1
|
Xue Y, Li H, Kang X. Arabinan-rich architectures in pectin Rhamnogalacturonan I domain unveiled by termite digestion: In situ structural insights from solid-state NMR. Carbohydr Polym 2025; 361:123662. [PMID: 40368545 DOI: 10.1016/j.carbpol.2025.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
Pectic polymers, ubiquitous in plant cell walls and widely used in industry, exhibit a wide range of functional properties. However, the sophisticated architecture of their higher-order structures in its native environment, particularly for Rhamnogalacturonan I (RG-I) domain, remains largely elusive. In this study, we innovatively combined solid-state nuclear magnetic resonance (ssNMR) and selective degradation of termites to investigate the molecular architecture of pectin within pine cell wall in situ. Quantitative analysis revealed prominent accumulation of arabinans, particularly those with more α-1,3-branching linkages. Using paramagnetic relaxation enhancement (PRE) ions as molecular probes, we uncovered a correlation between reduced water mobility in the local environment and the increased recalcitrance to degradation of these sugar units. Additionally, molecular dynamics characterization showed that these enriched sugar units experienced minimal changes during digestion. Collectively, our findings reveal a higher-order structural feature within the RG-I region-a compact, arabinan-rich architecture that is resistant to enzymatic degradation. Furthermore, this organization potentially functions as critical structural junctions, akin to the egg-box model, reinforcing the pectic network and maintain cell wall integrity.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Hongjie Li
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Yan X, Xie F, Yang S, Sun Y, Lei Y, Ren Q, Si H, Li Z, Qiu Q. Metagenomic Insights into the Rumen Microbiome in Solid and Liquid Fractions of Yaks and their Differences Compared to Other Ruminants. Integr Zool 2025. [PMID: 40265464 DOI: 10.1111/1749-4877.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The rumen microbiome plays a critical role in nutrient metabolism and adaptation of the yak (Bos grunniens), an import livestock animal of the Qinghai-Tibet Plateau renowned for their superior plant fiber degradation capacity. However, the microbiome among the different ecological niches within yak's rumen remains unelucidated. Through shotgun sequencing of rumen solid and liquid fractions from five yaks, we identified significant differences in the microbial communities and their genetic functions between the solid and liquid fractions. Solid fractions exhibited dominance by Ruminococcus, Succiniclasticum, and Aspergillus, while Prevotella, Paludibacter, Parabacteroides, and Bacteroides prevailed in liquid fractions. Comparative CAZyme profiling revealed solid fractions were significantly enriched in cellulose/hemicellulose-targeting enzymes (GH5, GH11, and CBM63), implicating their specialization in breaking down the fibrous grasses. In contrast, liquid fractions showed higher abundances of starch-degrading enzymes (GH13, CBM48) and host-glycan utilizers (GH92), suggesting roles in soluble nutrient extraction and host-microbe interactions. Comparative analysis of 574 metagenome-assembled genomes suggested that Methanomethylophilaceae_UBA71 and nitrate-respiring Ruminococcaceae_Firm-04 preferentially colonized in the solids, whereas propionate-producing Quinella and animal glycan-degrading Bacteroides were more prevalent in the liquids. Moreover, compared to Hu sheep, yak's rumen microbiome showed significantly enhanced utilization of plant polysaccharide capacity. Comparative analysis across 10 ruminant species further highlighted host phylogeny as a key driver of rumen microbiome variation. These findings advance our understanding of niche differentiation and functional specialization within the unique yak rumen ecosystem.
Collapse
Affiliation(s)
- Xiaoting Yan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Fei Xie
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Shuo Yang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yishan Sun
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yu Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
3
|
Kundu P, Ghosh A. Genome-Scale Community Model-Guided Development of Bacterial Coculture for Lignocellulose Bioconversion. Biotechnol Bioeng 2025; 122:1010-1024. [PMID: 39757383 PMCID: PMC11895418 DOI: 10.1002/bit.28918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Microbial communities have shown promising potential in degrading complex biopolymers, producing value-added products through collaborative metabolic functionality. Hence, developing synthetic microbial consortia has become a predominant technique for various biotechnological applications. However, diverse microbial entities in a consortium can engage in distinct biochemical interactions that pose challenges in developing mutualistic communities. Therefore, a systems-level understanding of the inter-microbial metabolic interactions, growth compatibility, and metabolic synergisms is essential for developing effective synthetic consortia. This study demonstrated a genome-scale community modeling approach to assess the inter-microbial interaction pattern and screen metabolically compatible bacterial pairs for designing the lignocellulolytic coculture system. Here, we have investigated the pairwise growth and biochemical synergisms among six termite gut bacterial isolates by implementing flux-based parameters, i.e., pairwise growth support index (PGSI) and metabolic assistance (PMA). Assessment of the PGSI and PMA helps screen nine beneficial bacterial pairs that were validated by designing a coculture experiment with lignocellulosic substrates. For the cocultured bacterial pairs, the experimentally measured enzymatic synergisms (DES) showed good coherence with model-derived biochemical compatibility (PMA), which explains the fidelity of the in silico predictions. The highest degree of enzymatic synergisms has been observed in C. denverensis P3 and Brevibacterium sp P5 coculture, where the total cellulase activity has been increased by 53%. Hence, the flux-based assessment of inter-microbial interactions and metabolic compatibility helps select the best bacterial coculture system with enhanced lignocellulolytic functionality. The flux-based parameters (PGSI and PMA) in the proposed community modeling strategy will help optimize the composition of microbial consortia for developing synthetic microcosms for bioremediation, bioengineering, and biomedical applications.
Collapse
Affiliation(s)
- Pritam Kundu
- School of Energy Science and EngineeringIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| | - Amit Ghosh
- School of Energy Science and EngineeringIndian Institute of Technology KharagpurKharagpurWest BengalIndia
- P.K. Sinha Centre for Bioenergy and RenewablesIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| |
Collapse
|
4
|
Sun Y, Yao J, Gao R, Hao J, Liu Y, Liu S. Interactions of non-starch polysaccharides with the gut microbiota and the effect of non-starch polysaccharides with different structures on the metabolism of the gut microbiota: A review. Int J Biol Macromol 2025; 296:139664. [PMID: 39798752 DOI: 10.1016/j.ijbiomac.2025.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Humans consume large amounts of non-starch polysaccharides(NPs) daily. Some NPs, not absorbed by the body, proceed to the intestines. An increasing number of studies reveal a close relationship between NPs and gut microbiota(GM) that impact the human body. This review not only describes in detail the structures of several common NPs and their effects on GM, but also elucidates the degradation mechanisms of NPs in the intestine. The purpose of this review is to elucidate how NPs interact with GM in the intestine, which can provide valuable information for further studies of NPs.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Jiaxuan Yao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Running Gao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Junyu Hao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| |
Collapse
|
5
|
Zhang Y, Cai T, Wan H. Mobile Resistance Elements: Symbionts That Modify Insect Host Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3842-3853. [PMID: 39920901 DOI: 10.1021/acs.jafc.4c10828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Mounting evidence indicates that symbionts play a beneficial role through secondary metabolic compounds and various chemical processes in host adaptation to adversity, particularly in herbivorous insects whose survival is severely threatened by insecticides or secondary metabolite stress. Despite extensive research on insect symbionts, the spread of these beneficial symbionts and the correlation with host phenotypes limit our ability to predict and manage the adaptive capabilities of insect populations in changing environments. In this review, we propose the concept of "Mobile Resistance Elements (MRE)" to describe the dynamic and adaptable nature of resistance-related symbionts that can be transmitted between insect hosts. These elements encompass both the symbionts themselves and the associated traits they confer to their hosts, such as enhanced resilience to environmental stressors, toxins, and pathogens. The mobility of these resistance traits, facilitated through various transmission modes─including vertical and horizontal pathways─allows susceptible insect populations to acquire beneficial symbionts and their associated resistance phenotypes. By weaving together the threads of how symbionts shape host adaptability and survival strategies, this concept underscores the potential for symbionts to act as agents of rapid adaptation, enabling pest populations to thrive in changing environments and presenting both challenges and opportunities for pest management strategies.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang Province, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Xie R, Danso B, Sun J, Al-Zahrani M, Dar MA, Al-Tohamy R, Ali SS. Biorefinery and Bioremediation Strategies for Efficient Management of Recalcitrant Pollutants Using Termites as an Obscure yet Promising Source of Bacterial Gut Symbionts: A Review. INSECTS 2024; 15:908. [PMID: 39590507 PMCID: PMC11594812 DOI: 10.3390/insects15110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production because the lignin, cellulose, and hemicellulose parts stick together rigidly. This makes the structure complex, hierarchical, and resistant. Owing to these restrictions, the junk production of LCB waste has recently become a significant worldwide environmental problem resulting from inefficient disposal techniques and increased persistence. In addition, burning LCB waste, such as paddy straws, is a widespread practice that causes considerable air pollution and endangers the environment and human existence. Besides environmental pollution from LCB waste, increasing industrialization has resulted in the production of billions of tons of dyeing wastewater from several industries, including textiles, pharmaceuticals, tanneries, and food processing units. The massive use of synthetic dyes in various industries can be detrimental to the environment due to the recalcitrant aromatic structure of synthetic dyes, similar to the polymeric phenol lignin in LCB structure, and their persistent color. Synthetic dyes have been described as possessing carcinogenic and toxic properties that could be harmful to public health. Environmental pollution emanating from LCB wastes and dyeing wastewater is of great concern and should be carefully handled to mitigate its catastrophic effects. An effective strategy to curtail these problems is to learn from analogous systems in nature, such as termites, where woody lignocellulose is digested by wood-feeding termites and humus-recalcitrant aromatic compounds are decomposed by soil-feeding termites. The termite gut system acts as a unique bioresource consisting of distinct bacterial species valued for the processing of lignocellulosic materials and the degradation of synthetic dyes, which can be integrated into modern biorefineries for processing LCB waste and bioremediation applications for the treatment of dyeing wastewaters to help resolve environmental issues arising from LCB waste and dyeing wastewaters. This review paper provides a new strategy for efficient management of recalcitrant pollutants by exploring the potential application of termite gut bacteria in biorefinery and bioremediation processing.
Collapse
Affiliation(s)
- Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Blessing Danso
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Majid Al-Zahrani
- Biological Sciences Department, College of Science and Art at Rabigh, King Abdulaziz University, Rabigh 25732, Saudi Arabia;
| | - Mudasir A. Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
7
|
Zhang Z, Wang K, Zou C, Zhao T, Wu W, Wang C, Hua Y. Comparison of microbial diversity and carbohydrate-active enzymes in the hindgut of two wood-feeding termites, Globitermes sulphureus (Blattaria: Termitidae) and Coptotermes formosanus (Blattaria: Rhinotermitidae). BMC Microbiol 2024; 24:470. [PMID: 39533168 PMCID: PMC11556000 DOI: 10.1186/s12866-024-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Wood-feeding termites have been employed as sources of novel and highly efficient lignocellulolytic enzymes due to their ability to degrade lignocellulose efficiently. As a higher wood-feeding termite, Globitermes sulphureus (Blattaria: Termitidae) plays a crucial role as a decomposer in regions such as Vietnam, Singapore, Myanmar, and Yunnan, China. However, the diversity of its gut microbiome and carbohydrate-active enzymes (CAZymes) remains unexplored. Here, we analyzed the diversity of hindgut microbial communities and CAZymes in a higher wood-feeding termite, G. sulphureus, and a lower wood-feeding termite, Coptotermes formosanus (Blattaria: Rhinotermitidae). RESULTS 16S rRNA sequencing revealed that Spirochaetota, Firmicutes, and Fibrobacterota were the dominant microbiota in the hindgut of the two termite species. At the phylum level, the relative abundances of Proteobacteria and Bacteroidota were significantly greater in the hindgut of C. formosanus than in G. sulphureus. At the genus level, the relative abundances of Candidatus_Azobacteroides and Escherichia-Shigella were significantly lower in the hindgut of G. sulphureus than in C. formosanus. Metagenomic analysis revealed that glycoside hydrolases (GHs) with cellulases and hemicellulases functions were not significantly different between G. sulphureus and C. formosanus. Interestingly, the cellulases in G. sulphureus were mainly GH5_2, GH5_4, GH6, GH9, and GH45, while the hemicellulases were mainly GH11, GH8, GH10, GH11, GH26, and GH53. In C. formosanus, the cellulases were mainly GH6 and GH9, and the hemicellulases were mainly GH5_7, GH5_21, GH10, GH12, and GH53. In addition, β-glucosidase, exo-β-1,4-glucanase, and endo-β-1,4-glucanase activities did not differ significantly between the two termite species, while xylanase activity was higher in G. sulphureus than in C. formosanus. The bacteria encoding GHs in G. sulphureus were mainly Firmicutes, Fibrobacterota, and Proteobacteria, whereas Bacteroidota and Spirochaetota were the main bacteria encoding GHs in C. formosanus. CONCLUSIONS Our findings characterized the microbial composition and differences in the hindgut microbiota of G. sulphureus and C. formosanus. Compared to C. formosanus, G. sulphureus is enriched in genes encoding for hemicellulase and debranching enzymes. It also highlights the rich diversity of GHs in the hindgut microbiota of G. sulphureus, including the GH5 subfamily, GH6, and GH48, with the GH6 and GH48 not previously reported in other higher termites. These results strengthen the understanding of the diversity of termite gut microbiota and CAZymes.
Collapse
Affiliation(s)
- Zhidong Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Chuanshan Zou
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ting Zhao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Wenbin Wu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
8
|
Wei M, Li T, Khan S, Li H, Wen T, Yi T, Guo J. Effects of black soldier fly larvae on biotransformation and residues of spent mushroom substrate and wet distiller's grains. Sci Rep 2024; 14:22392. [PMID: 39333716 PMCID: PMC11436721 DOI: 10.1038/s41598-024-72959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Black soldier fly larvae (BSFL) could convert a variety of organic wastes, including spent mushroom substrate (SMS) and wet distiller's grains (WDG). Nevertheless, little is known about the conversion of these wastes by BSFL. Thus, this study investigates the conversion of SMS and WDG in five different proportions by BSFL. This study demonstrates that BSFL can convert SMS, WDG, and their mixtures. It can also encourage the humification of the substrate, increasing the amount of element in the residues. It is evident that there were differences in the carbon and nitrogen element fractionation mode as well as the microbial community present in the residue. The microbial community of the substrate and the physiochemical parameters are intimately related to this. Although the mixture treated with BSFL helps to generate a residue with more humus, it might not be stable.
Collapse
Affiliation(s)
- Mao Wei
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China
| | - Tao Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China
| | - Samiullah Khan
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China
| | - Tingchi Wen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China.
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China.
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, People's Republic of China.
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
9
|
Hera MR, Liu S, Wei W, Rodriguez JS, Ma C, Koslicki D. Metagenomic functional profiling: to sketch or not to sketch? Bioinformatics 2024; 40:ii165-ii173. [PMID: 39230701 PMCID: PMC11373326 DOI: 10.1093/bioinformatics/btae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
MOTIVATION Functional profiling of metagenomic samples is essential to decipher the functional capabilities of microbial communities. Traditional and more widely used functional profilers in the context of metagenomics rely on aligning reads against a known reference database. However, aligning sequencing reads against a large and fast-growing database is computationally expensive. In general, k-mer-based sketching techniques have been successfully used in metagenomics to address this bottleneck, notably in taxonomic profiling. In this work, we describe leveraging FracMinHash (implemented in sourmash, a publicly available software), a k-mer-sketching algorithm, to obtain functional profiles of metagenome samples. RESULTS We show how pieces of the sourmash software (and the resulting FracMinHash sketches) can be put together in a pipeline to functionally profile a metagenomic sample. We named our pipeline fmh-funprofiler. We report that the functional profiles obtained using this pipeline demonstrate comparable completeness and better purity compared to the profiles obtained using other alignment-based methods when applied to simulated metagenomic data. We also report that fmh-funprofiler is 39-99× faster in wall-clock time, and consumes up to 40-55× less memory. Coupled with the KEGG database, this method not only replicates fundamental biological insights but also highlights novel signals from the Human Microbiome Project datasets. AVAILABILITY AND IMPLEMENTATION This fast and lightweight metagenomic functional profiler is freely available and can be accessed here: https://github.com/KoslickiLab/fmh-funprofiler. All scripts of the analyses we present in this manuscript can be found on GitHub.
Collapse
Affiliation(s)
- Mahmudur Rahman Hera
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shaopeng Liu
- Bioinformatics and Genomics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wei Wei
- Bioinformatics and Genomics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Judith S Rodriguez
- Bioinformatics and Genomics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chunyu Ma
- Bioinformatics and Genomics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David Koslicki
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Klimek D, Herold M, Calusinska M. Comparative genomic analysis of Planctomycetota potential for polysaccharide degradation identifies biotechnologically relevant microbes. BMC Genomics 2024; 25:523. [PMID: 38802741 PMCID: PMC11131199 DOI: 10.1186/s12864-024-10413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Members of the Planctomycetota phylum harbour an outstanding potential for carbohydrate degradation given the abundance and diversity of carbohydrate-active enzymes (CAZymes) encoded in their genomes. However, mainly members of the Planctomycetia class have been characterised up to now, and little is known about the degrading capacities of the other Planctomycetota. Here, we present a comprehensive comparative analysis of all available planctomycetotal genome representatives and detail encoded carbohydrolytic potential across phylogenetic groups and different habitats. RESULTS Our in-depth characterisation of the available planctomycetotal genomic resources increases our knowledge of the carbohydrolytic capacities of Planctomycetota. We show that this single phylum encompasses a wide variety of the currently known CAZyme diversity assigned to glycoside hydrolase families and that many members encode a versatile enzymatic machinery towards complex carbohydrate degradation, including lignocellulose. We highlight members of the Isosphaerales, Pirellulales, Sedimentisphaerales and Tepidisphaerales orders as having the highest encoded hydrolytic potential of the Planctomycetota. Furthermore, members of a yet uncultivated group affiliated to the Phycisphaerales order could represent an interesting source of novel lytic polysaccharide monooxygenases to boost lignocellulose degradation. Surprisingly, many Planctomycetota from anaerobic digestion reactors encode CAZymes targeting algal polysaccharides - this opens new perspectives for algal biomass valorisation in biogas processes. CONCLUSIONS Our study provides a new perspective on planctomycetotal carbohydrolytic potential, highlighting distinct phylogenetic groups which could provide a wealth of diverse, potentially novel CAZymes of industrial interest.
Collapse
Affiliation(s)
- Dominika Klimek
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg.
- The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2 Avenue de l'Université, Esch-sur-Alzette, L-4365, Luxembourg.
| | - Malte Herold
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
11
|
Dar MA, Xie R, Jing L, Qing X, Ali S, Pandit RS, Shaha CM, Sun J. Elucidating the structure, and composition of bacterial symbionts in the gut regions of wood-feeding termite, Coptotermes formosanus and their functional profile towards lignocellulolytic systems. Front Microbiol 2024; 15:1395568. [PMID: 38846576 PMCID: PMC11155305 DOI: 10.3389/fmicb.2024.1395568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
The wood-feeding termite, Coptotermes formosanus, presents an efficient lignocellulolytic system, offering a distinctive model for the exploration of host-microbial symbiosis towards lignocellulose degradation. Despite decades of investigation, understanding the diversity, community structure, and functional profiles of bacterial symbionts within specific gut regions, particularly the foregut and midgut of C. formosanus, remains largely elusive. In light of this knowledge gap, our efforts focused on elucidating the diversity, community composition and functions of symbiotic bacteria inhabiting the foregut, midgut, and hindgut of C. formosanus via metagenomics. The termite harbored a diverse community of bacterial symbionts encompassing 352 genera and 26 known phyla, exhibiting an uneven distribution across gut regions. Notably, the hindgut displayed a higher relative abundance of phyla such as Bacteroidetes (56.9%) and Spirochetes (23.3%). In contrast, the foregut and midgut were predominantly occupied by Proteobacteria (28.9%) and Firmicutes (21.2%) after Bacteroidetes. The foregut harbored unique phyla like Candidate phylum_TM6 and Armatimonadetes. At the family level, Porphyromonadaceae (28.1, 40.6, and 53.5% abundance in foregut, midgut, and hindgut, respectively) and Spirochaetaceae (foregut = 9%, midgut = 16%, hindgut = 21.6%) emerged as dominant families in the termite's gut regions. Enriched operational taxonomic units (OTUs) were most abundant in the foregut (28), followed by the hindgut (14), while the midgut exhibited enrichment of only two OTUs. Furthermore, the functional analyses revealed distinct influences of bacterial symbionts on various metabolic pathways, particularly carbohydrate and energy metabolisms of the host. Overall, these results underscore significant variations in the structure of the bacterial community among different gut regions of C. formosanus, suggesting unique functional roles of specific bacteria, thereby inspiring further investigations to resolve the crosstalk between host and microbiomes in individual gut-regions of the termite.
Collapse
Affiliation(s)
- Mudasir A. Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Rongrong Xie
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | - Luohui Jing
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | - Xu Qing
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | - Shehbaz Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | | | - Chaitali M. Shaha
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Xue Y, Li H, Kang X. Molecular unraveling of polysaccharide digestion in wood-feeding termites: A solid-state NMR perspective. Carbohydr Polym 2024; 331:121843. [PMID: 38388031 DOI: 10.1016/j.carbpol.2024.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Termites are among the most efficient organisms utilizing polysaccharides from wood and play a significant role in global carbon recycling, especially within tropical and subtropical ecosystems. Yet, the molecular details in polysaccharide degradation by termites remain largely unexplored. In this work, we have elucidated the shared and distinct molecular details in polysaccharides digestion by the higher termite Nasutitermes on poplar and the lower termite Cryptotermes on pine using high resolution solid-state nuclear magnetic resonance spectroscopy. For the first time, structural polymers are partitioned into the minor mobile and dominant rigid phases for individual examination. The mobile polysaccharides receive less structural impacts and exhibit greater digestibility compared to the rigid counterparts. While both termites effectively degrade cellulose, Nasutitermes significantly outperforms Cryptotermes in hemicellulose breakdown. In the rigid phase, cellulose is comprehensively degraded into a fragmented and more dynamically consistent structure; As Nasutitermes breaks down hemicellulose in a similar manner to cellulose, Cryptotermes selectively digests hemicellulose at its interfaces with cellulose. Additionally, crystalline cellulose undergoes selective degradation, and the digestion of amorphous cellulose might involve sugar chain detachment within microfibrils. Overall, our findings offer significant advancements and fresh perspectives on the polysaccharide digestion strategies of different termite lineages.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
13
|
Park Y, Min J, Kim W, Park W. Kaistella rhinocerotis sp. nov., isolated from the faeces of rhinoceros and reclassification of Chryseobacterium faecale as Kaistella faecalis comb. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38602466 DOI: 10.1099/ijsem.0.006338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Strain Ran72T, a novel Gram-stain-negative, obligately aerobic, non-motile, and rod-shaped bacterium, was isolated from the faeces of the rhinoceros species Ceratotherium simum. The novel bacterial strain grew optimally in Reasoner's 2A medium under the following conditions: 0 % (w/v) NaCl, pH 7.5, and 30 °C. Based on phylogenetic analysis using 16S rRNA gene sequencing, strain Ran72T was found to be most closely related to Chryseobacterium faecale F4T (98.4 %), Kaistella soli DKR-2T (98.0 %), and Kaistella haifensis H38T (97.4 %). A comprehensive genome-level comparison between strain Ran72T with C. faecale F4T, K. soli DKR-2T, and K. haifensis H38T revealed average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values of ≤74.9, ≤19.3, and ≤78.7 %, respectively. The major fatty acids were anteiso-C15 : 0 (22.3 %), with MK-6 being the predominant respiratory quinone. The major polar lipids of strain Ran72T were phosphatidylethanolamine, four unidentified aminolipids, and two unidentified lipids. Based on our chemotaxonomic, genotypic, and phenotype characterizations, strain Ran72T was identified as representing a novel species in the genus Kaistella, for which the name Kaistella rhinocerotis sp. nov. is proposed, with the type strain Ran72T (=KACC 23136T=JCM 36038T). Based on the outcomes of our phylogenomic study, Chryseobacterium faecale should be reclassified under the genus Kaistella as Kaistella faecalis comb. nov.
Collapse
Affiliation(s)
- Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Alom MS, Cen Y, Tang R, Chen D, Dou H, Mo Z, Du H. Change of termite hindgut metabolome and bacteria after captivity indicates the hindgut microbiota provides nutritional factors to the host. Front Bioeng Biotechnol 2024; 11:1228918. [PMID: 38288244 PMCID: PMC10823432 DOI: 10.3389/fbioe.2023.1228918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
The gut-dwelling microbiota is an indispensable part of termites. It is influenced by a series of factors, such as diet and captivity. The objectives of this study were to study the metabolic functions of hindgut microbiota and to investigate the influence of captivity on the hindgut microbiota. The dampwood termite Hodotermopsis sjostedti was reared in the laboratory for 6 months. We conducted the metabolome analysis of the fat body from the freshly-collected workers (FBF), the hindgut fluid of the freshly-collected workers (HFF), and the hindgut fluid of laboratory-maintained workers. In addition, the 16S rRNA genes from the hindgut bacteria in the freshly-collected and laboratory-maintained workers were sequenced. According to our results, the concentrations of metabolites associated with amino acid biosynthesis, vitamin biosynthesis, fatty acid biosynthesis, and cofactor biosynthesis were higher in HFF compared with those in FBF, suggesting that the hindgut microbiota provides nutritional factors to the host. However, after captivity, the concentrations of metabolites in the hindgut associated with amino acid biosynthesis, nucleotide sugar metabolism, vitamin biosynthesis, and carbon metabolism decreased, while those associated with the steroid hormone biosynthesis and ovarian steroidogenesis increased. Meanwhile, the 16S amplicon study revealed that the abundance of certain bacteria changed after captivity, such as uncultured Termite Group 1 bacterium, Candidatus Symbiothrix dinenymphae, and unclassified Desulfovibrio. Our findings show that captivity influences the hindgut microbiota and shed light on the metabolic potential of the hindgut microbiota.
Collapse
Affiliation(s)
- Most Shormi Alom
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Rui Tang
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dasong Chen
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongliang Dou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Zhenzuan Mo
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - He Du
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
15
|
Thapa S, Zhou S, O'Hair J, Al Nasr K, Ropelewski A, Li H. Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach. BMC Biotechnol 2023; 23:51. [PMID: 38049781 PMCID: PMC10696843 DOI: 10.1186/s12896-023-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
- Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Joshua O'Hair
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Kamal Al Nasr
- Department of Computer Sciences, College of Engineering, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Alexander Ropelewski
- Pittsburgh Supercomputing Center, 300 S. Craig Street, Pittsburgh, PA, 15213, USA
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA.
| |
Collapse
|
16
|
Zhang X, Miao Q, Tang B, Mijakovic I, Ji XJ, Qu L, Wei Y. Discovery of novel alkaline-tolerant xylanases from fecal microbiota of dairy cows. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:182. [PMID: 38012750 PMCID: PMC10683242 DOI: 10.1186/s13068-023-02435-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Xylo-oligosaccharides (XOS) are considered as a promising type of prebiotics that can be used in foods, feeds, and healthcare products. Xylanases play a key role in the production of XOS from xylan. In this study, we conducted a metagenomic analysis of the fecal microbiota from dairy cows fed with different types of fodders. Despite the diversity in their diets, the main phyla observed in all fecal microbiota were Firmicutes and Bacteroidetes. At the genus level, one group of dairy cows that were fed probiotic fermented herbal mixture-containing fodders displayed decreased abundance of Methanobrevibacter and increased growth of beneficial Akkermansia bacteria. Additionally, this group exhibited a high microbial richness and diversity. Through our analysis, we obtained a comprehensive dataset comprising over 280,000 carbohydrate-active enzyme genes. Among these, we identified a total of 163 potential xylanase genes and subsequently expressed 34 of them in Escherichia coli. Out of the 34 expressed genes, two alkaline xylanases with excellent temperature stability and pH tolerance were obtained. Notably, CDW-xyl-8 exhibited xylanase activity of 96.1 ± 7.5 U/mg protein, with an optimal working temperature of 55 ℃ and optimal pH of 8.0. CDW-xyl-16 displayed an activity of 427.3 ± 9.1 U/mg protein with an optimal pH of 8.5 and an optimal temperature at 40 ℃. Bioinformatic analyses and structural modeling suggest that CDW-xyl-8 belongs to GH10 family xylanase, and CDW-xyl-16 is a GH11 family xylanase. Both enzymes have the ability to hydrolyze beechwood xylan and produce XOS. In conclusion, this metagenomic study provides valuable insights into the fecal microbiota composition of dairy cows fed different fodder types, revealing main microbial groups and demonstrating the abundance of xylanases. Furthermore, the characterization of two novel xylanases highlights their potential application in XOS production.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Qin Miao
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lingbo Qu
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
Yang ZW, Luo JY, Men Y, Liu ZH, Zheng ZK, Wang YH, Xie Q. Different roles of host and habitat in determining the microbial communities of plant-feeding true bugs. MICROBIOME 2023; 11:244. [PMID: 37932839 PMCID: PMC10629178 DOI: 10.1186/s40168-023-01702-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The true bugs (Heteroptera) occupy nearly all of the known ecological niches of insects. Among them, as a group containing more than 30,000 species, the phytophagous true bugs are making increasing impacts on agricultural and forestry ecosystems. Previous studies proved that symbiotic bacteria play important roles in these insects in fitting various habitats. However, it is still obscure about the evolutionary and ecological patterns of the microorganisms of phytophagous true bugs as a whole with comprehensive taxon sampling. RESULTS Here, in order to explore the symbiotic patterns between plant-feeding true bugs and their symbiotic microorganisms, 209 species belonging to 32 families of 9 superfamilies had been sampled, which covered all the major phytophagous families of true bugs. The symbiotic microbial communities were surveyed by full-length 16S rRNA gene and ITS amplicons respectively for bacteria and fungi using the PacBio platform. We revealed that hosts mainly affect the dominant bacteria of symbiotic microbial communities, while habitats generally influence the subordinate ones. Thereafter, we carried out the ancestral state reconstruction of the dominant bacteria and found that dramatic replacements of dominant bacteria occurred in the early Cretaceous and formed newly stable symbiotic relationships accompanying the radiation of insect families. In contrast, the symbiotic fungi were revealed to be horizontally transmitted, which makes fungal communities distinctive in different habitats but not significantly related to hosts. CONCLUSIONS Host and habitat determine microbial communities of plant-feeding true bugs in different roles. The symbiotic bacterial communities are both shaped by host and habitat but in different ways. Nevertheless, the symbiotic fungal communities are mainly influenced by habitat but not host. These findings shed light on a general framework for future microbiome research of phytophagous insects. Video Abstract.
Collapse
Affiliation(s)
- Zi-Wen Yang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- School of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Zhi-Hui Liu
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Kai Zheng
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
18
|
Zhang L, Dong C, Wang J, Liu M, Wang J, Hu J, Liu L, Liu X, Xia C, Zhong L, Zhao Y, Ye X, Huang Y, Fan J, Cao H, Wang J, Li Y, Wall D, Li Z, Cui Z. Predation of oomycetes by myxobacteria via a specialized CAZyme system arising from adaptive evolution. THE ISME JOURNAL 2023; 17:1089-1103. [PMID: 37156836 PMCID: PMC10284895 DOI: 10.1038/s41396-023-01423-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp. AC19 secretes a carbohydrate-active enzyme (CAZyme) cocktail during predation on oomycetes Phytophthora. These enzymes include three specialized β-1,3-glucanases (AcGlu13.1, -13.2 and -13.3) that act as a cooperative consortium to target β-1,3-glucans of Phytophthora. However, the CAZymes showed no hydrolytic effects on fungal cells, even though fungi contain β-1,3-glucans. Heterologous expression of AcGlu13.1, -13.2 or -13.3 enzymes in Myxococcus xanthus DK1622, a model myxobacterium that antagonizes but does not predate on P. sojae, conferred a cooperative and mycophagous ability that stably maintains myxobacteria populations as a mixture of engineered strains. Comparative genomic analyses suggest that these CAZymes arose from adaptive evolution among Cystobacteriaceae myxobacteria for a specific prey killing behavior, whereby the presence of Phytophthora promotes growth of myxobacterial taxa by nutrient release and consumption. Our findings demonstrate that this lethal combination of CAZymes transforms a non-predatory myxobacterium into a predator with the ability to feed on Phytophthora, and provides new insights for understanding predator-prey interactions. In summary, our work extends the repertoire of myxobacteria predatory strategies and their evolution, and suggests that these CAZymes can be engineered as a functional consortium into strains for biocontrol of Phytophothora diseases and hence crop protection.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaonan Dong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Juying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiexiong Hu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqin Fan
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Pu J, Yang J, Lu S, Jin D, Luo X, Xiong Y, Bai X, Zhu W, Huang Y, Wu S, Niu L, Liu L, Xu J. Species-Level Taxonomic Characterization of Uncultured Core Gut Microbiota of Plateau Pika. Microbiol Spectr 2023; 11:e0349522. [PMID: 37067438 PMCID: PMC10269723 DOI: 10.1128/spectrum.03495-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/13/2023] [Indexed: 04/18/2023] Open
Abstract
Rarely has the vast diversity of bacteria on Earth been profiled, particularly on inaccessible plateaus. These uncultured microbes, which are also known as "microbial dark matter," may play crucial roles in maintaining the ecosystem and are linked to human health, regarding pathogenicity and prebioticity. The plateau pika (Ochotona curzoniae) is a small burrowing steppe lagomorph that is endemic to the Qinghai-Tibetan Plateau and is a keystone species in the maintenance of ecological balance. We used a combination of full-length 16S rRNA amplicon sequencing, shotgun metagenomics, and metabolomics to elucidate the species-level community structure and the metabolic potential of the gut microbiota of the plateau pika. Using a full-length 16S rRNA metataxonomic approach, we clustered 618 (166 ± 35 per sample) operational phylogenetic units (OPUs) from 105 plateau pika samples and assigned them to 215 known species, 226 potentially new species, and 177 higher hierarchical taxa. Notably, 39 abundant OPUs (over 60% total relative abundance) are found in over 90% of the samples, thereby representing a "core microbiota." They are all classified as novel microbial lineages, from the class to the species level. Using metagenomic reads, we independently assembled and binned 109 high-quality, species-level genome bins (SGBs). Then, a precise taxonomic assignment was performed to clarify the phylogenetic consistency of the SGBs and the 16S rRNA amplicons. Thus, the majority of the core microbes possess their genomes. SGBs belonging to the genus Treponema, the families Muribaculaceae, Lachnospiraceae, and Oscillospiraceae, and the order Eubacteriales are abundant in the metagenomic samples. In addition, multiple CAZymes are detected in these SGBs, indicating their efficient utilization of plant biomass. As the most widely connected metabolite with the core microbiota, tryptophan may relate to host environmental adaptation. Our investigation allows for a greater comprehension of the composition and functional capacity of the gut microbiota of the plateau pika. IMPORTANCE The great majority of microbial species remain uncultured, severely limiting their taxonomic characterization and biological understanding. The plateau pika (Ochotona curzoniae) is a small burrowing steppe lagomorph that is endemic to the Qinghai-Tibetan Plateau and is considered to be the keystone species in the maintenance of ecological stability. We comprehensively investigated the gut microbiota of the plateau pika via a multiomics endeavor. Combining full-length 16S rRNA metataxonomics, shotgun metagenomics, and metabolomics, we elucidated the species-level taxonomic assignment of the core uncultured intestinal microbiota of the plateau pika and revealed their correlation to host nutritional metabolism and adaptation. Our findings provide insights into the microbial diversity and biological significance of alpine animals.
Collapse
Affiliation(s)
- Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Luo
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shusheng Wu
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Public Health, Nankai University, Tianjing, China
| |
Collapse
|
20
|
Li H, Kang X, Yang M, Kasseney BD, Zhou X, Liang S, Zhang X, Wen JL, Yu B, Liu N, Zhao Y, Mo J, Currie CR, Ralph J, Yelle DJ. Molecular insights into the evolution of woody plant decay in the gut of termites. SCIENCE ADVANCES 2023; 9:eadg1258. [PMID: 37224258 DOI: 10.1126/sciadv.adg1258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Plant cell walls represent the most abundant pool of organic carbon in terrestrial ecosystems but are highly recalcitrant to utilization by microbes and herbivores owing to the physical and chemical barrier provided by lignin biopolymers. Termites are a paradigmatic example of an organism's having evolved the ability to substantially degrade lignified woody plants, yet atomic-scale characterization of lignin depolymerization by termites remains elusive. We report that the phylogenetically derived termite Nasutitermes sp. efficiently degrades lignin via substantial depletion of major interunit linkages and methoxyls by combining isotope-labeled feeding experiments and solution-state and solid-state nuclear magnetic resonance spectroscopy. Exploring the evolutionary origin of lignin depolymerization in termites, we reveal that the early-diverging woodroach Cryptocercus darwini has limited capability in degrading lignocellulose, leaving most polysaccharides intact. Conversely, the phylogenetically basal lineages of "lower" termites are able to disrupt the lignin-polysaccharide inter- and intramolecular bonding while leaving lignin largely intact. These findings advance knowledge on the elusive but efficient delignification in natural systems with implications for next-generation ligninolytic agents.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Mengyi Yang
- Xiaoshan Management Center of Termite Control, Hangzhou Xiaoshan Housing Security and Real Estate Management Service Center, Hangzhou 311200, China
| | - Boris Dodji Kasseney
- Department of Zoology, Faculty of Sciences, University of Lomé, 1BP1515 Lomé, Togo
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Shiyou Liang
- Agricultural Information Center of Pingyang, Renmin Road 71, Wenzhou 325400, China
| | - Xiaojie Zhang
- Quzhou Management Center of Termite Control, Quzhou Housing Security and Real Estate Management Service Center, Quzhou 311200, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, Haidian District 100083, China
| | - Baoting Yu
- National Termite Control Center of China, Moganshan Road 695, Hangzhou 310011, China
| | - Ning Liu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cameron R Currie
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706, USA
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Daniel J Yelle
- US Forest Products Laboratory, Forest Service, Madison, WI 53726, USA
| |
Collapse
|
21
|
Shu Q, Wang Y, Gu H, Zhu Q, Liu W, Dai Y, Li F, Li B. Effects of artificial diet breeding on intestinal microbial populations at the young stage of silkworm (Bombyx mori). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023:e22019. [PMID: 37096338 DOI: 10.1002/arch.22019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The silkworm (Bombyx mori) is an economically important insect and serves as a model organism for Lepidoptera. To investigate the effects of the intestinal microbial population on the growth and development of larvae fed an artificial diet (AD) during the young stages, we analyzed the characteristics of the intestinal microbial population using 16S rRNA gene sequencing technology. Our results revealed that the intestinal flora of the AD group tended to be simple by the 3rd-instar, which Lactobacillus accounting for 14.85% and leading to a decreased pH in the intestinal fluid. In contrast, the intestinal flora of silkworms in the mulberry leaf (ML) group showed continuous growth of diversity, with Proteobacteria accounting for 37.10%, Firmicutes accounting for 21.44%, and Actinobacteria accounting for 17.36%. Additionally, we detected the activity of intestinal digestive enzymes at different instars and found that the activity of digestive enzymes in the AD group increased by larval instar. Protease activity in the AD group was lower during the 1st- to 3rd-instars compared to the ML group, while α-amylase and lipase activities were significantly higher in the AD group during the 2nd- and 3rd-instar compared to the ML group. Furthermore, our experimental results indicated that changes in the intestinal population decreased the pH and affected the activity of proteases, which might contribute to the slower growth and development of larvae in the AD group. In summary, this study provides a reference for investigating the relationship between artificial diet and intestinal flora balance.
Collapse
Affiliation(s)
- Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Wei Liu
- Suzhou Taihu Snow Silk Co., Ltd., Suzhou, China
| | - Yan Dai
- Suzhou Taihu Snow Silk Co., Ltd., Suzhou, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
22
|
Xie R, Dong C, Wang S, Danso B, Dar MA, Pandit RS, Pawar KD, Geng A, Zhu D, Li X, Xu Q, Sun J. Host-Specific Diversity of Culturable Bacteria in the Gut Systems of Fungus-Growing Termites and Their Potential Functions towards Lignocellulose Bioconversion. INSECTS 2023; 14:403. [PMID: 37103218 PMCID: PMC10146277 DOI: 10.3390/insects14040403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Fungus-growing termites are eusocial insects that represent one of the most efficient and unique systems for lignocellulose bioconversion, evolved from a sophisticated symbiosis with lignocellulolytic fungi and gut bacterial communities. Despite a plethora of information generated during the last century, some essential information on gut bacterial profiles and their unique contributions to wood digestion in some fungus-growing termites is still inadequate. Hence, using the culture-dependent approach, the present study aims to assess and compare the diversity of lignocellulose-degrading bacterial symbionts within the gut systems of three fungus-growing termites: Ancistrotermes pakistanicus, Odontotermes longignathus, and Macrotermes sp. A total of 32 bacterial species, belonging to 18 genera and 10 different families, were successfully isolated and identified from three fungus-growing termites using Avicel or xylan as the sole source of carbon. Enterobacteriaceae was the most dominant family represented by 68.1% of the total bacteria, followed by Yersiniaceae (10.6%) and Moraxellaceae (9%). Interestingly, five bacterial genera such as Enterobacter, Citrobacter, Acinetobacter, Trabulsiella, and Kluyvera were common among the tested termites, while the other bacteria demonstrated a termite-specific distribution. Further, the lignocellulolytic potential of selected bacterial strains was tested on agricultural waste to evaluate their capability for lignocellulose bioconversion. The highest substrate degradation was achieved with E. chengduensis MA11 which degraded 45.52% of rice straw. All of the potential strains showed endoglucanase, exoglucanase, and xylanase activities depicting a symbiotic role towards the lignocellulose digestion within the termite gut. The above results indicated that fungus-growing termites harbor a diverse array of bacterial symbionts that differ from species to species, which may play an inevitable role to enhance the degradation efficacy in lignocellulose decomposition. The present study further elaborates our knowledge about the termite-bacteria symbiosis for lignocellulose bioconversion which could be helpful to design a future biorefinery.
Collapse
Affiliation(s)
- Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenchen Dong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjie Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Blessing Danso
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mudasir A. Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | | | - Kiran D. Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Alei Geng
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qing Xu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
23
|
Akhtar A, Lata M, Sunsunwal S, Yadav A, Lnu K, Subramanian S, Ramya TNC. New carbohydrate binding domains identified by phage display based functional metagenomic screens of human gut microbiota. Commun Biol 2023; 6:371. [PMID: 37019943 PMCID: PMC10076258 DOI: 10.1038/s42003-023-04718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Uncultured microbes represent a huge untapped biological resource of novel genes and gene products. Although recent genomic and metagenomic sequencing efforts have led to the identification of numerous genes that are homologous to existing annotated genes, there remains, yet, an enormous pool of unannotated genes that do not find significant sequence homology to existing annotated genes. Functional metagenomics offers a way to identify and annotate novel gene products. Here, we use functional metagenomics to mine novel carbohydrate binding domains that might aid human gut commensals in adherence, gut colonization, and metabolism of complex carbohydrates. We report the construction and functional screening of a metagenomic phage display library from healthy human fecal samples against dietary, microbial and host polysaccharides/glycoconjugates. We identify several protein sequences that do not find a hit to any known protein domain but are predicted to contain carbohydrate binding module-like folds. We heterologously express, purify and biochemically characterize some of these protein domains and demonstrate their carbohydrate-binding function. Our study reveals several previously unannotated carbohydrate-binding domains, including a levan binding domain and four complex N-glycan binding domains that might be useful for the labeling, visualization, and isolation of these glycans.
Collapse
Affiliation(s)
- Akil Akhtar
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Madhu Lata
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sonali Sunsunwal
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Amit Yadav
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kajal Lnu
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Srikrishna Subramanian
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
24
|
Zhang Z, Huang B, Gao X, Shi X, Wang X, Wang T, Wang Y, Liu G, Wang C. Dynamic changes in fecal microbiota in donkey foals during weaning: From pre-weaning to post-weaning. Front Microbiol 2023; 14:1105330. [PMID: 36778861 PMCID: PMC9915154 DOI: 10.3389/fmicb.2023.1105330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction A better understanding of the microbiota community in donkey foals during the weaning transition is a prerequisite to optimize gut function and improve feed efficiency. The objective of the present study was to investigate the dynamic changes in fecal microbiota in donkey foals from pre-to post-weaning period. Methods A total of 27 fecal samples of donkey foals were collected in the rectum before morning feeding at pre-weaning (30 days of age, PreW group, n = 9), dur-weaning (100 days of age, DurW group, n = 9) and post-weaning (170 days of age, PostW group, n = 9) period. The 16S rRNA amplicon sequencing were employed to indicate the microbial changes during the weaning period. Results In the present study, the cessation of breastfeeding gradually and weaning onto plant-based feeds increased the microbial diversity and richness, with a higher Shannon, Ace, Chao and Sobs index in DurW and PostW than in PreW (p < 0.05). The predominant bacterial phyla in donkey foal feces were Firmicutes (>50.5%) and Bacteroidota (>29.5%), and the predominant anaerobic fungi and archaea were Neocallimastigomycota and Euryarchaeota. The cellulolytic related bacteria including phylum Firmicutes, Spirochaetota and Fibrobacterota and genus norank_f_F082, Treponema, NK4A214_group, Lachnospiraceae_AC2044_group and Streptococcus were increased from pre-to post-weaning donkey foals (p < 0.05). Meanwhile, the functions related to the fatty acid biosynthesis, carbohydrate metabolism and amino acid biosynthesis were significantly enriched in the fecal microbiome in the DurW and PostW donkeys. Furthermore, the present study provided the first direct evidence that the initial colonization and establishment of anaerobic fungi and archaea in donkey foals began prior to weaning. The relative abundance of Orpinomyces were the highest in DurW donkey foals among the three groups (p < 0.01). In terms of archaea, the abundance of Methanobrevibacter were higher in PreW than in DurW and PostW (p < 0.01), but the abundance of Methanocorpusculum were significantly increased in DurW and PostW compared to PreW donkey foals (p < 0.01). Discussion Altogether, the current study contributes to a comprehensive understanding of the development of the microbiota community in donkey foals from pre-to post-weaning period, which may eventually result in an improvement of the digestion and feed efficiency in donkeys.
Collapse
|
25
|
Li M, Wang Y, Guo C, Wang S, Zheng L, Bu Y, Ding K. The claim of primacy of human gut Bacteroides ovatus in dietary cellobiose degradation. Gut Microbes 2023; 15:2227434. [PMID: 37349961 PMCID: PMC10291918 DOI: 10.1080/19490976.2023.2227434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
A demonstration of cellulose degrading bacterium from human gut changed our view that human cannot degrade the cellulose. However, investigation of cellulose degradation by human gut microbiota on molecular level has not been completed so far. We showed here, using cellobiose as a model that promoted the growth of human gut key members, such as Bacteroides ovatus (BO), to clarify the molecular mechanism. Our results showed that a new polysaccharide utilization locus (PUL) from BO was involved in the cellobiose capturing and degradation. Further, two new cellulases BACOVA_02626GH5 and BACOVA_02630GH5 on the cell surface performed the degradation of cellobiose into glucose were determined. The predicted structures of BACOVA_02626GH5 and BACOVA_02630GH5 were highly homologous with the cellulase from soil bacteria, and the catalytic residues were highly conservative with two glutamate residues. In murine experiment, we observed cellobiose reshaped the composition of gut microbiota and probably modified the metabolic function of bacteria. Taken together, our findings further highlight the evidence of cellulose can be degraded by human gut microbes and provide new insight in the field of investigation on cellulose.
Collapse
Affiliation(s)
- Meixia Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yeqing Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ciliang Guo
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | | | | | - Yifan Bu
- Zelixir Biotech, Shanghai, P. R. China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, P. R. China
| |
Collapse
|
26
|
Ferrillo A, Kobel CM, Vera-Ponce de León A, La Rosa SL, Kunath BJ, Pope PB, Hagen LH. Long-Read Metagenomics and CAZyme Discovery. Methods Mol Biol 2023; 2657:253-284. [PMID: 37149537 DOI: 10.1007/978-1-0716-3151-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microorganisms play a primary role in regulating biogeochemical cycles and are a valuable source of enzymes that have biotechnological applications, such as carbohydrate-active enzymes (CAZymes). However, the inability to culture the majority of microorganisms that exist in natural ecosystems restricts access to potentially novel bacteria and beneficial CAZymes. While commonplace molecular-based culture-independent methods such as metagenomics enable researchers to study microbial communities directly from environmental samples, recent progress in long-read sequencing technologies are advancing the field. We outline key methodological stages that are required as well as describe specific protocols that are currently used for long-read metagenomic projects dedicated to CAZyme discovery.
Collapse
Affiliation(s)
- Alessandra Ferrillo
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Carl Mathias Kobel
- Faculty of Bioscience, Norwegian University of Life Sciences, Aas, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
- Faculty of Bioscience, Norwegian University of Life Sciences, Aas, Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | - Phillip Byron Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
- Faculty of Bioscience, Norwegian University of Life Sciences, Aas, Norway
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| |
Collapse
|
27
|
Kukkar D, Sharma PK, Kim KH. Recent advances in metagenomic analysis of different ecological niches for enhanced biodegradation of recalcitrant lignocellulosic biomass. ENVIRONMENTAL RESEARCH 2022; 215:114369. [PMID: 36165858 DOI: 10.1016/j.envres.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose wastes stemming from agricultural residues can offer an excellent opportunity as alternative energy solutions in addition to fossil fuels. Besides, the unrestrained burning of agricultural residues can lead to the destruction of the soil microflora and associated soil sterilization. However, the difficulties associated with the biodegradation of lignocellulose biomasses remain as a formidable challenge for their sustainable management. In this respect, metagenomics can be used as an effective option to resolve such dilemma because of its potential as the next generation sequencing technology and bioinformatics tools to harness novel microbial consortia from diverse environments (e.g., soil, alpine forests, and hypersaline/acidic/hot sulfur springs). In light of the challenges associated with the bulk-scale biodegradation of lignocellulose-rich agricultural residues, this review is organized to help delineate the fundamental aspects of metagenomics towards the assessment of the microbial consortia and novel molecules (such as biocatalysts) which are otherwise unidentifiable by conventional laboratory culturing techniques. The discussion is extended further to highlight the recent advancements (e.g., from 2011 to 2022) in metagenomic approaches for the isolation and purification of lignocellulolytic microbes from different ecosystems along with the technical challenges and prospects associated with their wide implementation and scale-up. This review should thus be one of the first comprehensive reports on the metagenomics-based analysis of different environmental samples for the isolation and purification of lignocellulose degrading enzymes.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Wangsimni-ro, Seoul - 04763, South Korea.
| |
Collapse
|
28
|
Korsa G, Masi C, Konwarh R, Tafesse M. Harnessing the potential use of cellulolytic Klebsiella oxytoca (M21WG) and Klebsiella sp. (Z6WG) isolated from the guts of termites (Isoptera). ANN MICROBIOL 2022; 72:5. [DOI: 10.1186/s13213-021-01662-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
For many years, denim-heavy quality cotton twill colored with indigo colors and with a well-worn/faded look has held a lot of appeal. Machine damage, drainage system blockage, and other issues come with the conventional usage of pumice stones for “stone-washing” denims. In view of the abovementioned information, a range of works has been done to investigate the economic prospects of bacterial cellulase enzymes for use in industrial processes, including biopolishing in the textile sector. Ethiopia has excellent termite diversity to isolate bacterial gut-associated cellulose enzymes for biostoning applications. The main purpose of this study was, therfore, to decipher how to isolate and characterize cellulase enzymes from termite (Isoptera) gut bacteria with the intention of employing it for biostoning of textiles.
Purpose
To use cellulolytic enzymes of Klebsiella oxytoca (M21WG) and Klebsiella sp. (Z6WG) isolated from termite guts in biostoning of textiles and improving garment quality.
Methods
Cellulase enzyme-producing bacteria were isolated and screened from the guts of worker termites sampled from Meki and Zeway termite mounds in the Central Rift Valley region of Ethiopia. Bacterial screening, biochemical, morphological, and 16S rRNA sequence identification techniques were employed to characterize the bacterial strains. In addition, the production, optimization, and purification of the associated cellulase enzymes were employed, and the potential application of the enzymes for biostoning of a textile was demonstrated.
Result
The isolated M21WG was found to be 99% identical to the Klebsiella oxytoca (MT104573.1) strain, while the isolated Z6WG showed 97.3% identity to the Klebsiella sp. strain (MN629242.1). At an ideal pH of 7, a temperature of 37 °C, a 72-h incubation time, and a substrate concentration of 1.5% carboxymethylcellulose sodium, the maximum activity of the crude cellulase extract from these bacteria was assessed. These bacteria produced cellulase enzymes that were moderately efficient. Consequently, it was determined that the cellulase enzymes were effective for biostoning of denim cloth.
Conclusion
It was determined that Klebsiella oxytoca (M21WG) and Klebsiella sp. (Z6WG) could be used as a doorway to better understand harnessing the use of these cellulase-producing bacteria from termite (Isoptera) guts. In this study, it was also attempted to assess the effectiveness of the two bacterial isolates in biostoning in anticipation of their potential application in the textile realm.
Collapse
|
29
|
Wei Y, Li H. Editorial: Exploring the insect microbiome: The potential future role in biotechnology industry. Front Microbiol 2022; 13:1061360. [PMID: 36406441 PMCID: PMC9669967 DOI: 10.3389/fmicb.2022.1061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 08/30/2023] Open
Affiliation(s)
- Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Hongjie Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
30
|
Tao J, Chen Q, Chen S, Lu P, Chen Y, Jin J, Li J, Xu Y, He W, Long T, Deng X, Yin H, Li Z, Fan J, Cao P. Metagenomic insight into the microbial degradation of organic compounds in fermented plant leaves. ENVIRONMENTAL RESEARCH 2022; 214:113902. [PMID: 35839908 DOI: 10.1016/j.envres.2022.113902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 05/23/2023]
Abstract
Microbial degradation of organic compounds is an environmentally benign and energy efficient part in product processing. Fermentation of plant leaves involves enzymatic actions of many microorganisms. However, microbes and enzymes discovered from natural degradation communities were still limited by cultural methods. In this study, we used a metagenomics sequence-guided strategy to identify the microbes and enzymes involved in compound degradation and explore the potential synergy among community members in fermented tobacco leaves. The results showed that contents of protein, starch, pectin, lignin, and cellulose varied in fermented leaves from different growing sites. The different compound contents were closely related to taxonomic composition and functional profiles of foliar microbial communities. Microbial communities showed significant correlations with protein, lignin, and cellulose. Vital species for degradations of protein (Bacillus cereus and Terribacillus aidingensis), lignin (Klebsiella pneumoniae and Pantoea ananatis) and cellulose (Pseudomonas putida and Sphingomonas sp. Leaf20) were identified and relating hydrolytic enzymes were annotated. Further, twenty-two metagenome-assembled genomes (MAGs) were assembled from metagenomes and six potential cellulolytic genomes were used to reconstruct the cellulose-degrading process, revealing the potential metabolic cooperation related to cellulose degradation. Our work should deepen the understanding of microbial roles in plant fermentation and provide a new viewpoint for applying microbial consortia to convert plant organic components to small molecules.
Collapse
Affiliation(s)
- Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shanyi Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yiqiang Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jingjing Li
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei He
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Teng Long
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Xiaohua Deng
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China.
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Characterization of Novel Pectinolytic Enzymes Derived from the Efficient Lignocellulose Degradation Microbiota. Biomolecules 2022; 12:biom12101388. [PMID: 36291597 PMCID: PMC9599418 DOI: 10.3390/biom12101388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/20/2023] Open
Abstract
Diverse pectinolytic enzymes are widely applied in the food, papermaking, and other industries, and they account for more than 25% of the global industrial enzyme demands. Efficient lignocellulose degradation microbiota are reservoirs of pectinolytic enzymes and other lignocellulose-degrading genes. Metagenomics has been widely used to discover new pectinolytic enzymes. Here, we used a metagenomic strategy to characterize pectinolytic genes from one efficient lignocellulose-degrading microbiota derived from pulp and paper wastewater treatment microbiota. A total of 23 predicted full-length GH28 and PL1 family pectinolytic genes were selectively cloned and expressed in Escherichia coli, and 5 of the expressed proteins had pectinolytic activities. Among them, the characterization of one pectinolytic enzyme, PW-pGH28-3, which has a 58.4% identity with an exo-polygalacturonase gene of Aquipluma nitroreducens, was further investigated. The optimal pH and optimal temperature of PW-pGH28-3 were 8.0 and 40 °C, respectively, and its pectinolytic activity at the optimal condition was 13.5 ± 1.1 U/mg protein. Bioinformatics analyses and structural modeling suggest that PW-pGH28-3 is a novel secretory exo-polygalacturonase, which is confirmed by its hydrolysates of polygalacturonic acid. The detection of PW-pGH28-3 and other pectinolytic genes showed that efficient lignocellulose degradation microbiota could provide potential efficient pectinolytic enzymes for industrial application. In the future, improving metagenomic screening efficiency would discover efficient lignocellulose-degrading enzymes and lead to the sustainable and green utilization of lignocellulose.
Collapse
|
32
|
Wang W, Xiao G, Du G, Chang L, Yang Y, Ye J, Chen B. Glutamicibacter halophytocola-mediated host fitness of potato tuber moth on Solanaceae crops. PEST MANAGEMENT SCIENCE 2022; 78:3920-3930. [PMID: 35484875 DOI: 10.1002/ps.6955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The potato tuber moth (PTM), Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. α-solanine and α-chaconine are toxic steroidal glycoalkaloids (SGAs) in Solanaceae crops and are most abundant in potatoes (Solanum tuberosum L.), accounting for more than 95% of the total SGAs. PTM grows on potatoes with a higher concentration of SGAs. Gut bacteria play an important role in the physiology and behavior of insects. To understand the role of gut bacteria of PTM in host adaptability, we isolated and identified major SGA (α-chaconine and α-solanine)-degrading gut bacteria in the gut of PTM by a selective medium and analyzed their degradability and degradation mechanism. RESULTS The gut Glutamicibacter halophytocola S2 of PTM with high degradation capacity to α-solanine and α-chaconine were detected by liquid chromatography mass spectrometry (LC-MS) and identified by morphological and 16S rRNA gene sequence analysis. A gene cluster involving α-rhamnosidases, β-glucosidases, and β-galactosidases was identified by whole-genome sequencing of G. halophytocola S2. These genes had higher expression on the α-solanine medium. PTM inoculated with the isolated G. halophytocola S2 obtained higher fitness than antibiotic-treated PTM. CONCLUSION The G. halophytocola S2 in the gut of PTM could degrade the major toxic α-solanine and α-chaconine in potatoes. This enhances the fitness of PTM feeding on potatoes with high SGA contents. The results provide a theoretical foundation for the integrated pest management of PTM and provide an effective strain for the treatment of α-solanine and α-chaconine in potato food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenqian Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guanli Xiao
- College of Agriculture & Biology Technology, Yunnan Agricultural University, Kunming, China
| | - Guangzu Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lvshu Chang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yun Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jvhui Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Bin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
33
|
Kundu P, Mondal S, Ghosh A. Bacterial species metabolic interaction network for deciphering the lignocellulolytic system in fungal cultivating termite gut microbiota. Biosystems 2022; 221:104763. [PMID: 36029916 DOI: 10.1016/j.biosystems.2022.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
Fungus-cultivating termite Odontotermes badius developed a mutualistic association with Termitomyces fungi for the plant material decomposition and providing a food source for the host survival. The mutualistic relationship sifted the microbiome composition of the termite gut and Termitomyces fungal comb. Symbiotic bacterial communities in the O. badius gut and fungal comb have been studied extensively to identify abundant bacteria and their lignocellulose degradation capabilities. Despite several metagenomic studies, the species-wide metabolic interaction pattern of bacterial communities in termite gut and fungal comb remains unclear. The bacterial species metabolic interaction network (BSMIN) has been constructed with 230 bacteria identified from the O. badius gut and fungal comb microbiota. The network portrayed the metabolic map of the entire microbiota and highlighted several inter-species biochemical interactions like cross-feeding, metabolic interdependency, and competition. Further, the reconstruction and analysis of the bacterial influence network (BIN) quantified the positive and negative pairwise influences in the termite gut and fungal comb microbial communities. Several key macromolecule degraders and fermentative microbial entities have been identified by analyzing the BIN. The mechanistic interplay between these influential microbial groups and the crucial glycoside hydrolases (GH) enzymes produced by the macromolecule degraders execute the community-wide functionality of lignocellulose degradation and subsequent fermentation. The metabolic interaction pattern between the nine influential microbial species has been determined by considering them growing in a synthetic microbial community. Competition (30%), parasitism (47%), and mutualism (17%) were predicted to be the major mode of metabolic interaction in this synthetic microbial community. Further, the antagonistic metabolic effect was found to be very high in the metabolic-deprived condition, which may disrupt the community functionality. Thus, metabolic interactions of the crucial bacterial species and their GH enzyme cocktail identified from the O. badius gut and fungal comb microbiota may provide essential knowledge for developing a synthetic microcosm with efficient lignocellulolytic machinery.
Collapse
Affiliation(s)
- Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
34
|
Mon ML, Marrero Díaz de Villegas R, Campos E, Soria MA, Talia PM. Characterization of a novel GH10 alkali-thermostable xylanase from a termite microbiome. BIORESOUR BIOPROCESS 2022; 9:84. [PMID: 38647897 PMCID: PMC10992782 DOI: 10.1186/s40643-022-00572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to assess the biochemical and molecular structural characteristics of a novel alkali-thermostable GH10 xylanase (Xyl10B) identified in a termite gut microbiome by a shotgun metagenomic approach. This endoxylanase candidate was amplified, cloned, heterologously expressed in Escherichia coli and purified. The recombinant enzyme was active at a broad range of temperatures (37-60 ºC) and pH values (4-10), with optimal activity at 50 ºC and pH 9. Moreover, its activity remained at more than 80% of its maximum at 50 °C for 8 h. In addition, Xyl10B was found to be stable in the presence of salt and several ions and chemical reagents frequently used in the industry. These characteristics make this enzyme an interesting candidate for pulp and paper bleaching industries, since this process requires enzymes without cellulase activity and resistant to high temperatures and alkaline pH (thermo-alkaliphilic enzymes). The products of xylan hydrolysis by Xyl10B (short xylooligosaccharides, xylose and xylobiose) could be suitable for application as prebiotics and in the production of bioethanol.
Collapse
Affiliation(s)
- Maria Laura Mon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Rubén Marrero Díaz de Villegas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Marcelo A Soria
- Facultad de Agronomía, Cátedra de Microbiología Agrícola, Universidad de Buenos Aires, INBA UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Stevenson SJR, Lee KC, Handley KM, Angert ER, White WL, Clements KD. Substrate degradation pathways, conserved functions and community composition of the hindgut microbiota in the herbivorous marine fish Kyphosus sydneyanus. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111283. [PMID: 35907589 DOI: 10.1016/j.cbpa.2022.111283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023]
Abstract
Symbiotic gut microbiota in the herbivorous marine fish Kyphosus sydneyanus play an important role in digestion by converting refractory algal carbohydrate into short-chain fatty acids. Here we characterised community composition using both 16S rRNA gene amplicon sequencing and shotgun-metagenome sequencing. Sequencing was carried out on lumen and mucosa samples (radial sections) from three axial sections taken from the hindgut of wild-caught fish. Both lumen and mucosa communities displayed distinct distributions along the hindgut, likely an effect of the differing selection pressures within these hindgut locations, as well as considerable variation among individual fish. In contrast, metagenomic sequences displayed a high level of functional similarity between individual fish and gut sections in the relative abundance of genes (based on sequencing depth) that encoded enzymes involved in algal-derived substrate degradation. These results suggest that the host gut environment selects for functional capacity in symbionts rather than taxonomic identity. Functional annotation of the enzymes encoded by the gut microbiota was carried out to infer the metabolic pathways used by the gut microbiota for the degradation of important dietary substrates: mannitol, alginate, laminarin, fucoidan and galactan (e.g. agar and carrageenan). This work provides the first evidence of the genomic potential of K. sydneyanus hindgut microbiota to convert highly refractory algal carbohydrates into metabolically useful short-chain fatty acids.
Collapse
Affiliation(s)
- Sam J R Stevenson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Kevin C Lee
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Kim M Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - W Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Li XY, Mei C, Luo XY, Wulamu D, Zhan S, Huang YP, Yang H. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development. INSECT SCIENCE 2022. [PMID: 35811567 DOI: 10.1111/1744-7917.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is a prominent insect for the bioconversion of various organic wastes. As a saprotrophic insect, the BSF inhabits microbe-rich environments. However, the influences of the intestinal microorganisms on BSF growth and development are not very clear. In this study, the dynamics of the intestinal bacterial community of BSF larvae (BSFL) were analyzed using pyrosequencing. Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the most prevalent bacterial phyla in the intestines of all larval instars. The dynamic changes in bacterial community compositions among different larval instars were striking at the genus level. Klebsiella, Clostridium, Providencia, and Dysgonomonas were the relatively most abundant bacteria in the 1st- to 4th-instar BSFL, respectively. Dysgonomonas and Providencia also dominated the 5th- and 6th-instar larvae, at ratios of 31.1% and 47.2%, respectively. In total, 148 bacterial strains affiliated with 20 genera were isolated on different media under aerobic and anaerobic conditions. Among them, 6 bacteria, BSF1-BSF6, were selected for further study. The inoculation of the 6 isolates independently into germ-free BSFL feeding on an artificial diet showed that all the bacteria, except BSF4, significantly promoted BSF growth and development compared with the germ-free control. Citrobacter, Dysgonomonas, Klebsiella, Ochrobactrum, and Providencia promoted BSF development significantly by increasing the weight gains of larvae and pupae, as well as increasing the prepupae and eclosion rates. In addition, Citrobacter, Klebsiella and Providencia shortened the BSF life cycle significantly. The results illustrate the promotive effects of intestinal bacteria on BSF growth and development.
Collapse
Affiliation(s)
- Xin-Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Cheng Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xing-Yu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dilinuer Wulamu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
37
|
Li H, Greening C. Termite-engineered microbial communities of termite nest structures: a new dimension to the extended phenotype. FEMS Microbiol Rev 2022; 46:6631553. [PMID: 35790132 PMCID: PMC9779920 DOI: 10.1093/femsre/fuac034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Termites are a prototypical example of the 'extended phenotype' given their ability to shape their environments by constructing complex nesting structures and cultivating fungus gardens. Such engineered structures provide termites with stable, protected habitats, and nutritious food sources, respectively. Recent studies have suggested that these termite-engineered structures harbour Actinobacteria-dominated microbial communities. In this review, we describe the composition, activities, and consequences of microbial communities associated with termite mounds, other nests, and fungus gardens. Culture-dependent and culture-independent studies indicate that these structures each harbour specialized microbial communities distinct from those in termite guts and surrounding soils. Termites select microbial communities in these structures through various means: opportunistic recruitment from surrounding soils; controlling physicochemical properties of nesting structures; excreting hydrogen, methane, and other gases as bacterial energy sources; and pretreating lignocellulose to facilitate fungal cultivation in gardens. These engineered communities potentially benefit termites by producing antimicrobial compounds, facilitating lignocellulose digestion, and enhancing energetic efficiency of the termite 'metaorganism'. Moreover, mound-associated communities have been shown to be globally significant in controlling emissions of methane and enhancing agricultural fertility. Altogether, these considerations suggest that the microbiomes selected by some animals extend much beyond their bodies, providing a new dimension to the 'extended phenotype'.
Collapse
Affiliation(s)
- Hongjie Li
- Corresponding author. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211. China. E-mail:
| | - Chris Greening
- Corresponding author. Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia. E-mail:
| |
Collapse
|
38
|
Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nat Commun 2022; 13:3870. [PMID: 35790765 PMCID: PMC9256739 DOI: 10.1038/s41467-022-31433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractEconomically viable production of cellulosic biofuels requires operation at high solids loadings—on the order of 15 wt%. To this end we characterize Nature’s ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are β-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes—all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.
Collapse
|
39
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
Ali SS, Al-Tohamy R, Mohamed TM, Mahmoud YAG, Ruiz HA, Sun L, Sun J. Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:35. [PMID: 35379342 PMCID: PMC8981686 DOI: 10.1186/s13068-022-02131-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
Abstract
Biodiesel is a renewable fuel that can be produced from a range of organic and renewable feedstock including fresh or vegetable oils, animal fats, and oilseed plants. In recent years, the lignin-based aromatic wastes, such as various aromatic waste polymers from agriculture, or organic dye wastewater from textile industry, have attracted much attention in academia, which can be uniquely selected as a potential renewable feedstock for biodiesel product converted by yeast cell factory technology. This current investigation indicated that the highest percentage of lipid accumulation can be achieved as high as 47.25% by an oleaginous yeast strain, Meyerozyma caribbica SSA1654, isolated from a wood-feeding termite gut system, where its synthetic oil conversion ability can reach up to 0.08 (g/l/h) and the fatty acid composition in yeast cells represents over 95% of total fatty acids that are similar to that of vegetable oils. Clearly, the use of oleaginous yeasts, isolated from wood-feeding termites, for synthesizing lipids from aromatics is a clean, efficient, and competitive path to achieve "a sustainable development" towards biodiesel production. However, the lacking of potent oleaginous yeasts to transform lipids from various aromatics, and an unknown metabolic regulation mechanism presented in the natural oleaginous yeast cells are the fundamental challenge we have to face for a potential cell factory development. Under this scope, this review has proposed a novel concept and approach strategy in utilization of oleaginous yeasts as the cell factory to convert aromatic wastes to lipids as the substrate for biodiesel transformation. Therefore, screening robust oleaginous yeast strain(s) from wood-feeding termite gut system with a set of the desirable specific tolerance characteristics is essential. In addition, to reconstruct a desirable metabolic pathway/network to maximize the lipid transformation and accumulation rate from the aromatic wastes with the applications of various "omics" technologies or a synthetic biology approach, where the work agenda will also include to analyze the genome characteristics, to develop a new base mutation gene editing technology, as well as to clarify the influence of the insertion position of aromatic compounds and other biosynthetic pathways in the industrial chassis genome on the expressional level and genome stability. With these unique designs running with a set of the advanced biotech approaches, a novel metabolic pathway using robust oleaginous yeast developed as a cell factory concept can be potentially constructed, integrated and optimized, suggesting that the hypothesis we proposed in utilizing aromatic wastes as a feedstock towards biodiesel product is technically promising and potentially applicable in the near future.
Collapse
Affiliation(s)
- Sameh S. Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| | - Tarek M. Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila Mexico
| | - Lushan Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
41
|
La Rosa SL, Ostrowski MP, Vera-Ponce de León A, McKee LS, Larsbrink J, Eijsink VG, Lowe EC, Martens EC, Pope PB. Glycan processing in gut microbiomes. Curr Opin Microbiol 2022; 67:102143. [PMID: 35338908 DOI: 10.1016/j.mib.2022.102143] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Microbiomes and their enzymes process many of the nutrients accessible in the gastrointestinal tract of bilaterians and play an essential role in host health and nutrition. In this review, we describe recent insights into nutrient processing in microbiomes across three exemplary yet contrasting gastrointestinal ecosystems (humans, ruminants and insects), with focus on bacterial mechanisms for the utilization of common and atypical dietary glycans as well as host-derived mucus glycans. In parallel, we discuss findings from multi-omic studies that have provided new perspectives on understanding glycan-dependent interactions and the complex food-webs of microbial populations in their natural habitat. Using key examples, we emphasize how increasing understanding of glycan processing by gut microbiomes can provide critical insights to assist 'microbiome reprogramming', a growing field that seeks to leverage diet to improve animal growth and host health.
Collapse
Affiliation(s)
| | - Matthew P Ostrowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1433, Norway
| | - Lauren S McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, 106 91, Sweden
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Vincent G Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1433, Norway
| | | | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1433, Norway; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1433, Norway
| |
Collapse
|
42
|
Lou X, Zhao J, Lou X, Xia X, Feng Y, Li H. The Biodegradation of Soil Organic Matter in Soil-Dwelling Humivorous Fauna. Front Bioeng Biotechnol 2022; 9:808075. [PMID: 35083207 PMCID: PMC8784593 DOI: 10.3389/fbioe.2021.808075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Soil organic matter contains more carbon than global vegetation and the atmosphere combined. Gaining access to this source of organic carbon is challenging and requires at least partial removal of polyphenolic and/or soil mineral protections, followed by subsequent enzymatic or chemical cleavage of diverse plant polysaccharides. Soil-feeding animals make significant contributions to the recycling of terrestrial organic matter. Some humivorous earthworms, beetles, and termites, among others, have evolved the ability to mineralize recalcitrant soil organic matter, thereby leading to their tremendous ecological success in the (sub)tropical areas. This ability largely relies on their symbiotic associations with a diverse community of gut microbes. Recent integrative omics studies, including genomics, metagenomics, and proteomics, provide deeper insights into the functions of gut symbionts. In reviewing this literature, we emphasized that understanding how these soil-feeding fauna catabolize soil organic substrates not only reveals the key microbes in the intestinal processes but also uncovers the potential novel enzymes with considerable biotechnological interests.
Collapse
Affiliation(s)
- Xuliang Lou
- Zhuji Real Estate Management Service Center, Shaoxing, China
| | - Jianming Zhao
- Zhuji Real Estate Management Service Center, Shaoxing, China
| | - Xiangyang Lou
- Zhuji Real Estate Management Service Center, Shaoxing, China
| | - Xiejiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yilu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
43
|
Ahmad F, Yang GY, Liang SY, Zhou QH, Gaal HA, Mo JC. Multipartite symbioses in fungus-growing termites (Blattodea: Termitidae, Macrotermitinae) for the degradation of lignocellulose. INSECT SCIENCE 2021; 28:1512-1529. [PMID: 33236502 DOI: 10.1111/1744-7917.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Fungus-growing termites are among the most successful herbivorous animals and improve crop productivity and soil fertility. A range of symbiotic organisms can be found inside their nests. However, interactions of termites with these symbionts are poorly understood. This review provides detailed information on the role of multipartite symbioses (between termitophiles, termites, fungi, and bacteria) in fungus-growing termites for lignocellulose degradation. The specific functions of each component in the symbiotic system are also discussed. Based on previous studies, we argue that the enzymatic contribution from the host, fungus, and bacteria greatly facilitates the decomposition of complex polysaccharide plant materials. The host-termitophile interaction protects the termite nest from natural enemies and maintains the stability of the microenvironment inside the colony.
Collapse
Affiliation(s)
- Farhan Ahmad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Entomology Section, Central Cotton Research Institute, Sakrand, Shaheed Benazirabad, Sindh, Pakistan
| | - Gui-Ying Yang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shi-You Liang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi-Huan Zhou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hassan Ahmed Gaal
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Entomology, Faculty of Veterinary and Animal Husbandry, Somali National University, Mogadishu, Somalia
| | - Jian-Chu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Liu ZH, Yang ZW, Zhang J, Luo JY, Men Y, Wang YH, Xie Q. Stage correlation of symbiotic bacterial community and function in the development of litchi bugs (Hemiptera: Tessaratomidae). Antonie van Leeuwenhoek 2021; 115:125-139. [PMID: 34843017 DOI: 10.1007/s10482-021-01685-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Bacterial symbionts of insects have been shown to play important roles in host fitness. However, little is known about the bacterial community of Tessaratoma papillosa which is one of the most destructive pests of the well-known fruits Litchi chinensis Sonn and Dimocarpus longan Lour in Oriental Region, especially in South-east Asia and adjacent areas. In this study, we surveyed the bacterial community diversity and dynamics of T. papillosa in all developmental stages with both culture-dependent and culture-independent methods by the third-generation sequencing technology. Five bacterial phyla were identified in seven developmental stages of T. papillosa. Proteobacteria was the dominant phylum and Pantoea was the dominant genus of T. papillosa. The results of alpha and beta diversity analyses showed that egg stage had the most complex bacterial community. Some of different developmental stages showed similarities, which were clustered into three phases: (1) egg stage, (2) early nymph stages (instars 1-3), and (3) late nymph stages (instars 4-5) and adult stage. Functional prediction indicated that the bacterial community played different roles in these three phases. Furthermore, 109 different bacterial strains were isolated and identified from various developmental stages. This study revealed the relationship between the symbiotic bacteria and the development of T. papillosa, and may thus contribute to the biological control techniques of T. papillosa in the future.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Wen Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. .,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
45
|
Yang ZW, Men Y, Zhang J, Liu ZH, Luo JY, Wang YH, Li WJ, Xie Q. Evaluation of Sample Preservation Approaches for Better Insect Microbiome Research According to Next-Generation and Third-Generation Sequencing. MICROBIAL ECOLOGY 2021; 82:971-980. [PMID: 33709229 DOI: 10.1007/s00248-021-01727-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/24/2021] [Indexed: 05/13/2023]
Abstract
The microbial communities associated with insects play critical roles in many physiological functions such as digestion, nutrition, and defense. Meanwhile, with the development of sequencing technology, more and more studies begin to focus on broader biodiversity of insects and the corresponding mechanisms of insect microbial symbiosis, which need longer time collecting in the field. However, few studies have evaluated the effect of insect microbiome sample preservation approaches especially in different time durations or have assessed whether these approaches are appropriate for both next-generation sequencing (NGS) and third-generation sequencing (TGS) technologies. Here, we used Tessaratoma papillosa (Hemiptera: Tessaratomidae), an important litchi pest, as the model insect and adopted two sequencing technologies to evaluate the effect of four different preservation approaches (cetyltrimethylammonium bromide (CTAB), ethanol, air dried, and RNAlater). We found the samples treated by air dried method, which entomologists adopted for morphological observation and classical taxonomy, would get worse soon. RNAlater as the most expensive approaches for insect microbiome sample preservation did not suit for field works longer than 1 month. We recommended CTAB and ethanol as better preservatives in longer time field work for their effectiveness and low cost. Comparing with the full-length 16S rRNA gene sequenced by TGS, the V4 region of 16S rRNA gene sequenced by NGS has a lower resolution trait and may misestimate the composition of microbial communities. Our results provided recommendations for suitable preservation approaches applied to insect microbiome studies based on two sequencing technologies, which can help researchers properly preserve samples in field works.
Collapse
Affiliation(s)
- Zi-Wen Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zhi-Hui Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
- Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
46
|
Isolation, identification, cultivation and determination of antimicrobial β-glucan from a wild-termite mushroom Termitomyces heimii RFES 230662. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Wu D, Xia T, Zhang Y, Wei Z, Qu F, Zheng G, Song C, Zhao Y, Kang K, Yang H. Identifying driving factors of humic acid formation during rice straw composting based on Fenton pretreatment with bacterial inoculation. BIORESOURCE TECHNOLOGY 2021; 337:125403. [PMID: 34147772 DOI: 10.1016/j.biortech.2021.125403] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
The aims of this study were to identify the driving factors of humic acid (HA) during rice straw composting based on Fenton pretreatment with bacterial inoculation. Rice straw was pretreated by Fenton reactions and then inoculated during composting, which was set up CK (control), FeW (Fenton pretreatment) and FeWI (Fenton pretreatment + functional bacterial agents). Results indicated that Fenton pretreatment and inoculation of functional bacteria increased the concentration of HA components, which was due to that bacterial composition was changed and bacterial diversity was decreased. Moreover, Fenton pretreatment and inoculation of functional bacteria increased the bacterial amounts of shikimic acid metabolism genes and the correlation between HA components and shikimic acid metabolism genes. Therefore, the functional bacteria were core driving factors, and NH4--N, pH, cellulose and bacterial diversity as key environmental factors to promote the formation of HA components.
Collapse
Affiliation(s)
- Di Wu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yunxian Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Guangren Zheng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Hongyan Yang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
48
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
49
|
Metagenome-assembled genome of a Chitinophaga sp. and its potential in plant biomass degradation, as well of affiliated Pandoraea and Labrys species. World J Microbiol Biotechnol 2021; 37:162. [PMID: 34448059 DOI: 10.1007/s11274-021-03128-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
The prospection of new degrading enzymes of the plant cell wall has been the subject of many studies and is fundamental for industries, due to the great biotechnological importance of achieving a more efficient depolymerization conversion from plant polysaccharides to fermentable sugars, which are useful not only for biofuel production but also for various bioproducts. Thus, we explored the shotgun metagenome data of a bacterial community (CB10) isolated from sugarcane bagasse and recovered three metagenome-assembled genomes (MAGs). The genomic distance analyses, along with phylogenetic analysis, revealed the presence of a putative novel Chitinophaga species, a Pandoraea nosoerga, and Labrys sp. isolate. The isolation process for each one of these bacterial lineages from the community was carried out in order to relate them with the MAGs. The recovered draft genomes have reasonable completeness (72.67-100%) and contamination (0.26-2.66%) considering the respective marker lineage for Chitinophaga (Bacteroidetes), Pandoraea (Burkholderiales), and Labrys (Rhizobiales). The in-vitro assay detected cellulolytic activity (endoglucanases) only for the isolate Chitinophaga, and its genome analysis revealed 319 CAZymes, of which 115 are classified as plant cell wall degrading enzymes, which can act in fractions of hemicellulose and pectin. Our study highlights the potential of this Chitinophaga isolate provides several plant-polysaccharide-degrading enzymes.
Collapse
|
50
|
Schapheer C, Pellens R, Scherson R. Arthropod-Microbiota Integration: Its Importance for Ecosystem Conservation. Front Microbiol 2021; 12:702763. [PMID: 34408733 PMCID: PMC8365148 DOI: 10.3389/fmicb.2021.702763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Recent reports indicate that the health of our planet is getting worse and that genuine transformative changes are pressing. So far, efforts to ameliorate Earth's ecosystem crises have been insufficient, as these often depart from current knowledge of the underlying ecological processes. Nowadays, biodiversity loss and the alterations in biogeochemical cycles are reaching thresholds that put the survival of our species at risk. Biological interactions are fundamental for achieving biological conservation and restoration of ecological processes, especially those that contribute to nutrient cycles. Microorganism are recognized as key players in ecological interactions and nutrient cycling, both free-living and in symbiotic associations with multicellular organisms. This latter assemblage work as a functional ecological unit called "holobiont." Here, we review the emergent ecosystem properties derived from holobionts, with special emphasis on detritivorous terrestrial arthropods and their symbiotic microorganisms. We revisit their relevance in the cycling of recalcitrant organic compounds (e.g., lignin and cellulose). Finally, based on the interconnection between biodiversity and nutrient cycling, we propose that a multicellular organism and its associates constitute an Ecosystem Holobiont (EH). This EH is the functional unit characterized by carrying out key ecosystem processes. We emphasize that in order to meet the challenge to restore the health of our planet it is critical to reduce anthropic pressures that may threaten not only individual entities (known as "bionts") but also the stability of the associations that give rise to EH and their ecological functions.
Collapse
Affiliation(s)
- Constanza Schapheer
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Roseli Pellens
- UMR 7205, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Ecole Pratique de Hautes Etudes, Institut de Systématique, Évolution, Biodiversité, Sorbonne Université, Université des Antilles, Paris, France
| | - Rosa Scherson
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| |
Collapse
|