 161,062 eccDNAs, most of which were less than 1000 bp and distributed across all chromosomes. Notably, the number of eccDNAs on chromosome 21 differed significantly between the primary and cisR cell lines. Additionally, eccDNAs were predominantly located in non-coding repetitive elements. Functional analysis of eccDNA-related differentially expressed genes revealed that, compared to primary cell lines, cisR cell lines were associated with mitotic spindle assembly, regulation of vascular permeability, and cell differentiation. eccDNA-related genes involved in these pathways include MISP, WIPF1, RHOD, KRT80, and PLVAP. CONCLUSIONS Our findings suggest that eccDNAs, particularly ecDNA amplifications like HIF1A, contribute significantly to cisplatin resistance mechanisms in HGSOC. These insights highlight eccDNA as a potential target for overcoming therapeutic resistance and improving treatment outcomes in ovarian cancer.
Collapse
Affiliation(s)
- Youya Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (H.L.); (H.W.); (Y.G.); (X.Z.)
| | - He Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (H.L.); (H.W.); (Y.G.); (X.Z.)
| | - Qinglan Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.L.)
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.L.)
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (H.L.); (H.W.); (Y.G.); (X.Z.)
| | - Yan Ge
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (H.L.); (H.W.); (Y.G.); (X.Z.)
| | - Xingnuo Zhu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (H.L.); (H.W.); (Y.G.); (X.Z.)
| | - Zhiguo Zheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (H.L.); (H.W.); (Y.G.); (X.Z.)
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (Y.L.)
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
7
|
Simonassi-Paiva B, Luz JA, Ribeiro JH, da Silveira JC, de Souza CA, Pappas Jr GJ, de Carvalho JL, Lynch M, Pogue R, Rowan NJ. Identification of eccDNA in Extracellular Vesicles Derived from Human Dermal Fibroblasts Through Nanopore Sequencing. Int J Mol Sci 2025; 26:4144. [PMID: 40362382 PMCID: PMC12071958 DOI: 10.3390/ijms26094144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are heterogeneous circular DNA molecules derived from genomic DNA, and believed to be involved in intercellular communication and in natural biological processes. Extracellular vesicles (EVs) are membrane-bound particles released from all cells, and have been shown to contain various classes of nucleic acids. EVs can play a role in intercellular communication and may be used as biomarkers. This constitutes the first study to demonstrate that EVs derived from healthy human dermal fibroblasts carry eccDNA. eccDNA from EVs and their corresponding donor cells were isolated and sequenced on the Oxford Nanopore MinIon platform, followed by the identification of potential eccDNAs through four different bioinformatic pipelines, namely ecc_Finder, cyrcular-calling, CReSIL, and Flec. Our main findings demonstrate that EVs derived from human dermal fibroblasts carry eccDNA; there is variability in the number of eccDNAs identified in the same sample through different pipelines; and there is variability in the identified eccDNAs across biological replicates. Additionally, eccDNAs characterized in this research had (a) sequences as small as 306 base pairs and as large as 28,958 base pairs across all samples, (b) uneven chromosomal distribution, and (c) an average of 49.7% of the identified eccDNAs harboring gene fragments. Future implications for this novel research include using this framework method to elucidate factors and conditions that may influence the skin aging process and related biogenesis in human dermal cells.
Collapse
Affiliation(s)
- Bianca Simonassi-Paiva
- Faculty of Science & Health, Technological University of the Shannon, Athlone Campus, N37HD68 Athlone, Ireland; (B.S.-P.); (M.L.)
| | - Julia Alves Luz
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, DF, Brazil; (J.A.L.); (G.J.P.J.)
| | - Julia Hellena Ribeiro
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasilia 71966-700, DF, Brazil;
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.C.d.S.); (C.A.d.S.)
| | - Camila Azzolin de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.C.d.S.); (C.A.d.S.)
| | - Georgios Joannis Pappas Jr
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, DF, Brazil; (J.A.L.); (G.J.P.J.)
| | | | - Mark Lynch
- Faculty of Science & Health, Technological University of the Shannon, Athlone Campus, N37HD68 Athlone, Ireland; (B.S.-P.); (M.L.)
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasilia 71966-700, DF, Brazil;
| | - Neil J. Rowan
- Faculty of Science & Health, Technological University of the Shannon, Athlone Campus, N37HD68 Athlone, Ireland; (B.S.-P.); (M.L.)
| |
Collapse
|
8
|
Wang Q, Wang X, Ye H, Yao Y, Li H, Qin X, Zhao Y, Jiang W, Xu M, Zi T, Li X, Chen X, Zhou J, Wu G. VAV2 exists in extrachromosomal circular DNA and contributes Enzalutamide resistance of prostate cancer via stabilization of AR/ARv7. Int J Biol Sci 2025; 21:2843-2863. [PMID: 40303312 PMCID: PMC12035891 DOI: 10.7150/ijbs.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are circular, double-stranded DNA molecules ubiquitously present across various organisms, playing a critical role in tumorigenesis and tumor progression. However, their precise contribution to prostate cancer (PCa) remains incompletely understood. To elucidate the function of eccDNAs in PCa, eccDNA sequencing and annotation were performed in PCa tissues and cell lines using Circle-seq. Amplified genes on eccDNAs were identified by cross-referencing annotated eccDNA-associated genes with those overexpressed in PCa based on TCGA data. Furthermore, eccDNA profiles were compared between Enzalutamide-sensitive and -resistant cell lines to investigate their role in resistance mechanisms. Notably, VAV2 was detected on both linear and circular DNA, as confirmed by PCR and Sanger sequencing. Functional analyses demonstrated that VAV2 overexpression promotes PCa proliferation and metastasis by activating the PAK1/AKT signaling pathway through PAK1 phosphorylation. Additionally, VAV2 contributes to Enzalutamide resistance by enhancing AR/ARv7 protein stability via reduced ubiquitination, mediated through the recruitment of the deubiquitinating enzyme USP48. These findings establish VAV2, identified through eccDNA sequencing, as a potential oncogene and a promising biomarker for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hanchu Ye
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yicong Yao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Haopeng Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xin Qin
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yan Zhao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Wei Jiang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Mingming Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Tong Zi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xilei Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Juan Zhou
- Department of ICU, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Gang Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
9
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
10
|
Qiu Q, Ding Y, Guo X, Han J, Zhang J, Liu Y, She J, Chen Y. Extrachromosomal circular DNA as a novel biomarker for the progression of colorectal cancer. Mol Med 2025; 31:123. [PMID: 40165080 PMCID: PMC11960012 DOI: 10.1186/s10020-025-01164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA) has potential in tumor diagnosis, particularly for improving diagnostic accuracy and early cancer detection; however, many challenges remain in its application to clinical practice. METHODS We conducted a Circle-Seq analysis on clinical samples at different stages of colorectal cancer progression to examine the dynamic changes of eccDNA during the progression of colorectal cancer. We used breakpoint-specific PCR to verify candidate eccDNAs identified by Circle-Seq. The results were further validated using the AOM/DSS-induced colorectal cancer model. RESULTS There was an increase in the abundance of eccDNA with the progression of colorectal cancer. The genes associated with these eccDNA molecules were primarily related to signaling pathways involved in tumor development and metastasis. Our analysis also revealed that eccDNA abundance positively correlates with gene expression, and eccDNA derived from specific genes has potential value for the early diagnosis of tumors. CONCLUSIONS This study revealed a connection between eccDNA and colorectal cancer progression and highlights the clinical potential of eccDNA for the early diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Quanpeng Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Ding
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaolong Guo
- Center for Gut Microbiome Research, Med-X Institute, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Han
- Center for Gut Microbiome Research, Med-X Institute, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiaqi Zhang
- Center for Gut Microbiome Research, Med-X Institute, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yaping Liu
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Center for Gut Microbiome Research, Med-X Institute, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Hubei Province Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| |
Collapse
|
11
|
Azadegan C, Santoro J, Whetstine JR. Connecting the dots: Epigenetic regulation of extrachromosomal and inherited DNA amplifications. J Biol Chem 2025; 301:108454. [PMID: 40154613 DOI: 10.1016/j.jbc.2025.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
DNA amplification has intrigued scientists for decades. Since its discovery, significant progress has been made in understanding the mechanisms promoting DNA amplification and their associated function(s). While DNA copy gains were once thought to be regulated purely by stochastic processes, recent findings have revealed the important role of epigenetic modifications in driving these amplifications and their integration into the genome. Furthermore, advances in genomic technology have enabled detailed characterization of these genomic events in terms of size, structure, formation, and regulation. This review highlights how our understanding of DNA amplifications has evolved over time, tracing its trajectory from initial discovery to the contemporary landscape. We describe how recent discoveries have started to uncover how these genomic events occur by controlled biological processes rather than stochastic mechanisms, presenting opportunities for therapeutic modulation.
Collapse
Affiliation(s)
- Chloe Azadegan
- Drexel University, College of Medicine, Philadelphia, Pennsylvania, USA; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - John Santoro
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
Ludwig MP, Wilson JR, Galbraith MD, Bhandari N, Dunn LN, Black JC, Sullivan KD. NF-κB signaling directs a program of transient amplifications at innate immune response genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.641929. [PMID: 40161744 PMCID: PMC11952383 DOI: 10.1101/2025.03.11.641929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The cellular response to pathogens involves an intricate response directed by key innate immune signaling pathways which is characterized by cell-to-cell heterogeneity. How this heterogeneity is established and regulated remains unclear. We describe a program of transient site-specific gains (TSSG) producing extrachromosomal DNA (ecDNA) of immune-related genes in response to innate immune signaling. Activation of NF-κB drives TSSG of the interferon receptor gene cluster through inducible recruitment of the transcription factor RelA and the pre-replication complex member MCM2 to an epigenetically regulated TSSG control element. Targeted recruitment of RelA or p300 are sufficient to induce TSSG formation. RelA and MCM2 specify a program of TSSG for at least six and as many as 179 regions enriched in innate immune response genes. Identification of this program reveals regulated production of ecDNA as a mechanism of heterogeneity in the host response.
Collapse
Affiliation(s)
- Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- These Authors Contributed Equally
| | - Jason R. Wilson
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- These Authors Contributed Equally
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Nirajan Bhandari
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren N. Dunn
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C. Black
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lead Contact
| |
Collapse
|
13
|
Irdianto SA, Dwiranti A, Bowolaksono A. Extrachromosomal circular DNA: a double-edged sword in cancer progression and age-related diseases. Hum Cell 2025; 38:58. [PMID: 39969664 DOI: 10.1007/s13577-025-01178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Extrachromosomal circular DNA (eccDNA) is a fascinating form of genetic material found outside the usual chromosomal DNA in eukaryotic cells, including humans. Since its discovery in the 1960s, eccDNA has been linked to critical roles in cancer progression and age-related diseases. This review thoroughly explores eccDNA, covering its types, how it forms, and its significant impact on diseases, particularly cancer. EccDNA, especially in its extrachromosomal DNA (ecDNA) form, contributes to the genetic diversity of tumour cells, helping them evolve quickly and resist treatments. Beyond cancer, eccDNA is also connected to age-related conditions like Werner syndrome, amyotrophic lateral sclerosis (ALS), and type 2 diabetes mellitus (T2DM), where it may affect genomic stability and disease development. The potential of eccDNA as a biomarker for predicting disease outcomes and as a target for new treatments is also highlighted. This review aims to deepen our understanding of eccDNA and inspire further research into its roles in human health and disease, paving the way for innovative diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Shadira Anindieta Irdianto
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Astari Dwiranti
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
- Institute for Advanced Sustainable Materials Research and Technology (INA-SMART), Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, 16424, Indonesia
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
| |
Collapse
|
14
|
Behrouzi R, Clipson A, Simpson KL, Blackhall F, Rothwell DG, Dive C, Mouliere F. Cell-free and extrachromosomal DNA profiling of small cell lung cancer. Trends Mol Med 2025; 31:64-78. [PMID: 39232927 DOI: 10.1016/j.molmed.2024.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Small cell lung cancer (SCLC) is highly aggressive with poor prognosis. Despite a relative prevalence of circulating tumour DNA (ctDNA) in SCLC, liquid biopsies are not currently implemented, unlike non-SCLC where cell-free DNA (cfDNA) mutation profiling in the blood has utility for guiding targeted therapies and assessing minimal residual disease. cfDNA methylation profiling is highly sensitive for SCLC detection and holds promise for disease monitoring and molecular subtyping; cfDNA fragmentation profiling has also demonstrated clinical potential. Extrachromosomal DNA (ecDNA), that is often observed in SCLC, promotes tumour heterogeneity and chemotherapy resistance and can be detected in blood. We discuss how these cfDNA profiling modalities can be harnessed to expand the clinical applications of liquid biopsy in SCLC.
Collapse
Affiliation(s)
- Roya Behrouzi
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Florent Mouliere
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Hu F, Qiu Z. Spotlight on the function and trends on extrachromosomal circular DNA (eccDNA): A bibliometric analysis from 2008 - 2023. Exp Cell Res 2025; 444:114318. [PMID: 39547353 DOI: 10.1016/j.yexcr.2024.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Extrachromosomal circular DNA (eccDNA),a type of circular DNA that has a nucleosomal structure, is widely distributed in eukaryotic chromosomes and has been found to modulate genome instability and plasticity, playing a role in regulating gene expression and genome evolution. To comprehensively outline the stages of eccDNA research development, including author collaborations, research topics and hotspots, and their temporal evolution trends, we conducted a bibliometric analysis of 242 publications related to eccDNA research published from 2008 to 2023 in the Web of Science Core Collection. The bibliometric analysis was performed using CiteSpace, the R package Bibliometrix, and VOSviewer. The USA, the University of California system, and Turner Km were found to be the most influential nation, organization, and author in this field, respectively. The exploration of Characterization and Diagnosis, Heterochromatin,Circ-Seq and Cancer Drug Resistance on eccDNA are the most concerned hotspots. EccDNA research has become a rapidly growing hotspot, receiving extensive attention from scholars in recent years. This study is the first to investigate the development and current challenges of eccDNA research through bibliometric analysis.The research on eccDNA has advanced from disorder to more intricate molecular functions. At present, the rapid growth of eccDNA studies in cancer has not been accompanied by an intuitive analysis of its evolutionary patterns. This review provides an overview of eccDNA's biological characteristics and functions, with a focus on its role in cancer research.
Collapse
Affiliation(s)
- Fan Hu
- Zhuhai Jingyuan Biomedical Technology Co., LTD, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macao, 999078, People's Republic of China
| |
Collapse
|
16
|
Zhu H, Huangfu L, Chen J, Ji J, Xing X. Exploring the potential of extrachromosomal DNA as a novel oncogenic driver. SCIENCE CHINA. LIFE SCIENCES 2025; 68:144-157. [PMID: 39349791 DOI: 10.1007/s11427-024-2710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 01/03/2025]
Abstract
Extrachromosomal DNA (ecDNA) is a form of circular DNA mostly found in tumor cells. Unlike the typical chromosomal DNA, ecDNA is circular, self-replicating, and carries complete or partial gene fragments. Although ecDNA occurrence remains a rare event in cancer, recent studies have shown that oncogene amplification on ecDNA is widespread throughout many types of cancer, implying that ecDNA plays a central role in accelerating tumor evolution. ecDNA has also been associated with increased tumor mutation burden, chromosomal instability, and even tumor microenvironment remodeling. ecDNA may be crucial in influencing tumor heterogeneity, drug sensitivity, oncogenic senescence, and tumor immunogenicity, leading to a worsening prognosis for tumor patients. In this way, several clinical trials have been conducted to investigate the importance of ecDNA in clinical treatment. In this review, we summarize the biogenesis, characteristics, and current research methods of ecDNA, discuss the vital role of ecDNA-caused tumor heterogeneity in cancers, and highlight the potential role of ecDNA in cancer therapy.
Collapse
Affiliation(s)
- Huanbo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
17
|
Wang Z, Yu J, Zhu W, Hong X, Xu Z, Mao S, Huang L, Han P, He C, Song C, Xiang X. Unveiling the mysteries of extrachromosomal circular DNA: from generation to clinical relevance in human cancers and health. Mol Cancer 2024; 23:276. [PMID: 39707444 DOI: 10.1186/s12943-024-02187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a type of circular DNAs originating from but independent of chromosomal DNAs. Nowadays, with the rapid development of sequencing and bioinformatics, the accuracy of eccDNAs detection has significantly improved. This advancement has consequently enhanced the feasibility of exploring the biological characteristics and functions of eccDNAs. This review elucidates the potential mechanisms of eccDNA generation, the existing methods for their detection and analysis, and their basic features. Furthermore, it focuses on the biological functions of eccDNAs in regulating gene expression under both physiological and pathological conditions. Additionally, the review summarizes the clinical implications of eccDNAs in human cancers and health.
Collapse
Affiliation(s)
- Zilong Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenli Zhu
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhen Xu
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuang Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lei Huang
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Peng Han
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Changze Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
18
|
Volarić M, Meštrović N, Despot-Slade E. SatXplor-a comprehensive pipeline for satellite DNA analyses in complex genome assemblies. Brief Bioinform 2024; 26:bbae660. [PMID: 39708839 DOI: 10.1093/bib/bbae660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
Satellite DNAs (satDNAs) are tandemly repeated sequences that make up a significant portion of almost all eukaryotic genomes. Although satDNAs have been shown to play an important role in genome organization and evolution, they are relatively poorly analyzed, even in model organisms. One of the main reasons for the current lack of in-depth studies on satDNAs is their underrepresentation in genome assemblies. Due to complexity, abundance, and highly repetitive nature of satDNAs, their analysis is challenging, requiring efficient tools that ensure accurate annotation and comprehensive genome-wide analysis. We present a novel pipeline, named satellite DNA Exploration (SatXplor), designed to robustly characterize satDNA elements and analyze their arrays and flanking regions. SatXplor is benchmarked against other tools and curated satDNA datasets from diverse species, including mice and humans, showcase its versatility across genomes with varying complexities and satDNA profiles. Component algorithms excel in the identification of tandemly repeated sequences and, for the first time, enable evaluation of satDNA variation and array annotation with the addition of information about surrounding genomic landscape. SatXplor is an innovative pipeline for satDNA analysis that can be paired with any tool used for satDNA detection, offering insights into the structural characteristics, array determination, and genomic context of satDNA elements. By integrating various computational techniques, from sequence analysis and homology investigation to advanced clustering and graph-based methods, it provides a versatile and comprehensive approach to explore the complexity of satDNA organization and understand the underlying mechanisms and evolutionary aspects. It is open-source and freely accessible at https://github.com/mvolar/SatXplor.
Collapse
Affiliation(s)
- Marin Volarić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
19
|
Zhang A, Wang T, Yuan L, Shen Y, Liu K, Liu B, Xu K, Elsadek MA, Wang Y, Wu L, Qi Z, Yu J, Zhang M, Chen L. Horizontal transfer of plasmid-like extrachromosomal circular DNAs across graft junctions in Solanaceae. MOLECULAR HORTICULTURE 2024; 4:41. [PMID: 39563413 DOI: 10.1186/s43897-024-00124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
The transfer of genetic material between stocks and scions of grafted plants has been extensively studied; however, the nature and frequency of the transferred material remain elusive. Here, we report a grafting system involving woody goji as the stock and herbaceous tomato as the scion, which was developed using in vitro and in vivo approaches; the results confirmed horizontal transfer of multiple nuclear DNA fragments from donor goji cells to recipient tomato cells. Tomato tissues containing goji donor DNA fragments at or near the grafting junctions had a perennial-biased anatomical structure, from which roots or shoots were regenerated. Most of the fragments were plasmid-like extrachromosomal circular DNAs (eccDNAs) present in the regenerants derived from the cells and in their asexual offspring. Plants with transferred eccDNAs in regenerated roots or shoots (designated "Go-tomato") were grown perennially and showed excellent agronomic performance. The present study provides new insights into the replication, expression, and potential function of eccDNAs in the pleiotropic traits of Go-tomato. Mobile eccDNAs offer evidence of stock-to-scion horizontal DNA transfer beyond chromosomes and organelles, thereby contributing to the molecular understanding of graft-induced genetic variation, evolution, and breeding.
Collapse
Affiliation(s)
- Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuxin Shen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiting Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liang Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mingfang Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118583. [PMID: 39353793 DOI: 10.1016/j.atherosclerosis.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.
Collapse
Affiliation(s)
- Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| |
Collapse
|
21
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
22
|
Qian Y, Hong X, Yu Y, Du C, Li J, Yu J, Xiao W, Chen C, Huang D, Zhong T, Li J, Xiang X, Li Z. Characterization and functional analysis of extrachromosomal circular DNA discovered from circulating extracellular vesicles in liver failure. Clin Transl Med 2024; 14:e70059. [PMID: 39406484 PMCID: PMC11479749 DOI: 10.1002/ctm2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Affiliation(s)
- Yongbing Qian
- Department of Liver SurgeryRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoning Hong
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yang Yu
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Cong Du
- Cell‐gene Therapy Translational Medicine Research CenterThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Li
- College of Medicine and ForensicsXi'an Jiaotong University Health Science CenterXi'anChina
| | - Jiaying Yu
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wenjun Xiao
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Chen Chen
- Department of Liver SurgeryRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Defa Huang
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tianyu Zhong
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Jiang Li
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Xi Xiang
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhigang Li
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational ResearchShenzhenChina
| |
Collapse
|
23
|
Li F, Ming W, Lu W, Wang Y, Dong X, Bai Y. Bioinformatics advances in eccDNA identification and analysis. Oncogene 2024; 43:3021-3036. [PMID: 39209966 DOI: 10.1038/s41388-024-03138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a unique class of chromosome-originating circular DNA molecules, which are closely linked to oncogene amplification. Due to recent technological advances, particularly in high-throughput sequencing technology, bioinformatics methods based on sequencing data have become primary approaches for eccDNA identification and functional analysis. Currently, eccDNA-relevant databases incorporate previously identified eccDNA and provide thorough functional annotations and predictions, thereby serving as a valuable resource for eccDNA research. In this review, we collected around 20 available eccDNA-associated bioinformatics tools, including identification tools and annotation databases, and summarized their properties and capabilities. We evaluated some of the eccDNA detection methods in simulated data to offer recommendations for future eccDNA detection. We also discussed the current limitations and prospects of bioinformatics methodologies in eccDNA research.
Collapse
Affiliation(s)
- Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenlong Ming
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Ying Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xianjun Dong
- Adams Center of Parkinson's Disease Research, Yale School of Medicine, Yale University, 100 College St, New Haven, CT, 06511, USA.
- Department of Neurology, Yale School of Medicine, Yale University, 100 College St, New Haven, CT, 06511, USA.
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
24
|
Wang J, Huang P, Hou F, Hao D, Li W, Jin H. Predicting gestational diabetes mellitus risk at 11-13 weeks' gestation: the role of extrachromosomal circular DNA. Cardiovasc Diabetol 2024; 23:289. [PMID: 39113025 PMCID: PMC11304788 DOI: 10.1186/s12933-024-02381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) significantly impacts maternal and infant health both immediately and over the long term, yet effective early diagnostic biomarkers are currently lacking. Thus, it is essential to identify early diagnostic biomarkers for GDM risk screening. Extrachromosomal circular DNA (eccDNA), being more stable than linear DNA and involved in disease pathologies, is a viable biomarker candidate for diverse conditions. In this study, eccDNA biomarkers identified for early diagnosis and assessment of GDM risk were explored. METHODS Using Circle-seq, we identified plasma eccDNA profiles in five pregnant women who later developed GDM and five matched healthy controls at 11-13 weeks of gestation. These profiles were subsequently analyzed through bioinformatics and validated through outward PCR combined with Sanger sequencing. Furthermore, candidate eccDNA was validated by quantitative PCR (qPCR) in a larger cohort of 70 women who developed GDM and 70 normal glucose-tolerant (NGT) subjects. A ROC curve assessed the eccDNA's diagnostic potential for GDM. RESULTS 2217 eccDNAs were differentially detected between future GDM patients and controls, with 1289 increased and 928 decreased in abundance. KEGG analysis linked eccDNA genes mainly to GDM-related pathways such as Rap1, MAPK, and PI3K-Akt, and Insulin resistance, among others. Validation confirmed a significant decrease in eccDNA PRDM16circle in the plasma of 70 women who developed GDM compared to 70 NGT women, consistent with the eccDNA-seq results. PRDM16circle showed significant diagnostic value in 11-13 weeks of gestation (AUC = 0.941, p < 0.001). CONCLUSIONS Our study first demonstrats that eccDNAs are aberrantly produced in women who develop GDM, including PRDM16circle, which can predict GDM at an early stage of pregnancy, indicating its potential as a biomarker. TRIAL REGISTRATION ChiCTR2300075971, http://www.chictr.org.cn . Registered 20 September 2023.
Collapse
Affiliation(s)
- Jin Wang
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No.2, Jianguo Xiaojing Roud, Jinan, 250002, Shandong Province, People's Republic of China
| | - Pengyu Huang
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350005, Fujian Province, People's Republic of China
| | - Fei Hou
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No.2, Jianguo Xiaojing Roud, Jinan, 250002, Shandong Province, People's Republic of China
| | - Dongdong Hao
- Department of Family Planning, Jinan Maternal and Child Health Care Hospital, Jinan, Shandong Province, People's Republic of China
| | - Wushan Li
- Department of Obstetrics, Jinan Maternal and Child Health Care Hospital, Jinan, Shandong Province, People's Republic of China
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No.2, Jianguo Xiaojing Roud, Jinan, 250002, Shandong Province, People's Republic of China.
| |
Collapse
|
25
|
Tsiakanikas P, Athanasopoulou K, Darioti IA, Agiassoti VT, Theocharis S, Scorilas A, Adamopoulos PG. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life (Basel) 2024; 14:922. [PMID: 39202666 PMCID: PMC11355349 DOI: 10.3390/life14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage-fusion-bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioanna A. Darioti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vasiliki Taxiarchoula Agiassoti
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
26
|
Jin W, Xu Z, Song Y, Chen F. Extrachromosomal circular DNA promotes prostate cancer progression through the FAM84B/CDKN1B/MYC/WWP1 axis. Cell Mol Biol Lett 2024; 29:103. [PMID: 38997648 PMCID: PMC11245840 DOI: 10.1186/s11658-024-00616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved. METHODS The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays. RESULTS The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression. CONCLUSIONS FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.
Collapse
Affiliation(s)
- Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yan Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Fangjie Chen
- Department of Medical Genetics, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, 110022, Liaoning, People's Republic of China.
| |
Collapse
|
27
|
Fang J, Ying L, Ma Z, Yang Y, Zhu R, Su D. The distribution of the extrachromosomal DNA molecules in early lung cancer. Sci Prog 2024; 107:368504241276771. [PMID: 39228317 PMCID: PMC11375654 DOI: 10.1177/00368504241276771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lung cancer (LC) is a highly lethal cancer worldwide. Research on the distribution and nature of extrachromosomal DNA molecules (EcDNAm) in early LC is scarce. In this study, after removing linear DNA and mitochondrial circular DNA, EcDNAm were extracted from two paired LC tissue samples and amplified using rolling circle amplification. High throughput extrachromosomal DNA (EcDNA) or RNA sequencing and bioinformatics analysis were subsequently utilized to explore the distribution and nature of the EcDNAm. Additionally, to elucidate the role of oncogenes with large EcDNAm sizes, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. The RNA sequencing results revealed significant differences in certain genes between tumors and corresponding normal samples. At the same time, slight distinctions were observed between relapsed and non-relapsed tumor samples. The nature of the EcDNAm was compared between LC samples and matched normal samples. There was a tendency for the number of EcDNAm with longer size (EcDNA) and its containing driver oncogenes to be higher in cancer samples. Enrichment analysis of the cancer samples revealed enrichment in biological processes, such as positive regulation of protein localization, axon development, and in-utero embryonic development. This study highlights the universal distribution and characteristics of EcDNAm in early LC. Moreover, our work fills the investigation of the EcDNAm gap and future studies should focus on the application of EcDNA as a potential biomarker in patients with early LC.
Collapse
Affiliation(s)
- Jianfei Fang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lisha Ying
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhengxiao Ma
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ying Yang
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Li Z, Yin S, Yang K, Zhang B, Wu X, Zhang M, Gao D. CircRNA Regulation of T Cells in Cancer: Unraveling Potential Targets. Int J Mol Sci 2024; 25:6383. [PMID: 38928088 PMCID: PMC11204142 DOI: 10.3390/ijms25126383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
T lymphocytes play a critical role in antitumor immunity, but their exhaustion poses a significant challenge for immune evasion by malignant cells. Circular RNAs (circRNAs), characterized by their covalently closed looped structure, have emerged as pivotal regulators within the neoplastic landscape. Recent studies have highlighted their multifaceted roles in cellular processes, including gene expression modulation and protein function regulation, which are often disrupted in cancer. In this review, we systematically explore the intricate interplay between circRNAs and T cell modulation within the tumor microenvironment. By dissecting the regulatory mechanisms through which circRNAs impact T cell exhaustion, we aim to uncover pathways crucial for immune evasion and T cell dysfunction. These insights can inform innovative immunotherapeutic strategies targeting circRNA-mediated molecular pathways. Additionally, we discuss the translational potential of circRNAs as biomarkers for therapeutic response prediction and as intervention targets. Our comprehensive analysis aims to enhance the understanding of immune evasion dynamics in the tumor microenvironment by facilitating the development of precision immunotherapy.
Collapse
Affiliation(s)
- Zelin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Shuanshuan Yin
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Kangping Yang
- The Second Clinical Medical College, Nanchang University, Nanchang 330047, China;
| | - Baojie Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Xuanhuang Wu
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Meng Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Dian Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| |
Collapse
|
29
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
30
|
Zhou L, Tang W, Ye B, Zou L. Characterization, biogenesis model, and current bioinformatics of human extrachromosomal circular DNA. Front Genet 2024; 15:1385150. [PMID: 38746056 PMCID: PMC11092383 DOI: 10.3389/fgene.2024.1385150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Human extrachromosomal circular DNA, or eccDNA, has been the topic of extensive investigation in the last decade due to its prominent regulatory role in the development of disorders including cancer. With the rapid advancement of experimental, sequencing and computational technology, millions of eccDNA records are now accessible. Unfortunately, the literature and databases only provide snippets of this information, preventing us from fully understanding eccDNAs. Researchers frequently struggle with the process of selecting algorithms and tools to examine eccDNAs of interest. To explain the underlying formation mechanisms of the five basic classes of eccDNAs, we categorized their characteristics and functions and summarized eight biogenesis theories. Most significantly, we created a clear procedure to help in the selection of suitable techniques and tools and thoroughly examined the most recent experimental and bioinformatics methodologies and data resources for identifying, measuring and analyzing eccDNA sequences. In conclusion, we highlighted the current obstacles and prospective paths for eccDNA research, specifically discussing their probable uses in molecular diagnostics and clinical prediction, with an emphasis on the potential contribution of novel computational strategies.
Collapse
Affiliation(s)
- Lina Zhou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyi Tang
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Ye
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lingyun Zou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Zhang C, Du Q, Zhou X, Qu T, Liu Y, Ma K, Shen Z, Wang Q, Zhang Z, Zhang R. Differential expression and analysis of extrachromosomal circular DNAs as serum biomarkers in pulmonary arterial hypertension. Respir Res 2024; 25:181. [PMID: 38664836 PMCID: PMC11046951 DOI: 10.1186/s12931-024-02808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNAs (eccDNAs) have been reported to play a key role in the occurrence and development of various diseases. However, the characterization and role of eccDNAs in pulmonary arterial hypertension (PAH) remain unclear. METHODS In the discovery cohort, we first explored eccDNA expression profiles by Circle-sequencing analysis. The candidate eccDNAs were validated by routine polymerase chain reaction (PCR), TOPO-TA cloning and Sanger sequencing. In the validation cohort, 30 patients with PAH and 10 healthy controls were recruited for qPCR amplification to detect the candidate eccDNAs. Datas at the baseline were collected, including clinical background, biochemical variables, echocardiography and hemodynamic factors. Receiver operating characteristic curve was used to investigate the diagnostic effect of the eccDNA. RESULTS We identified a total of 21,741 eccDNAs in plasma samples of 3 IPAH patients and 3 individuals in good health, and the expression frequency, GC content, length distribution, and genome distribution of the eccDNAs were thoroughly characterized and analyzed. In the validation cohort, 687 eccDNAs were differentially expressed in patients with IPAH compared with healthy controls (screening threshold: |FC|≥2 and P < 0.05). Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the specific eccDNAs in IPAH were significantly enriched in calcium channel activity, the mitogen-activated protein kinase pathway, and the wnt signaling pathway. Verification queue found that the expression of eccDNA-chr2:131208878-131,424,362 in PAH was considerably higher than that in healthy controls and exhibited a high level of accuracy in predicting PAH with a sensitivity of 86.67% and a specificity of 90%. Furthermore, correlation analysis disclosed a significant association between serum eccDNA-chr2:131208878-131,424,362 and mean pulmonary artery pressure (mPAP) (r = 0.396, P = 0.03), 6 min walking distance (6MWD) (r = -0.399, P = 0.029), N-terminal pro-B-type natriuretic peptide (NT-proBNP) (r = 0.685, P < 0.001) and cardiac index (CI) (r = - 0.419, P = 0.021). CONCLUSIONS This is the first study to identify and characterize eccDNAs in patients with PAH. We revealed that serum eccDNA-chr2:131208878-131,424,362 is significantly overexpressed and can be used in the diagnosis of PAH, indicating its potential as a novel non-invasive biomarker.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Qiang Du
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Xiao Zhou
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Tianyu Qu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Yingying Liu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Kai Ma
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Ziling Shen
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Qun Wang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Zaikui Zhang
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Ruifeng Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
32
|
Deng E, Fan X. Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules 2024; 14:488. [PMID: 38672504 PMCID: PMC11048305 DOI: 10.3390/biom14040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a double-stranded circular DNA molecule found in multiple organisms, has garnered an increasing amount of attention in recent years due to its close association with the initiation, malignant progression, and heterogeneous evolution of cancer. The presence of eccDNA in serum assists in non-invasive tumor diagnosis as a biomarker that can be assessed via liquid biopsies. Furthermore, the specific expression patterns of eccDNA provide new insights into personalized cancer therapy. EccDNA plays a pivotal role in tumorigenesis, development, diagnosis, and treatment. In this review, we comprehensively outline the research trajectory of eccDNA, discuss its role as a diagnostic and prognostic biomarker, and elucidate its regulatory mechanisms in cancer. In particular, we emphasize the potential application value of eccDNA in cancer diagnosis and treatment and anticipate the development of novel tumor diagnosis strategies based on serum eccDNA in the future.
Collapse
Affiliation(s)
- Enze Deng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Xiaoying Fan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China
| |
Collapse
|
33
|
Li D, Qian X, Wang Y, Yin Y, Sun H, Zhao H, Wu J, Qiu L. Molecular characterization and functional roles of circulating cell-free extrachromosomal circular DNA. Clin Chim Acta 2024; 556:117822. [PMID: 38325714 DOI: 10.1016/j.cca.2024.117822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Circular DNA segments isolated from chromosomes are known as extrachromosomal circular DNA (eccDNA). Its distinct structure and characteristics, along with the variations observed in different disease states, makes it a promising biomarker. Recent studies have revealed the presence of eccDNAs in body fluids, indicating their involvement in various biological functions. This finding opens up avenues for utilizing eccDNAs as convenient and real-time biomarkers for disease diagnosis, treatment monitoring, and prognosis assessment through noninvasive analysis of body fluids. In this comprehensive review, we focused on elucidating the size profiles, potential mechanisms of formation and clearance, detection methods, and potential clinical applications of eccDNAs. We aimed to provide a valuable reference resource for future research in this field.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Xia Qian
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yicong Yin
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Huishan Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Jie Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| |
Collapse
|
34
|
de Souza FD, Marques A, Almeida C. Mitochondrial genome of Hancornia speciosa gomes: intergenic regions containing retrotransposons and predicted genes. Mol Biol Rep 2024; 51:132. [PMID: 38236560 DOI: 10.1007/s11033-023-09184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Plant mitochondrial genomes are characterized by high homologous recombination, extensive intergenic spacers, conservation in DNA sequences, and gene content. The Hancornia genus belongs to the Apocynaceae family, with H. speciosa Gomes being the sole species in the genus. It is an siganificant commercial fruit crop; however, only a number of studies have been conducted. In this study, we present the mitochondrial genome of H. speciosa and compare it with other mitochondrial genomes within the Apocynaceae family. METHODS AND RESULTS A total of 2.8 Gb of Illumina paired-end reads were used to obtain the mitogenome, resulting in 22 contigs that were merged using 6.1 Gb of Illumina mate-pair reads to obtain a circular chromosome. The mitochondrial genome of H. speciosa is circular, containing 63 predicted functional genes, spanning a length of 741,811 bp, with a CG content of 44%. Within the mitogenome, 50 chloroplast DNA sequences, equivalent to 1.72% of the genome, were detected. However, intergenic spaces accounted for 703,139 bp (94.79% of the genome), and 287 genes were predicted, totaling 173,721 bp. CONCLUSION This suggests the incorporation of nuclear DNA into the mitogenome of H. speciosa and self duplication. Comparative analysis among the mitogenomes in the Apocynaceae family revealed a diversity in the structure mediated by recombination, with similar gene content and large intergenic spaces.
Collapse
Affiliation(s)
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, NRW, Germany
| | - Cícero Almeida
- Laboratório de Recursos Genéticos, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca, Brazil.
| |
Collapse
|
35
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
36
|
Lu W, Li F, Ouyang Y, Jiang Y, Zhang W, Bai Y. A comprehensive analysis of library preparation methods shows high heterogeneity of extrachromosomal circular DNA but distinct chromosomal amount levels reflecting different cell states. Analyst 2023; 149:148-160. [PMID: 37987554 DOI: 10.1039/d3an01300f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) was discovered several decades ago, but little is known about its function. With the development of sequencing technology, several library preparation methods have been developed to elucidate the biogenesis and function of eccDNA. However, different treatment methods have certain biases that can lead to their erroneous interpretation. To address these issues, we compared the performance of different library preparation methods. Our investigation revealed that the utilization of rolling-circle amplification (RCA) and restriction enzyme linearization of mitochondrial DNA (mtDNA) significantly enhanced the efficiency of enriching extrachromosomal circular DNA (eccDNA). However, it also introduced certain biases, such as an unclear peak in ∼160-200 bp periodicity and the absence of a typical motif pattern. Furthermore, given that RCA can lead to a disproportionate change in copy numbers, eccDNA quantification using split and discordant reads should be avoided. Analysis of the genomic and elements distribution of the overall population of eccDNA molecules revealed a high correlation between the replicates, and provided a possible stability signature for eccDNA, which could potentially reflect different cell lines or cell states. However, we found only a few eccDNA with identical junction sites in each replicate, showing a high degree of heterogeneity of eccDNA. The emergence of different motif patterns flanking junctional sites in eccDNAs of varying sizes suggests the involvement of multiple potential mechanisms in eccDNA generation. This study comprehensively compares and discusses various essential approaches for eccDNA library preparation, offering valuable insights and practical advice to researchers involved in characterizing eccDNA.
Collapse
Affiliation(s)
- Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yunfei Ouyang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, Xinjiang Uygur Autonomous Region, 835000, China
| | - Weizhong Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
37
|
Cheng H, Ma W, Wang K, Chu H, Bao G, Liao Y, Yuan Y, Gou Y, Dong L, Yang J, Cai H. ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data. BMC Genomics 2023; 24:678. [PMID: 37950200 PMCID: PMC10638764 DOI: 10.1186/s12864-023-09792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND High oncogene expression in cancer cells is a major cause of rapid tumor progression and drug resistance. Recent cancer genome research has shown that oncogenes as well as regulatory elements can be amplified in the form of extrachromosomal DNA (ecDNA) or subsequently integrated into chromosomes as homogeneously staining regions (HSRs). These genome-level variants lead to the overexpression of the corresponding oncogenes, resulting in poor prognosis. Most existing detection methods identify ecDNA using whole genome sequencing (WGS) data. However, these techniques usually detect many false positive regions owing to chromosomal DNA interference. RESULTS In the present study, an algorithm called "ATACAmp" that can identify ecDNA/HSRs in tumor genomes using ATAC-seq data has been described. High chromatin accessibility, one of the characteristics of ecDNA, makes ATAC-seq naturally enriched in ecDNA and reduces chromosomal DNA interference. The algorithm was validated using ATAC-seq data from cell lines that have been experimentally determined to contain ecDNA regions. ATACAmp accurately identified the majority of validated ecDNA regions. AmpliconArchitect, the widely used ecDNA detecting tool, was used to detect ecDNA regions based on the WGS data of the same cell lines. Additionally, the Circle-finder software, another tool that utilizes ATAC-seq data, was assessed. The results showed that ATACAmp exhibited higher accuracy than AmpliconArchitect and Circle-finder. Moreover, ATACAmp supported the analysis of single-cell ATAC-seq data, which linked ecDNA to specific cells. CONCLUSIONS ATACAmp, written in Python, is freely available on GitHub under the MIT license: https://github.com/chsmiss/ATAC-amp . Using ATAC-seq data, ATACAmp offers a novel analytical approach that is distinct from the conventional use of WGS data. Thus, this method has the potential to reduce the cost and technical complexity associated ecDNA analysis.
Collapse
Affiliation(s)
- Hansen Cheng
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Wenhao Ma
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Kun Wang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Han Chu
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Guangchao Bao
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yu Liao
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yawen Yuan
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yixiong Gou
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Liting Dong
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Jian Yang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
38
|
Wu S, Tao T, Zhang L, Zhu X, Zhou X. Extrachromosomal DNA (ecDNA): Unveiling its role in cancer progression and implications for early detection. Heliyon 2023; 9:e21327. [PMID: 38027570 PMCID: PMC10643110 DOI: 10.1016/j.heliyon.2023.e21327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Extrachromosomal DNA (ecDNA) is a special class of circular DNA in eukaryotes, which is independent of conventional chromosomes. These circular molecules play important roles in biology, especially in cancer biology. The emergence of sequencing technologies such as CCDA-seq and Amplicon Architect has led to a progressive unraveling of the mystery of ecDNA. Consequently, insights into its function and potential applications have begun to surface. Among these studies, the most noteworthy research pertains to cancer-related investigations into ecDNA. Numerous studies have underscored the significance of ecDNA in the pathogenesis of cancer and its role in accelerating cancer evolution. This review provides an overview of the source, structure, and function of ecDNA, while compiling recent advancements in ecDNA in the field of cancer. Nonetheless, further research is imperative to determine its effectiveness and specificity as a biomarker for early cancer detection.
Collapse
Affiliation(s)
- Shuhong Wu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Lin Zhang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
39
|
Kim J, Hong SP, Lee S, Lee W, Lee D, Kim R, Park YJ, Moon S, Park K, Cha B, Kim JI. Multidimensional fragmentomic profiling of cell-free DNA released from patient-derived organoids. Hum Genomics 2023; 17:96. [PMID: 37898819 PMCID: PMC10613368 DOI: 10.1186/s40246-023-00533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Fragmentomics, the investigation of fragmentation patterns of cell-free DNA (cfDNA), has emerged as a promising strategy for the early detection of multiple cancers in the field of liquid biopsy. However, the clinical application of this approach has been hindered by a limited understanding of cfDNA biology. Furthermore, the prevalence of hematopoietic cell-derived cfDNA in plasma complicates the in vivo investigation of tissue-specific cfDNA other than that of hematopoietic origin. While conventional two-dimensional cell lines have contributed to research on cfDNA biology, their limited representation of in vivo tissue contexts underscores the need for more robust models. In this study, we propose three-dimensional organoids as a novel in vitro model for studying cfDNA biology, focusing on multifaceted fragmentomic analyses. RESULTS We established nine patient-derived organoid lines from normal lung airway, normal gastric, and gastric cancer tissues. We then extracted cfDNA from the culture medium of these organoids in both proliferative and apoptotic states. Using whole-genome sequencing data from cfDNA, we analyzed various fragmentomic features, including fragment size, footprints, end motifs, and repeat types at the end. The distribution of cfDNA fragment sizes in organoids, especially in apoptosis samples, was similar to that found in plasma, implying occupancy by mononucleosomes. The footprints determined by sequencing depth exhibited distinct patterns depending on fragment sizes, reflecting occupancy by a variety of DNA-binding proteins. Notably, we discovered that short fragments (< 118 bp) were exclusively enriched in the proliferative state and exhibited distinct fragmentomic profiles, characterized by 3 bp palindromic end motifs and specific repeats. CONCLUSIONS In conclusion, our results highlight the utility of in vitro organoid models as a valuable tool for studying cfDNA biology and its associated fragmentation patterns. This, in turn, will pave the way for further enhancements in noninvasive cancer detection methodologies based on fragmentomics.
Collapse
Affiliation(s)
- Jaeryuk Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Pyo Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seyoon Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woochan Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dakyung Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rokhyun Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungji Moon
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bukyoung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Fu W, MacGregor DR, Comont D, Saski CA. Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass ( Alopecurus myosuroides) Populations. Genes (Basel) 2023; 14:1905. [PMID: 37895254 PMCID: PMC10606437 DOI: 10.3390/genes14101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.
Collapse
Affiliation(s)
- Wangfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Dana R. MacGregor
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK; (D.R.M.); (D.C.)
| | - David Comont
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK; (D.R.M.); (D.C.)
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
41
|
Vízkeleti L, Spisák S. Rewired Metabolism Caused by the Oncogenic Deregulation of MYC as an Attractive Therapeutic Target in Cancers. Cells 2023; 12:1745. [PMID: 37443779 PMCID: PMC10341379 DOI: 10.3390/cells12131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
MYC is one of the most deregulated oncogenes on multiple levels in cancer. As a node transcription factor, MYC plays a diverse regulatory role in many cellular processes, including cell cycle and metabolism, both in physiological and pathological conditions. The relentless growth and proliferation of tumor cells lead to an insatiable demand for energy and nutrients, which requires the rewiring of cellular metabolism. As MYC can orchestrate all aspects of cellular metabolism, its altered regulation plays a central role in these processes, such as the Warburg effect, and is a well-established hallmark of cancer development. However, our current knowledge of MYC suggests that its spatial- and concentration-dependent contribution to tumorigenesis depends more on changes in the global or relative expression of target genes. As the direct targeting of MYC is proven to be challenging due to its relatively high toxicity, understanding its underlying regulatory mechanisms is essential for the development of tumor-selective targeted therapies. The aim of this review is to comprehensively summarize the diverse forms of MYC oncogenic deregulation, including DNA-, transcriptional- and post-translational level alterations, and their consequences for cellular metabolism. Furthermore, we also review the currently available and potentially attractive therapeutic options that exploit the vulnerability arising from the metabolic rearrangement of MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Sándor Spisák
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| |
Collapse
|
42
|
Jiang X, Pan X, Li W, Han P, Yu J, Li J, Zhang H, Lv W, Zhang Y, He Y, Xiang X. Genome-wide characterization of extrachromosomal circular DNA in gastric cancer and its potential role in carcinogenesis and cancer progression. Cell Mol Life Sci 2023; 80:191. [PMID: 37369919 DOI: 10.1007/s00018-023-04838-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) carrying random genomic segments are broadly found across different cancer types, but their molecular functions and impact in gastric cancer (GC) are rarely known. In this study, we aimed to investigate the potential role of eccDNA in GC. Using the Circle-seq strategy, we observed the eccDNA abundance in gastric cancer tissues (GCT) was aberrantly higher than that of normal adjacent tissues (NAT). The high abundance of eccDNAs carrying oncogene-segments in GCT may represent the DNA damage products of amplified oncogenes. Analysis of GCT over-represented eccDNA carrying enhancer (eccEnhancer) based on data from FANTOM5 project combined with TCGA database suggested the GC over-represented eccEnhancers may contribute to development of GC. GC over-represented eccDNAs carrying pre-miRNA (eccMIR) were enriched to multiple cancer-relevant signal pathways by KEGG analysis. We then synthesized the top six GC over-represented eccMIRs and found four of them enabled high expression of miRNAs and down-regulation of miRNA-target genes in MGC803 cells. Furthermore, we observed the inheritance of GC over-represented eccMIRs benefited host cell proliferation and promoted the aggressive features of host cells. Altogether, this study revealed the GC over-represented eccDNAs carrying functional genomic segments were related to the carcinogenesis of GC and presented the capability to facilitate cancer progression, suggesting the cancerous eccDNAs may serve as a dynamic reservoir for genome plasticity and rapid adaptive evolution of cancer. Therefore, blocking the pathways for eccDNAs generation may provide a novel therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xianming Jiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaoguang Pan
- Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
| | - Wenchao Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Peng Han
- Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jing Li
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shanxi, China
| | - Haoran Zhang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shanxi, China
| | - Wei Lv
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
43
|
Wen A, Zhang W, Xu J, Wang K, Hu H. Identification and characterization of extrachromosomal circular DNA in Wei and Large White pigs by high-throughput sequencing. Front Vet Sci 2023; 10:1085474. [PMID: 36816190 PMCID: PMC9935582 DOI: 10.3389/fvets.2023.1085474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Wei pig (WP) and Large White pig (LP) are fatty and lean breeds, respectively. Extrachromosomal circular DNA (eccDNA) plays an important role in regulating signaling pathway processes of cell. However, there are few reports regarding the eccDNA and ecDNA profiles in WP and LP. The present work aimed to investigate the eccDNA and ecDNA profiles between WP and LP. Three WPs and three LPs (100 ± 1.3 kg) were selected for analysis of eccDNA and ecDNA in the ear samples. Results showed that there were 39,686,953,656-58,411,217,258 and 53,824,168,657-58,311,810,737 clean data for WP and LP, respectively. Sequencing yielded 15,587-25,479 and 71,123-79,605 eccDNAs from the ear samples of WP and LP, respectively. There were 15,111 and 22,594 eccDNA-derived genes in the WP and LP, respectively, and 13,807 eccDNA-derived genes were common in the ear samples of both pigs. Sequencing yielded 13-19 and 27-43 ecDNAs in the ears of WP and LP, respectively. There were 1,005 and 1,777 ecDNA-derived genes in WP and LP, respectively, and 351 ecDNA-derived genes were common in the ear samples of both pigs. The most significant KEGG pathways of eccDNA-derived genes were axon guidance, focal adhesion, metabolic pathways, MAPK signaling pathway, Hedgehog signaling pathway, microRNAs in cancer, tight junction, phospholipase D signaling pathway, endocytosis, and sphingolipid signaling pathway. Furthermore, the most significant KEGG pathways of ecDNA-derived genes were olfactory transduction, B cell receptor signaling pathway, and chemical carcinogenesis. The eccDNA00044301 was lower abundance, while the ecDNA00000060 was higher abundance in WP compared with that in LP. Summary, we found that eccDNAs and ecDNAs are common in WP and LP and occur in sizes large enough to carry one or several partial or complete genes. These findings have expanded the knowledge repertoire of circular DNA in pig and will provide a reference for the use of pigs as a medical model and help discovery of new genetic markers to select high-quality breeds.
Collapse
Affiliation(s)
- Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jingen Xu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Kunping Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Hong Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China,*Correspondence: Hong Hu ✉
| |
Collapse
|