1
|
Wang X, Li Y, Rensing C, Zhang X. Early inoculation and bacterial community assembly in plants: A review. Microbiol Res 2025; 296:128141. [PMID: 40120566 DOI: 10.1016/j.micres.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The relationship between plants and early colonizing microbes is crucial for regulating agricultural ecosystems. Recent evidence strongly suggests that by introducing beneficial microbes during the seed or seedling stages, the diversity and assembly structure of the plant-related microbial community during later plant development can be altered, recruiting beneficial bacteria to enhance plant protection. However, the mechanisms of community assembly and their effects on plant growth are still not fully understood. To deepen our understanding of the importance of early inoculation for improving plant performance, this review comprehensively summarizes recent research advancements on the effects of early introduction on plant growth and adaptability. The mechanisms and ecological significance of early inoculation in the assembly of plant-related bacterial communities are discussed, with particular emphasis on the importance of seed endophytes, plant growth-promoting rhizobacteria (PGPR), and synthetic microbial consortia as microbial inoculants in enhancing plant health and productivity. Additionally, this review proposes a new strategy: sequential inoculation during the seed and seedling stages, aiming to maximize the effects of microbes.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Xue X, Qin Z, Gao P, Wang L, Su X, Wu L, Wang Z. Host-specific assembly of phycosphere microbiome and enrichment of the associated antibiotic resistance genes: Integrating species of microalgae hosts, developmental stages and water contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126392. [PMID: 40349825 DOI: 10.1016/j.envpol.2025.126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Phytoplankton-bacteria interactions profoundly impact ecosystem function and biogeochemical cycling, while their substantial potential to carry and disseminate antibiotic resistance genes (ARGs) poses a significant threat to global One Health. However, the ecological paradigm behind the phycosphere assembly of microbiomes and the carrying antibiotic resistomes remains unclear. Our field investigation across various freshwater ecosystems revealed a substantial enrichment of bacteria and ARGs within microalgal niches. Taking account of the influence for species of microalgae hosts, their developmental stages and the stress of water pollution, we characterized the ecological processes governing phycosphere assembly of bacterial consortia and enrichment of the associated ARGs. By inoculating 6 axenic algal hosts with two distinct bacterial consortia from a natural river and the phycosphere of Scenedesmus acuminatus, we observed distinct phycosphere bacteria recruitment among different algal species, yet consistency within the same species. Notably, a convergent bacterial composition was established for the same algae species for two independent inoculations, demonstrating host specificity in phycosphere microbiome assembly. Host-specific signature was discernible as early as the algal lag phase and more pronounced as the algae developed, indicating species types of algae determined mutualism between the bacterial taxa and hosts. The bacteria community dominated the shaping of ARG profiles within the phycosphere and the host-specific phycosphere ARG enrichment was intensified with the algae development. The polluted water significantly stimulated host's directional selection on phycosphere bacterial consortia and increased the proliferation antibiotic resistome. These consortia manifested heightened beneficial functionality, enhancing microalgal adaptability to contamination stress.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziwei Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peijie Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijuan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyue Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Zhao Q, Ali Q, Yuan W, Zhang G, Li H, Zhou L, Yao H, Chong J, Gu Q, Wu H, Gao X. Role of iturin from Bacillus velezensis DMW1 in suppressing growth and pathogenicity of Plectosphaerella cucumerina in tomato by reshaping the rhizosphere microbial communities. Microbiol Res 2025; 296:128150. [PMID: 40132485 DOI: 10.1016/j.micres.2025.128150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Plant-associated microbiomes play a crucial role in suppressing plant and soil pathogens. However, the mechanisms by which pathogen invasion influences the interaction between bacteria and fungi remain unknown and warrant further investigation. In this study, Bacillus spp. was found to be more abundant in diseased rhizosphere in the presence of the soil-borne fungus Plectosphaerella cucumerina. Most of the isolated Bacillus spp. exhibited a robust ability to balance reactive oxygen species (ROS) and demonstrated broad-spectrum antagonistic activity against P. cucumerina, Phytophthora capsica, Fusarium oxysporum, and Ralstonia solanacearum. The secondary metabolite iturin was identified as the key antifungal compound produced by the representative strain Bacillus velezensis DMW1, which effectively inhibits fungal growth and disrupts cell structures. Transcriptome analysis revealed that fungi treated with iturin (28.67 µg/mL) exhibited 4995 differentially expressed genes (DEGs), including 2611 upregulated genes and 2384 downregulated genes, compared to the control group. Furthermore, the application of DMW1 and return-deficient mutant (Δitu) significantly altered microbial diversity and enriched beneficial microorganisms in the rhizosphere soil. The overall findings highlight the potential of DMW1 as a promising biological agent for controlling soil-borne diseases. Its strong antimicrobial properties, ability to colonize host plants effectively, and capacity to reshape the soil microbiota make it a valuable resource for enhancing microbial ecosystems and providing long-term benefits to plants.
Collapse
Affiliation(s)
- Qian Zhao
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Qurban Ali
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | - Weiwei Yuan
- Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Gege Zhang
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Hui Li
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Longteng Zhou
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Hemin Yao
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Junjun Chong
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Qin Gu
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Huijun Wu
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China
| | - Xuewen Gao
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 211800, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 211800, China.
| |
Collapse
|
4
|
Li J, Song Z, Wang Y, Chen C, Jiang H, Ding T, Xie S. Root Exudates Mediate Bacillus velezensis FZB42's Colonization-Independent Biocontrol in Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40408368 DOI: 10.1021/acs.jafc.5c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Bacillus inoculants often show unstable performance due to poor colonization, making it crucial to explore colonization-independent biocontrol mechanisms. While rhizosphere microbial communities and root exudates influence plant disease resistance, it remains unclear if these changes depend on Bacillus colonization. This study analyzed the rhizosphere bacterial community and root exudates of maize in response to Bacillus velezensis FZB42 and the colonization-defective mutant FZB42ΔcheA. Both treatments significantly altered the root exudate composition. Notably, hydrocinnamic acid and tryptophol, which were upregulated more than 50-fold in both FZB42 and ΔcheA treatments, were confirmed to enhance maize resistance against Dickeya zeae. These compounds significantly reduced the pathogenicity of D. zeae with minimal effects on bacterial survival. Moreover, inoculation with FZB42 and the ΔcheA mutant reduced bacterial community diversity while increasing the abundance of beneficial bacteria, such as Cyanobacteria and Azospirillum, thereby indirectly enhancing maize resistance. This study offers a new understanding of the colonization-independent biocontrol mechanisms of Bacillus spp.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yulu Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chuxuanyuan Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ting Ding
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shanshan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Yang M, Qi Y, Gao P, Li L, Guo J, Zhao Y, Liu J, Chen Z, Yu L. Changes in the assembly and functional adaptation of endophytic microbial communities in Amorphophallus species with different levels of resistance to necrotrophic bacterial pathogen stress. Commun Biol 2025; 8:766. [PMID: 40389724 PMCID: PMC12089287 DOI: 10.1038/s42003-025-08196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Pcc is one of the key pathogenic factors responsible for destructive soft rot in konjac. To date, the assembly and functional adaptation of the plant endophytic microbiome under Pcc stress remain poorly understood. Here, we found that Pcc stress leads to rapid reorganization of the endogenous microbiome in multiple organs of both susceptible and resistant konjac plants. Under Pcc stress, the negative interactions within the bacterial-fungal interdomain network intensified, suggesting an increase in ecological competition between bacterial and fungal taxa. We further discovered that the relative abundance dynamics of the classes Dothideomycetes and Sordariomycetes, as core fungal taxa, changed in response to Pcc stress. By isolating culturable microorganisms, we demonstrated that 46 fungal strains strongly inhibited the growth of Pcc. This implies that endophytic fungal taxa in konjac may protect the host plant through ecological competition or by inhibiting the growth of pathogenic bacteria. Metagenomic analysis demonstrated that microbial communities associated with resistant Amorphophallus muelleri exhibited unique advantages over susceptible Amorphophallus konjac in enhancing environmental adaptability, regulating plant immune signaling, strengthening cell walls, and inducing defense responses. Our work provides important evidence that endophytic fungal taxa play a key role in the host plant's defense against necrotizing bacterial pathogens.
Collapse
Affiliation(s)
- Min Yang
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Ying Qi
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Penghua Gao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Lifang Li
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Jianwei Guo
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Yongteng Zhao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Jiani Liu
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Zebin Chen
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Lei Yu
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| |
Collapse
|
6
|
Sun T, Liu H, Wang N, Huang M, Banerjee S, Jousset A, Xu Y, Shen Q, Wang S, Wang X, Wei Z. Interactions with native microbial keystone taxa enhance the biocontrol efficiency of Streptomyces. MICROBIOME 2025; 13:126. [PMID: 40390122 PMCID: PMC12087250 DOI: 10.1186/s40168-025-02120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/21/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Streptomyces spp. are known for producing bioactive compounds that suppress phytopathogens. However, previous studies have largely focused on their direct interactions with pathogens and plants, often neglecting their interactions with the broader soil microbiome. In this study, we hypothesized that these interactions are critical for effective pathogen control. We investigated a diverse collection of Streptomyces strains to select those with strong protective capabilities against tomato wilt disease caused by Ralstonia solanacearum. Leveraging a synthetic community (SynCom) established in our lab, alongside multiple in planta and in vitro co-cultivation experiments, as well as transcriptomic and metabolomic analyses, we explored the synergistic inhibitory mechanisms underlying bacterial wilt resistance facilitated by both Streptomyces and the soil microbiome. RESULTS Our findings indicate that direct antagonism by Streptomyces is not sufficient for their biocontrol efficacy. Instead, the efficacy was associated with shifts in the rhizosphere microbiome, particularly the promotion of two native keystone taxa, CSC98 (Stenotrophomonas maltophilia) and CSC13 (Paenibacillus cellulositrophicus). In vitro co-cultivation experiments revealed that CSC98 and CSC13 did not directly inhibit the pathogen. Instead, the metabolite of CSC13 significantly enhanced the inhibition efficiency of Streptomyces R02, a highly effective biocontrol strain in natural soil. Transcriptomic and metabolomic analyses revealed that CSC13's metabolites induced the production of Erythromycin E in Streptomyces R02, a key compound that directly suppressed R. solanacearum, as demonstrated by our antagonism tests. CONCLUSIONS Collectively, our study reveals how beneficial microbes engage with the native soil microbiome to combat pathogens, suggesting the potential of leveraging microbial interactions to enhance biocontrol efficiency. These findings highlight the significance of intricate microbial interactions within the microbiome in regulating plant diseases and provide a theoretical foundation for devising efficacious biocontrol strategies in sustainable agriculture. Video Abstract.
Collapse
Affiliation(s)
- Tianyu Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongwei Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Ningqi Wang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingcong Huang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shimei Wang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaofang Wang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Amutuhaire H, Faigenboim-Doron A, Kraut-Cohen J, Friedman J, Cytryn E. Identifying rhizosphere bacteria and potential mechanisms linked to compost suppressiveness towards Fusarium oxysporum. ENVIRONMENTAL MICROBIOME 2025; 20:52. [PMID: 40380289 PMCID: PMC12085005 DOI: 10.1186/s40793-025-00710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/18/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Soilborne fungal phytopathogens pose a significant threat to global food security. While chemical control remains an effective method for managing these pathogens, increasing regulations due to health and environmental concerns, along with rising fungicide resistance, have restricted their use, underscoring the urgent need for sustainable alternatives. The use of compost to enhance soil fertility and suppress plant diseases is well documented. Several studies have underlined the role of microorganisms in disease suppression, but the mechanisms facilitating this disease suppression remain unclear. We evaluated the impact of compost amendment on the composition and functional capacity of the rhizosphere microbiome in cucumber plants (Cucumis sativus) inoculated with Fusarium oxysporum f. sp. radicis-cucumerinum (FORC) under controlled greenhouse conditions using amplicon sequencing, shotgun metagenomic and culture-based techniques. RESULTS Compost amendment significantly reduced FORC-induced disease in cucumber relative to non-amended treatments. While FORC inoculation resulted in significant shifts in microbial (bacterial and fungal) community composition in the rhizosphere of non-amended plants, this phenomenon was substantially less pronounced in the rhizosphere of compost-amended plants. Specifically, compost amendment sustained the presence of Actinomycetota (Streptomyces, Actinomadura, Saccharomonospora, Pseudonocardia, Glycomyces, Thermobifida) and Bacillota (Planifilum, Novibacillus) in FORC inoculated plants, that diminished significantly in inoculated plants without compost. These taxa contained a myriad of non-ribosomal peptides and polyketides synthetases biosynthetic gene clusters (BGCs) with putative antimicrobial and iron-chelating functions. We successfully isolated two Streptomyces strains from FORC-suppressing compost amended rhizospheres that were almost identical to the Streptomyces bin2 (99% ortho ANI) metagenome assembled genome identified in the shotgun metagenome analysis. These strains produced extracellular metabolites that inhibited growth of FORC in-vitro and contained BGCs that encode for compounds with potential antimicrobial capacity. CONCLUSIONS Based on results presented in this study, we demonstrate that compost alleviates FORC-induced dysbiosis of the rhizosphere microbiome, maintaining abundance of specific bacterial taxa. These bacterial groups may contribute to disease suppression through a myriad of mechanisms including iron chelation and production of fungal antagonizing secondary metabolites.
Collapse
Affiliation(s)
- Hildah Amutuhaire
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Faigenboim-Doron
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Judith Kraut-Cohen
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Jonathan Friedman
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon LeZion, Israel.
| |
Collapse
|
8
|
Jiang H, Zhou C, Liang Z, Wu W, Ahmed T, Gao Q, Liao M, Cao H. Serratia marcescens Sm85 produces dimethyl disulfide defense against rice sheath blight and effects on phyllosphere bacterial community. PEST MANAGEMENT SCIENCE 2025. [PMID: 40370113 DOI: 10.1002/ps.8853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/18/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Rice sheath blight (RSB), caused by Rhizoctonia solani Kuhn, significantly impacts rice yield and quality. The extensive use of chemical pesticides, while often effective, requires high application rates, causes environmental damage, is expensive, and contributes to the development of pesticide resistance. The lack of reliability and robustness of these conventional techniques necessitates the development of sustainable and environmentally friendly agricultural practices. Identifying novel biological control agents is crucial for developing effective and eco-friendly strategies to manage RSB. RESULTS This study identifies S. marcescens 85 (Sm85), isolated from rice stems, as a potential biocontrol agent against RSB. Sm85 produces the volatile chemical dimethyl disulfide (DMDS), which has antagonistic activity both in vivo (67.4% effective) and in vitro (97.7% effective). DMDS disrupts pathogen cell membrane integrity by increasing reactive oxygen species (ROS) production and reducing ergosterol content. The pot experiments demonstrated that DMDS treatment significantly reduces RSB lesion length, with a control effect comparable to commercial fungicides. The high-throughput data revealed that DMDS application alters the phyllosphere microbial community structure, increasing its richness and diversity. Notably, DMDS treatment enriches potentially beneficial bacteria such as Stenotrophomonas and Burkholderia, known for their roles in plant stress tolerance and pesticide degradation. Functional gene analysis reveals an upregulation of sulfur metabolism-related genes in the phyllosphere microbiome, suggesting adaptive responses to DMDS. CONCLUSION This study highlights the potential of Sm85 and its volatile metabolite DMDS as eco-friendly alternatives for RSB management, while also emphasizing the importance of considering microbial community dynamics in biocontrol strategies. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hubiao Jiang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chunhui Zhou
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
- College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Zihao Liang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Weifu Wu
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Temoor Ahmed
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Plant Biotechnology, Korea University, Seoul, South Korea
| | - Quan Gao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Liao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hiaqun Cao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Oostlander AG, Fleißner A, Slippers B. Advancing forest pathology: the need for community-driven molecular experimental model systems. THE NEW PHYTOLOGIST 2025. [PMID: 40350752 DOI: 10.1111/nph.70205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
Forests world-wide are under escalating threat from emerging and invasive fungal and oomycete pathogens, driven by globalization and shifting climate dynamics. Effective strategies to manage the current scale and rate of changes in forest health remain hindered by our limited ability to study the underlying mechanisms of pathogen-host and pathogen-microbiome interactions, especially at a molecular and cellular level, compared to general plant pathology, where experimental and model systems exist. Such models facilitate the integration of diverse methodologies from a broader base of the research community, allowing for a more holistic and deeper examination of complex research questions. Here, we propose a framework for the development of such model systems also for forest pathology. This goal is more feasible than ever, thanks to rapid technological advancements, increasing open data availability and a globally interconnected research community. These factors create a unique opportunity to integrate ecosystem-focused research in forest pathology with a unified model organism strategy. Achieving this goal will require a dedicated community effort in the coming years, as such model systems are not discovered but built.
Collapse
Affiliation(s)
- Anne G Oostlander
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - André Fleißner
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
10
|
Leclercq L, Debarre S, Lloret E, Taminiau B, Daube G, Rambaud C, Drider D, Siah A, Desprez B, Hilbert JL, Lucau-Danila A. Unveiling the hidden allies of industrial chicory-a metagenomic exploration of rhizosphere microbiota and their impact on productivity and plant health. Front Microbiol 2025; 16:1509094. [PMID: 40415946 PMCID: PMC12098591 DOI: 10.3389/fmicb.2025.1509094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
Background As industrial chicory is significant for food, fodder, and medicinal purposes, its cultivation is increasingly crucial for producers. To enhance productivity, resistance, and the nutritional and functional values of this plant, we aimed to investigate its interactions with the microbial environment. We performed the first comprehensive taxonomic and functional characterization of the rhizosphere microbiota associated with industrial chicory, investigating how environmental factors influence its composition. Methods Six different land plots were simultaneously cultivated with the same chicory genotype in northern France. Using soil analyses and metagenomic approaches, we characterized the diversity of bacterial and fungal communities in the soil microbiome associated with chicory plants and discussed their functional traits. Results We observed significant taxonomic variability, influenced by soil composition and cultivation history across each plot. The presence of chicory plants distinctly shaped the microbial community. Specifically, chicory was found to recruit Streptomyces species that produce plant hormones and Penicillium species that facilitate phosphate solubilization and promote plant growth. Moreover, the plant demonstrated an ability to repel pathogens and adapt to local microbial communities by selectively favoring beneficial microorganisms according to local stresses and nutritional needs. Discussion Our study represents a comprehensive taxonomic and functional analysis of the Cichorium intybus rhizosphere microbiome, underscoring the pivotal role of soil composition and land-use history. The specific microbial recruitment by chicory was also addressed.
Collapse
Affiliation(s)
- Lalie Leclercq
- UMRt BioEcoAgro 1158, University of Lille, JUNIA, INRAE, Univ. Liège, UPJV, Univ. Artois, Univ. Littoral Côte d’Opale, Villeneuve d’Ascq, France
- Joint Laboratory CHIC41H University of Lille-Florimond Desprez, Cité scientifique, Villeneuve d’Ascq, France
| | - Sony Debarre
- UMRt BioEcoAgro 1158, University of Lille, JUNIA, INRAE, Univ. Liège, UPJV, Univ. Artois, Univ. Littoral Côte d’Opale, Villeneuve d’Ascq, France
| | - Emily Lloret
- University of Lille, IMT Lille Douai, University Artois, Junia, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, Lille, France
| | - Bernard Taminiau
- Department of Food Sciences, Microbiology, FARAH, University of Liege, Liege, Belgium
| | - Georges Daube
- Department of Food Sciences, Microbiology, FARAH, University of Liege, Liege, Belgium
| | - Caroline Rambaud
- UMRt BioEcoAgro 1158, University of Lille, JUNIA, INRAE, Univ. Liège, UPJV, Univ. Artois, Univ. Littoral Côte d’Opale, Villeneuve d’Ascq, France
- Joint Laboratory CHIC41H University of Lille-Florimond Desprez, Cité scientifique, Villeneuve d’Ascq, France
| | - Djamel Drider
- UMRt BioEcoAgro 1158, University of Lille, JUNIA, INRAE, Univ. Liège, UPJV, Univ. Artois, Univ. Littoral Côte d’Opale, Villeneuve d’Ascq, France
| | - Ali Siah
- UMRt BioEcoAgro 1158, University of Lille, JUNIA, INRAE, Univ. Liège, UPJV, Univ. Artois, Univ. Littoral Côte d’Opale, Villeneuve d’Ascq, France
| | - Bruno Desprez
- Joint Laboratory CHIC41H University of Lille-Florimond Desprez, Cité scientifique, Villeneuve d’Ascq, France
- Florimond Desprez Veuve & Fils, Cappelle-en-Pévèle, France
| | - Jean-Louis Hilbert
- UMRt BioEcoAgro 1158, University of Lille, JUNIA, INRAE, Univ. Liège, UPJV, Univ. Artois, Univ. Littoral Côte d’Opale, Villeneuve d’Ascq, France
- Joint Laboratory CHIC41H University of Lille-Florimond Desprez, Cité scientifique, Villeneuve d’Ascq, France
| | - Anca Lucau-Danila
- UMRt BioEcoAgro 1158, University of Lille, JUNIA, INRAE, Univ. Liège, UPJV, Univ. Artois, Univ. Littoral Côte d’Opale, Villeneuve d’Ascq, France
- Joint Laboratory CHIC41H University of Lille-Florimond Desprez, Cité scientifique, Villeneuve d’Ascq, France
| |
Collapse
|
11
|
Liu S, Wu J, Cheng Z, Wang H, Jin Z, Zhang X, Zhang D, Xie J. Microbe-mediated stress resistance in plants: the roles played by core and stress-specific microbiota. MICROBIOME 2025; 13:111. [PMID: 40320520 PMCID: PMC12051278 DOI: 10.1186/s40168-025-02103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Plants in natural surroundings frequently encounter diverse forms of stress, and microbes are known to play a crucial role in assisting plants to withstand these challenges. However, the mining and utilization of plant-associated stress-resistant microbial sub-communities from the complex microbiome remains largely elusive. RESULTS This study was based on the microbial communities over 13 weeks under four treatments (control, drought, salt, and disease) to define the shared core microbiota and stress-specific microbiota. Through co-occurrence network analysis, the dynamic change networks of microbial communities under the four treatments were constructed, revealing distinct change trajectories corresponding to different treatments. Moreover, by simulating species extinction, the impact of the selective removal of microbes on network robustness was quantitatively assessed. It was found that under varying environmental conditions, core microbiota made significant potential contributions to the maintenance of network stability. Our assessment utilizing null and neutral models indicated that the assembly of stress-specific microbiota was predominantly driven by deterministic processes, whereas the assembly of core microbiota was governed by stochastic processes. We also identified the microbiome features from functional perspectives: the shared microbiota tended to enhance the ability of organisms to withstand multiple types of environmental stresses and stress-specific microbial communities were associated with the diverse mechanisms of mitigating specific stresses. Using a culturomic approach, 781 bacterial strains were isolated, and nine strains were selected to construct different SynComs. These experiments confirmed that communities containing stress-specific microbes effectively assist plants in coping with environmental stresses. CONCLUSIONS Collectively, we not only systematically revealed the dynamics variation patterns of rhizosphere microbiome under various stresses, but also sought constancy from the changes, identified the potential contributions of core microbiota and stress-specific microbiota to plant stress tolerance, and ultimately aimed at the beneficial microbial inoculation strategies for plants. Our research provides novel insights into understanding the microbe-mediated stress resistance process in plants. Video Abstract.
Collapse
Grants
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- Fundamental Research Funds for the National Key R&D Program of China
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhen Cheng
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Haofei Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhelun Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China.
| |
Collapse
|
12
|
Liu L, Wang Z, Luo C, Deng Y, Wu W, Jin Y, Wang Y, Huang H, Wei Z, Zhu Y, He X, Guo L. Beneficial soil microbiome profiles assembled using tetramycin to alleviate root rot disease in Panax notoginseng. Front Microbiol 2025; 16:1571684. [PMID: 40365061 PMCID: PMC12069275 DOI: 10.3389/fmicb.2025.1571684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
Background Root rot disease is a major threat to the sustainable production of Panax notoginseng. Tetramycin has a broad-spectrum fungicidal efficacy, low toxicity, and high efficiency, However, the prevention and control of root rot disease of P. notoginseng and the specific mechanism of action are still unclear. Methods In this paper, a combination of indoor and pot experiments was used to assess the effectiveness of tetramycin at alleviating root rot disease challenges encountered by P. notoginseng. Amplicon sequencing, metagenomic analysis with microbial verification were used to investigate the microecological mechanisms underlying tetramycin's ability to reduce soil biological barriers. Results We found that tetramycin significantly inhibited mycelial growth and spore germination of pathogenic fungi. Tetramycin, T2 (1000×) and T3 (500×), applied to continuous cropping soil, increased the seedling survival rates of P. notoginseng. Additionally, tetramycin reduced fungal α-diversity and shifted the fungal community assembly from deterministic to stochastic process. The microbial functions influenced by tetramycin were primarily associated with antibiotic synthesis and siderophore synthesis. Antibiotic efflux and inactivation have also been identified as the main resistance mechanisms. Microbial verification results showed that the artificially assembled tetramycin-regulated microbial community could indeed alleviate the occurrence of diseases. Furthermore, the cross-kingdom synthetic community assembled by the three key strains (Pseudomonas aeruginosa, Variovorax boronicumulans, and Cladosporium cycadicola) significantly improved the control of root rot disease and promoted plant growth. Discussion This study provides novel insights into developing efficient biological control strategies and elucidates the role and mechanism of tetramycin in modulating soil microflora assembly to strengthen host disease resistance.
Collapse
Affiliation(s)
- Lianjin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zongqing Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Cheng Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Deng
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wentao Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yongping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuxuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hongping Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhaoxia Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Yusuf A, Li M, Zhang SY, Odedishemi-Ajibade F, Luo RF, Wu YX, Zhang TT, Yunusa Ugya A, Zhang Y, Duan S. Harnessing plant-microbe interactions: strategies for enhancing resilience and nutrient acquisition for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2025; 16:1503730. [PMID: 40336613 PMCID: PMC12056976 DOI: 10.3389/fpls.2025.1503730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/28/2025] [Indexed: 05/09/2025]
Abstract
The rhizosphere, a biologically active zone where plant roots interface with soil, plays a crucial role in enhancing plant health, resilience, and stress tolerance. As a key component in achieving Sustainable Development Goal 2, the rhizosphere is increasingly recognized for its potential to promote sustainable agricultural productivity. Engineering the rhizosphere microbiome is emerging as an innovative strategy to foster plant growth, improve stress adaptation, and restore soil health while mitigating the detrimental effects of conventional farming practices. This review synthesizes recent advancements in omics technologies, sequencing tools, and synthetic microbial communities (SynComs), which have provided insights into the complex interactions between plants and microbes. We examine the role of root exudates, composed of organic acids, amino acids, sugars, and secondary metabolites, as biochemical cues that shape beneficial microbial communities in the rhizosphere. The review further explores how advanced omics techniques like metagenomics and metabolomics are employed to elucidate the mechanisms by which root exudates influence microbial communities and plant health. Tailored SynComs have shown promising potential in enhancing plant resilience against both abiotic stresses (e.g., drought and salinity) and biotic challenges (e.g., pathogens and pests). Integration of these microbiomes with optimized root exudate profiles has been shown to improve nutrient cycling, suppress diseases, and alleviate environmental stresses, thus contributing to more sustainable agricultural practices. By leveraging multi-disciplinary approaches and optimizing root exudate profiles, ecological engineering of plant-microbiome interactions presents a sustainable pathway for boosting crop productivity. This approach also aids in managing soil-borne diseases, reducing chemical input dependency, and aligning with Sustainable Development Goals aimed at global food security and ecological sustainability. The ongoing research into rhizosphere microbiome engineering offers significant promise for ensuring long-term agricultural productivity while preserving soil and plant health for future generations.
Collapse
Affiliation(s)
- Abdulhamid Yusuf
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Plant Science and Biotechnology, Federal University, Dutsin-ma, Katsina State, Nigeria
| | - Min Li
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Si-Yu Zhang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Fidelis Odedishemi-Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, Akure, Nigeria
| | - Rui-Fang Luo
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ya-Xiao Wu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ting-Ting Zhang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Adamu Yunusa Ugya
- Department of Environmental Management, Kaduna State University, Kaduna State, Kaduna, Nigeria
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuo Duan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
14
|
Rizaludin MS, Díaz ASL, Zweers H, Raaijmakers JM, Garbeva P. Foliar infections by Botrytis cinerea modulate the tomato root volatilome and microbiome. FEMS Microbiol Ecol 2025; 101:fiaf042. [PMID: 40251008 PMCID: PMC12023855 DOI: 10.1093/femsec/fiaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 04/20/2025] Open
Abstract
The fungal pathogen Botrytis cinerea causes significant damage to aboveground plant parts, but its impact on root chemistry and microbiome composition is less understood. This study investigated how B. cinerea foliar infection influences the root volatilome and microbiome of two tomato genotypes: wild Solanum pimpinellifolium and domesticated Solanum lycopersicum var. Moneymaker. In the absence of infection, wild tomato roots emitted higher levels of monoterpenes such as α-pinene and terpinene compared to domesticated tomato roots. The fungal infection induced elevated levels of benzyl alcohol and benzofuran in the root headspace and/or rhizosphere of both genotypes, alongside genotype-specific changes. Multivariate analyses revealed that B. cinerea significantly altered bacterial and fungal community compositions in the rhizosphere and rhizoplane, with stronger bacterial community shifts in the rhizoplane. Taxa depletion and enrichment were observed, particularly among Proteobacteria and Ascomycota. Mantel tests showed significant correlations between rhizoplane bacterial community compositions and root-associated volatilome. Notably, enriched bacterial taxa such as Pelomonas and Comamonadaceae positively correlated with benzyl alcohol and benzofuran levels in the root volatilome. These findings demonstrate that B. cinerea foliar infection might induce profound changes in root-associated volatilome and microbiome composition, highlighting its systemic effects on plant root chemistry and microbiome composition.
Collapse
Affiliation(s)
- Muhammad Syamsu Rizaludin
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Ana Shein Lee Díaz
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Slyviusweg, 2333 BE Leiden, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
15
|
Yingtao L, Qiaofeng L, Lijuan W, Shuyun Q, Zhou J, Wenping Z, Aili Z. Integrated analysis of transcriptomics and metabolomics and high-throughput amplicon sequencing reveals the synergistic effects of secondary metabolites and rhizosphere microbiota on root rot resistance in Psammosilene tunicoides. Front Microbiol 2025; 16:1554406. [PMID: 40297288 PMCID: PMC12034638 DOI: 10.3389/fmicb.2025.1554406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Psammosilene tunicoides is a plant with significant medicinal and ecological value, exhibiting remarkable medicinal properties, particularly in anti-inflammatory, antioxidant, and immune-regulatory effects. Root rot is one of the primary diseases affecting Psammosilene tunicoides, leading to a significant decline in its quality. In this study, we utilized an integrated analysis of transcriptomics, metabolomics, high-throughput amplicon sequencing, and culturomics for revealing the difference of healthy samples (CH) and diseased samples (CD) and studying the defense mechanism of P. tunicoides in resisting root rot. Transcriptome revealed distinct patterns of gene expression between healthy root samples (HR) and diseased root samples (DR) of P. tunicoides. The Key enzyme genes involved in triterpene (e.g., HMGS, DXS, SQS, CYP450) and flavonoid (e.g., PAL, CHS, CHI) biosynthesis pathways were significantly upregulated in DR. Consistent results were observed in the metabolomic analysis, where triterpene saponins and flavonoids were more highly accumulated in DR than in HR. Microbiome data indicated a significant enrichment of Actinobacteria at the genus level in the rhizosphere soil of diseased samples (DS) compared to healthy samples (HS) while the mostly beneficial growth-promoting bacterial groups were found in DR root endophytes, including Enterobacter, Pseudomonas, Klebsiella, Stenotrophomonas, and Bacillus. Through culturomics, we successfully isolated and identified over 220 bacterial strains from the rhizosphere soil of diseased samples, including genera including Bacillus, Streptomyces, Cupriavidus, Pseudomonas, and Paenarthrobacter. Notably, the strain Pseudomonas sp., which was significantly enriched in DR, exhibited a clear antagonistic effect against Fusarium oxysporum. Co-occurrence network analysis of multi-omics data revealed that many Actinomycetes positively correlated with triterpenoid and flavonoid compounds and their key genes. Therefore, we conclude that these secondary metabolites may could resist pathogen invasion directly or serve as an "intermediate medium" to recruit growth-promoting microorganisms to resistant the root rot. This study investigates the "Plant-Microbe" interaction network associated with root rot resistance in P. tunicoides, revealing its significant implications for the ecological cultivation and management of this species.
Collapse
Affiliation(s)
- Li Yingtao
- Key Laboratory of Sustainable Utilization of Southern Medicinal Resources in Yunnan Province, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Qiaofeng
- Key Laboratory of Sustainable Utilization of Southern Medicinal Resources in Yunnan Province, Yunnan University of Chinese Medicine, Kunming, China
| | - Wang Lijuan
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Shuyun
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiang Zhou
- Key Laboratory of Sustainable Utilization of Southern Medicinal Resources in Yunnan Province, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhang Wenping
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhang Aili
- Key Laboratory of Sustainable Utilization of Southern Medicinal Resources in Yunnan Province, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
16
|
Li HP, Ma HB, Zhang JL. Halo-tolerant plant growth-promoting bacteria-mediated plant salt resistance and microbiome-based solutions for sustainable agriculture in saline soils. FEMS Microbiol Ecol 2025; 101:fiaf037. [PMID: 40194942 PMCID: PMC12051855 DOI: 10.1093/femsec/fiaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025] Open
Abstract
Soil salinization has been the major form of soil degradation under the dual influence of climate change and high-intensity human activities, threatening global agricultural sustainability and food security. High salt concentrations induce osmotic imbalance, ion stress, oxidative damage, and other hazards to plants, resulting in retarded growth, reduced biomass, and even total crop failure. Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR), as a widely distributed group of beneficial soil microorganisms, are emerging as a valuable biological tool for mitigating the toxic effects of high salt concentrations and improve plant growth while remediating degraded saline soil. Here, the current status, harm, and treatment measures of global soil salinization are summarized. The mechanism of salt tolerance and growth promotion induced by HT-PGPR are reviewed. We highlight that advances in multiomics technologies are helpful for exploring the genetic and molecular mechanisms of microbiota centered on HT-PGPR to address the issue of plant losses in saline soil. Future research is urgently needed to comprehensively and robustly determine the interaction mechanism between the root microbiome centered on HT-PGPR and salt-stressed plants via advanced means to maximize the efficacy of HT-PGPR as a microbial agent.
Collapse
Affiliation(s)
- Hui-Ping Li
- School of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Hong-Bin Ma
- School of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Kolytaitė A, Mažeikienė I, Kurgonaitė M, Raklevičiūtė S, Paškevičiūtė G, Frercks B. Unlocking Nature's Microbial Defenders: Genetic Mechanisms and Potential Against Monilinia spp. Pathogens. Microorganisms 2025; 13:818. [PMID: 40284654 PMCID: PMC12029544 DOI: 10.3390/microorganisms13040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Monilinia spp., which causes brown rot, is one of the most damaging pathogens in stone fruits. Researchers are exploring epiphytic and endophytic microorganisms with the potential to suppress pathogens, control pathogenic microorganisms, and/or promote plant growth. In this study, microorganisms with antagonistic activity against three Monilinia species were isolated from plum orchard soil and plum fruits. Antagonism tests in vitro showed strong antagonistic properties of six strains of bacteria and two yeast-like fungi against M. fructigena, M. fructicola, and M. laxa, with growth inhibition from 45.5 to 84.6%. The antagonists were identified and characterized at the genetic level using whole genome sequencing (WGS). Genes involved in antibiotic resistance, virulence, secondary metabolite synthesis, and plant growth promotion were identified and characterized through genome mapping, gene prediction, and annotation. None of the microorganisms studied were predicted to be pathogenic to humans. The results of this study indicate that the bacteria Bacillus pumilus, B. velezensis, two strains of Lysinibacillus agricola, Pseudomonas chlororaphis isolated from stone fruit orchard soil, and the yeast-like fungus Aureobasidium pullulans, isolated from plums, are promising candidates for the biological control of Monilinia spp.
Collapse
Affiliation(s)
| | - Ingrida Mažeikienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Lithuania; (A.K.); (M.K.); (S.R.); (B.F.)
| | | | | | | | | |
Collapse
|
18
|
Wang L, Zhang X, Lu J, Huang L. Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia. Microbiol Res 2025; 293:128054. [PMID: 39799763 DOI: 10.1016/j.micres.2025.128054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.
Collapse
Affiliation(s)
- Lixue Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xinyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
19
|
Lee SM, Tae HS, Kong HG, Lee B, Chang YK, Ryu CM. Foliar Application of Chlorella Supernatant Protects Turfgrass against Clarireedia jacksonii by Eliciting Induced Resistance and Modulating the Rhizosphere Microbiota. THE PLANT PATHOLOGY JOURNAL 2025; 41:210-224. [PMID: 40211625 PMCID: PMC11986362 DOI: 10.5423/ppj.ft.01.2025.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 04/14/2025]
Abstract
Large-scale culture of the microalga Chlorella produces valuable products. Cultivation also generates tons of supernatant waste that require detoxification and disposal. Recent research has focused on recycling waste supernatant as a plant protectant and biofertilizer, although, to date, most studies have considered its use as a biological control of pathogens infecting dicot plants. By contrast, the current study evaluated whether Chlorella supernatant could protect turfgrass (Agrostis stolonifera), a monocot plant widely used as a turfgrass, against dollar spot disease caused by the fungal pathogen Clarireedia jacksonii (formerly Sclerotinia homoeocarpa) under greenhouse and field conditions. Foliar application of supernatants from Chlorella sp. ABC001 and HS2 cultures reduced the incidence of dollar spot disease in turfgrass under both greenhouse and field conditions without directly inhibiting growth. The effects of supernatant application on the rhizosphere microbiome were investigated using 16S rRNA amplicon sequencing. Application of ABC001 and HS2 supernatants modulated the structure of the rhizosphere microbiome and enriched specific microbial taxa that improved turfgrass health in the presence of C. jacksonii. The application of waste Chlorella supernatant therefore offers an alternative method for protecting monocot plants against fungal pathogens, while also enhancing the composition of soil microbes in the rhizosphere.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | | | - Hyun Gi Kong
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, Korea
- Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Bongsoo Lee
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, Daejeon 35349, Korea
| | - Yong-Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
20
|
Zhang M, Hu J, Zhang Y, Cao Y, Rensing C, Dong Q, Hou F, Zhang J. Roles of the soil microbiome in sustaining grassland ecosystem health on the Qinghai-Tibet Plateau. Microbiol Res 2025; 293:128078. [PMID: 39904001 DOI: 10.1016/j.micres.2025.128078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Soil microbes, as intermediaries in plant-soil interactions, are closely linked to plant health in grassland ecosystems. In recent years, varying degrees of degradation have been observed in the alpine grasslands of the Qinghai-Tibet Plateau (QTP). Addressing grassland degradation, particularly under the influence of climate change, poses a global challenge. Understanding the factors driving grassland degradation on the QTP and developing appropriate mitigation measures is essential for the future sustainability of this fragile ecosystem. In this review, we discuss the environmental and anthropogenic factors affecting grassland degradation and the corresponding impacts on soil microbe community structure. We summarize the current research on the microbiome of the QTP, in particular the effect of vegetation, climate change, grazing, and land use, respectively on the alpine grassland microbiome. The results of these studies indicate that microbially mediated soil bioprocesses are important drivers of grassland ecosystem functional recovery. Therefore, a thorough understanding of the spatial distribution characteristics of the soil microbiome in alpine grasslands is required, and this necessitates an integrated approach in which the interactions among climatic factors, vegetation characteristics, and human activities are evaluated. Additionally, we assess and summarise current technological developments and prospects for applying soil microbiome technologies in sustainable agriculture, including: (i) single-strain inoculation, and (ii) inoculation of synthetic microbial communities, (iii) microbial community transplantation. Grassland restoration projects should be carried out with the understanding that each restoration measure has a unique effect on the soil microbial activity. We propose that the sustainable development of alpine grassland ecosystems can be achieved by adopting advanced microbiome technologies and integrating microbe-based sustainable agricultural practices to maximise grassland biomass, increase soil carbon, and optimise soil nutrient cycling.
Collapse
Affiliation(s)
- Mingxu Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Jinpeng Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Yuewei Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Yanhua Cao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quanmin Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Fujiang Hou
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| | - Jinlin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
21
|
Wu Z, Chen J, Chen J, Yang Y, Zhou A, Wu J. The relationship between pomegranate root collar rot and the diversity of fungal communities in its rhizosphere. Front Microbiol 2025; 16:1573724. [PMID: 40190735 PMCID: PMC11968712 DOI: 10.3389/fmicb.2025.1573724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction The pomegranate (Punica granatum) is a significant economic tree species. In recent years, the root collar rot has severely affected pomegranates in the dry-hot valley regions of Yunnan Province, China. The rhizosphere microbiome plays a crucial role in plant growth, development, and disease resistance. Methods This study utilized Illumina MiSeq sequencing to analyze the fungal communities in the roots and rhizosphere soils of healthy and diseased pomegranates, focusing on the impact of root collar rot disease on the diversity and structural composition of these communities. Results The results indicated that in the unique fungal communities of healthy plant roots, the relative abundance of ectomycorrhizal and arbuscular mycorrhizal functional (AMF) groups was 53.77%, including genera such as Glomus and Septoglomus. After infection with root collar rot disease, the rhizosphere fungal communities became more monotonous, with increased differentiation within sample groups. Fungal groups associated with plant diseases and soil nutrient structures underwent significant changes. The disease altered the composition and functional group proportions of rhizosphere fungal communities, a process linked to soil nutrient structures. And the balance between plant-pathogen-related and saprotrophic functional groups in the rhizosphere was disrupted. Through Koch's postulates verification, the pathogen was identified as Lauriomyces bellulus. Discussion This is the first report of collar rot of pomegranate caused by L. bellulus in China. Studying the differences in rhizosphere fungal community structures and quantities in response to new diseases aids in the rapid prediction of pathogens, effectively saving diagnostic time, and provides theoretical support for disease prediction, diagnosis, and control.
Collapse
Affiliation(s)
- Ziqiang Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, China
| | - Jianxin Chen
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, College of Forestry, Southwest Forestry University, Kunming, China
| | - Jie Chen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, College of Forestry, Southwest Forestry University, Kunming, China
| | - Yalin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, China
| | - Aiting Zhou
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, College of Forestry, Southwest Forestry University, Kunming, China
| | - Jianrong Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, College of Forestry, Southwest Forestry University, Kunming, China
| |
Collapse
|
22
|
Ku YS, Cheng SS, Luk CY, Leung HS, Chan TY, Lam HM. Deciphering metabolite signalling between plant roots and soil pathogens to design resistance. BMC PLANT BIOLOGY 2025; 25:308. [PMID: 40069627 PMCID: PMC11895165 DOI: 10.1186/s12870-025-06321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Metabolites are important signaling molecules mediating plant-microbe interaction in soil. Plant root exudates are composed of primary metabolites, secondary metabolites, and macro-molecules such as organic acids. Certain organic acids in root exudates can attract pathogenic microbes in soil and promote infection. Meanwhile, secretions from soil microbes can also alter the compositions of root exudates and enhance the pathogenicity towards the target host plant. Examples of toxins in microbial secretions include polyketides and thaxtomins. The pathogenicity of plant microbes is mediated by the dynamic exchange of metabolites between the pathogen and the host plant. By deciphering this metabolite-mediated infection process, targeted strategies can be developed to promote plant resistance to soil pathogens. Examples of the strategies include the manipulation of root exudate composition and the blocking of metabolite signals that promote microbial infection. Other possibilities include minimizing the harmfulness of pathogenic microbial secretions to plants by habituating the plants to the toxin, genetically engineering plants to enhance their pathogen resistance, and treating plants with beneficial hormones and microbes. In this review, we summarized the current understanding of root exudates and soil microbe secretions that promote infection. We also discussed the strategies for promoting pathogen resistance in plants by focusing on the metabolite signaling between plants and pathogenic soil microbes.
Collapse
Affiliation(s)
- Yee-Shan Ku
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China.
| | - Sau-Shan Cheng
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ching-Yee Luk
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Sze Leung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz-Yan Chan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Badar A, Aqueel R, Nawaz A, Ijaz UZ, Malik KA. Microbiota transplantation for cotton leaf curl disease suppression-core microbiome and transcriptome dynamics. Commun Biol 2025; 8:380. [PMID: 40050684 PMCID: PMC11885576 DOI: 10.1038/s42003-025-07812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Microbiota transplantation is a strong tool for managing plant disease. This study investigates the effects of microbiota transplantation on Cotton Leaf Curl Disease (CLCuD) resistance in Gossypium hirsutum, a species with good fiber length but high susceptibility to biotic stresses. Using metabarcoding for V3-V4 16S rRNA gene amplicon, microbial fractions from both rhizosphere and phyllosphere of CLCuD-resistant species Gossypium arboreum, and susceptible cotton varieties are analyzed. Unique bacterial taxa have been identified associated with disease resistance. Interspecies and intraspecies microbiota transplantation is conducted, followed by CLCuD incidence assays. It is seen that rhizospheric microbiota transplantation from G. arboreum FDH228 significantly suppresses CLCuD in G. hirsutum varieties, outperforming exogenous salicylic acid application. While phyllospheric transplants also reduce disease incidence, they are less effective than rhizospheric transplants. Differential expression analysis DESeq2 is utilized to identify key bacterial genera correlated with CLCuD suppression, including Pseudoxanthomonas and Stenotrophomonas in the rhizosphere of G. arboreum FDH228. Functional pathway analysis reveals upregulation of stress response and metabolism in tolerant species. Transcriptomics reveals upregulation of genes involved in protein phosphorylation and stress response in interspecies rhizospheric microbiota transplants. This study highlights microbiota transplantation as a sustainable method for controlling CLCuD along with specific microbial and genetic mechanisms contributing to CLCuD resistance.
Collapse
Affiliation(s)
- Ayesha Badar
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Rhea Aqueel
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
- Mazumdar-Shaw Advanced Research Centre, Water & Environment Research Group, University of Glasgow, Glasgow, UK
| | - Ali Nawaz
- Bioinformatics Group - Department of Digital Health Sciences and Biomedicine, University of Siegen, Siegen, Germany
| | - Umer Zeeshan Ijaz
- Mazumdar-Shaw Advanced Research Centre, Water & Environment Research Group, University of Glasgow, Glasgow, UK.
- National University of Ireland, Galway, Ireland.
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | - Kauser Abdulla Malik
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
24
|
Huang Z, Wang X, Fan L, Jin X, Zhang X, Wang H. Continuous Cropping of Tussilago farfara L. Has a Significant Impact on the Yield and Quality of Its Flower Buds, and Physicochemical Properties and the Microbial Communities of Rhizosphere Soil. Life (Basel) 2025; 15:404. [PMID: 40141749 PMCID: PMC11944208 DOI: 10.3390/life15030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Continuous cropping obstacles pose significant constraints and urgent challenges in the production of Tussilago farfara L. This experiment investigated the effects of consecutive cropping on T. farfara over periods of 1, 2, and 3 years. It assessed the yield and quality of T. farfara flower buds, in addition to the physicochemical properties of the rhizosphere soil. The microbial community in the rhizosphere was analyzed through 16S rDNA and ITS sequencing using Illumina Novaseq high-throughput sequencing technology, while also examining the correlations among these factors. The results reveal that as the duration of continuous cropping increases, the yield of T. farfara flower buds, along with the contents of extract, tussilagone, and total flavonoids, steadily decreased; soil pH, organic matter, available phosphorus, available potassium, alkaline nitrogen, and the activities of sucrose, catalase, and alkaline phosphatase markedly decreased. As the duration of consecutive cropping increases, the quantity and diversity of bacteria in the rhizosphere soil initially increase and then decrease, while the number of fungal species increases by 22.5%. Meanwhile, continuous cropping of T. farfara contributes to a gradual reduction in the relative abundance of beneficial genera such as Ralstonia, Nitrospira, and Trichoderma in the rhizosphere soil, while harmful genera such as Mortierella, Fusarium, and Tricharina accumulate significantly. Correlation analysis shows that changes in microbial communities notably influence the growth of T. farfara and soil quality. This study elucidates the impacts of continuous cropping on the yield and quality of T. farfara flower buds, soil physicochemical properties, and the microbial communities in the rhizosphere, providing a scientific basis for further research on continuous cropping barriers and the selection of beneficial microbial genera for the growth of T. farfara.
Collapse
Affiliation(s)
- Zhenbin Huang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Z.H.); (X.W.); (L.F.); (X.Z.); (H.W.)
- State Key Laboratory of Arid Habitat Crops, Gansu Agricultural University, Lanzhou 730070, China
| | - Xia Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Z.H.); (X.W.); (L.F.); (X.Z.); (H.W.)
- State Key Laboratory of Arid Habitat Crops, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangshuai Fan
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Z.H.); (X.W.); (L.F.); (X.Z.); (H.W.)
- State Key Laboratory of Arid Habitat Crops, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaojun Jin
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Z.H.); (X.W.); (L.F.); (X.Z.); (H.W.)
- State Key Laboratory of Arid Habitat Crops, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiang Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Z.H.); (X.W.); (L.F.); (X.Z.); (H.W.)
| | - Hongyan Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Z.H.); (X.W.); (L.F.); (X.Z.); (H.W.)
- State Key Laboratory of Arid Habitat Crops, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
25
|
Wang C, Tai H, Chen Y, Zhai Z, Zhang L, Pu Z, Zhang M, Li C, Xie Z. Soil Microbiota Modulates Root Transcriptome With Divergent Effect on Maize Growth Under Low and High Phosphorus Inputs. PLANT, CELL & ENVIRONMENT 2025; 48:2132-2144. [PMID: 39552518 DOI: 10.1111/pce.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Plant growth can be promoted by beneficial microorganisms, or inhibited by detrimental ones. Although the interaction process between a single microbial species and its host has been extensively studied, the growth and transcriptional response of the host to soil microbiota is poorly understood. We planted maize in natural or sterile soil collected from a long-term experimental site with two different soil phosphate (P) regimes. We examined the composition of microbial communities inhabiting root-associated niches in natural soil. In parallel, we determined the biomass, ionomes, and root transcriptome profiling of maize grown in natural or sterile soil. Soil microbiota could promote or inhibit different P starvation-responsive (PSR) genes, as well as induce several defense-related metabolic processes independently of external P levels. Soil microbiota accompanied by long-term application of P fertilizer induced lower intensity of PSR and defense responses, inhibiting maize growth. Under a low P regime, the PSR and defense responses were induced to a higher extent, promoting P absorption and growth. Our findings suggest a soil P-dependent effect of microbiota on maize growth by integrating PSR and defense responses and provide a more refined understanding of the interaction between root growth and soil microbiota.
Collapse
Affiliation(s)
- Chao Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Huanhuan Tai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Zhiwen Zhai
- Yazhouwan National Laboratory, Sanya, Hainan Province, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Zitian Pu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
| | - Maolin Zhang
- Dongying City Yibang Agricultural Technology Development Co., Ltd., Dongying, Shandong Province, China
| | - Chunjian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
26
|
Wang B, Shang N, Feng X, Hu Z, Li P, Chen Y, Hu B, Ding M, Xu J. Understanding the microbiome-crop rotation nexus in karst agricultural systems: insights from Southwestern China. Front Microbiol 2025; 16:1503636. [PMID: 40078553 PMCID: PMC11897573 DOI: 10.3389/fmicb.2025.1503636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Understanding how soil properties and microbial communities respond to crop rotation is essential for the sustainability of agroecosystems. However, there has been limited research on how crop rotation alters below-ground microbial communities in soils with serious bacterial wilt within the karst agricultural system. This study investigated the effects of continuous planting of corn, tobacco, and tobacco-corn rotation on soil microbial communities in the karst regions of Southwestern China. High-throughput sequencing was used to evaluate the responses of the soil microbial community structure to crop monoculture and rotation patterns. As expected, the tobacco-corn rotation mitigated the negative effects of continuous cropping and reduced soil acidification. The tobacco-corn rotation also significantly altered the composition of microbial communities and promoted plant growth by fostering a higher abundance of beneficial microorganisms. The predominant bacteria genera Sphingomonas and Gaiella and the predominant fungal genera Mortierella and Saitozyma were identified as discriminant biomarkers that are critical to soil ecosystem health. pH, available potassium (AK), and available phosphorus (AP) were the primary soil factors related to the soil microbiome assembly. This study aimed to demonstrate the association between crop rotation and microbiomes, suggesting that altering cultivation patterns could enhance karst agricultural systems.
Collapse
Affiliation(s)
- Bin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Tobacco Company Wenshan Prefecture Company, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China
| | - Nianjie Shang
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xinwei Feng
- Guizhou Tobacco Company Qiannan Company, Duyun, China
| | - Zongling Hu
- Yunnan Tobacco Company Wenshan Prefecture Company, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China
| | - Pengfei Li
- Yunnan Tobacco Company Wenshan Prefecture Company, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Mengjiao Ding
- College of Tobacco Science, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Tobacco Quality, College of Tobacco Science, Guizhou University, Guiyang, China
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Junju Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
27
|
Machida-Sano I, Koizumi H, Yoshitake S. A novel scaffold for biofilm formation by soil microbes using iron-cross-linked alginate gels. Biosci Biotechnol Biochem 2025; 89:473-479. [PMID: 39674811 DOI: 10.1093/bbb/zbae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
This study aimed to evaluate the suitability of alginate gels, specifically ferric-ion-cross-linked alginate (Fe-alginate) and calcium-ion-cross-linked alginate (Ca-alginate), as scaffolds for soil microbial attachment and biofilm formation in soil. Staining with crystal violet and observations with scanning electron microscopy showed that microorganisms formed biofilms on Fe-alginate surfaces in the soil. When the soil was incubated with Fe-alginate, microbial biomass, estimated by adenosine triphosphate content, increased not only in the Fe-alginate but also in the surrounding soil. The weight of Ca-alginate in the soil decreased with time owing to chemical dissolution. However, the weight of Fe-alginate in the soil did not decrease, likely because it was protected by the microbial biofilm that formed on its surface. These results demonstrate that the use of Fe-alginate, in contrast to Ca-alginate, as a scaffold may allow for more efficient use of soil microbial functions in agriculture and bioremediation.
Collapse
Affiliation(s)
- Ikuko Machida-Sano
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Koizumi
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinpei Yoshitake
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
28
|
Ma Y, Wang H, Kang Y, Wen T. Small molecule metabolites drive plant rhizosphere microbial community assembly patterns. Front Microbiol 2025; 16:1503537. [PMID: 40008040 PMCID: PMC11854121 DOI: 10.3389/fmicb.2025.1503537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The assembly of rhizosphere microbial communities is essential for maintaining plant health, yet it is influenced by a wide range of biotic and abiotic factors. The key drivers shaping the composition of these communities, however, remain poorly understood. In this study, we analyzed 108 plant samples and evaluated root traits, plant growth characteristics, soil enzyme activities, rhizosphere metabolites, and soil chemical properties to identify the primary determinants of rhizosphere community assembly. Across 36 soil samples, we obtained 969,634 high-quality sequences, clustering into 6,284 ASVs predominantly classified into Proteobacteria (57.99%), Actinobacteria (30%), and Bacteroidetes (5.13%). Our findings revealed that rhizosphere metabolites accounted for more variance in microbial community composition compared to chemical properties (ANOVA, F = 1.53, p = 0.04), enzyme activities, or root traits (ANOVA, F = 1.04, p = 0.001). Seven small molecule metabolites, including glycerol, sorbitol, phytol, and alpha-ketoglutaric acid, were significantly correlated with βNTI, underscoring their role as critical drivers of microbial community assembly. The genus Rhizobium, significantly associated with βNTI (R = 0.25, p = 0.009), emerged as a keystone taxon shaping community structure. Soil culture experiments further validated that small molecule metabolites can modulate microbial community assembly. The ST treatment, enriched with these metabolites, produced 1,032,205 high-quality sequences and exhibited significant shifts in community composition (Adonis, p = 0.001, R = 0.463), with Rhizobium showing higher abundance compared to the control (CK). Variable selection (βNTI >2) drove phylogenetic turnover in ST, while stochastic processes (|βNTI| < 2) dominated in CK. This study provides quantitative insights into the role of rhizosphere metabolites in shaping microbial community assembly and highlights their potential for targeted modulation of rhizosphere microbiomes.
Collapse
Affiliation(s)
- Yanwei Ma
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Heqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yalong Kang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Tao Wen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Feng Y, Shuai X, Chen J, Zhang Q, Jia L, Sun L, Su Y, Su Y, Dong G, Liu T, Long G. Unveiling the Genomic Features and Biocontrol Potential of Trichoderma hamatum Against Root Rot Pathogens. J Fungi (Basel) 2025; 11:126. [PMID: 39997420 PMCID: PMC11856919 DOI: 10.3390/jof11020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium species are among the most significant pathogens causing root rot in Panax notoginseng. In this study, a strain of Trichoderma hamatum was isolated from the rhizosphere soil of P. notoginseng and subjected to whole-genome sequencing. Plate confrontation experiments were conducted to investigate the antagonistic effects of T. hamatum against Fusarium oxysporum, Fusarium solani, and Fusarium acutatum, the primary Fusarium species causing root rot. Whole-genome sequencing revealed 10,774 predicted genes in T. hamatum, of which 454 were associated with carbohydrate-active enzymes (CAZymes) involved in fungal cell wall degradation. Additionally, 11 biosynthetic gene clusters (BGCs) associated with antimicrobial production were identified, highlighting the biocontrol potential of T. hamatum. In plate confrontation experiments, T. hamatum showed substantial inhibition rates of 68.07%, 70.63%, and 66.12% against F. oxysporum, F. solani, and F. acutatum, respectively. Scanning electron microscopy suggested the hyperparasitism of T. hamatum against F. solani, which was characterized by spore production that adhered to the pathogen, thereby inhibiting its growth. These findings provide a theoretical foundation to enhance understanding of the biological control mechanisms of T. hamatum, supporting its potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhou Feng
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Xinyi Shuai
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Jili Chen
- National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Qing Zhang
- National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Lijie Jia
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Luzhi Sun
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Yunxia Su
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
| | - Yanyan Su
- Amway China Botanical R&D Center, Wuxi 214115, China; (Y.S.); (G.D.)
| | - Gangqiang Dong
- Amway China Botanical R&D Center, Wuxi 214115, China; (Y.S.); (G.D.)
| | - Tao Liu
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
- National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Guangqiang Long
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China (X.S.)
- National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
30
|
Chao S, Zhang Y, Hu Y, Chen Y, Li P, Sun Y, Song L, Hu Y, Wang H, Wu J, Lv B. Transgenic Maize of ZmMYB3R Shapes Microbiome on Adaxial and Abaxial Surface of Leaves to Promote Disease Resistance. Microorganisms 2025; 13:362. [PMID: 40005729 PMCID: PMC11858687 DOI: 10.3390/microorganisms13020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The phyllosphere is one of the largest habitats for microorganisms, and host genetic factors play an important role during the interaction between microorganisms and the phyllosphere. Therefore, the transgene may also lead to changes in the maize phyllosphere. ZmMYB3R was identified as a drought-tolerant gene in Arabisopsis. Here, we employed metagenomic sequencing to analyze the microbiome of the adaxial and abaxial leaf surfaces on ZmMYB3R-overexpressing (OE) and wild-type (WT)·maize, aiming to dissect the possible associations between ZmMYB3R and changes in phyllosphere microbiome functioning. Our results revealed that overexpressing ZmMYB3R altered the alpha and beta diversity of the phyllosphere microbiome. In OE plants, more beneficial microbes accumulated on the phyllosphere, while pathogenic ones diminished, especially on the abaxial surface of ZmMYB3R leaves. Further analysis of disease resistance-related metabolic pathways and abundances of disease resistance genes revealed significant differences between OE and WT. The inoculation experiment between OE and WT proved that ZmMYB3R increased the disease resistance of maize. In conclusion, the results reveal that transgenes affect the phyllosphere microbiome, and ZmMYB3R might alter leaf disease resistance by reshaping the phyllosphere microbiome structure. These findings help us understand how ZmMYB3R regulates leaf disease resistance and may facilitate the development of disease control by harnessing beneficial microbial communities.
Collapse
Affiliation(s)
- Shengqian Chao
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yin Zhang
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yue Hu
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
| | - Yifan Chen
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Peng Li
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yu Sun
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Lili Song
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yingxiong Hu
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| | - Hui Wang
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beibei Lv
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| |
Collapse
|
31
|
Ajayi O, Mahalingam R. Seed endophytes of malting barley from different locations are shaped differently and are associated with malt quality traits. BMC PLANT BIOLOGY 2025; 25:151. [PMID: 39910446 PMCID: PMC11796131 DOI: 10.1186/s12870-025-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Maximizing microbial functions for improving crop performance requires better understanding of the important drivers of plant-associated microbiomes. However, it remains unclear the forces that shapes microbial structure and assembly, and how plant seed-microbiome interactions impact grain quality. In this work, we characterized the seed endophytic microbial communities of malting barley from different geographical locations and investigated associations between microbial (bacterial and fungal) species diversity and malt quality traits. Host genotype, location, and interactions (genotype x location) significantly impacted the seed endophytic microbial communities. Taxonomic composition analysis identified the most abundant genera for bacterial and fungal communities to be Bacillus (belonging to phylum Firmicutes) and Blumeria (belonging to phylum Ascomycota), respectively. We observed that a greater proportion of bacterial amplicon sequence variants (bacterial ASVs) were shared across genotypes and across locations while the greater proportion of the fungal ASVs were unique to each genotype and location. Association analysis showed a significant negative correlation between bacterial alpha diversity indices (Faith PD and Shannon indices) and malt quality traits for barley protein (BP), free amino nitrogen (FAN), diastatic power (DP) and alpha amylase (AA), while fungal alpha diversity (Shannon and Simpson) showed significant negative relationship with β-D-glucan content. In addition, some bacterial and fungal genera were significantly associated with malt extract (ME) -a key trait for maltsters and brewers. We conclude that barley genotype, location, and their interactions shape the seed endophytic microbiome and is key to microbiome manipulation and management during barley production and/or malting.
Collapse
Affiliation(s)
- Oyeyemi Ajayi
- USDA-ARS, Cereal Crops Research Unit, 502 Walnut Street, Madison, WI, 53726, USA
| | | |
Collapse
|
32
|
Qin C, Goldman PH, Leap J, Henry PM. Cover Cropping Attenuates Population Growth of Macrophomina phaseolina by Limiting Weed Biomass, Despite Asymptomatic Colonization of Cover Crops. PLANT DISEASE 2025; 109:480-490. [PMID: 39327834 DOI: 10.1094/pdis-05-24-0951-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Macrophomina phaseolina is a fungus that causes charcoal rot in strawberry and a wide variety of crop species. Little is known about its potential to asymptomatically colonize crop plants or grow saprophytically on their tissues, both of which would create a potential for alternate, asymptomatic hosts to lead to increases in inoculum. To test the impact of cover cropping on M. phaseolina abundance, we conducted randomized-block field experiments in soils infested by M. phaseolina. None of the 15 cover crop varieties showed symptoms of charcoal rot. All Fabaceae and Brassicaceae varieties were asymptomatically colonized at varying rates, but among Poaceae M. phaseolina was recovered from only one individual oat plant. Soil samples collected at the time of planting, tillage, and 8 weeks after tillage showed that cover cropping attenuated the growth of M. phaseolina relative to fallow plots harboring the weedy legume Medicago polymorpha. This weed species was abundantly colonized by this pathogen in both living root samples and plant residue collected 8 weeks after tillage. Cover cropping also influenced the diversity and composition of bulk soil bacterial and fungal communities, but these effects were not associated with M. phaseolina population density. Although M. phaseolina was not detected in living wheat tissues, it was recovered from wheat residue, suggesting that it may be facultatively saprophytic. These results suggest that cover cropping does not pose a risk for increasing disease caused by M. phaseolina and could be beneficial as conducive weed species, such as M. polymorpha, are suppressed.[Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Clara Qin
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064, U.S.A
| | - Polly H Goldman
- Agricultural Research Service, United States Department of Agriculture, Salinas, CA 93905, U.S.A
| | - Jim Leap
- School Road Farm, San Juan Bautista, CA 95045, U.S.A
| | - Peter Montgomery Henry
- Agricultural Research Service, United States Department of Agriculture, Salinas, CA 93905, U.S.A
| |
Collapse
|
33
|
Peddle SD, Hodgson RJ, Borrett RJ, Brachmann S, Davies TC, Erickson TE, Liddicoat C, Muñoz‐Rojas M, Robinson JM, Watson CD, Krauss SL, Breed MF. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol Rev Camb Philos Soc 2025; 100:1-18. [PMID: 39075839 PMCID: PMC11718600 DOI: 10.1111/brv.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Soil microbiota are important components of healthy ecosystems. Greater consideration of soil microbiota in the restoration of biodiverse, functional, and resilient ecosystems is required to address the twin global crises of biodiversity decline and climate change. In this review, we discuss available and emerging practical applications of soil microbiota into (i) restoration planning, (ii) direct interventions for shaping soil biodiversity, and (iii) strategies for monitoring and predicting restoration trajectories. We show how better planning of restoration activities to account for soil microbiota can help improve progress towards restoration targets. We show how planning to embed soil microbiota experiments into restoration projects will permit a more rigorous assessment of the effectiveness of different restoration methods, especially when complemented by statistical modelling approaches that capitalise on existing data sets to improve causal understandings and prioritise research strategies where appropriate. In addition to recovering belowground microbiota, restoration strategies that include soil microbiota can improve the resilience of whole ecosystems. Fundamentally, restoration planning should identify appropriate reference target ecosystem attributes and - from the perspective of soil microbiota - comprehensibly consider potential physical, chemical and biological influences on recovery. We identify that inoculating ecologically appropriate soil microbiota into degraded environments can support a range of restoration interventions (e.g. targeted, broad-spectrum and cultured inoculations) with promising results. Such inoculations however are currently underutilised and knowledge gaps persist surrounding successful establishment in light of community dynamics, including priority effects and community coalescence. We show how the ecological trajectories of restoration sites can be assessed by characterising microbial diversity, composition, and functions in the soil. Ultimately, we highlight practical ways to apply the soil microbiota toolbox across the planning, intervention, and monitoring stages of ecosystem restoration and address persistent open questions at each stage. With continued collaborations between researchers and practitioners to address knowledge gaps, these approaches can improve current restoration practices and ecological outcomes.
Collapse
Affiliation(s)
- Shawn D. Peddle
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Riley J. Hodgson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Ryan J. Borrett
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures InstituteMurdoch University90 South StreetMurdochWestern Australia6150Australia
| | - Stella Brachmann
- University of Waikato Te Whare Wananga o Waikato Gate 1Knighton RoadHamilton3240New Zealand
| | - Tarryn C. Davies
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Todd E. Erickson
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- Centre for Engineering Innovation, School of Agriculture and EnvironmentThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Miriam Muñoz‐Rojas
- Department of Plant Biology and EcologyUniversity of SevilleC. San FernandoSevillaSpain
- School of Biological, Earth and Environmental Sciences, Centre for Ecosystem ScienceUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Carl D. Watson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Siegfried L. Krauss
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- School of Biological SciencesThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| |
Collapse
|
34
|
Lasa AV, López-Hinojosa M, Villadas PJ, Fernández-González AJ, Cervera MT, Fernández-López M. Unraveling the shifts in the belowground microbiota and metabolome of Pinus pinaster trees affected by forest decline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178486. [PMID: 39824104 DOI: 10.1016/j.scitotenv.2025.178486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Pinus pinaster Aiton (maritime pine) stands are suffering a generalized deterioration due to different decline episodes throughout all its distribution area. It is well known that external disturbances can alter the plant associated microbiota and metabolome, which ultimately can entail the disruption of the normal growth of the hosts. Notwithstanding, very little is known about the shifts in the microbiota and the metabolome in pine trees affected by decline. The aim of our work was to unravel whether bacterial and fungal communities inhabiting the rhizosphere and root endosphere of P. pinaster trees with symptoms of decline and affected by Matsucoccus feytaudi in the National Park of Sierra Nevada (Granada, Spain) showed alterations in the structure, taxonomical profiles and associative patterns. We also aimed at deciphering potential changes in the rhizosphere and root metabolome. Trees infected by M. feytaudi and healthy individual harbored distinct microbial communities at both compositional and associative patterns. Unhealthy trees were enriched selectively in certain plant growth promoting microorganisms such as several ectomycorrhizal fungi (Clavulina) and Streptomyces, while other beneficial microorganisms (Micromonospora) were more abundant in unaffected pines. The rhizosphere of unhealthy trees was richer in secondary metabolites involved in plant defense than healthy pines, while the opposite trend was detected in root samples. The abundance of certain microorganisms was significantly correlated with several antimicrobial metabolites, thus, being all of them worthy of further isolation and study of their role in forest decline.
Collapse
Affiliation(s)
- Ana V Lasa
- Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Miriam López-Hinojosa
- Forest Tree Genomics, Department of Forest Ecology and Genetics, Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC (ICIFOR-INIA-CSIC), Carretera de La Coruña Km 7,5, 28040 Madrid, Spain
| | - Pablo J Villadas
- Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Antonio José Fernández-González
- Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - María Teresa Cervera
- Forest Tree Genomics, Department of Forest Ecology and Genetics, Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC (ICIFOR-INIA-CSIC), Carretera de La Coruña Km 7,5, 28040 Madrid, Spain
| | - Manuel Fernández-López
- Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
35
|
Panwar A, Manna S, Sahini G, Kaushik V, Kumar M, Govarthanan M. The legacy of endophytes for the formation of bioactive agents, pigments, biofertilizers, nanoparticles and bioremediation of environment. World J Microbiol Biotechnol 2025; 41:52. [PMID: 39871057 DOI: 10.1007/s11274-025-04265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi. They act as repositories of compounds of medicinal importance. They are considered sources of pigments besides synthetic dyes and assist with soil fertility and plant growth as bio-fertilizers. They also have immense potential for advanced technology using endophyte-synthesized nanoparticles. In assisting bioremediation, they facilitate detoxification of pollutants in all spheres of the environment. Studies on the potential of endophytic microbes in drug discovery and biotic stress management are underway. In this review, published databases on endophytes and their diverse roles and applications in various fields, such as bio-fertilizers and nanoparticles, as well as bioremediation, are critically discussed while exploring unanswered questions. In addition, future perspectives on endosymbiotic microorganisms and their prospective use in plants, environmental management, and medicine are discussed in this review.
Collapse
Affiliation(s)
- Anjali Panwar
- Department of Microbiology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, University of Petroleum and Energy Studies, Dehradun, 24800, India.
| | - Gayatri Sahini
- Department of Microbiology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Vivek Kaushik
- Department of Microbiology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Manoj Kumar
- Department of Microbiology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, South Korea
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
36
|
Xie Y, Cao C, Huang D, Gong Y, Wang B. Effects of microbial biocontrol agents on tea plantation microecology and tea plant metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1492424. [PMID: 39902199 PMCID: PMC11788416 DOI: 10.3389/fpls.2024.1492424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
The quality of fresh tea leaves is crucial to the final product, and maintaining microbial stability in tea plantations is essential for optimal plant growth. Unique microbial communities play a critical role in shaping tea flavor and enhancing plant resilience against biotic stressors. Tea production is frequently challenged by pests and diseases, which can compromise both yield and quality. While biotic stress generally has detrimental effects on plants, it also activates defense metabolic pathways, leading to shifts in microbial communities. Microbial biocontrol agents (MBCAs), including entomopathogenic and antagonistic microorganisms, present a promising alternative to synthetic pesticides for mitigating these stresses. In addition to controlling pests and diseases, MBCAs can influence the composition of tea plant microbial communities, potentially enhancing plant health and resilience. However, despite significant advances in laboratory research, the field-level impacts of MBCAs on tea plant microecology remain insufficiently explored. This review provides insights into the interactions among tea plants, insects, and microorganisms, offering strategies to improve pest and disease management in tea plantations.
Collapse
Affiliation(s)
- Yixin Xie
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Beibei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
37
|
Tian T, Gheysen G, Kyndt T, Mo C, Xiao X, Lv Y, Long H, Wang G, Xiao Y. Pepper root exudate alleviates cucumber root-knot nematode infection by recruiting a rhizobacterium. PLANT COMMUNICATIONS 2025; 6:101139. [PMID: 39354716 PMCID: PMC11783881 DOI: 10.1016/j.xplc.2024.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/27/2024] [Accepted: 09/29/2024] [Indexed: 10/03/2024]
Abstract
Root-knot nematodes (Meloidogyne spp.) have garnered significant attention from researchers owing to the substantial damage they cause to crops and their worldwide distribution. However, controlling these nematodes is challenging because a limited number of chemical pesticides and biocontrol agents are effective against them. Here, we demonstrate that pepper rotation markedly reduces Meloidogyne incognita infection in cucumber and diminishes the presence of p-hydroxybenzoic acid in the soil, a compound known to exacerbate M. incognita infection. Pepper rotation also restructures the rhizobacterial community, leading to the colonization of the cucumber rhizosphere by two Pseudarthrobacter oxydans strains (RH60 and RH97), facilitated by enrichment of palmitic acid in pepper root exudates. Both strains exhibit high nematocidal activity against M. incognita and have the ability to biosynthesize indoleacetic acid and biodegrade p-hydroxybenzoic acid. RH60 and RH97 also induce systemic resistance in cucumber plants and promote their growth. These data suggest that the pepper root exudate palmitic acid alleviates M. incognita infection by recruiting beneficial P. oxydans to the cucumber rhizosphere. Our analyses identify a novel chemical component in root exudates and reveal its pivotal role in crop rotation for disease control, providing intriguing insights into the keystone function of root exudates in plant protection against root-knot nematode infection.
Collapse
Affiliation(s)
- Tian Tian
- National Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Chenmi Mo
- National Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueqiong Xiao
- National Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanyan Lv
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haibo Long
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Gaofeng Wang
- National Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Tao J, Jin J, Lu P, Yu S, Gu M, Wang J, Zhang J, Cao P. Bacterial wilt disease alters the structure and function of fungal communities around plant roots. BMC PLANT BIOLOGY 2025; 25:39. [PMID: 39789485 PMCID: PMC11721222 DOI: 10.1186/s12870-025-06056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease. RESULTS The results showed that bacterial wilt disease caused different assembly patterns of fungal communities in the bulk soil, rhizosphere, rhizoplane and endosphere. Under the influence of bacterial wilt disease, a decreased fungal diversity was observed in the rhizoplane and endosphere, and completely different kinds of fungal genera were enriched in the four compartments. The complexity and stability of fungal networks were less affected, but the number of key fungal members in networks were significantly reduced in diseased samples. Functional predictions based on FUNGuild suggested that with the pathogen infection, saprotrophic fungi were increased in the bulk soil, but pathotrophic fungi (potential plant and animal pathogens) were increased in the rhizosphere, rhizoplane and endosphere. CONCLUSION This work provides a deep insight into the effects of bacterial wilt disease on fungal communities along the soil-root continuum, and is helpful to identify plant-associated beneficial fungi to resist plant disease. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jiemeng Tao
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jingjing Jin
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peng Lu
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Mengli Gu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinbang Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peijian Cao
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
39
|
Yang ZN, Wang Y, Luo SQ. Effect of pathogen Globisporangium ultimum on plant growth and colonizing bacterial communities. Microbiol Res 2025; 290:127937. [PMID: 39489136 DOI: 10.1016/j.micres.2024.127937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/26/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Plants recruit plant-associated microbes from soil to enhance their growth and mitigate the adverse effects of pathogen invasion on plant health. How pathogens impact the interactions of the plant-associated microbes and plant growth is poorly understood. We established S-microsystems (sterile soil inoculated with 101 bacteria isolated from humus soil with Artemisia annua, Oryza sativa or Houttuynia cordata), and N-microsystems (natural soil with these plants) to evaluate the effects of the fungus Globisporangium ultimum on plant growth and their colonizing bacterial communities (CBCs). S-microsystems and N-microsystems were inoculated with and without G. ultimum, respectively. Their seedling growth and CBCs were investigated. Plant height and root numbers in A. annua, O. sativa and H. cordata S-microsystems with G. ultimum were 34.5 % and 52.8 %, 23.1 % and 31.3 %, 102.1 % and 45.0 % higher than those without G. ultimum, respectively. The CBCs were diverse among S-microsystems of A. annua, O. sativa and H. cordata, and the CBC abundances in the three S-microsystems without G. ultimum were higher than those with G. ultimum. The relative abundances of bacterial genera Rhizobium, Pseudomonas, Brevundimonas and Cupriavidus were significantly positively related to plant growth. We determined that the CBCs in A. annua, O. sativa and H. cordata were selective and related to the plant species, and can mitigate disadvantageous influences of G. ultimum on seedling growth. The plants and their CBCs' abundance and composition were differentially affected by G. ultimum. Our results provide evidence that CBCs promote plant growth due to dynamic changes in the composition and abundance of CBC members, which were affected by plant species and biotic factors.
Collapse
Affiliation(s)
- Zhan-Nan Yang
- Guizhou Key Laboratory for Mountainous Environment Information and Ecological Protection, Guizhou Normal University, Guizhou, Guiyang 550001, China
| | - Yu Wang
- School of Life Sciences, Guizhou Normal University, Guizhou, Guiyang 550001, China
| | - Shi-Qiong Luo
- School of Life Sciences, Guizhou Normal University, Guizhou, Guiyang 550001, China.
| |
Collapse
|
40
|
Dobrange E, Van den Ende W. Bacterial cell differentiation during plant root colonization: the putative role of fructans. PHYSIOLOGIA PLANTARUM 2025; 177:e70095. [PMID: 39887703 DOI: 10.1111/ppl.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Plant-growth-promoting microorganisms are extensively studied and employed as alternatives to toxic agrochemicals to enhance plant health. However, one of the main concerns regarding their use is their limited capacity to colonize plant tissues after initial application. Understanding the molecular mechanisms involved during plant colonization could help to develop strategies to improve the efficacy of beneficial microbes in the field. Polysaccharides, including fructans, may be of particular interest since they have been shown to promote cellular and morphological changes in bacteria from the genus Bacillus that are typically associated with improved root colonization, such as increased motility and biofilm reinforcement. The potential role of fructans as signalling molecules affecting plant-microbe interactions is discussed in the context of plant root colonization with a focus on the model organism Bacillus subtilis, a well-characterized rhizobacterium. First, the molecular processes underlying B. subtilis cell differentiation are explained and connected to plant root colonization. Secondly, we explore how fructans, in particular inulin and levan, may interfere during these processes. These views call for further research into the putative role of inulin and levan-type fructans as microbial signalling molecules, with the aim of developing beneficial microbial networks in the rhizosphere.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology and Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and Leuven Plant Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Shi Q, Fu Q, Zhang J, Hao G, Liang C, Duan F, Ma J, Zhao H, Song W. Paenibacillus polymyxa J2-4 induces cucumber to enrich rhizospheric Pseudomonas and contributes to Meloidogyne incognita management under field conditions. PEST MANAGEMENT SCIENCE 2025; 81:266-276. [PMID: 39319624 DOI: 10.1002/ps.8429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Root knot nematodes (RKNs) pose a great threat to agricultural production worldwide. The bacterial nematocides have received increasing attention due to their safe and efficient control against RKNs. Here, we investigated the biocontrol efficacy of Paenibacillus polymyxa J2-4 against Meloidogyne incognita in the field and analyzed the rhizosphere microbiome of cucumber under nematode infection after application of the J2-4 strain. Furthermore, a biomarker strain of Pseudomonas spp. was isolated from the J2-4-inoculated rhizosphere soil, and its nematocidal activity and growth-promoting effect on host plants were determined. In addition, chemotaxis assay of P. fluroescens ZJ5 toward root exudates was carried out. RESULTS The field experiment demonstrated that P. polymyxa J2-4 could effectively suppressed gall formation in cucumber plants, with the galling index reduced by 67.63% in 2022 and 65.50% in 2023, respectively, compared with controls. Meanwhile, plant height and yield were significantly increased in J2-4 treated plants compared with controls. Metagenomic analysis indicated that J2-4 altered the rhizosphere microbial communities. The relative abundance of Pseudomonas spp. was notably enhanced in the J2-4 group, which was consistent with Linear discriminant analysis Effect Size results that Pseudomonas was determined as one of the biomarkers in the J2-4 group. Furthermore, the ZJ5 strain, one of the biomarker Pseudomonas strains, was isolated from the J2-4-inoculated rhizosphere soil and was identified as Pseudomonas fluorescens. In addition, P. fluorescens ZJ5 exhibited high nematicidal activity in vitro and in vivo, with 99.20% of the mortality rate of M. incognita at 24 h and 69.75% of gall index reduction. The biocontrol efficiency of the synthetic community of ZJ5 plus J2-4 was superior to that of any other single bacteria against M. incognita. Additionally, ZJ5 exhibited great chemotaxis ability toward root exudates inoculated with J2-4. CONCLUSION Paenibacillus polymyxa J2-4 has good potential in the biological control against M. incognita under field conditions. Enrichment of the beneficial bacteria Pseudomonas fluorescens ZJ5 in the J2-4-inoculated rhizosphere soil contributes to M. incognita management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianqian Shi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qi Fu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guangyang Hao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chen Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fangmeng Duan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Juan Ma
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of IPM on Crops in Northern Region of North China, MARA China/Hebei IPM Innovation Center/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Honghai Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenwen Song
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
42
|
Tamošiūnė I, Hakim MF, Buzaitė O, Stanys V, Vinskienė J, Andriūnaitė E, Baniulis D. Diversity and Plant Growth-Promoting Properties of Rhodiola rosea Root Endophytic Bacteria. Microorganisms 2024; 13:13. [PMID: 39858781 PMCID: PMC11767865 DOI: 10.3390/microorganisms13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Plants inhabiting environments with suboptimal growth conditions often have a more pronounced capacity to attract and sustain microbial communities that improve nutrient absorption and expand abiotic stress tolerance. Rhodiola rosea L. is a succulent plant of the Crassulaceae family adapted to survive in sandy or rocky soils or dry tundra. The aim of the present study was to investigate the diversity and plant growth-stimulating potential of R. rosea endophytic microbiota. Metataxonomic analysis of the bacterial diversity in the rhizome of R. rosea revealed 108 families. Among these, three families were found exclusively in the core microbiome of 1-year-old plants, while nine families were unique to the core microbiome of mature plants grown in the field for more than 4 years. Seventy-three endophytic bacteria isolates were obtained from the rhizome of R. rosea plants and were assigned into 14 distinct bacterial genera of Firmicutes (26%) or Proteobacteria (74%) phyla. Screening for functional genes related to the nitrogen cycle, phosphorus mineralisation or dissolution, and traits associated with nitrogen fixation (56% of isolates), siderophore production (40%), inorganic phosphorus solubilisation (30%), and production of indole-related compounds (51%) led to the classification of the isolates into 16 distinct clusters. Co-cultivation of 45 selected isolates with germinating Arabidopsis seedlings revealed 18 and 5 isolates that resulted in more than a 20% increase in root or shoot growth, respectively. The study results established the complexity of the succulent R. rosea endophytic microbiome and identified isolates for potential plant growth-stimulating applications.
Collapse
Affiliation(s)
- Inga Tamošiūnė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Muhammad Fahad Hakim
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Odeta Buzaitė
- Department of Biochemistry, Vytautas Magnus University, Universiteto Str. 10, 53361 Akademija, Kaunas reg., Lithuania;
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Jurgita Vinskienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Elena Andriūnaitė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| |
Collapse
|
43
|
Feng T, Meng Z, Li H, Chen G, Liu C, Tang K, Chen J. Industrial hemp (Cannabis sativa L.) adapts to cadmium stress by reshaping rhizosphere fungal community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177851. [PMID: 39631339 DOI: 10.1016/j.scitotenv.2024.177851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Increasing evidence indicates that plants under environmental stress can actively seek the help of microbes ('cry-for-help' hypothesis). However, empirical evidence underlying this strategy is limited under metal-stress conditions. Here, we employed integrated microbial community profiling in cadmium (Cd) polluted soil and culture-based methods to investigate the three-way interactions between the industrial hemp (Cannabis Sativa L.), rhizospheric microbes, and Cd stress. Results from the pot and three cycles of the successful hemp planting experiments showed that Cd stress significantly affected the composition of rhizosphere fungi in industrial hemp and induced enrichment of the fungal operational taxonomic unit (OTU)3 (Cladosporium). A representative of OTU3 (strain DM-2) was successfully isolated. In a hydroponic experiment, inoculation of DM-2 significantly increased the shoot length (by 25.84 %) and fresh weight (by 92.66 %) of hemp seedlings when compared to the absence of DM-2 under the Cd stress. The findings indicate that DM-2 inoculation could effectively alleviate the Cd stress in hemp seedlings. Metabolomic analysis of spent media with or without DM-2 revealed the association of DM-2 with the transformation of root exudates to melatonin, which may be a key chemical in plant-microbe interactions against abiotic stresses. The findings will inform efforts to manipulate the root microbiome to enhance plant growth in polluted environments.
Collapse
Affiliation(s)
- Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Huifen Li
- Zhonglan lianhai Design and Research Institute Co. LTD, 222000, Jiangsu, China
| | - Guohui Chen
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650091, China.
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
44
|
Shi L, Yang M, Wei G, Wei X, Hong F, Ma J, Wu Z, Zheng Y, Yang M, Chen S, Zhang G, Dong L. Understanding the influence of plant genetic factors on rhizosphere microbiome assembly in Panax notoginseng. Front Microbiol 2024; 15:1479580. [PMID: 39736990 PMCID: PMC11683141 DOI: 10.3389/fmicb.2024.1479580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Functional rhizosphere microbiomes (FRM) are critical for plant health and yield. However, the ecological succession of FRM and their links to plant genetic factors across the life cycle of perennial plants remain poorly understood. Methods This study profiled FRM, including plant-beneficial bacteria (PBB) and fungal plant pathogens (FPP), across different developmental stages of Panax notoginseng. Results The biodiversity of both PBB and FPP were significantly higher in rhizosphere compared with farmland soil, and exhibited different succession patterns with plant growth. The relative abundance of PBB, but not FPP, decreased after plant cultivation. There were significantly negative correlations between FPP and PBB, particularly the biocontrol subgroup (ρ = -0.56, p < 0.001). The antagonistic effects of biocontrol bacteria against fungal pathogens were further validated by in vitro assays. The fitting of neutral community model indicated that the deterministic assembly of PBB, especially the biocontrol subgroup, was the strongest at the 3rd-year root growth stage of P. notoginseng. Plant genes involved in protein export, biosynthesis of alkaloids and amino acids were identified as drivers of the deterministic assembly of biocontrol subcommunity by RNA-Seq analysis. Additionally, a total of 13 transcription factors potentially regulating the expression of these biosynthesis genes were identified through co-expression network. In summary, this study unveils the succession patterns of FRM throughout the life cycle of P. notoginseng and the underlying plant genetic mechanisms, providing valuable insights for developing new plant disease management strategies by manipulating microbes.
Collapse
Affiliation(s)
- Liping Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingming Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangfei Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuye Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Hong
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, China
| | - Jiaxiang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhe Wu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zheng
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, China
| | - Miyi Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Guozhuang Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Olanrewaju OS, Glick BR, Babalola OO. Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon 2024; 10:e40517. [PMID: 39669148 PMCID: PMC11636107 DOI: 10.1016/j.heliyon.2024.e40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Understanding the causal link between the microbiome and plant health is crucial for the future of crop production. Established studies have shown a symbiotic relationship between microbes and plants, reshaping our knowledge of plant microbiomes' role in health and disease. Addressing confounding factors in microbiome study is essential, as standardization enables precise identification of microbiome features that influence outcomes. The microbiome significantly impacts plant development, necessitating holistic investigation for maintaining plant health. Mechanistic studies have deepened our understanding of microbiome structure and function related to plant health, though much research still needs to be carried out. This review, therefore, discusses current challenges and proposes advancing studies from correlation to causation and translation. We explore current knowledge on the microbiome and plant health, emphasizing multi-omics approaches and hypothesis-driven research. Future studies should focus on developing translational research for producing probiotics and prebiotics from biomarkers that regulate the microbiome-plant health connection, promoting sustainable crop production through microbiome applications.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Buckhurst road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
46
|
Hosseiniyan Khatibi SM, Dimaano NG, Veliz E, Sundaresan V, Ali J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. PLANT COMMUNICATIONS 2024; 5:101078. [PMID: 39233440 PMCID: PMC11671768 DOI: 10.1016/j.xplc.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world's food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome; however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.
Collapse
Affiliation(s)
| | - Niña Gracel Dimaano
- International Rice Research Institute, Los Baños, Laguna, Philippines; College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Esteban Veliz
- College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Venkatesan Sundaresan
- College of Biological Sciences, University of California, Davis, Davis, CA, USA; College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Jauhar Ali
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
47
|
Kozma Kim Z, Park YS, Yang TJ, Kim H, Lee YH. Root microbiome of Panax ginseng in comparison with three other medicinal plants in the families of Araliaceae and Apiaceae. Sci Rep 2024; 14:30381. [PMID: 39639122 PMCID: PMC11621546 DOI: 10.1038/s41598-024-81942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
The intricate interplay between endophytic microorganisms and plants in the upkeep of biodiversity, the stability of communities, and the operation of ecosystems needs to be more adequately extensive. Although root-associated microbial communities of plants have been revealed for the last decade, the understanding of bacterial and fungal communities associated with the roots of medicinal plants remains elusive. To highlight the importance of Panax ginseng Meyer (PG) in our research, we investigated the root endophytic bacterial and fungal communities of Panax ginseng Meyer (PG), alongside Aralia cordata (AC), Angelica gigas (AG), and Peucedanum japonicum (PJ), utilizing amplicon-based community profiling and advanced bioinformatic methodologies. The study aimed to investigate the root-endophytic microbiota of ginseng and three other medicinal plants and identify similarities in microbiome composition across different plant species and families. Results revealed that root-endophytic bacterial and fungal communities were influenced by plant species and phylogenetic differences at the family level. Differential abundance tests and random forest models showed microbial features within the same plant family. PG had a distinctive microbial profile with significant B1653_o_Enterobacterales and F8_o_Helotiales. PG had a core microbiome, B10_Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and a more evenly distributed microbial network compared to AG, PJ, and AC. Our research reveals the intricate endophytic microbial communities within the roots of medicinal plants, pinpointing specific taxa that may be pivotal to their medicinal qualities and overall plant health. These insights carry notable implications for future studies, particularly those focused on the endophytes of PG and their secondary metabolites, as they deepen our understanding of plant-microbe interactions and their role in enhancing the plants' therapeutic potential.
Collapse
Grants
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
- 2018R1A5A1023599, 2021M3H9A1096935, and RS-2023-00275965, and 2022R1C1C2002739 National Research Foundation of Korea
Collapse
Affiliation(s)
- Zerrin Kozma Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Korea
- Plant Genomics & Breeding Institute, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Korea
- Plant Genomics & Breeding Institute, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea.
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
- Plant Genomics & Breeding Institute, Seoul National University, Seoul, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, Korea.
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea.
| |
Collapse
|
48
|
Feng X, Tao Y, Dai Z, Chu Z, Wei Y, Tao M, He Y, Chen H. Effects of transgenic modification on the bacterial communities in different niches of maize under glyphosate toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125023. [PMID: 39322111 DOI: 10.1016/j.envpol.2024.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Transgenic glyphosate-resistant maize has emerged as a way to expand the use of glyphosate for weed control. Studying the microbiome in the tissues and rhizosphere soil of transgenic plants is vital for understanding the glyphosate-resistant mechanism and optimizing the transgenic design of crops. In our study, the expression of a mutant cp4epsps gene in transgenic maize, which confers tolerance to glyphosate, was performed using the maize variety Xianyu 335 as the genetically modified acceptor line. This transgenic modification did not affect the initial bacterial community in the leaf, stem, or root of maize, but promoted a differential bacterial community in the rhizosphere soil. Under glyphosate application, the abundance of beneficial bacteria involved in N fixation and P solubilization in plant tissues and the rhizosphere soil of glyphosate-resistance maize were higher than those in the glyphosate-sensitive maize. In contrast, the abundance of pathogens had the opposite trend, suggesting that the enhanced health of transgenic maize prevented microbiome deterioration under glyphosate. The re-inoculation of bacterial strains isolated from glyphosate-resistance maize into the leaf and rhizosphere soil of glyphosate-sensitive maize resulted in an enhanced photosynthetic capacity in response to glyphosate, demonstrating the vital role of specific bacteria for glyphosate resistance. Our study provides important evidence of how transgenic maize tolerance to herbicides affects the bacterial communities across the maize niches under glyphosate toxicity.
Collapse
Affiliation(s)
- Xuping Feng
- The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yimin Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhongmin Dai
- The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhenjiang Chu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, 313000, China
| | - Mingzhu Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
49
|
Mesny F, Bauer M, Zhu J, Thomma BPHJ. Meddling with the microbiota: Fungal tricks to infect plant hosts. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102622. [PMID: 39241281 DOI: 10.1016/j.pbi.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
Plants associate with a wealth of microbes, collectively referred to as the plant microbiota, whose composition is determined by host plant genetics, immune responses, environmental factors and intermicrobial relations. Unsurprisingly, microbiota compositions change during disease development. Recent evidence revealed that some of these changes can be attributed to effector proteins with antimicrobial activities that are secreted by plant pathogens to manipulate host microbiota to their advantage. Intriguingly, many of these effectors have ancient origins, predating land plant emergence, and evolved over long evolutionary trajectories to acquire selective antimicrobial activities to target microbial antagonists in host plant microbiota. Thus, we argue that host-pathogen co-evolution likely involved arms races within the host-associated microbiota.
Collapse
Affiliation(s)
- Fantin Mesny
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany
| | - Martha Bauer
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany
| | - Jinyi Zhu
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany
| | - Bart P H J Thomma
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany.
| |
Collapse
|
50
|
Kaur T, Devi R, Negi R, Kumar S, Singh S, Rustagi S, Shreaz S, Rai AK, Kour D, Yadav AN. Microbial consortium with multifunctional attributes for the plant growth of eggplant (Solanum melongena L.). Folia Microbiol (Praha) 2024; 69:1255-1266. [PMID: 38668814 DOI: 10.1007/s12223-024-01168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/17/2024] [Indexed: 10/17/2024]
Abstract
In the past few decades, the pressure of higher food production to satisfy the demand of ever rising population has inevitably increased the use synthetic agrochemicals which have deterioration effects. Biostimulants containing beneficial microbes (single inoculants and microbial consortium) were found as an ideal substitute of synthetic chemical fertilizers. In recent years, microbial consortium is known as a better bioinoculant in comparison to single inoculant bioformulation because of multifarious plant growth-promoting advantages. Looking at the advantageous effect of consortium, in present investigation, different bacteria were isolated from rhizospheric soil and plant samples collected from the Himalayan mountains on the green slopes of the Shivaliks, Himachal Pradesh. The isolated bacteria were screened for nitrogen (N) fixation, phosphorus (P) solubilization and potassium (K) solubilization plant growth promoting attributes, and efficient strains were identified through 16S rRNA gene sequencing and BLASTn analysis. The bacteria showing a positive effect in NPK uptake were developed as bacterial consortium for the growth promotion of eggplant crop. A total of 188 rhizospheric and endophytic bacteria were sorted out, among which 13 were exhibiting nitrogenase activity, whereas 43 and 31 were exhibiting P and K solubilization traits, respectively. The selected three efficient and potential bacterial strains were identified using 16S rRNA gene sequencing as Enterobacter ludwigii EU-BEN-22 (N-fixer; 35.68 ± 00.9 nmol C2H4 per mg protein per h), Micrococcus indicus EU-BRP-6 (P-solubilizer; 201 ± 0.004 mg/L), and Pseudomonas gessardii EU-BRK-55 (K-solubilizer; 51.3 ± 1.7 mg/mL), and they were used to develop a bacterial consortium. The bacterial consortium evaluation on eggplant resulted in the improvement of growth (root/shoot length and biomass) and physiological parameters (chlorophyll, carotenoids, total soluble sugar, and phenolic content) of the plants with respect to single culture inoculation, chemical fertilizer, and untreated control. A bacterial consortium having potential to promote plant growth could be used as bioinoculant for horticulture crops growing in hilly regions.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Rubee Devi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait City, Kuwait
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, , Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India.
- Department of Biotechnology, Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN Putra, Nilai, 71800, Negeri Sembilan, Malaysia.
| |
Collapse
|