1
|
Abdelghany S, Simancas-Giraldo SM, Zayed A, Farag MA. How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106920. [PMID: 39729906 DOI: 10.1016/j.marenvres.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.
Collapse
Affiliation(s)
- Sabrin Abdelghany
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany; National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Susana M Simancas-Giraldo
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Am Alten Hafen, 27568, Bremerhaven, Germany
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), 31527, Tanta, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt.
| |
Collapse
|
2
|
Berlinghof J, Montilla LM, Peiffer F, Quero GM, Marzocchi U, Meador TB, Margiotta F, Abagnale M, Wild C, Cardini U. Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO 2 vents. Commun Biol 2024; 7:341. [PMID: 38503855 PMCID: PMC11254932 DOI: 10.1038/s42003-024-06011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Seagrass meadows form highly productive and diverse ecosystems in coastal areas worldwide, where they are increasingly exposed to ocean acidification (OA). Efficient nitrogen (N) cycling and uptake are essential to maintain plant productivity, but the effects of OA on N transformations in these systems are poorly understood. Here we show that complete N cycling occurs on leaves of the Mediterranean seagrass Posidonia oceanica at a volcanic CO2 vent near Ischia Island (Italy), with OA affecting both N gain and loss while the epiphytic microbial community structure remains largely unaffected. Daily leaf-associated N2 fixation contributes to 35% of the plant's N demand under ambient pH, while it contributes to 45% under OA. Nitrification potential is only detected under OA, and N-loss via N2 production increases, although the balance remains decisively in favor of enhanced N gain. Our work highlights the role of the N-cycling microbiome in seagrass adaptation to OA, with key N transformations accelerating towards increased N gain.
Collapse
Affiliation(s)
- Johanna Berlinghof
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy.
- Department of Marine Ecology, University of Bremen, Bremen, Germany.
- Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genova, Italy.
| | - Luis M Montilla
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Friederike Peiffer
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Grazia M Quero
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR), Ancona, Italy
| | - Ugo Marzocchi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Center for water technology (WATEC), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Travis B Meador
- Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Francesca Margiotta
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Maria Abagnale
- Department of Research Infrastructures for marine biological resources, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Christian Wild
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Ulisse Cardini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy.
- Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genova, Italy.
| |
Collapse
|
3
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
4
|
Prada F, Franzellitti S, Caroselli E, Cohen I, Marini M, Campanelli A, Sana L, Mancuso A, Marchini C, Puglisi A, Candela M, Mass T, Tassi F, LaJeunesse TC, Dubinsky Z, Falini G, Goffredo S. Acclimatization of a coral-dinoflagellate mutualism at a CO 2 vent. Commun Biol 2023; 6:66. [PMID: 36653505 PMCID: PMC9849335 DOI: 10.1038/s42003-022-04327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 12/01/2022] [Indexed: 01/19/2023] Open
Abstract
Ocean acidification caused by shifts in ocean carbonate chemistry resulting from increased atmospheric CO2 concentrations is threatening many calcifying organisms, including corals. Here we assessed autotrophy vs heterotrophy shifts in the Mediterranean zooxanthellate scleractinian coral Balanophyllia europaea acclimatized to low pH/high pCO2 conditions at a CO2 vent off Panarea Island (Italy). Dinoflagellate endosymbiont densities were higher at lowest pH Sites where changes in the distribution of distinct haplotypes of a host-specific symbiont species, Philozoon balanophyllum, were observed. An increase in symbiont C/N ratios was observed at low pH, likely as a result of increased C fixation by higher symbiont cell densities. δ13C values of the symbionts and host tissue reached similar values at the lowest pH Site, suggesting an increased influence of autotrophy with increasing acidification. Host tissue δ15N values of 0‰ strongly suggest that diazotroph N2 fixation is occurring within the coral tissue/mucus at the low pH Sites, likely explaining the decrease in host tissue C/N ratios with acidification. Overall, our findings show an acclimatization of this coral-dinoflagellate mutualism through trophic adjustment and symbiont haplotype differences with increasing acidification, highlighting that some corals are capable of acclimatizing to ocean acidification predicted under end-of-century scenarios.
Collapse
Affiliation(s)
- Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Silvia Franzellitti
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy.
| | - Itay Cohen
- The Interuniversity Institute for Marine Sciences in Eilat, PO Box 469, Eilat, 88103, Israel
| | - Mauro Marini
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Institute of Biological Resources and Marine Biotechnology, National Research Council (CNR), Largo Fiera della Pesca 2, 60125, Ancona, Italy
| | - Alessandra Campanelli
- Institute of Biological Resources and Marine Biotechnology, National Research Council (CNR), Largo Fiera della Pesca 2, 60125, Ancona, Italy
| | - Lorenzo Sana
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Arianna Mancuso
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Chiara Marchini
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Alessia Puglisi
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Marco Candela
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, via la Pira 4, Firenze, Italy
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), via la Pira 4, Firenze, Italy
| | - Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Giuseppe Falini
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy.
| |
Collapse
|
5
|
Zhu W, Zhu M, Liu X, Xia J, Wang H, Chen R, Li X. Adaptive changes of coral Galaxea fascicularis holobiont in response to nearshore stress. Front Microbiol 2022; 13:1052776. [PMID: 36425038 PMCID: PMC9678930 DOI: 10.3389/fmicb.2022.1052776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 02/07/2024] Open
Abstract
Global change and local stressors are simultaneously affecting the nearshore corals, and microbiome flexibility may assist corals in thriving under such multiple stressors. Here, we investigated the effects of various environmental variables on Galaxea fascicularis holobiont from nearshore and offshore reefs. These nearshore reefs were more turbid, eutrophic, and warm than offshore reefs. However, coral physiological parameters did not differ significantly. Corals under stressful nearshore environments had low symbiont diversity and selected more tolerant Symbiodiniaceae. The bacterial diversity of offshore corals was significantly higher, and their community composition varied obviously. Diffusion limitations and environmental heterogeneity were essential in structuring microbial communities. Functional annotation analysis demonstrated significant differences between nearshore and offshore corals in bacterial functional groups. Environmental stress significantly reduced the complexity and connectivity of bacterial networks, and the abundances of keystone taxa altered considerably. These results indicated that corals could thrive nearshore through holobiont plasticity to cope with multiple environmental stresses.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ming Zhu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Xiangbo Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Jingquan Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Science, Hainan University, Haikou, China
| | - Xiubao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| |
Collapse
|
6
|
Xiang N, Rädecker N, Pogoreutz C, Cárdenas A, Meibom A, Wild C, Gärdes A, Voolstra CR. Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model. ISME COMMUNICATIONS 2022; 2:105. [PMID: 37938763 PMCID: PMC9723753 DOI: 10.1038/s43705-022-00190-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2023]
Abstract
The coral-algal symbiosis is maintained by a constant and limited nitrogen availability in the holobiont. Denitrifiers, i.e., prokaryotes reducing nitrate/nitrite to dinitrogen, could contribute to maintaining the nitrogen limitation in the coral holobiont, however the effect of host and algal identity on their community is still unknown. Using the coral model Aiptasia, we quantified and characterized the denitrifier community in a full-factorial design combining two hosts (CC7 and H2) and two strains of algal symbionts of the family Symbiodiniaceae (SSA01 and SSB01). Strikingly, relative abundance of denitrifiers increased by up to 22-fold in photosymbiotic Aiptasia compared to their aposymbiotic (i.e., algal-depleted) counterparts. In line with this, while the denitrifier community in aposymbiotic Aiptasia was largely dominated by diet-associated Halomonas, we observed an increasing relative abundance of an unclassified bacterium in photosymbiotic CC7, and Ketobacter in photosymbiotic H2, respectively. Pronounced changes in denitrifier communities of Aiptasia with Symbiodinium linucheae strain SSA01 aligned with the higher photosynthetic carbon availability of these holobionts compared to Aiptasia with Breviolum minutum strain SSB01. Our results reveal that the presence of algal symbionts increases abundance and alters community structure of denitrifiers in Aiptasia. Thereby, patterns in denitrifier community likely reflect the nutritional status of aposymbiotic vs. symbiotic holobionts. Such a passive regulation of denitrifiers may contribute to maintaining the nitrogen limitation required for the functioning of the cnidarian-algal symbiosis.
Collapse
Affiliation(s)
- Nan Xiang
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany.
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany.
| | - Nils Rädecker
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Center for Advanced Surface Analysis (CASA), Institute of Earth Science, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Astrid Gärdes
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
- Hochschule Bremerhaven, Fachbereich 1, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | | |
Collapse
|
7
|
Morrow KM, Pankey MS, Lesser MP. Community structure of coral microbiomes is dependent on host morphology. MICROBIOME 2022; 10:113. [PMID: 35902906 PMCID: PMC9331152 DOI: 10.1186/s40168-022-01308-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai'i using three different marker genes (16S rRNA, nifH, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities. RESULTS The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix, both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nifH marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales, a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai'i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community. CONCLUSIONS The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral "super trait," on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. Video Abstract.
Collapse
Affiliation(s)
- Kathleen M Morrow
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
- Present address: Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA, 22312, USA
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
8
|
Corinaldesi C, Varrella S, Tangherlini M, Dell'Anno A, Canensi S, Cerrano C, Danovaro R. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153701. [PMID: 35134420 DOI: 10.1016/j.scitotenv.2022.153701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Global warming is causing the increase in intensity and frequency of heatwaves, which are often associated with mass mortality events of marine organisms from shallow and mesophotic rocky habitats, including gorgonians and other sessile organisms. We investigated the microbiome responses of the gorgonians Paramuricea clavata, Eunicella cavolini, and the red coral Corallium rubrum to the episodic temperature anomalies detected in the North Western Mediterranean, during August 2011. Although the investigated corals showed no signs of visible necrosis, the abundance of associated Bacteria and Archaea increased with increasing seawater temperature, suggesting their temperature-dependent proliferation. Coral microbiomes were highly sensitive to thermal anomaly amplitude and exhibited increased bacterial diversity to greater thermal shifts. This effect was explained by the decline of dominant bacterial members and the increase of new, rare and opportunistic taxa, including pathogens, revealing a direct effect of heatwave-induced alteration of the microbiomes and not a secondary consequence of coral necrosis.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michael Tangherlini
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Canensi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
9
|
Interaction and Assembly of Bacterial Communities in High-Latitude Coral Habitat Associated Seawater. Microorganisms 2022; 10:microorganisms10030558. [PMID: 35336132 PMCID: PMC8955259 DOI: 10.3390/microorganisms10030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Threatened by climate change and ocean warming, coral reef ecosystems have been shifting in geographic ranges toward a higher latitude area. The water-associated microbial communities and their potential role in primary production contribution are well studied in tropical coral reefs, but poorly defined in high-latitude coral habitats to date. In this study, amplicon sequencing of 16S rRNA and cbbL gene, co-occurrence network, and βNTI were used. The community structure of bacterial and carbon-fixation bacterial communities showed a significant difference between the center of coral, transitional, and non-coral area. Nitrite, DOC, pH, and coral coverage ratio significantly impacted the β-diversity of bacterial and carbon-fixation communities. The interaction of heterotrophs and autotrophic carbon-fixers was more complex in the bottom than in surface water. Carbon-fixers correlated with diverse heterotrophs in surface water but fewer lineages of heterotrophic taxa in the bottom. Bacterial community assembly showed an increase by deterministic process with decrease of coral coverage in bottom water, which may correlate with the gradient of nitrite and pH in the habitat. A deterministic process dominated the assembly of carbon-fixation bacterial community in surface water, while stochastic process dominated t the bottom. In conclusion, the structure and assembly of bacterial and carbon-fixer community were affected by multi-environmental variables in high-latitude coral habitat-associated seawater.
Collapse
|
10
|
Glaze TD, Erler DV, Siljanen HMP. Microbially facilitated nitrogen cycling in tropical corals. THE ISME JOURNAL 2022; 16:68-77. [PMID: 34226659 PMCID: PMC8692614 DOI: 10.1038/s41396-021-01038-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Tropical scleractinian corals support a diverse assemblage of microbial symbionts. This 'microbiome' possesses the requisite functional diversity to conduct a range of nitrogen (N) transformations including denitrification, nitrification, nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA). Very little direct evidence has been presented to date verifying that these processes are active within tropical corals. Here we use a combination of stable isotope techniques, nutrient uptake calculations and captured metagenomics to quantify rates of nitrogen cycling processes in a selection of tropical scleractinian corals. Denitrification activity was detected in all species, albeit with very low rates, signifying limited importance in holobiont N removal. Relatively greater nitrogen fixation activity confirms that corals are net N importers to reef systems. Low net nitrification activity suggests limited N regeneration capacity; however substantial gross nitrification activity may be concealed through nitrate consumption. Based on nrfA gene abundance and measured inorganic N fluxes, we calculated significant DNRA activity in the studied corals, which has important implications for coral reef N cycling and warrants more targeted investigation. Through the quantification and characterisation of all relevant N-cycling processes, this study provides clarity on the subject of tropical coral-associated biogeochemical N-cycling.
Collapse
Affiliation(s)
- Thomas D Glaze
- Centre for Coastal Biogeochemistry Research, School of Environment Science and Engineering, Southern Cross University, Lismore, NSW, Australia.
| | - Dirk V Erler
- Centre for Coastal Biogeochemistry Research, School of Environment Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Henri M P Siljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Moynihan MA, Goodkin NF, Morgan KM, Kho PYY, Lopes Dos Santos A, Lauro FM, Baker DM, Martin P. Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. THE ISME JOURNAL 2022; 16:233-246. [PMID: 34294880 PMCID: PMC8692400 DOI: 10.1038/s41396-021-01054-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
The role of diazotrophs in coral physiology and reef biogeochemistry remains poorly understood, in part because N2 fixation rates and diazotrophic community composition have only been jointly analyzed in the tissue of one tropical coral species. We performed field-based 15N2 tracer incubations during nutrient-replete conditions to measure diazotroph-derived nitrogen (DDN) assimilation into three species of scleractinian coral (Pocillopora acuta, Goniopora columna, Platygyra sinensis). Using multi-marker metabarcoding (16S rRNA, nifH, 18S rRNA), we analyzed DNA- and RNA-based communities in coral tissue and skeleton. Despite low N2 fixation rates, DDN assimilation supplied up to 6% of the holobiont's N demand. Active coral-associated diazotrophs were chiefly Cluster I (aerobes or facultative anaerobes), suggesting that oxygen may control coral-associated diazotrophy. Highest N2 fixation rates were observed in the endolithic community (0.20 µg N cm-2 per day). While the diazotrophic community was similar between the tissue and skeleton, RNA:DNA ratios indicate potential differences in relative diazotrophic activity between these compartments. In Pocillopora, DDN was found in endolithic, host, and symbiont compartments, while diazotrophic nifH sequences were only observed in the endolithic layer, suggesting a possible DDN exchange between the endolithic community and the overlying coral tissue. Our findings demonstrate that coral-associated diazotrophy is significant, even in nutrient-rich waters, and suggest that endolithic microbes are major contributors to coral nitrogen cycling on reefs.
Collapse
Affiliation(s)
- Molly A Moynihan
- Earth Observatory of Singapore, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore.
| | - Nathalie F Goodkin
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore
- American Museum of Natural History, New York, NY, USA
| | - Kyle M Morgan
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Phyllis Y Y Kho
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | | | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - David M Baker
- Division for Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, PR China
- The Swire Institute of Marine Science, University of Hong Kong, Hong Kong, PR China
| | - Patrick Martin
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
12
|
Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Perna G, Geißler L, Roth F, Bougoure J, Guagliardo P, Struck U, Wild C, Pernice M, Raina JB, Meibom A, Voolstra CR. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. THE ISME JOURNAL 2021; 16:1110-1118. [PMID: 34857934 PMCID: PMC8941099 DOI: 10.1038/s41396-021-01158-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Efficient nutrient cycling in the coral-algal symbiosis requires constant but limited nitrogen availability. Coral-associated diazotrophs, i.e., prokaryotes capable of fixing dinitrogen, may thus support productivity in a stable coral-algal symbiosis but could contribute to its breakdown when overstimulated. However, the effects of environmental conditions on diazotroph communities and their interaction with other members of the coral holobiont remain poorly understood. Here we assessed the effects of heat stress on diazotroph diversity and their contribution to holobiont nutrient cycling in the reef-building coral Stylophora pistillata from the central Red Sea. In a stable symbiotic state, we found that nitrogen fixation by coral-associated diazotrophs constitutes a source of nitrogen to the algal symbionts. Heat stress caused an increase in nitrogen fixation concomitant with a change in diazotroph communities. Yet, this additional fixed nitrogen was not assimilated by the coral tissue or the algal symbionts. We conclude that although diazotrophs may support coral holobiont functioning under low nitrogen availability, altered nutrient cycling during heat stress abates the dependence of the coral host and its algal symbionts on diazotroph-derived nitrogen. Consequently, the role of nitrogen fixation in the coral holobiont is strongly dependent on its nutritional status and varies dynamically with environmental conditions.
Collapse
Affiliation(s)
- Nils Rädecker
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. .,Department of Biology, University of Konstanz, Konstanz, Germany. .,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Claudia Pogoreutz
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hagen M Gegner
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Metabolomics Core Technology Platform, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Anny Cárdenas
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gabriela Perna
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Laura Geißler
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Roth
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden.,Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, Helsinki, Finland
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, Australia
| | - Ulrich Struck
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Christian Wild
- Faculty of Biology and Chemistry, Marine Ecology Department, University of Bremen, Bremen, Germany
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, Université de Lausanne, Lausanne, Switzerland
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Sturaro N, Hsieh YE, Chen Q, Wang P, Denis V. Trophic plasticity of mixotrophic corals under contrasting environments. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Sturaro
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Yunli Eric Hsieh
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Qi Chen
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Pei‐Ling Wang
- Institute of Oceanography National Taiwan University Taipei Taiwan
- Research Center for Future Earth National Taiwan University Taipei Taiwan
| | - Vianney Denis
- Institute of Oceanography National Taiwan University Taipei Taiwan
| |
Collapse
|
14
|
Lesser MP. Eutrophication on Coral Reefs: What Is the Evidence for Phase Shifts, Nutrient Limitation and Coral Bleaching. Bioscience 2021. [DOI: 10.1093/biosci/biab101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Coral reefs continue to experience extreme environmental pressure from climate change stressors, but many coral reefs are also exposed to eutrophication. It has been proposed that changes in the stoichiometry of ambient nutrients increase the mortality of corals, whereas eutrophication may facilitate phase shifts to macroalgae-dominated coral reefs when herbivory is low or absent. But are corals ever nutrient limited, and can eutrophication destabilize the coral symbiosis making it more sensitive to environmental stress because of climate change? The effects of eutrophication are confounded not just by the effects of climate change but by the presence of chemical pollutants in industrial, urban, and agricultural wastes. Because of these confounding effects, the increases in nutrients or changes in their stoichiometry in coastal environments, although they are important at the organismal and community level, cannot currently be disentangled from each other or from the more significant effects of climate change stressors on coral reefs.
Collapse
Affiliation(s)
- Michael P Lesser
- University of New Hampshire, Durham, New Hampshire, United States
| |
Collapse
|
15
|
Meunier V, Geissler L, Bonnet S, Rädecker N, Perna G, Grosso O, Lambert C, Rodolfo-Metalpa R, Voolstra CR, Houlbrèque F. Microbes support enhanced nitrogen requirements of coral holobionts in a high CO 2 environment. Mol Ecol 2021; 30:5888-5899. [PMID: 34473860 DOI: 10.1111/mec.16163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022]
Abstract
Ocean acidification is posing a threat to calcifying organisms due to the increased energy requirements of calcification under high CO2 conditions. The ability of scleractinian corals to cope with future ocean conditions will thus depend on their ability to fulfil their carbon requirement. However, the primary productivity of coral holobionts is limited by low nitrogen (N) availability in coral reef waters. Here, we employed CO2 seeps of Tutum Bay (Papua New Guinea) as a natural laboratory to understand how coral holobionts offset their increased energy requirements under high CO2 conditions. Our results demonstrate for the first time that under high pCO2 conditions, N assimilation pathways of Pocillopora damicornis are jointly modified. We found that diazotroph-derived N assimilation rates in the Symbiodiniaceae were significantly higher in comparison to an ambient CO2 control site, concomitant with a restructured diazotroph community and the specific prevalence of an alpha-proteobacterium. Further, corals at the high CO2 site also had increased feeding rates on picoplankton and in particular exhibited selective feeding on Synechococcus sp., known to be rich in N. Given the high abundance of picoplankton in oligotrophic waters at large, our results suggest that corals exhibiting flexible diazotrophic communities and capable of exploiting N-rich picoplankton sources to offset their increased N requirements may be able to cope better in a high pCO2 world.
Collapse
Affiliation(s)
- Valentine Meunier
- Centre IRD Nouméa, UMR ENTROPIE (IRD, Université de La Réunion, CNRS, Université de La Nouvelle-Calédonie, Ifremer), Nouméa, New Caledonia
| | - Laura Geissler
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sophie Bonnet
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Marseille, France
| | - Nils Rädecker
- Department of Biology, University of Konstanz, Konstanz, Germany.,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Olivier Grosso
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Marseille, France
| | | | - Riccardo Rodolfo-Metalpa
- Centre IRD Nouméa, UMR ENTROPIE (IRD, Université de La Réunion, CNRS, Université de La Nouvelle-Calédonie, Ifremer), Nouméa, New Caledonia
| | | | - Fanny Houlbrèque
- Centre IRD Nouméa, UMR ENTROPIE (IRD, Université de La Réunion, CNRS, Université de La Nouvelle-Calédonie, Ifremer), Nouméa, New Caledonia
| |
Collapse
|
16
|
Bednarz VN, van de Water JAJM, Grover R, Maguer JF, Fine M, Ferrier-Pagès C. Unravelling the Importance of Diazotrophy in Corals - Combined Assessment of Nitrogen Assimilation, Diazotrophic Community and Natural Stable Isotope Signatures. Front Microbiol 2021; 12:631244. [PMID: 34248863 PMCID: PMC8264265 DOI: 10.3389/fmicb.2021.631244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
There is an increasing interest in understanding the structure and function of the microbiota associated with marine and terrestrial organisms, because it can play a major role in host nutrition and resistance to environmental stress. Reef-building corals live in association with diazotrophs, which are microbes able to fix dinitrogen. Corals are known to assimilate diazotrophically-derived nitrogen (DDN), but it is still not clear whether this nitrogen source is derived from coral-associated diazotrophs and whether it substantially contributes to the coral’s nitrogen budget. In this study, we aimed to provide a better understanding of the importance of DDN for corals using a holistic approach by simultaneously assessing DDN assimilation rates (using 15N2 tracer technique), the diazotrophic bacterial community (using nifH gene amplicon sequencing) and the natural δ15N signature in Stylophora pistillata corals from the Northern Red Sea along a depth gradient in winter and summer. Overall, our results show a discrepancy between the three parameters. DDN was assimilated by the coral holobiont during winter only, with an increased assimilation with depth. Assimilation rates were, however, not linked to the presence of coral-associated diazotrophs, suggesting that the presence of nifH genes does not necessarily imply functionality. It also suggests that DDN assimilation was independent from coral-associated diazotrophs and may instead result from nitrogen derived from planktonic diazotrophs. In addition, the δ15N signature presented negative values in almost all coral samples in both seasons, suggesting that nitrogen sources other than DDN contribute to the nitrogen budget of corals from this region. This study yields novel insight into the origin and importance of diazotrophy for scleractinian corals from the Northern Red Sea using multiple proxies.
Collapse
Affiliation(s)
- Vanessa N Bednarz
- Marine Department, Centre Scientifique de Monaco, Monaco City, Monaco
| | | | - Renaud Grover
- Marine Department, Centre Scientifique de Monaco, Monaco City, Monaco
| | - Jean-François Maguer
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Maoz Fine
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | | |
Collapse
|
17
|
In silico determination of nitrogen metabolism in microbes from extreme conditions using metagenomics. Arch Microbiol 2021; 203:2521-2540. [PMID: 33677634 DOI: 10.1007/s00203-021-02227-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The acid ponds of the Danakil Depression in northern Ethiopia are polyextreme environments that exceed the normal physicochemical limits of pH, salinity, ion content, and temperature. We tested for the occurrence of DNA-based life in this environment using Metagenomic Shotgun DNA sequencing approaches. The obtained sequences were examined by the bioinformatic tools MetaSpades, DIAMOND and MEGAN 6-CE, and we were able to bin more than 90% of the metagenomics contigs of Dallol and Black Water to the Bacteria domain, and to the Proteobacteria phylum. Predictions of gene function based on SEED disclosed the presence of different nutrient cycles in the acid ponds. For this study, we focused on partial or completely sequenced genes involved in nitrogen metabolism. The KEGG nitrogen metabolism pathway mapping results for both acid ponds showed that all the predicted genes are involved directly or indirectly in the assimilation of ammonia and no dissimilation or nitrification process was identified. Furthermore, the deduced nitrogen fixation in the two acid ponds based on SEED classification indicated the presence of different sets of nitrogen fixing (nif) genes for biosynthesis and maturation of nitrogenase. Based on the in silico analysis, the predicted proteins involved in nitrogen fixation, especially the cysteine desulfurase and [4Fe-4S] ferredoxin, from both acid ponds are unique with less than 80% sequence similarity to the next closest protein sequence. Considering the extremity of the environmental conditions of the two acid ponds in the Danakil depression, this metagenomics dataset can add to the study of unique gene functions in nitrogen metabolism that enable thriving biocommunities in hypersaline and highly acidic conditions.
Collapse
|
18
|
Baquiran JIP, Nada MAL, Campos CLD, Sayco SLG, Cabaitan PC, Rosenberg Y, Ayalon I, Levy O, Conaco C. The Prokaryotic Microbiome of Acropora digitifera is Stable under Short-Term Artificial Light Pollution. Microorganisms 2020; 8:E1566. [PMID: 33053643 PMCID: PMC7601249 DOI: 10.3390/microorganisms8101566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Corals harbor a great diversity of symbiotic microorganisms that play pivotal roles in host nutrition, reproduction, and development. Changes in the ocean environment, such as increasing exposure to artificial light at night (ALAN), may alter these relationships and result in a decline in coral health. In this study, we examined the microbiome associated with gravid specimens of the reef-building coral Acropora digitifera. We also assessed the temporal effects of ALAN on the coral-associated microbial community using high-throughput sequencing of the 16S rRNA gene V4 hypervariable region. The A. digitifera microbial community was dominated by phyla Proteobacteria, Firmicutes, and Bacteroidetes. Exposure to ALAN had no large-scale effect on the coral microbiome, although taxa affiliated with Rhodobacteraceae, Caulobacteraceae, Burkholderiaceae, Lachnospiraceae, and Ruminococcaceae were significantly enriched in corals subjected to ALAN. We further noted an increase in the relative abundance of the family Endozoicomonadaceae (Endozoicomonas) as the spawning period approached, regardless of light treatment. These findings highlight the stability of the A. digitifera microbial community under short-term artificial light pollution and provide initial insights into the response of the collective holobiont to ALAN.
Collapse
Affiliation(s)
- Jake Ivan P. Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Michael Angelou L. Nada
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Celine Luisa D. Campos
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Sherry Lyn G. Sayco
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Patrick C. Cabaitan
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
| | - Inbal Ayalon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
- Israel The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, P.O. Box 469, Eilat 88103, Israel
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| |
Collapse
|
19
|
Lesser MP, Slattery M. Will coral reef sponges be winners in the Anthropocene? GLOBAL CHANGE BIOLOGY 2020; 26:3202-3211. [PMID: 32052520 DOI: 10.1111/gcb.15039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Recent observations have shown that increases in climate change-related coral mortality cause changes in shallow coral reef community structure through phase shifts to alternative taxa. As a result, sponges have emerged as a potential candidate taxon to become a "winner," and therefore a numerically and functionally dominant member of many coral reef communities. But, in order for this to occur, there must be sufficient trophic resources to support larger populations of these active filter-feeding organisms. Globally, climate change is causing an increase in sea surface temperatures (SSTs) and a decrease in salinity, which can lead to an intensification in the stratification of shallow nearshore waters (0-200 m), that affects both the mixed layer depth (MLD) and the strength and duration of internal waves. Specifically, climate change-driven increases in SSTs for tropical waters are predicted to cause increased stratification, and more stabilized surface waters. This causes a shallowing of the MLD which prevents nutrients from reaching the euphotic zone, and is predicted to decrease net primary production (NPP) up to 20% by the end of the century. Lower NPP would subsequently affect multiple trophic levels, including shallow benthic filter-feeding communities, as the coupling between water column productivity and the benthos weakens. We argue here that sponge populations may actually be constrained, rather than promoted, by climate change due to decreases in their primary trophic resources, caused by bottom-up forcing, secondary to physical changes in the water column (i.e., stratification and changes in the MLD resulting in lower nutrients and NPP). As a result, we predict sponge-dominated tropical reefs will be rare, or short-lived, if they occur at all into the future in the Anthropocene.
Collapse
Affiliation(s)
- Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, NH, USA
| | - Marc Slattery
- Department of BioMolecular Science, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
20
|
Jankowiak JG, Gobler CJ. The Composition and Function of Microbiomes Within Microcystis Colonies Are Significantly Different Than Native Bacterial Assemblages in Two North American Lakes. Front Microbiol 2020; 11:1016. [PMID: 32547511 PMCID: PMC7270213 DOI: 10.3389/fmicb.2020.01016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
The toxic cyanobacterium Microcystis is one of the most pervasive harmful algal bloom (HAB) genera and naturally occurs in large colonies known to harbor diverse heterotrophic bacterial assemblages. While colony-associated microbiomes may influence Microcystis blooms, there remains a limited understanding of the structure and functional potential of these communities and how they may be shaped by changing environmental conditions. To address this gap, we compared the dynamics of Microcystis-attached (MCA), free-living (FL), and whole water (W) microbiomes during Microcystis blooms using next-generation amplicon sequencing (16S rRNA), a predictive metagenome software, and other bioinformatic approaches. Microbiomes were monitored through high resolution spatial-temporal surveys across two North American lakes, Lake Erie (LE) and Lake Agawam (LA; Long Island, NY, United States) in 2017, providing the largest dataset of these fractions to date. Sequencing of 126 samples generated 7,922,628 sequences that clustered into 7,447 amplicon sequence variants (ASVs) with 100% sequence identity. Across lakes, the MCA microbiomes were significantly different than the FL and W fractions being significantly enriched in Gemmatimonadetes, Burkholderiaceae, Rhizobiales, and Cytophagales and depleted of Actinobacteria. Further, although MCA communities harbored > 900 unique ASVs, they were significantly less diverse than the other fractions with diversity inversely related to bloom intensity, suggesting increased selection pressure on microbial communities as blooms intensified. Despite taxonomic differences between lakes, predicted metagenomes revealed conserved functional potential among MCA microbiomes. MCA communities were significantly enriched in pathways involved in N and P cycling and microcystin-degradation. Taxa potentially capable of N2-fixation were significantly enriched (p < 0.05) and up to four-fold more abundant within the MCA faction relative to other fractions, potentially aiding in the proliferation of Microcystis blooms during low N conditions. The MCA predicted metagenomes were conserved over 8 months of seasonal changes in temperature and N availability despite strong temporal succession in microbiome composition. Collectively, these findings indicate that Microcystis colonies harbor a statistically distinct microbiome with a conserved functional potential that may help facilitate bloom persistence under environmentally unfavorable conditions.
Collapse
Affiliation(s)
- Jennifer G. Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
21
|
Pupier CA, Bednarz VN, Grover R, Fine M, Maguer JF, Ferrier-Pagès C. Divergent Capacity of Scleractinian and Soft Corals to Assimilate and Transfer Diazotrophically Derived Nitrogen to the Reef Environment. Front Microbiol 2019; 10:1860. [PMID: 31474958 PMCID: PMC6702326 DOI: 10.3389/fmicb.2019.01860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/29/2019] [Indexed: 12/04/2022] Open
Abstract
Corals are associated with dinitrogen (N2)-fixing bacteria that potentially represent an additional nitrogen (N) source for the coral holobiont in oligotrophic reef environments. Nevertheless, the few studies investigating the assimilation of diazotrophically derived nitrogen (DDN) by tropical corals are limited to a single scleractinian species (i.e., Stylophora pistillata). The present study quantified DDN assimilation rates in four scleractinian and three soft coral species from the shallow waters of the oligotrophic Northern Red Sea using the 15N2 tracer technique. All scleractinian species significantly stimulated N2 fixation in the coral-surrounding seawater (and mucus) and assimilated DDN into their tissue. Interestingly, N2 fixation was not detected in the tissue and surrounding seawater of soft corals, despite the fact that soft corals were able to take up DDN from a culture of free-living diazotrophs. Soft coral mucus likely represents an unfavorable habitat for the colonization and activity of diazotrophs as it contains a low amount of particulate organic matter, with a relatively high N content, compared to the mucus of scleractinian corals. In addition, it is known to present antimicrobial properties. Overall, this study suggests that DDN assimilation into coral tissues depends on the presence of active diazotrophs in the coral’s mucus layer and/or surrounding seawater. Since N is often a limiting nutrient for primary productivity in oligotrophic reef waters, the divergent capacity of scleractinian and soft corals to promote N2 fixation may have implications for N availability and reef biogeochemistry in scleractinian versus soft coral-dominated reefs.
Collapse
Affiliation(s)
- Chloé A Pupier
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco.,Collège Doctoral, Sorbonne Université, Paris, France
| | | | - Renaud Grover
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Science in Eilat, Eilat, Israel
| | - Jean-François Maguer
- Laboratoire de l'Environnement Marin (LEMAR), UMR 6539, UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer, Plouzané, France
| | | |
Collapse
|
22
|
Bednarz VN, van de Water JAJM, Rabouille S, Maguer JF, Grover R, Ferrier-Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol 2018; 21:480-495. [PMID: 30452101 DOI: 10.1111/1462-2920.14480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Dinitrogen (N2 ) fixing bacteria (diazotrophs) are an important source of new nitrogen in oligotrophic environments and represent stable members of the microbiome in tropical corals, while information on corals from temperate oligotrophic regions is lacking. Therefore, this study provides new insights into the diversity and activity of diazotrophs associated with the temperate coral Oculina patagonica from the Mediterranean Sea by combining metabarcoding sequencing of amplicons of both the 16S rRNA and nifH genes and 15 N2 stable isotope tracer analysis to assess diazotroph-derived nitrogen (DDN) assimilation by the coral. Results show that the diazotrophic community of O. patagonica is dominated by autotrophic bacteria (i.e. Cyanobacteria and Chlorobia). The majority of DDN was assimilated into the tissue and skeletal matrix, and DDN assimilation significantly increased in bleached corals. Thus, diazotrophs may constitute an additional nitrogen source for the coral host, when nutrient exchange with Symbiodinium is disrupted (e.g. bleaching) and external food supply is limited (e.g. oligotrophic summer season). Furthermore, we hypothesize that DDN can facilitate the fast proliferation of endolithic algae, which provide an alternative carbon source for bleached O. patagonica. Overall, O. patagonica could serve as a good model for investigating the importance of diazotrophs in coral recovery from bleaching.
Collapse
Affiliation(s)
- Vanessa N Bednarz
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Jeroen A J M van de Water
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Sophie Rabouille
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire océanologique, F-06230, Villefranche/mer, France.,CNRS, UMR 7093, LOV, Observatoire océanologique, F-06230, Villefranche/mer, France
| | - Jean-François Maguer
- LEMAR - UMR 6539 UBO/CNRS/IRD, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, Plouzané 29280, France
| | - Renaud Grover
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Christine Ferrier-Pagès
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| |
Collapse
|
23
|
Bednarz VN, Naumann MS, Cardini U, van Hoytema N, Rix L, Al-Rshaidat MMD, Wild C. Contrasting seasonal responses in dinitrogen fixation between shallow and deep-water colonies of the model coral Stylophora pistillata in the northern Red Sea. PLoS One 2018; 13:e0199022. [PMID: 29902263 PMCID: PMC6002246 DOI: 10.1371/journal.pone.0199022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
Tropical corals are often associated with dinitrogen (N2)-fixing bacteria (diazotrophs), and seasonal changes in key environmental parameters, such as dissolved inorganic nitrogen (DIN) availability and seawater temperature, are known to affect N2 fixation in coral-microbial holobionts. Despite, then, such potential for seasonal and depth-related changes in N2 fixation in reef corals, such variation has not yet been investigated. Therefore, this study quantified seasonal (winter vs. summer) N2 fixation rates associated with the reef-building coral Stylophora pistillata collected from depths of 5, 10 and 20 m in the northern Gulf of Aqaba (Red Sea). Findings revealed that corals from all depths exhibited the highest N2 fixation rates during the oligotrophic summer season, when up to 11% of their photo-metabolic nitrogen demand (CPND) could be met by N2 fixation. While N2 fixation remained seasonally stable for deep corals (20 m), it significantly decreased for the shallow corals (5 and 10 m) during the DIN-enriched winter season, accounting for less than 2% of the corals’ CPND. This contrasting seasonal response in N2 fixation across corals of different depths could be driven by 1) release rates of coral-derived organic matter, 2) the community composition of the associated diazotrophs, and/or 3) nutrient acquisition by the Symbiodinium community.
Collapse
Affiliation(s)
- Vanessa N. Bednarz
- Coral Reef Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Marine Department, Centre Scientifique de Monaco, Principality of Monaco
- * E-mail:
| | - Malik S. Naumann
- Coral Reef Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Ulisse Cardini
- Coral Reef Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Nanne van Hoytema
- Coral Reef Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Laura Rix
- Coral Reef Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular Microbial Ecology, Marine Science Station, Aqaba, Jordan
- Molecular and Microbial Ecology, Department of Biological Sciences, The University of Jordan, Amman, Jordan
| | - Christian Wild
- Coral Reef Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|