1
|
Valdés-Mas R, Leshem A, Zheng D, Cohen Y, Kern L, Zmora N, He Y, Katina C, Eliyahu-Miller S, Yosef-Hevroni T, Richman L, Raykhel B, Allswang S, Better R, Shmueli M, Saftien A, Cullin N, Slamovitz F, Ciocan D, Ouyang KS, Mor U, Dori-Bachash M, Molina S, Levin Y, Atarashi K, Jona G, Puschhof J, Harmelin A, Stettner N, Chen M, Suez J, Honda K, Lieb W, Bang C, Kori M, Maharshak N, Merbl Y, Shibolet O, Halpern Z, Shouval DS, Shamir R, Franke A, Abdeen SK, Shapiro H, Savidor A, Elinav E. Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease. Cell 2025; 188:1062-1083.e36. [PMID: 39837331 DOI: 10.1016/j.cell.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Host-microbiome-dietary interactions play crucial roles in regulating human health, yet their direct functional assessment remains challenging. We adopted metagenome-informed metaproteomics (MIM), in mice and humans, to non-invasively explore species-level microbiome-host interactions during commensal and pathogen colonization, nutritional modification, and antibiotic-induced perturbation. Simultaneously, fecal MIM accurately characterized the nutritional exposure landscape in multiple clinical and dietary contexts. Implementation of MIM in murine auto-inflammation and in human inflammatory bowel disease (IBD) characterized a "compositional dysbiosis" and a concomitant species-specific "functional dysbiosis" driven by suppressed commensal responses to inflammatory host signals. Microbiome transfers unraveled early-onset kinetics of these host-commensal cross-responsive patterns, while predictive analyses identified candidate fecal host-microbiome IBD biomarker protein pairs outperforming S100A8/S100A9 (calprotectin). Importantly, a simultaneous fecal nutritional MIM assessment enabled the determination of IBD-related consumption patterns, dietary treatment compliance, and small intestinal digestive aberrations. Collectively, a parallelized dietary-bacterial-host MIM assessment functionally uncovers trans-kingdom interactomes shaping gastrointestinal ecology while offering personalized diagnostic and therapeutic insights into microbiome-associated disease.
Collapse
Affiliation(s)
- Rafael Valdés-Mas
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Avner Leshem
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Danping Zheng
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yotam Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Zmora
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yiming He
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Tal Yosef-Hevroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Richman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Barbara Raykhel
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Allswang
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Better
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nyssa Cullin
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany
| | - Fernando Slamovitz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Uria Mor
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mally Dori-Bachash
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shahar Molina
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Koji Atarashi
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jotham Suez
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany; University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Michal Kori
- Pediatric Gastroenterology Unit, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitsan Maharshak
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Shibolet
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Zamir Halpern
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Dror S Shouval
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Centre, Petach-Tikva, Israel
| | - Raanan Shamir
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Centre, Petach-Tikva, Israel
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany; University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
2
|
Comerlato CB, Zhang X, Walker K, Mayne J, Figeys D, Brandelli A. The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome. Probiotics Antimicrob Proteins 2024; 16:1954-1965. [PMID: 37589783 DOI: 10.1007/s12602-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The gut microbiome plays a critical role to all animals and humans health. Methods based on ex vivo cultures are time and cost-effective solutions for rapid evaluation of probiotic effects on microbiomes. In this study, we assessed whether the protein secretome from the potential probiotic Enterococcus durans LAB18S grown on fructoligosaccharides (FOS) and galactoligosaccharides (GOS) had specific effects on ex vivo cultured intestinal microbiome obtained from a healthy individual. Metaproteomics was used to evaluate changes in microbial communities of the human intestinal microbiome. Hierarchical clustering analysis revealed 654 differentially abundant proteins from the metaproteome samples, showing that gut microbial protein expression varied on the presence of different E. durans secretomes. Increased amount of Bacteroidetes phylum was observed in treatments with secretomes from E. durans cultures on FOS, GOS and albumin, resulting in a decrease of the Firmicutes to Bacteroidetes (F/B) ratio. The most functionally abundant bacterial taxa were Roseburia, Bacteroides, Alistipes and Faecalibacterium. The results suggest that the secretome of E. durans may have favorable effects on the intestinal microbial composition, stimulating growth and different protein expression of beneficial bacteria. These findings suggest that proteins secreted by E. durans growing on FOS and GOS have different effects on the modulation of gut microbiota functional activities during cultivation.
Collapse
Affiliation(s)
- Carolina Baldisserotto Comerlato
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91510-970, Porto Alegre, Brazil
| | - Xu Zhang
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Krystal Walker
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91510-970, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Lawal SA, Voisin A, Olof H, Bording-Jorgensen M, Armstrong H. Diversity of the microbiota communities found in the various regions of the intestinal tract in healthy individuals and inflammatory bowel diseases. Front Immunol 2023; 14:1242242. [PMID: 38022505 PMCID: PMC10654633 DOI: 10.3389/fimmu.2023.1242242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The severe and chronic inflammatory bowel diseases (IBD), Crohn disease and ulcerative colitis, are characterized by persistent inflammation and gut damage. There is an increasing recognition that the gut microbiota plays a pivotal role in IBD development and progression. However, studies of the complete microbiota composition (bacteria, fungi, viruses) from precise locations within the gut remain limited. In particular, studies have focused primarily on the bacteriome, with available methods limiting evaluation of the mycobiome (fungi) and virome (virus). Furthermore, while the different segments of the small and large intestine display different functions (e.g., digestion, absorption, fermentation) and varying microenvironment features (e.g., pH, metabolites), little is known about the biogeography of the microbiota in different segments of the intestinal tract or how this differs in IBD. Here, we highlight evidence of the differing microbiota communities of the intestinal sub-organs in healthy and IBD, along with method summaries to improve future studies.
Collapse
Affiliation(s)
- Samuel Adefisoye Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hana Olof
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Heather Armstrong
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Jagirdhar GSK, Perez JA, Perez AB, Surani S. Integration and implementation of precision medicine in the multifaceted inflammatory bowel disease. World J Gastroenterol 2023; 29:5211-5225. [PMID: 37901450 PMCID: PMC10600960 DOI: 10.3748/wjg.v29.i36.5211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disease with variability in genetic, environmental, and lifestyle factors affecting disease presentation and course. Precision medicine has the potential to play a crucial role in managing IBD by tailoring treatment plans based on the heterogeneity of clinical and temporal variability of patients. Precision medicine is a population-based approach to managing IBD by integrating environmental, genomic, epigenomic, transcriptomic, proteomic, and metabolomic factors. It is a recent and rapidly developing medicine. The widespread adoption of precision medicine worldwide has the potential to result in the early detection of diseases, optimal utilization of healthcare resources, enhanced patient outcomes, and, ultimately, improved quality of life for individuals with IBD. Though precision medicine is promising in terms of better quality of patient care, inadequacies exist in the ongoing research. There is discordance in study conduct, and data collection, utilization, interpretation, and analysis. This review aims to describe the current literature on precision medicine, its multiomics approach, and future directions for its application in IBD.
Collapse
Affiliation(s)
| | - Jose Andres Perez
- Department of Medicine, Saint Francis Health Systems, Tulsa, OK 74133, United States
| | - Andrea Belen Perez
- Department of Research, Columbia University, New York, NY 10027, United States
| | - Salim Surani
- Department of Medicine and Pharmacology, Texas A&M University, College Station, TX 77413, United States
| |
Collapse
|
5
|
Fabian O, Bajer L, Drastich P, Harant K, Sticova E, Daskova N, Modos I, Tichanek F, Cahova M. A Current State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and Review. Int J Mol Sci 2023; 24:ijms24119386. [PMID: 37298338 DOI: 10.3390/ijms24119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission. A substantial portion of the patients also develop severe clinical complications or neoplasia. The need for novel biomarkers that can enhance diagnostic accuracy, more precisely reflect disease activity, and predict a complicated disease course, thus, remains high. Genomic and transcriptomic studies contributed substantially to our understanding of the immunopathological pathways involved in disease initiation and progression. However, eventual genomic alterations do not necessarily translate into the final clinical picture. Proteomics may represent a missing link between the genome, transcriptome, and phenotypical presentation of the disease. Based on the analysis of a large spectrum of proteins in tissues, it seems to be a promising method for the identification of new biomarkers. This systematic search and review summarize the current state of proteomics in human IBD. It comments on the utility of proteomics in research, describes the basic proteomic techniques, and provides an up-to-date overview of available studies in both adult and pediatric IBD.
Collapse
Affiliation(s)
- Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer Hospital, 140 59 Prague, Czech Republic
| | - Lukas Bajer
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Drastich
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology, Royal Vinohrady Teaching Hospital, Srobarova 1150/50, 100 00 Prague, Czech Republic
| | - Nikola Daskova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Filip Tichanek
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Monika Cahova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| |
Collapse
|
6
|
Zhang HY, Zeng HR, Wei HZ, Chu XY, Zhu HT, Zhao B, Zhang Y. Tongxie-Yaofang formula regulated macrophage polarization to ameliorate DSS-induced colitis via NF-κB/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154455. [PMID: 36182797 DOI: 10.1016/j.phymed.2022.154455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Macrophages infiltration and activation play multiple roles in maintaining intestinal homeostasis and participate in the occurrence and development of UC. Thus, the restoration of immune balance can be achieved by targeting macrophage polarization. Previous studies have reported that TXYF could effectively ameliorate DSS-induced colitis. However, the underlying mechanisms of TXYF for DSS-induced colitis are still ill-defined. METHODOLOGY This study was designed to explore the therapeutic effect of TXYF and its regulation in macrophages polarization during DSS-induced mice. In C75BL/6 mice, dextran sulfate sodium (DSS) was used to induce colitis and concomitantly TXYF was taken orally to evaluate its curative effect. In vitro experiment was implemented on BMDMs by lipopolysaccharide, IFN- and ATP. RESULTS Here, we found that TXYF ameliorated clinical features in DSS-induced mice, decreased macrophages M1 polarization but remarkably increased M2 polarization. Mechanically, TXYF treatment effectively inhibited the activities of nuclear transcription factor NF-κB, which further contributed to the decrease of the inflammasome genes of NLRP3, limiting the activation of NLRP3 inflammasome in vivo and in vitro. CONCLUSION Our findings demonstrated administration of TXYF can interfere with macrophage infiltration and polarization to improve the symptoms of acute colitis, by repressing NF-κB/NLRP3 signaling pathway activation. This enriches the mechanism and provides new prospect for TXYF in the treatment of colitis.
Collapse
Affiliation(s)
- Hao-Yue Zhang
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing 210000, China
| | - Hai-Rong Zeng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui-Zhen Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xia-Yan Chu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui-Ting Zhu
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing 210000, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yang Zhang
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing 210000, China.
| |
Collapse
|
7
|
Jacobs JP, Goudarzi M, Lagishetty V, Li D, Mak T, Tong M, Ruegger P, Haritunians T, Landers C, Fleshner P, Vasiliauskas E, Ippoliti A, Melmed G, Shih D, Targan S, Borneman J, Fornace AJ, McGovern DPB, Braun J. Crohn's disease in endoscopic remission, obesity, and cases of high genetic risk demonstrates overlapping shifts in the colonic mucosal-luminal interface microbiome. Genome Med 2022; 14:91. [PMID: 35971134 PMCID: PMC9377146 DOI: 10.1186/s13073-022-01099-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Crohn's disease (CD) patients demonstrate distinct intestinal microbial compositions and metabolic characteristics compared to unaffected controls. However, the impact of inflammation and underlying genetic risk on these microbial profiles and their relationship to disease phenotype are unclear. We used lavage sampling to characterize the colonic mucosal-luminal interface (MLI) microbiome of CD patients in endoscopic remission and unaffected controls relative to obesity, disease genetics, and phenotype. METHODS Cecum and sigmoid colon were sampled from 110 non-CD controls undergoing screening colonoscopy who were stratified by body mass index and 88 CD patients in endoscopic remission (396 total samples). CD polygenic risk score (GRS) was calculated using 186 known CD variants. MLI pellets were analyzed by 16S ribosomal RNA gene sequencing, and supernatants by untargeted liquid chromatography-mass spectrometry. RESULTS CD and obesity were each associated with decreased cecal and sigmoid MLI bacterial diversity and distinct bacterial composition compared to controls, including expansion of Escherichia/Shigella. Cecal and sigmoid dysbiosis indices for CD were significantly greater in obese controls than non-overweight controls. CD, but not obesity, was characterized by altered biogeographic relationship between the sigmoid and cecum. GRS was associated with select taxonomic shifts that overlapped with changes seen in CD compared to controls including Fusobacterium enrichment. Stricturing or penetrating Crohn's disease behavior was characterized by lower MLI bacterial diversity and altered composition, including reduced Faecalibacterium, compared to uncomplicated CD. Taxonomic profiles including reduced Parasutterella were associated with clinical disease progression over a mean follow-up of 3.7 years. Random forest classifiers using MLI bacterial abundances could distinguish disease state (area under the curve (AUC) 0.93), stricturing or penetrating Crohn's disease behavior (AUC 0.82), and future clinical disease progression (AUC 0.74). CD patients showed alterations in the MLI metabolome including increased cholate:deoxycholate ratio compared to controls. CONCLUSIONS Obesity, CD in endoscopic remission, and high CD genetic risk have overlapping colonic mucosal-luminal interface (MLI) microbiome features, suggesting a shared microbiome contribution to CD and obesity which may be influenced by genetic factors. Microbial profiling during endoscopic remission predicted Crohn's disease behavior and progression, supporting that MLI sampling could offer unique insight into CD pathogenesis and provide novel prognostic biomarkers.
Collapse
Affiliation(s)
- Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-6949, USA.
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, USA.
| | | | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-6949, USA
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Tytus Mak
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Maomeng Tong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Paul Ruegger
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Carol Landers
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Philip Fleshner
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Eric Vasiliauskas
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Andrew Ippoliti
- Department of Medicine, Keck School of Medicine of USC, Los Angeles, USA
| | - Gil Melmed
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - David Shih
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Stephan Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Jonathan Braun
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| |
Collapse
|
8
|
The Current Status of Molecular Biomarkers for Inflammatory Bowel Disease. Biomedicines 2022; 10:biomedicines10071492. [PMID: 35884797 PMCID: PMC9312796 DOI: 10.3390/biomedicines10071492] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Diagnosis and prognosis of inflammatory bowel disease (IBD)-a chronic inflammation that affects the gastrointestinal tract of patients-are challenging, as most clinical symptoms are not specific to IBD, and are often seen in other inflammatory diseases, such as intestinal infections, drug-induced colitis, and monogenic diseases. To date, there is no gold-standard test for monitoring IBD. Endoscopy and imaging are essential diagnostic tools that provide information about the disease's state, location, and severity. However, the invasive nature and high cost of endoscopy make it unsuitable for frequent monitoring of disease activity in IBD patients, and even when it is possible to replace endoscopy with imaging, high cost remains a concern. Laboratory testing of blood or feces has the advantage of being non-invasive, rapid, cost-effective, and standardizable. Although the specificity and accuracy of laboratory testing alone need to be improved, it is increasingly used to monitor disease activity or to diagnose suspected IBD cases in combination with endoscopy and/or imaging. The literature survey indicates a dearth of summarization of biomarkers for IBD testing. This review introduces currently available non-invasive biomarkers of clinical importance in laboratory testing for IBD, and discusses the trends and challenges in the IBD biomarker studies.
Collapse
|
9
|
Li H, Zhang X, Chen R, Cheng K, Ning Z, Li J, Twine S, Stintzi A, Mack D, Figeys D. Elevated colonic microbiota-associated paucimannosidic and truncated N-glycans in pediatric ulcerative colitis. J Proteomics 2021; 249:104369. [PMID: 34481999 DOI: 10.1016/j.jprot.2021.104369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Pediatric ulcerative colitis (UC) is a distinct type of inflammatory bowel disease with severe disease activity and rapid progression, which can lead to detrimental life-long consequences. The pathogenesis of pediatric UC remains unclear, although dysbiosis of the gut microbiota has been considered an important factor. In this study, we collected intestinal mucosal-luminal interface microbiota samples from a cohort of treatment-naïve pediatric UC or control patients and used two different mass spectrometry-based glycomic approaches to examine the N-glycans that were associated with the microbiota. We observed abundant small N-glycans that were associated with the microbiota and found that the pediatric UC microbiota samples contained significantly higher levels of these atypical N-glycans compared to those of controls. Four paucimannosidic or other truncated N-glycans were identified to successfully segregate UC from control patients with an area under the ROC curve of ≥0.9. This study indicates that the aberrant metabolism of glycans in the intestinal by gut microbiota may be involved in the pathogenesis of UC and intestinal N-glycans, including small glycans, can act as novel biomarker candidates for pediatric UC. SIGNIFICANCE: There is no cure for pediatric ulcerative colitis (UC) due to its unclear pathogenesis and the diagnosis of UC in children still largely depends on invasive colonoscopic examination. Recent evidence suggests that the dysbiosis of intestinal microbiota is associated with the onset and development of UC, however how the microbiota interact with the host remains unclear. This study used two different mass spectrometry-based glycomic approaches to quantitatively examine N-glycans that are associated with colonic mucosal-luminal interface microbiota of pediatric UC or control patients. To the best of our knowledge, this is the first comprehensive glycomic study of intestinal microbiota samples in UC, which demonstrated that intestinal microbiota was associated with abundant atypical small N-glycans with elevated levels in UC than controls. This study also identified four intestinal paucimannosidic or other truncated N-glycans as promising biomarker candidates for pediatric UC. These findings shed light on the mechanism study of host-microbiome interactions in UC and indicate that atypical glycans present in the gut can be a source for UC biomarker discovery.
Collapse
Affiliation(s)
- Henghui Li
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Kai Cheng
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Susan Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Pediatrics, Faculty of Medicine, University of Ottawa and Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
10
|
Starr AE, Deeke SA, Ning Z, de Nanassy J, Singleton R, Benchimol EI, Mack DR, Stintzi A, Figeys D. Associations between Cellular Energy and Pediatric Inflammatory Bowel Disease Patient Response to Treatment. J Proteome Res 2021; 20:4393-4404. [PMID: 34424714 DOI: 10.1021/acs.jproteome.1c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis, are chronic diseases of the gastrointestinal tract, with an unknown etiology, that affect over 6.8 million people worldwide. To characterize disease pathogenesis, proteomic and bioinformatic analyses were performed on colon biopsies collected during diagnostic endoscopy from 119 treatment-naïve pediatric patients, including from 78 IBD patients and 41 non-IBD patients who served as controls. Due to the presence of noninflamed and/or inflamed regions in IBD patients, up to two biopsies were obtained from IBD patients as compared to a single noninflamed biopsy from non-IBD pediatric control patients. Additional biopsies were obtained and analyzed from 33 of the IBD patients after IBD-directed therapeutic intervention for comparison of pre- and post-treatment proteomes. SuperSILAC was utilized to perform quantitative analysis of homogenized tissues, which were processed by filter-aided sample preparation. Hierarchical clustering and principal component analyses revealed proteomic patterns that distinguished inflamed from noninflamed tissues independent of therapy. Gene ontology revealed that proteins downregulated in inflammation are associated with metabolism, whereas upregulated proteins contribute to protein processing. A comparison of pre- and post-treatment proteomes from CD patients identified over 100 proteins that are significantly different between patients who responded and those who did not respond to therapy, including creatine kinase B and basigin.
Collapse
|
11
|
Beck LC, Granger CL, Masi AC, Stewart CJ. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev Proteomics 2021; 18:247-259. [PMID: 33896313 DOI: 10.1080/14789450.2021.1922278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: At birth, the gastrointestinal (GI) tract is colonized by a complex community of microorganisms, forming the basis of the gut microbiome. The gut microbiome plays a fundamental role in host health, disorders of which can lead to an array of GI diseases, both short and long term. Pediatric GI diseases are responsible for significant morbidity and mortality, but many remain poorly understood. Recent advancements in high-throughput technologies have enabled deeper profiling of GI morbidities. Technologies, such as metagenomics, transcriptomics, proteomics and metabolomics, have already been used to identify associations with specific pathologies, and highlight an exciting area of research. However, since these diseases are often complex and multifactorial by nature, reliance on a single experimental approach may not capture the true biological complexity. Therefore, multi-omics aims to integrate singular omic data to further enhance our understanding of disease.Areas covered: This review will discuss and provide an overview of the main omic technologies that are used to study complex GI pathologies in early life.Expert opinion: Multi-omic technologies can help to unravel the complexities of several diseases during early life, aiding in biomarker discovery and enabling the development of novel therapeutics and augment predictive models.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Claire L Granger
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Newcastle Neonatal Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
12
|
de-León-Rendón JL, López-Pérez RY, Gracida-Mancilla NI, Jiménez-Bobadilla B, Alarcón-Bernés L, Mendoza-Ramírez S, Villanueva-Herrero JA. The controlling nutritional status score: A promising tool for nutritional screening and predicting severity in ulcerative colitis patients. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2021; 86:110-117. [PMID: 33261942 DOI: 10.1016/j.rgmx.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION AND AIMS The controlling nutritional status (CONUT) score has previously been shown to be useful for nutritional assessment and the prediction of several inflammatory and neoplastic diseases. The aim of the present study was to evaluate the potential use of the CONUT score as a method for nutritional screening and predicting severity in ulcerative colitis (UC). MATERIALS AND METHODS The study was conducted on 60 patients diagnosed with UC. Demographic, clinical, and biochemical patient characteristics were collected from their clinical records, and disease severity was assessed using the Truelove and Witts scale (TWS). The risks for malnutrition were evaluated through the nutritional risk index and the CONUT score. RESULTS More than 90% of the UC patients presented with malnutrition risk, according to the scores analyzed. Patients with a high (>6points) CONUT score presented with moderate-to-severe activity on the TWS. A higher CONUT score was also associated with an increase in C-reactive protein (CRP) (P=.002) and erythrocyte sedimentation rate (ESR) (P=.009). The data analysis was performed utilizing the SPSS version 19 program. CONCLUSIONS The CONUT score could be a promising tool for evaluating nutritional status in UC patients and predicting UC severity.
Collapse
Affiliation(s)
- J L de-León-Rendón
- Servicio de Coloproctología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México.
| | - R Y López-Pérez
- Servicio de Gastroenterología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - N I Gracida-Mancilla
- Servicio de Cirugía General, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - B Jiménez-Bobadilla
- Servicio de Coloproctología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - L Alarcón-Bernés
- Servicio de Cirugía General, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - S Mendoza-Ramírez
- Servicio de Patología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - J A Villanueva-Herrero
- Servicio de Coloproctología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| |
Collapse
|
13
|
de-León-Rendón J, López-Pérez R, Gracida-Mancilla N, Jiménez-Bobadilla B, Alarcón-Bernés L, Mendoza-Ramírez S, Villanueva-Herrero J. The controlling nutritional status score: A promising tool for nutritional screening and predicting severity in ulcerative colitis patients. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2021. [DOI: 10.1016/j.rgmxen.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Ahlawat S, Kumar P, Mohan H, Goyal S, Sharma KK. Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol 2021; 47:254-273. [PMID: 33576711 DOI: 10.1080/1040841x.2021.1876631] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human gut microbiota contributes to host nutrition and metabolism, sustains intestinal cell proliferation and differentiation, and modulates host immune system. The alterations in their composition lead to severe gut disorders, including inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). IBD including ulcerative colitis (UC) and Crohn's disease (CD) are gamut of chronic inflammatory disorders of gut, mediated by complex interrelations among genetic, environmental, and internal factors. IBD has debateable aetiology, however in recent years, exploring the central role of a tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in pathogenesis is getting the most attention. Increasing incidences and early onset explains the exponential rise in IBD burden on health-care systems. Industrialization, hypersensitivity to allergens, lifestyle, hygiene hypothesis, loss of intestinal worms, and gut microbial composition, explains this shifted rise. Hitherto, the interventions modulating gut microbiota composition, microfluidics-based in vitro gastrointestinal models, non-allergic functional foods, nutraceuticals, and faecal microbiota transplantation (FMT) from healthy donors are some of the futuristic approaches for the disease management.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pramod Kumar
- Ministry of Health and Family Welfare, Government of India, Indian Council of Medical Research, New Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Goyal
- Department of Medicine, Pt. BD Sharma Post-graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
15
|
Li L, Figeys D. Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass Dimensions to Modeling the Ecosystem at the Mucosal-luminal Interface. Mol Cell Proteomics 2020; 19:1409-1417. [PMID: 32581040 PMCID: PMC8143649 DOI: 10.1074/mcp.r120.002051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in gut microbiome studies have highlighted the importance of explicitly describing the ecological processes beyond correlative analysis. However, we are still at the early stage of understanding the organizational principles of the gut ecosystem, partially because of the limited information provided by currently used analytical tools in ecological modeling practices. Proteomics and metaproteomics can provide a number of insights for ecological studies, including biomass, matter and energy flow, and functional diversity. In this Mini Review, we discuss proteomics and metaproteomics-based experimental strategies that can contribute to studying the ecology, in particular at the mucosal-luminal interface (MLI) where the direct host-microbiome interaction happens. These strategies include isolation protocols for different MLI components, enrichment methods to obtain designated array of proteins, probing for specific pathways, and isotopic labeling for tracking nutrient flow. Integration of these technologies can generate spatiotemporal and site-specific biological information that supports mathematical modeling of the ecosystem at the MLI.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
16
|
Comerlato CB, Zhang X, Walker K, Brandelli A, Figeys D. Comparative proteomic analysis reveals metabolic variability of probiotic Enterococcus durans during aerobic and anaerobic cultivation. J Proteomics 2020; 220:103764. [PMID: 32247174 DOI: 10.1016/j.jprot.2020.103764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 01/04/2023]
Abstract
The variation in the bioavailability of oxygen constitutes the environmental conditions found by bacteria in their passage through the host gastro-intestinal tract. Given the importance of oxygen in the defense mechanism of bacteria, it is important to understand how bacteria respond to this stress at a metabolic level. The probiotic strain Enterococcus durans LAB18S was cultivated under aerobic and anaerobic conditions using prebiotic oligosaccharides as carbon source. The whole cell proteome and secretome were analyzed through label-free quantitative proteomics approach. The results showed that the LAB18S isolate when grown with fructo-oligosacchrides (FOS) showed a higher number of differentially expressed proteins compared to samples with galacto-oligosaccharides (GOS) or glucose. Clinically important enzymes for the treatment of cancer, L-asparaginase and arginine deiminase, were overexpressed when the isolate was cultured in FOS. In addition, the absence of oxygen induced the strain to produce proteins related to cell multiplication, cell wall integrity and resistance, and H2O2 detoxification. This study showed that E. durans LAB18S growing on FOS was stimulated to produce clinically important biomolecules, including proteins that have been investigated as potential antineoplastic agents. Significance: The probiotic strain E. durans LAB18S produce clinically relevant enzymes for the treatment of cancer when cultivated in symbiosis with fructo-oligosacchrides (FOS). In addition, proteins associated with cellular multiplication, cell wall integrity and resistance, and H2O2 detoxification were induced under anaerobic growth. These characteristics could be relevant to support maintenance of intestinal health.
Collapse
Affiliation(s)
- Carolina Baldisserotto Comerlato
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91510-970, Porto Alegre, Brazil
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Krystal Walker
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91510-970, Porto Alegre, Brazil.
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
17
|
Velasco Rodríguez-Belvís M, Viada Bris JF, Plata Fernández C, García-Salido A, Asensio Antón J, Domínguez Ortega G, Muñoz Codoceo RA. Normal fecal calprotectin levels in healthy children are higher than in adults and decrease with age. Paediatr Child Health 2019; 25:286-292. [PMID: 32765164 DOI: 10.1093/pch/pxz070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background/Objectives The paediatric reference range of fecal calprotectin (FC) has not been decisively established and previous studies show a wide within-age variability, suggesting that other factors like anthropometric data or type of feeding can influence FC. Our aims were to establish the normal levels of FC in healthy children grouped by age and analyze whether sex, gestational age, birth weight, type of delivery, type of feeding, or anthropometric data influence FC values. Methods This multicentre, cross-sectional, and observational study enrolled healthy donors under 18 years of age who attended their Primary Health Care Centre for their routine Healthy Child Program visits. The exclusion criteria were: (i) immunodeficiency, (ii) autoimmune or (iii) gastrointestinal disease; (iv) medication usage; (v) gastrointestinal symptoms; or (vi) positive finding in the microbiological study. Results We enrolled 395 subjects, mean age was 4.2 years (range 3 days to 16.9 years), and 204 were male. The median FC was 77.0 mcg/g (interquartile range 246). A negative correlation between age and FC was observed (Spearman's rho = -0.603, P<0.01), and none of the other factors analyzed were found to influence FC levels. Conclusions Normal FC values in healthy children (particularly in infants) are higher than those considered to be altered in adults and show a negative correlation with age. It is necessary to reconsider the upper limits of FC levels for paediatric patients according to age, with further studies required to determine other factors that influence FC during infancy.
Collapse
Affiliation(s)
| | | | | | - Alberto García-Salido
- Pediatric Intensive Care Unit, Hospital Infantil Universitario Nino Jesus, Madrid, Spain
| | - Julia Asensio Antón
- Clinical Analysis Department, Hospital Infantil Universitario Nino Jesus, Madrid, Spain
| | - Gloria Domínguez Ortega
- Gastroenterology and Nutrition Department, Hospital Infantil Universitario Nino Jesus, Madrid, Spain
| | - Rosa Ana Muñoz Codoceo
- Gastroenterology and Nutrition Department, Hospital Infantil Universitario Nino Jesus, Madrid, Spain
| |
Collapse
|
18
|
The Polymorphism rs17525495 of LTA4H Is Associated with Susceptibility of Crohn's Disease instead of Intestinal Tuberculosis in a Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9537050. [PMID: 31093505 PMCID: PMC6481108 DOI: 10.1155/2019/9537050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022]
Abstract
Background Because of the similarity of intestinal tuberculosis and Crohn's disease in disease phenotype, differential diagnosis has always been a clinical problem. Arachidonic acid metabolites play an important role in the inflammatory response of intestinal tuberculosis and Crohn's disease. Recent studies have shown that the polymorphism locus in the promoter region of LTA4H gene affects LTB4 expression level and the susceptibility to extrapulmonary tuberculosis. Thus, we identified a total of 148 patients with intestinal tuberculosis, 145 with Crohn's disease, and 700 normal controls in this study. Methods All the study participants were local Han people from Jiangxi Province in the past eleven years. DNA was extracted from the paraffin-embedded specimens or the whole blood. The LTA4H promoter SNP (rs17525495) was genotyped with TaqMan assay. Results The T-alleles frequency was not significantly increased in patients with intestinal tuberculosis compared with healthy control group (p=0.630; OR=1.07; 95%CI=0.81-1.41), while patients with Crohn's disease have significantly increased T allele frequency compared with healthy population (p=0.032; OR=1.34; 95%CI=1.03-1.75). During treatment, the presence of the T allele significantly increased the proportion of Crohn's patients requiring glucocorticoids (p<0.05). Conclusions The T allele of LTA4H gene SNP (rs17525495) is a risk factor for Crohn's disease instead of intestinal tuberculosis. More importantly, there may be a potential association of the different genotypes of rs17525495 with the treatment efficacy of 5-ASA and glucocorticoids in patients with Crohn's disease. The association between LTA4H polymorphism and drugs therapeutic effects might contribute to the practice of precision medicine and the prediction of clinical outcomes.
Collapse
|
19
|
Dovrolis N, Filidou E, Kolios G. Systems biology in inflammatory bowel diseases: on the way to precision medicine. Ann Gastroenterol 2019; 32:233-246. [PMID: 31040620 PMCID: PMC6479645 DOI: 10.20524/aog.2019.0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and recurrent inflammatory disorders of the gastrointestinal tract. The elucidation of their etiopathology requires complex and multiple approaches. Systems biology has come to fulfill this need in approaching the pathogenetic mechanisms of IBD and its etiopathology, in a comprehensive way, by combining data from different scientific sources. In combination with bioinformatics and network medicine, it uses principles from computer science, mathematics, physics, chemistry, biology, medicine and computational tools to achieve its purposes. Systems biology utilizes scientific sources that provide data from omics studies (e.g., genomics, transcriptomics, etc.) and clinical observations, whose combined analysis leads to network formation and ultimately to a more integrative image of disease etiopathogenesis. In this review, we analyze the current literature on the methods and the tools utilized by systems biology in order to cover an innovative and exciting field: IBD-omics.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Correspondence to: Prof. George Kolios, MD PhD, Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, 68100, Greece, e-mail:
| |
Collapse
|
20
|
The mucosal-luminal interface: an ideal sample to study the mucosa-associated microbiota and the intestinal microbial biogeography. Pediatr Res 2019; 85:895-903. [PMID: 30758325 DOI: 10.1038/s41390-019-0326-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Alterations in gastrointestinal microbial communities have been linked to human disease. Most studies use fecal samples as a proxy for the intestinal microbiota; however, the fecal microbiome is not fully representative of the mucosa-associated microbiota at the site of disease. While mucosal biopsies can be used instead, they often contain a high proportion of host DNA that can confound 16S ribosomal RNA (rRNA) gene sequencing studies. METHODS To overcome these limitations, we sampled the mucosal-luminal interface (MLI) to study the mucosa-associated microbiota. We also employed a simple bioinformatics workflow to remove contaminants from 16S rRNA gene profiling results. RESULTS Our results indicate that the microbial differences between individuals are greater than those between different microenvironments within the same individual. Moreover, biopsy samples frequently contained contaminants that could significantly impact biopsy profiling results. CONCLUSIONS Our findings highlight the utility of collecting MLI aspirates to complement biopsies and stools for characterizing human microbial communities.
Collapse
|
21
|
Schniers A, Goll R, Pasing Y, Sørbye SW, Florholmen J, Hansen T. Ulcerative colitis: functional analysis of the in-depth proteome. Clin Proteomics 2019; 16:4. [PMID: 30718987 PMCID: PMC6350310 DOI: 10.1186/s12014-019-9224-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Ulcerative colitis (UC) is one major form of inflammatory bowel disease. The cause and the pathophysiology of the disease are not fully understood and we therefor aim in this study to identify important pathophysiological features in UC from proteomics data. Methods Colon mucosa biopsies from inflamed tissue of untreated UC patients at diagnosis and from healthy controls were obtained during colonoscopy. Quantitative protein data was acquired by bottom-up proteomics and furthermore processed with MaxQuant. The quantitative proteome data was analyzed with Perseus and enrichment data was analyzed by ClueGO for Cytoscape. Results The generated proteome dataset is to-date the deepest from colon mucosa biopsies with 8562 identified proteins whereof 6818 were quantified in > 70% of the samples. We report abundance differences between UC and healthy controls and the respective p values for all quantified proteins in the supporting information. From this data set enrichment analysis revealed decreased protein abundances in UC for metallothioneins, PPAR-inducible proteins, fibrillar collagens and proteins involved in bile acid transport as well as metabolic functions of nutrients, energy, steroids, xenobiotics and carbonate. On the other hand increased abundances were enriched in immune response and protein processing in the endoplasmic reticulum, e.g. unfolded protein response and signal peptidase complex proteins. Conclusions This explorative study describes the most affected functions in UC tissue. Our results complemented previous findings substantially. Decreased abundances of signal peptidase complex proteins in UC are a new discovery. Electronic supplementary material The online version of this article (10.1186/s12014-019-9224-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Armin Schniers
- 1Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Rasmus Goll
- 2Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway.,3Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Yvonne Pasing
- 4Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | | | - Jon Florholmen
- 2Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway.,3Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terkel Hansen
- 1Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
22
|
Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol Res Pract 2019; 2019:1426954. [PMID: 30774653 PMCID: PMC6350533 DOI: 10.1155/2019/1426954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing/remitting inflammatory illness of the gastrointestinal tract of unknown aetiology. Despite recent advances in decoding the pathophysiology of IBD, many questions regarding disease pathogenesis remain. Genome-wide association studies (GWAS) and knockout mouse models have significantly advanced our understanding of genetic susceptibility loci and inflammatory pathways involved in IBD pathogenesis. Despite their important contribution to a better delineation of the disease process in IBD, these genetic findings have had little clinical impact to date. This is because the presence of a given gene mutation does not automatically correspond to changes in its expression or final metabolic or structural effect(s). Furthermore, the existence of these gene susceptibility loci in the normal population suggests other driving prerequisites for the disease manifestation. Proteins can be considered the main functional units as almost all intracellular physiological functions as well as intercellular interactions are dependent on them. Proteomics provides methods for the large-scale study of the proteins encoded by the genome of an organism or a cell, to directly investigate the proteins and pathways involved. Understanding the proteome composition and alterations yields insights into IBD pathogenesis as well as identifying potential biomarkers of disease activity, mucosal healing, and cancer progression. This review describes the state of the art in the field with respect to the study of IBD and the potential for translation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Arash Assadsangabi
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Caroline A. Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Bernard M. Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Alan Lobo
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
| |
Collapse
|
23
|
Titz B, Gadaleta RM, Lo Sasso G, Elamin A, Ekroos K, Ivanov NV, Peitsch MC, Hoeng J. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. Int J Mol Sci 2018; 19:ijms19092775. [PMID: 30223557 PMCID: PMC6163330 DOI: 10.3390/ijms19092775] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of progressive disorders characterized by recurrent chronic inflammation of the gut. Ulcerative colitis and Crohn's disease are the major manifestations of IBD. While our understanding of IBD has progressed in recent years, its etiology is far from being fully understood, resulting in suboptimal treatment options. Complementing other biological endpoints, bioanalytical "omics" methods that quantify many biomolecules simultaneously have great potential in the dissection of the complex pathogenesis of IBD. In this review, we focus on the rapidly evolving proteomics and lipidomics technologies and their broad applicability to IBD studies; these range from investigations of immune-regulatory mechanisms and biomarker discovery to studies dissecting host⁻microbiome interactions and the role of intestinal epithelial cells. Future studies can leverage recent advances, including improved analytical methodologies, additional relevant sample types, and integrative multi-omics analyses. Proteomics and lipidomics could effectively accelerate the development of novel targeted treatments and the discovery of complementary biomarkers, enabling continuous monitoring of the treatment response of individual patients; this may allow further refinement of treatment and, ultimately, facilitate a personalized medicine approach to IBD.
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Raffaella M Gadaleta
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|